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The duality equations of stochastic partial differential equations are solved in the
Sobolev space H” (= W¥(R")), and the H"-norm estimates of the solutions are
obtained. As an application. the H™-norm estimates with negative m for the
solutions of stochastic partial differential equations are derived.  © 1992 Academic

Press, loc

1. INTRODUCTION

The duality analysis has proved effective and powerful in various fields
of mathematics. In differential equation theory, the duality argument is
usually applied through the so-called duality equation. Let us begin
with the simplest case. Given "‘Ae L™(0, 1: R?*9), f. Fe L*(0, 1; RY), and
Xg, 4, € RY. Consider the following two ordinary differential equations
(ODE):

dx(t)fdr= Alr) x(t)+ f(1),

{ (1.1)
.\10)= Xo,

{g’i(:),-’mf —A7(1) Alt)— F(1). (12)
AMl)=14,.

Using integration by parts, we have

a1 al

[.\'(f].F{:Hdr-t-{.\'il].).,]:J (ALe) fL0)) dr+ (A(0), xo).  (1.3)
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Equation (1.2) is called the duality equation (or, as it is sometimes
called. the adjoint equation) of (1.1}, and (1.3) is called the duality
(adjoint) equality. In general, a duality equation is a backward equation
with the end state being given. In ODE cases, (1.2) can be easily obtained
by inversing the time. But in stochastic problems the duality equations can
not be obtained by simply inversing the time, since we must be careful with
the adaptness. Bismut [2,3] first solved the problem, for stochastic
differential equations (SDE), by introducing a duality equation with an
additional martingale term. In this paper, we will study the duality
equations of the following stochastic partial differential equations (SPDE):

o
dg(t)=T[A(t) qUt)+ f() ) di+ Y [M“(0) g(t)+ g"(0)] dW, (1), "
k=1 (1.4)

4(0) =g,

where W :=(W,, W, .., W,) is a d'-dimensional Brownian motion with
W(0)=0, and the random operators A(7, ®). M*(t, w) are given as

Alr, @) dlx) :=a,(a"(t, x, @) @,p(x))

+bh'(t, x, w) Eb(x)+elt, x, m)p(x), (1.5)

M (1, ) p(x) =™ (1, x, w) &,d(x)
+ h*(r, x. @) p(x). (1. x, @)e[0, 1 ]x RYx 0, (1.6)

where a”, b'. ¢, a*. and h* are real valued functions, for i, j=1,2...d:
k=1,2....d". Note @, :=d/dx,, and the conventional repeated indices for
summation are used.

When the operators M* are of order zero (ie., ¢ =0), Bensoussan [1]
has derived the duality equation of (1.4) by a rather complicated method,
and it seems that his method fails to work if ¢ #0, the case that is of
importance in that (¢*) influences the behavior of the solution of (1.4) just
as strongly as does («”). Employing a finite dimensional approximation
approach. the duality equation of (1.4) for the general case ¢ 0 has been
derived in Zhou [11] as

i
dift)= —[A*() An)+ Y M**(1)r*(1)+ F(1)] di

k=1

ol 1
+ S AW,  rel0,1], )
k=

A L)=G,
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where A*(1), M**(t) are the adjoints of A(1), M*(r), respectively. given as
(omitting to write )

A*(r) ¢(x) == 0,(a"(1, x) ¢,¢(x)) = b'(1, x) &, 9(x)
+ [elt, x)—@,b'(t, x)] d(x), (1.8)
M**(1) p(x) := —a™(1, x) 6,4(x)
+ [h5(1, x)— 8,0%(t, x)] ¢(x), xeRL  (19)

Moreover, the existence and uniqueness of the W(i)-adapied solution
pair (4, r) for (1.7) have been established in the space L3([0,1]x80;: H") x
LA([0, 1]x2; H*) in [11], where H™ :=the Sobolev space W'(R).

The purpose of this paper is to study further the analytic and qualitative
properties of the solution pair of the duality equation of (L7):
more precisely, we hope to solve (1.7) in the space of Sovolev type
LA([0, 1]x8; H™* ')y x L¥([0,1]xQ; H™)* (m=0) and give the corre-
sponding estimates of the Sobolev norms. Our method relies heavily on the
delicate results of Krylov and Rozovskii [4-6] concerning the SPDE
theory together with some a prior estimates of differential operators. As an
application, the H™-norm estimates with negative m for the solutions of
SPDE (1.4) are obtained through the duality relationship. The application
of our results to the optimal stochastic control theory and the Hamilton-
Jacobi-Bellman equation in infinite dimensional spaces will be studied in
some later papers.

2. PRELIMINARIES

We denote by H" the Sobolev space

H™:={¢: D*¢p e L*(R"), for any o :=(ay, .., %)

with |2 :=la |+ + |oy] < m, =0 12

with the Sobolev norm

! 1/2
I]qﬁ”,,,::{ Z J JID";)ﬁ[Jc]I:1:1".\'}» y for peH".
lzl=m
Denote by H ™™ := (H")*, the dual of H" for m= 1, 2, ..., under that H’
is identified with its dual.
Denote by ¢ -, ), the duality pairing between H” ' and H™* ' under
(H™)y*=H", and by (-, -),, the inner product in H™.
For any second-order differential operator L which has the same form as
(1.5), when we write {L¢, 4>, then L is understood to be an operator
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from H"*' to H" ' by using formally Green’s formula. For example, for
the operator A(t) defined as in (1.5), we have

(A W D, = —(a’ (1, ) 8,0, C W),
+ (B YO ), (el )b ), (2.1)

Remark 2.1. Let A(1), M*(1) be given by (1.5), (1.6) and their formal
adjoints  A*(1), M *(t) given by (1.8), (19). We have obviously
CAWYG A Yo= < AXOW Do (MM )= (¢, ME*(1) 1), for ¢, Y€ o
However. neither (A(1)g. W), = {d. A*(1)Y>,, nor (M ()¢ ), =
(¢, M**(1)4),, holds if m = 1.

For a, fe(—x, +o) with x<f, we are given a filtered probability
space (Q..F, P, #: 2<i<f) and a Hilbert space X. For pe[l, +x i
define

L% (a f: X) = {¢: ¢ is an X-valued 7 -adapted process
on [a, fl.and g L[, f1xQ2; X)§.

We identify ¢ and ¢' in L% (a B:X) il E[%|@(1)—¢'(¢)] " dr=0. In
particular, L’ (a, f; X) is a Hilbert space as a subspace of the Hilbert space
L3([a, f1x Q; X).

Throughout this paper we fix a standard probability space (2, #, P)
with a d'-dimensional Brownian motion |W(r):0<r<1} and the
filtration Z :=o[W(s):0<s<t}. Let us fix an integer m =0 and positive
constants K, 3. We introduce the following conditions on the coefficients of
A(r). M*(1):

(A1), a”, b'. ¢, 6, and h* are measurable in (1. w) for each x and
are adapted 1o | % ; the functions a’, &', ¢, 6, h*, @,b', 0,6", and ,h" and
their derivatives in x up to the order m do not exceed K in absolute value.

(A2) a’=a’ i, j=1,2,.., d;the matrix (4") :=(a"— 123} _, o a’*)
=0 for all (7, x, w).

(A2) a’=a” i j=1, 2, .. d; the matrix (4”) is uniformly positive
definite: 47Z,&,>6|¢|3, for any (£, x. w), and any e RY.

The SPDE theory has been studied deeply by Krylov and Rozovskii
[4-6], including the H"-norm estimates of the solutions of SPDE for
nonnegative m. We shall state some of their results in a way which is
convenient to our later discussion. First, the following a priori estimates
will play an important role in this paper.

LemMMA 2.1, (a) Assume (Al),,, (A2) for some m=0. Then there exisis
a constant N, depending only on K. m. d, such that
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2[KA)h $Dm+ (Lo #2nl+ 2 IM P+ g°II5
I |

’ d’

< =513+ N (1913115 + 3 18413 ).

\ k=1

Jor any ¢e H"*', fe H" ', ge H":m=0,1,...m. (22)

(b) Assume (Al),,, (A2) with ¢* =0 for some m=0. Then there
exists a constant N, depending only on K, m, such that

o
(AN G, )m+ (L)l + Y IM*(1)d+ ¥l

k=1
i’
éN;(II;&lI;,-i- 1%+ X ||£‘||In)~
A k=1
forany pe H"*', f,ge H" . m=0, 1, ..., m. (2.3)

Proof. This is an easy consequence of [5, Lemma 2.1] (see also

RN |

Remark 2.2. The estimate (2.2) (resp. (2.3)) holds for any second- and
first-order differential operators which have the forms of (1.5) and (1.6)
whose coefficients satisfy (A1), and (A2)" (resp. (A2)).

ProrosiTion 2.1 (Krylov and Rozovskii [4-6]). (a) Assume (Al),,,
(A2) for some m=0, and assume feL%(0,1; H™ '), g5eL%(0,1; H™),
qo€ L2, F; H™). Then (1.4) has a unique solution ge L*%(0, 1; H™* ')
L*(R2;C(0, 1; H™)) and there exists a constant N, depending only on
K, m. 8, such that

ml
sup Elg(n);,+E| lg(o)3 ., dr
D=r=l *o
gl n g
QN;E{| %H;,*J [Hﬂ-’l”; REDY ||£k[f'liif.,] d’}-
t 0 k=1
m=0,1, .., m. (2.4)

(b) Assume (Al),,, (A2) with ¢* =0 for some m=1, and assume
£ g e L0, 1 H™), qoe L*(R2, #F,: H™). Then (1.4) has a unique solution
geL%(0,1; H")n L3(R2:C(0, 1: H™ ")) and there exists a constant N,
depending only on K, m, such that
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sup Elgln)]?
ci<|

{) =

a | IF i
éf\._lg]i“%”i’ + | L N+ Y llg“ls, :.‘;E..

k= |

m=0 1, ...¢m. (2.5)

We conclude this section with the following useful remark.

Remark 2.3. Define A :=1—4, where 4 is the Laplacian on R The
operator 4 maps H' into H 'and has an inverse A I It is easy to check
that A 'H™= H™ "> Moreover. if m is a nonnegative integer, then

(@, A7), = (s W )is (2.6)

for any ¢ H™, e H" (see, for example, [4]).

3. Duarity EQUATION: NONDEGENERATE CASE
Throughout this section. we assume (Al),, and (A2) for some m=0.

LemMma 3.1.  Let the operators M* (1), M *(t) be defined by (1.6), (1.9),
respectively. Then, there exists a constant N which depends only on K and
m, such that

(ME () ) — (b MEX(0 )l S Nl 101 (3.1)

for any g pe H"* ', m=0,1,...,m k=1,2....4d"

Proof. Fix ri. We will denote by /,(¢, @) (i= 1,2, ..) some finite sums
of terms of the form ¥ < <m (/" D¢, g" D'Yr)y, where f*, g% are
bounded measurable functions.

Then it is easy to compute that (we omit to write the variables 1. x)

!A‘fk‘?i* II" ]m [ {d). :'1’{‘;*1;’ ’ur

= Y {(D*0* ,9). D*W)o— (D¢, D*(—a™ A ))o} +1i(9, V)
|x| = m
= Y {(c" D*8,p), D*¥)o+ (D4, o DAy} + (¢ )

lal =m

$ (D", 0,(c% D))o+ (Db, 6% D*(2,8))o} + Lot V)

|%| =m

— Y (D, (8,6%)- D)o+ L, ¥) =159, ¥).

x| =

This yields the desired result. |1
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Define a linear operator M*(t) mapping H™ "' into H™ in the following
way. For ge H™ ',

(M5 (1), ), = lim | (¢, M“*(e)ifr,,), for any e H". (3.2)
Wy Hm
= i in A

LeEMMA 3.2.  The above M* (1) is well-defined. Further, we have

| M*(1)p— MM Pl S Nsl@l,ws  for any ¢peH™"'.  (33)

Proof. Let ¢eH™*' and {y,}cH™"' be Cauchy in H™ Then
Lemma 3.1 yields

|(¢- M**“Hwn = I|£’u'”m|
< ‘V‘ ”‘;ﬁnm ||¢'-. o= ‘\bn' ” m =4 ||Iwk"rl¢b‘ wu = wu']m| e 0: as n, n— oG,
hence (¢, M* *(1)y,,),, converges as n — oo, and the limit is independent of
the choice of the sequence {y,]| that converges to a fixed ye H™ in
H™-topology. So (3.2) is well-defined. Moreover, for any ge H" ! and
IIbE HF!!.‘
(M* (1) p), — (MH(1)G, )|
= lim (g M) — (MO, Y1)

W= HM
Wy —=tfin H™

<lim N |6l [l =Ns 181 ¥l (3.4)

thus (3.3) follows. |

Before studying the duality equation (1.7), we give the definition of the
solution,

DerNITION 3.1, A pair (4, r)e LE(0, 1; H')x L%(0, 1; H?)* is said to
be a solution of the equation (1.7), if for any neCg (R?) (=smooth
function on RY with compact support) and almost all (t, w)e [0, 1] x £,
':’:-“L r”(]

=5 o’
=(G, 1)+ | [(M-":‘- A(s)n o+ Z (r*(s), M (s)n)o+ < F(s), 'i‘}n] dy
ol k=1

d’ al
-¥ J (k). m)o dWi(s). (3.5)
k| Tt
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THEOREM 3.1.  Assume that Fe FEi(0; EH2 =) Ge 1282, # H™).

Then (1.7) admits a unique solution (4, 1) € LA, Moo
L2(0, 1: H™) |, where r:=(r’, 1o Y. Moreover, there exists a consiant
N.. depending only on K, m, and o, such that

1

sup [A(0)5+E |
“0

Nersl

L4

i 7
l LA+ X Il ol ]u’f
- &= i

o1
< .-'\",-,EU [F()Z ,dt+ |G ii,—‘. =01, .,m (3.6)

Proof. To avoid notational complexity, we will prove the theorem for
d' =1 (there is no essential difficulty when d’ > 1). Thus the index & will be
dropped throughout the proof.

Uniqueness. Suppose (4, r)€ L3(0, 1: H')x L5(0, 1; H”) satisfies

(di(1)= —[A*(1) (1) + M*(e) rle)] de +r(t) dWie), te[0,1],
LA(1)=0,

then Ito’s formula yields
» |
EIMNDIZ=2E | [{As) Als) As) Do+ (rl(s), M(s) Als))o] ds

a1
—E | |r(s)]5 ds

ot

ol

<2E | [CAls), Als) As) o+ 172 M(s) As) 5]
| =

SONVE | |ads)[ ds,

hence A(7)=0 by virtue of Gronwall’s inequality. By Definition 3.1, for any
deH',

| (r(s), M(s)h), ds — 1 (r(s), d)g dWis)=0.
=0

L)

The uniqueness of decompositions of the semimartingale leads to
(r(1), ¢),=0, hence r(1)=0. This proves the uniqueness.

Existence. Consider the triplet (H" ', H", H™" 1y with (H™)*=
H™. Let €, €3, ..., €,, . be a Hilbert basis of H™ "' which is orthonormal

m

as a basis of H"™.
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e et - ™ - - . -
Fix n, by Bismut [3], there exists uniquely 7, =l s e

L5(0,1; R") and 7, := (Fuss Fuas v B0) T € L2(0, 1; R") such that

dd,(t)= — [ Y. {A*)es, €0 dy(t)+ Y (e, M(1)e;),, ry(l)

=1 J=1

1 (3.7)
+ {F(t) e, | de+r, (1) dW (1), te 0,17,

A (=G J=c il s SN

where M“(1) is defined by (3.2), G,eL*Q, #;R'), and 3/_, G,.e,=
G, Gin L*(Q; H") as n— cc. Define 4, :=3"_, i,e,e L2(0,1: H"*"),
P =20 rwe, € L5(0,1; H"*'). Then Ito’s formula implies

-1
ElAdOIZ=ElG, 12 +2E | [{A*(5)Au(5), A,(5))
+ (ru(8), MA(s) 4,(5)),, + CF(8), 2,(5) ), —1/2|Ir,(8)]12,] ds
=]
SEIGuI3,+2E | [<A*(5) 4u(8), 2(5) D

+(M(5) 2,(8), 7, (8)) s+ N | Aa () 17005
+ CF(s), 4,(8) ), = 1/2|r,(5)I7.]1ds  (by Lemma 3.2)

al
é E ”GH || J':I + E ‘ [2<4 *'S | j“!l[‘{" /.'n(“l I >.r.lr

+ M) 2o ()2 + N5l 2, ()2 + Ns|lr, ()12,

|

+2/6- | F(s)?

I —

4 6/2- 1A (9)]12, 4 ] ds

"

al
SE(G, I3+ E| [=8lAd)IZ 4+ (N + Ns) 4, ()2

+ Nollra()2 + 208 \FHE_y+8/2- A3, ] ds,

"

hence Gronwall’s inequality yields

Al
sup E|4,(e);,+9/2: EJn 4, (e)ll5, . dt

W E-F 2|

)

where N, depends only on K, m, é.

<N:E [

m—1 nt

1
(4]0 203 e R 3 ] }dr+||G”||f,,], (3.8)
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Now let §, :=(P1s Przs v Pn)’ € L5(0, 17 R") be the solution "of the
following SDE in R":
dp()="Y, e, A¥(1)e, ) pu(t) di
F=']

" i i}t]]
o L E (MI(1)ep. e;)p P () + 1(0) dW(t),

n”tr|u”=”- fI: 1. 2, e . I

Define p, :=3"_, pu¢;€L%(0, 1; H"*'). Choose ¢>0 such that

26| M(s) p (N2 <82 [1pa(s) 5 (noting (Al),,)
Using the inequality (a+h)<(1+&)a”+(1+1/e)b’, we have by
Lemma 3.2,
2CAX(5) 0, (5)s PulS) D+ IMA(8) puls) +1,u(5)I|2,
K 2CA*(5) o (8), pols) ym+ (L +e) [ M(5)p,(s)+r,(s5) 2
F (L4 1/e)N2 | pa N5,
S 2LA*(5) o(8), Pul8) D+ I M(5) pou(s) +7,(5)112
+ 2 | M(s) p,(s)2, + 26 |r, ()2 + (14 1&)NZ [p, ()]},
< = Opu(®)2, 4+ Ny a5, +6/2 lpu )5, .
+ 212+ (1 + 1/e)N2 |pa ()2,
< —8/2 [|p (M + Nelllp () 2+ [ ls)lis,)- (3.10)

Now it follows by (3.9),

2 [ [2¢A*(5) polsh Pul5)

e 4]

+ | MA(s) poals) +r,(8)] ;1”] ds

E|p,(t)]

m

24
< —02E | Npa(s)l% v ds
“0

+NyE | [lpals)i5,+ lra(s)1 ds.
Applying Gronwall’s inequality, we obtain

sl
sup Elp,(0)5, +02E J. (03, .., dr

LI = |

al
< Nyexp(NE | |lr,(0)];, dr. (3.11)
“0
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Appealing to Ito’s formula, we get

d ) A(t) pult)
]

=Y [ —[CA*N) A0 €00+ (r, (1), M7(2)e)),,
jo |

+ <[r.{r}‘ Pr:)ul] .Umllr)_‘l‘ ‘;‘rril.r><pfilf}‘ ‘;l *[r]l)-’}'"
o rru“}[{'&{dn} “u“]-e;}m + rm“}] : dt + : : dl'V“]
= Llru (D5, — <), p(0) ) 1 dt+ { - } dW (1),

Integrating from 0 to 1 and taking expectation, we find out

o
E| [|r. (o)}, dt

¢ ]

-1
= !I[| (F(t), p,(8)), dt+(G,, p,(] l),,,]

\ 12 y\ 12

-1 R A / .l . \
:;(\L;J“ I F ()2 I;h) (EJ“ (15 4.,)

5

+(E|G, 1) (Ellp.(1)]2)'7?

m
v 12

-1 A
< ( NoE [ lir, (002 de)

y

e kg B )
x{[E [ TF0IZ ydt) +(EIG,IZ) }
where N, :=max{N;exp(Ny), 2/6 - Ny exp(Ng) |, hence
-]l ol
EJ [, () ,, dr < 2.-\"‘,15“ [F(0)] 2 pdt+ G, ||;'”:l. (3.12)
(1) “D

Combining (3.8) and (3.12). we know that there exist subsequence {n'|
of [n} and (4, r)e L3(0, 1; H™*")x L%(0, 1; H™) such that
i, =4 weaklyin L([0, 1]xQ: H™*) (3.13)

n

ro—r  weaklyin LY[0,1]xQ; H™), as n' —x. (3.14)

n

Let us now show (4, r) satisfies (1.7). Let y be an absolutely continuous
function from [0, 1] to R' with ¥ :=dy/die L7[0, 1] and 3(0)=0. Define
v (1) :=7y(t)e;. Multiplying (3.6) by 7,(¢) and using Ito’s formula, we have
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-1 1
| (Aal2). 7,(0)), dt + | (ra(t)y,(0)),, dW(1)

-1
=(G,, 7/(1))m+| [CA*(1) Au(0) (1) D

+ (), M) 7, (0))+ CEL), +, (1) dt
By virtue of (3.13) and (3.14), letting n' — %, We have. for any ¢ H™" i

| 1
| (&2), ) sy di+ | (r(e) @) (1) dW(D)

-1
= (G, @), (1) + | [<A*(1) AL, @D
+ (r(2), MA(1) @), + CFLD), @, y(1)dt. (3.15)

Appealing to Remark 2.3, for e H', we take ¢ ;=4 "y in (3.15) and
note that

(rit). M)A ") = lim (M*(t)e,, A~ "), =lim (M*(t)e,, W)
(=, fada ! "

O
oy — ¢(£) in HM

=lim (¢, M(t)y)o=(rlt), Mt )os

then (3.15) reduces, for any ¥ € H',

-1 ol
| (A1) ¥)o ""[fln"r4—. (r(1), )o 7 (1) dW (L)
“0

i
i

-1
—(G. ) p(1)+ | [CA), ALY Do

4 (r(t), MO )+ {E(L) ¥ Yol pl1) dt. (3.16)

For any t£(0, 1), we take y, defined by

0, if s<t—g/2,
v(8) = lfe-(s—t+ £/2), if t—g2<s<t+E/2
. if s>=r1+8/2.

Substituting (3.16) with 7, and letting & — 0, we arrive at
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. |
(ACE) W)+ | (r(s), i )y dW(s)

al
= (G + | [CAs) Als)Y o+ (rls), M(s)),
+ (F(s) W o] ds. for any WeH'. ae te[0,1]. (3.17)

This means (4, r) satisfies (3.5).

Now let us show (3.6), By virtue of (3.8), we know that for each fixed
t, there exists a subsequence (1"} of {n} and Z(r)e L*(2; H™) such that
Ao (1) = Z(1) weakly in L*(Q; H™). But

.|
(ZolO) e+ | (rals).e,),, dW(s)

wl
=(Gpse )t | [{A*S) 2,(5), €0, (r,(8), MA(s)e,),+ CF(s), €.0,,] ds,

letting n” — oo, we have A(r)=A(t) for almost [0, 1] x €. observing (3.17).
Hence combining (3.8), (3.12), (3,13), and (3.14), we get (3.6) for mi=m.
As for m=0, 1, .., m— 1, the argument is totally the same il we note the
uniqueness of the solution. The proof is now completed. |

Now let us give the duality equality.

COROLLARY 3.1.  Let the same assumptions as in Theorem 3.1 be satisfied
with m=0. Given fe L% (0, 1;H '), g*e L2(0,1; H°). k=1,2, ... d', and
qo€ L*(2, F,;: H"). Suppose qe L%(0,1: H')n L} (Q; C(0, 1; H"}) is the
solution of (1.4) and (i.r) is the sohuion of (1.7), then for any

[2 1< [0, 1],

E|:’"" CF(1), qlt) D di + (A(B), q”lf“”]

aft d
=E{| [(»‘.m.,f'm)ﬁ Y (M), g"[r)ll.}ﬁ+[i(ql, q[:]ln}.

e )

Proof.  Applying Ito’s formula to (4i(t), g(1)),. we easily get the
result. |
Remark 3.1. If we check the proof of Theorem 3.1, we will find that

when m =0, Theorem 3.1 (and therefore Corollary 3.1) still remains valid
even if all the coefficients ¢”, etc., are only bounded measurable.
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4. DuALITY EQUATION: DEGENERATE CASE

The argument in the previous section fails to work in general if SPDE
(1.4) is degenerate. In this section, we shall treat a special case of the
degenerate equations, i.e., the first-order derivatives in the diffusion term of
(1.4) vanish.

Throughout this section, we assume (Al),, (A2) for some m =1 and
a* =0,

THEOREM 4.1. Assume that Fe L%(0,1; H™), Ge L*(Q, #: H™). Then
the duality equation (1.7) admits a unique solution (A, r)e L5 (0, 1; H™)x
L2(0, 1; H")*. Moreover, there exists a constant N g which depends only on
K and m, such that

{

sup ENAOIE+E[ Y 1403 de
1

D=r=l 0 g =

]
éN“,E[L [F()) 2 tif+||G||f"]. m=0.1,2 ..M (4.1)

Proof. We assume d' =1 and omit to write the index k. Uniqueness can
be proved by exactly the same way as in the proof of Theorem 3.1. We only
show the existence.

We define A4,(t) and 4*(r) by (1.5) and (1.8), respectively, with a”
replaced by a” + 0", where 6=1as i=j;6"=0as i#j, and e€ (0, 1).

By Theorem 3.1, there exists uniquely (4,.r,)el%(0, 1;H™"')x
L%(0,1; H™) such that

)’a‘ii:{r b= —[AXt) A (t)+M*(e)r (t)+ F(1)] di+r, (1) dW(D),

) 4.2
lA,(1)=G. #2)

Since | (¢, AX(t) ¥ ), | <const. |@l,, . IV, .. for any ¢, e H" "', s0
the formula

CANO G A D= b AW >y fOr e H™ ',

defines a lincar operator A7(7) mapping from H" "' into H™ . Similarly,
the formula

(MA(6)d, ), = (b, M*(1)),,. for ¢, e H™,

defines a linear operator from H™ into itself. Note since a* =0, M?(r) is
a bounded operator with the bound independent of ¢
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By Lemma 2.1(b), there exists a constant ,, which is independent of &,
such that

2[KAXN VD, @)+ L )] + | M () + gl

g

< =2llél2 ,  + Nyl + 1115+ gl

ol

forany ¢eH" ', feH™ geH™. (4.3)

The above estimate together with a routine finite dimensional approximation
approach (cf. [9]) vields that there exists uniquely p,e L%(0,1; H™*')
satisfying the SPDE

fdp ()=[AMNt) p () +Ae)]dt+ [ M) p ()47 (1)] dW (1),

1p,(0)=0. (4.4)

Further,
Elp (D2 =E| [2[<A%s) p.(5), p.(8) )+ (A.08), p.(5)n]
1)
+ | MAs) pols) Fr (8))I2 ) ds
SNUE| [z + 14005, + tr(s)) 5,1 ds,
Y
hence

ol
sup Ellp (D5, <Ny exp(NGE | [IA 05+ IrD)5]de. (45)

D=1

Applying Ito’s formula for (£, (1), p,(1)),,. we easily get

E| [0+ lr0))2] di

-

:EU (F(t). p.(1)),, dt +(G. pr[l}I,,w
“0

y 142

el
s{f\-’,lexp{;\’“]E1 LA (0, + r,_l!}llf”]u’r}

V= 5
[

B .
x{(EI |an|;‘”m) +(EIG13)" .
1 0 /

E| TIALo)5,+ Ir.(0l5] di
[}]

~1
gz.w”exp(.-v”]g[q \F(0))12 de + |G;2]. (4.6)

| #rt i
1]
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Hence there exist subsequence {g,} and (4. r) € TAAO) L T
L. (0, 1; H") such that

i, —A  weakly in L*([0, 1] xQ2; H™),
r,—r  weakly in L*([0, 11xQ2; H™), as &, —0.

By (4.2). for any absolutely continuous function y with jeL*[0,1] and
w(0)=0,

i wl
1 (AA0) @)oY di+ | (r,(2), $)o 7(1) dW(1)

»1
= (G, ¢)oy(1)+ J [<‘l.“} A(”¢'>n + (r (1), M(r)g)q,
0
+(F(1), ¢)o] p(2) dt, forany ¢eH'
It follows that (4, r) satisfies (3.5), by letting &, — 0.

Finally let us give the estimate for supy,< E[4(¢)];,. Indeed, noting
that M*(¢) is a bounded operator mapping H" into- itself, we have by (4.2)

E|lA(DI2=E|GI;

m 1

-1
+2E \ [CA*(5) 2(5), Au(8) )+ (M*(5) 7 (5), 24,(5)),0

+ (F(s), 2,080, — 1/2 - |lr ()] 2] ds

-1
<E|G|2+2E | [1/2-Nalld ()5 + Nuizlirels o 1205)
“

+ 1 EE) 0 HAL ] = 12« (7o) 2] ds.

thus

ol
sup Enz‘»._mu:‘;,aN.]E[j ||quf,,m+||an,-’,,]

Ozt

where the constant N, is independent of &. Now by the same argument as
in the proof of Theorem 3.1, (4, r) satisfies (4.1). [

Remark 4.1. By Sobolev's well-known embedding theorem (see, for
example, [7]), if m—n>d/2 for a nonnegative n, then the solutions (4, r)
obtained in Theorems 3.1 and 4.1 belong to C"(R?) for almost all (¢, w),
and the H"-norms in the left-hand sides of (3.6) and (4.1) can be replaced
by C”(R’)-norms (ie., the summation of the sup-norms up to nth order).
In particular, if m > d/2 + 1 in Theorem 3.1 (resp.m > d/2 + 2in Theorem 4.1),
then the respective solutions of (1.7) are classical.
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5. APPLICATION

The application of the duality equation (1.7) to the necessary conditions
of optimal stochastic controls has been given in [11]. In this section, we
will present an application to the study of SPDE (1.4).

THEOREM 5.1.  In Proposition 2.1(a), the estimate (2.4) holds for =0,
+ L, sy 00
Proof. It suffices to prove the result for d'=1 and m= —m.

Let g be the solution of (1.4) and /e {U 1] be fixed. Con:.]der the mplet
(L(Q FiH m), LA, F, HY). LA(Q, %, H")) under (L*(Q, #: H"))*=
LY@, #:H") (cf [7, p. 47]). By the Hdhn Banach theorcm (see, for
u(.lmple [107). there exists Ge L} (Q, #: H™)=(L*(Q, F: H ™))*, such
that

E(G, ¢(i))o=E|G|2=E|q(D)|> .- (5.1)

Similarly, there exists Fe L% (0, r: H™” ') such that

ol ol el
E| (F(1). q0)odt=E | |F@)2_,dt=E)| llgn]>, . d.  (52)
“ ol ¢ | 0

Appealing to Theorem 3.1, there exists uniquely (4, r) & B0 Hm )
L0, 7; H™) satisfying

{d&(nz —[A*(2) A1)+ M*(1) (1) + F(2) ] dt + r(1) dW(1),

A (5.3)
Alr) =G

The duality equality (Corollary 3.1) yields

EL ) (F(t), g(t)) dt + (G, ¢l :'H{,W

= E{ Il-r [(A(1), f())o+ (r(2), g(1))o] di + (2(0), "fu.'u]{
L 172
<(E[ 14003 de) (E] 1002, ldr)
\ "\ \,
- . ; 12
+(£||rum;m] (C|p5U] m)

+(ENMO) 2) 2 (Ellgol® )"

F -1 1/2 o f 172
Q{NGE[}JFUﬁi uﬂ+HGﬁJ} {(ELJJ“VHm-!“)

pt 12 i ‘
+(LJ ',|H{r}|:__,,,d!) +{E"fn|l'_,,,ll"}‘
\ 7o
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Noting (5.1) and (5.2), we get immediately

ElgDI> .+ E J lg(e)l* 11 dt

é.’»N,,Ej[ ol e+ | TIADIE l+|.,g¢_;||}|-",,,_\mff_
. YU )

Since 7 is arbitrary, the above inequality is just what we want. |

In the complete same fashion, we have

TuroreM 5.2. In Proposition 2.1(b), the estimate (2.5) holds for m=0,
+ 1. e £

Observing the duality relationship between (1.4) and (1.7), by a similar
method as above, we can prove the following

TuroreM 5.3.  In Theorems 3.1 anid 4.1, the estimates (3.6) and (4.1) hold
for m=0, £1, .., Tm

In the above results, the higher regularity conditions on f, g ¢o in
Theorems 5.1, 5.2 (resp. F, G in Theorem 5.3) are posed. But if we are only
concerned with the H™-norm estimates with the negative m, these
conditions can be considerably relaxed.

COROLLARY 5.1. (a) Assume (Al),, (A2) for some m=0, and assume
f FeliO,, H ) ge L3(0,1; H®), go€ L*(2. F; H°), Ge L322, #,:H").
Then the estimates (2.4) and (3.6) hold for = —1, ... —ht.

(b)  Assume (Al),, (A2) for some m=1 with ¢ =0, and assume
that f, g Fe L%(0, 1: H'), o€ LAQ, F: H'), Ge LA(Q, #: H'). Then the
estimates (2.5) and (4.1) hold for m= —1, ... —m.

Proof. Proving the above claims is a simple approximation
procedure. We only show that of (2.4) for example. We assume d'=1
for simplicity. Choose |/, | < R [0 5 ). {g,} =L%(0.1; H™), and
(Gon) = LN(R2, Fys H™) such that

fu—=rf in L¥[0,11xQ;H™"),
g, £ in L3([0,1]1xQ: H"),
Gon—=4qo 10 LA, F,HY), as n—®.

Let g, be the solution of (1.4) with . g, g, replaced respectively by f,.
g,, Gon- Then (2.4) with m =0 yields

ol
sup Ellq..(r}mqu}ﬂf,JrEjn lg.(1)—g(t)]|; dt—=0, as n—=x.

0=r=l
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On the other hand, by Theorem 5.1. ¢, satisfies (2.4) for m= —1, ..., —m
with the constant therein independent of n. Hence the desired result follows
by letting n— . |

Remark 5.1. The H"-norm estimates of the solution of SPDE with
negative m have been found useful in the study of the Hamilton-Jacobi-
Bellman equation in infinite dimensional spaces. For example, in order to
obtain the uniqueness of viscosity solutions of a special class of H-J-B
equations, Lions [8] has proved the estimate (2.5) for m= —2 by using a
specific method. The duality analysis of the present paper may be useful in
treating the optimal control problem of much more general SPDE and the
corresponding H-J-B equation. We hope to study this subject in some
future papers.
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