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Abstract

We revisit Markowitz’s mean-variance portfolio selection model by considering a dis-

tributionally robust version, where the region of distributional uncertainty is around the

empirical measure and the discrepancy between probability measures is dictated by the

Wasserstein distance. We reduce this problem into an empirical variance minimization

problem with an additional regularization term. Moreover, we extend the recently devel-

oped inference methodology to our setting in order to select the size of the distributional

uncertainty as well as the associated robust target return rate in a data-driven way. Finally,

we report extensive backtesting results on S&P 500 that compare the performance of our

model with those of several well-known models including the Fama–French model and the

Black–Litterman model.

Key Words. Mean-variance portfolio selection, robust model, Wasserstein distance, Robust

Wasserstein Profile Inference.

1 Introduction

We study data-driven mean–variance portfolio selection with model uncertainty (or ambigu-

ity). The classical one-period Markowitz mean–variance model (Markowitz (1952)) is to choose

a portfolio weighting vector φ ∈ Rd (all the vectors in this paper are by convention columns)

among d stocks to maximize the risk-adjusted expected return. The precise formulation is1

min
φ∈Rd

{
φ>VarP∗ (R)φ : φ>1 = 1, φ>EP∗ (R) = ρ

}
, (1)
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1There are several mathematically equivalent formulations of the original mean–variance model.
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where R is the d-dimensional vector of random returns of the stocks; P∗ is the probability

measure underlying the distribution of R; EP∗ and VarP∗ are respectively the expectation and

variance under P∗; ρ is the targeted expected return of the portfolio.

It is well known that this model has a major drawback when applied in practice. On one

hand, its solutions are very sensitive to the underlying parameters, namely the mean and the

covariance matrix of the stocks. On the other hand, EP∗ is unknown in practice; so one has

to resort to the empirical versions of the mean and the covariance matrix instead, which are

usually significantly deviated from the true ones (especially the mean, due to the notorious

“mean-blur” problem).

This motivates the development of the “robust” formulation of the Markowitz model which

recognizes and tries to account for the impact of the (potentially significant) discrepancies

between P∗ and its empirical version. This idea originates in the robust control approach

from control theory (see, for example, Petersen et al. (2000)). Hansen and Sargent (2008)

give a systematic account on applications of robust control to economic models. There is also

a rich literature on robustification of portfolio choice. The paper by Lobo and Boyd (2000)

is among the first to provide a worst-case robust analysis with respect to the second-order

moment uncertainty within the Markowitz framework. Goldfarb and Iyengar (2003) consider

a robust Markowitz problem with the uncertainty set based on vector/matrix distance. Pflug

and Wozabal (2007) present a Markowitz model with distributional robustness based on a

Wasserstein distance, a metric measuring the discrepancy between two probability measures

which we also apply in this paper.2 Nevertheless, their formulation involves an additional

value-at-risk type of constraint that leads to a much more complex optimization problem. More

importantly, their choice of the uncertainty size is exogenous and no guidance for optimally

selecting the size is given.

Esfahani and Kuhn (2018) provide representations for the worst-case expectations in a

Wasserstein-based ambiguity set centered at the empirical measure, and then apply their re-

sults to portfolio selection using different risk measures, leading to models different from the

Markowitz model. An important difference in our approach, which is related to the work in

Blanchet et al. (2016), as we shall discuss, is that we focus on the order-2 Wasserstein distance.

This is important because, due to the quadratic nature of the variance objective that we con-

sider, applying an uncertainty set based on Wasserstein of order 1 could potentially lead to

arbitrarily large variances. We also note that the work in Esfahani and Kuhn (2018) provides

guidance to choose the uncertainty size, δ. But this choice of the uncertainty size deteriorates

substantially with an increase in the dimension of the underlying portfolio. So, as we shall

elaborate, we employ an approach similar to that proposed in Blanchet et al. (2016), which

must be adapted and extended to our setting. Our current work relates to the broad literature

on distributionally robust optimization (DRO). In addition to Esfahani and Kuhn (2018), re-

lated duality results for Wasserstein DRO formulations in which the probability model appears

linearly in the objective function have been studied in Zhao and Guan (2018), Esfahani and

2A Wasserstein distance is the optimal value for a specific optimal transport problem. The notion was first
formulated by Monge (1781) and its theory developed by Kantorovich (1942). It has been widely used in the
study of distributionally robust optimization (DRO) problems.
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Kuhn (2018) and Gao and Kleywegt (2016). A general result (with conditions which match the

standard assumptions of the general optimal transport theory) is given in Blanchet and Murthy

(2019). These results are not directly applicable to our setting because our objective function

is not linear, but quadratic in the underlying probability model, so the techniques need to be

adapted.

Also in connection to robust portfolio optimization, we mention the work in Delage and

Ye (2010), which constructs uncertainty regions involving means and covariances of the return

vector. The paper of Wozabal (2012) also considers a robust portfolio model with risk constraints

based on expected short-fall, resulting in an optimization problem that requires solving multiple

convex problems. These papers do not consider an optimal choice of the size of the uncertainty

sets, as we do here.

Then, there are a number of papers that address a wide range of optimization techniques

(such as interior-point methods, conic programming and linear matrix inequalities) in solving

robust portfolio selection problems. A selection of these include Halldorsson and Tutuncu

(2003), Costa and Paiva (2002) and Ghaoui et al. (2003). We obtain formulations that can

be solved with basically any standard convex optimization software. Finally, we mention the

work of Goh and Sim (2010) and Wiesemann et al. (2014) who investigate different forms of

distributional ambiguity sets, as well as those of Hu and Hong (2013) and Jiang and Guan (2016)

who study distributional robust formulations based on the Kullback-Leibler divergences. It is

worth noting that the Kullback-Leibler divergence-based formulation is popular in economics

(see Hansen and Sargent (2008)). Our formulation focuses on the use of Wasserstein ambiguity

sets because of the intuitive out-of-sample exploration induced by the Wasserstein distance and

because of the regularization interpretation which, as we shall see, results from our formulation.

Precisely, in this paper, we are interested in studying a distributionally robust mean–variance

(DRMV) model, given by

min
φ∈Fδ,ᾱ(n)

max
P∈Uδ(Pn)

{
φ>VarP (R)φ

}
, (2)

where Pn is the empirical probability derived from historical information of the sample size n,

Uδ(Pn) := {P : Dc(P,Pn) ≤ δ} is the ambiguity set,

Fδ,ᾱ (n) = {φ : φ>1 = 1, min
P∈Uδ(Pn)

[EP

(
φ>R

)
] ≥ ᾱ},

is the feasible region of portfolios, EP and VarP (R) denote respectively the mean and the

covariance matrix under P, and Dc (·, ·) is a notion of discrepancy between two probability

measures based on a suitably defined Wasserstein distance.3

Intuitively, formulation (2) introduces an artificial adversary P (whose problem is that of

the inner maximization) as a tool to account for the impact of the model uncertainty around

the empirical distribution. There are two key parameters, δ and ᾱ, in this formulation, and

3Recent work by Blanchet et al. (2016) shows that a similar definition of discrepancy in some other models
recovers exactly certain well-known machine learning algorithms, such as square-root Lasso and support vector
machines.
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they need to be carefully chosen. The parameter δ can be interpreted as the power given to

the adversary: The larger the value of δ the more power is given. If δ is too large relative

to the evidence (i.e. the size of n), then the portfolio selection will tend to be unnecessarily

conservative. On the other hand, ᾱ can be regarded as the lowest acceptable target return given

the ambiguity set. Naturally, the choice of ᾱ should be based on the original target ρ given in

(1); but one also needs to take into account the size of the distributional uncertainty, δ. Using

ᾱ = ρ will tend to generate portfolios that are too aggressive; it is more sensible to choose ᾱ < ρ

in a way such that ρ− ᾱ is naturally informed by δ.

This paper makes three main contributions. First, we show that (2) is equivalent to an

(explicitly formulated) non-robust minimization problem in terms of the empirical probability

measure in which a proper penalty term or “regularization term” is added to the objective

function. The explicit regularization term that is derived from (2) is given in Theorem 1

below. This connects (and contrasts) to the directly introduced use of regularization in variance

minimization techniques widely employed both in the statistics/machine learning literature

and in practice to, among others, address the issue of overfitting. Indeed, practitioners who

use mean–variance portfolio selection models often introduce regularization penalties, inspired

by Lasso, in order to enhance the sparsity so as to include fewer stocks in their portfolios.

Our use of Wasserstein distance to model distributional uncertainty naturally gives rise to a

regularization term, suggesting an alternative, yet theoretical, justification and interpretation

for its use in practice. Our result shows that our robust strategies are able to enhance out-of-

sample performance with basically the same level of computational tractability as the standard

mean-variance selection.

Our second main contribution provides guidance on the choice of the size of the ambiguity

set, δ, as well as that of the worst mean return target, ᾱ. This is accomplished by adapting

and extending the robust Wasserstein profile inference (RWPI) framework, recently introduced

and developed by Blanchet et al. (2016), to our setting in a data-driven way that combines

optimization principles and basic statistical theory under suitable mixing conditions on historical

data.

The last contribution empirically compares the performance of our DRMV strategies with

those of several well-known and well-practiced models including the classical Markowitz model,

the Fama–French model and the Black–Litterman model. We also compare our strategies with

those of another robust model, the one put forward by Goldfarb and Iyengar (2003) in which

robustness is based on vector/matrix distance. All these models (including ours) are static,

single-period ones whereas in practice, a stock market is highly dynamic. In our empirical

experiments, we implement them in the same rolling horizon fashion to account for the market

dynamics. It should be noted that our theory applies to only a one-period model, and the

numerical implementation to the multi-period market is heuristic based on rolling horizons.

Finally, we also include in our comparison pre-committed optimal strategies based on a well-

calibrated, non-robust continuous-time model in Cui et al. (2012). The experiments are carried

out on S&P 500 for the backtesting period 2000-2017 with the prior 10 years as the training

period. Our experiments show that DRMV compares favorably against all other models in

achieving no worse (far better against most models) average returns and much lower variabilities.
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This, we believe, is another important insight that we can draw from this research and that

merits further investigation.

We should acknowledge, however, that our approach fails when the number of stocks d is

not small compared with the sample size n, since the inference method for choosing δ and ᾱ

theoretically relies on some central limit theorems which require n to asymptotically approach

infinity. Moreover, when d > n, both the empirical probability measure and the plug-in portfo-

lios are not consistent. The application in our mind is asset allocation in which relatively small

portfolios (i.e. those having dozens of assets) are desired. Indeed, one of the main goals of the

regularization technique is to reduce the number of stocks in a portfolio. In our empirical study

we have 100 stocks and only 108 data points, and our algorithm achieves good performance.

Ao et al. (2018) also provide a theoretical justification on the L1-norm regularization by

proving that the regularized portfolios asymptotically achieve the optimal mean and variance

when the size of the portfolio approaches infinity. However, their result relies on the normality

of return distribution, whereas we only require the data to be stationary which in particular

allows heavy tail distributions commonly seen in financial data. Ao et al. (2018) estimate the

regularization coefficient – δ in our setting – using the cross validation technique, while we use

the statistical inference to derive this parameter in a data-driven way.4 Moreover, all the results

in Ao et al. (2018) seems to work only with the L1-norm, whereas our results can be applied

to any Lp-norm by choosing a proper Wasserstein distance. A significant contribution of Ao

et al. (2018), on the other hand, is that it allows a large size of the underlying portfolio, even

although it must be of the same order of the sample data size.

The rest of the paper is organized as follows: In Section 2 we formulate the DRMV model and

present necessary preliminaries. Section 3 demonstrates the tractability of our DRMV model

after a series of transformations, and Section 4 studies the choices of distributional uncertainty

size and the worst return level. Then, in Section 5, we report the empirical performance of our

strategies against those of several other models. Concluding remarks are given in Section 6.

Technical proofs of our results are given in appendices at the end of the paper.

2 Model Formulation

In this section, we formulate our distributionally robust Markowitz (DRM) model while

reviewing some useful concepts.

Let P(Rd × Rd) be the space of all Borel probability measures supported on Rd × Rd. A

given element π ∈ P(Rd × Rd) can be assumed to be the joint distribution of a random vector

(U, V ), where U ∈ Rd and V ∈ Rd. We use πU and πV to denote the marginal distributions of

U and V under π. In particular, πU (A) = π
(
A× Rd

)
and πV (A) = π

(
Rd ×A

)
for every Borel

set A ⊂ Rd.
We start with a “cost” function c : Rd × Rd → [0,∞], which we shall assume to be lower

semicontinuous and such that c (u, u) = 0 for any u ∈ Rd. For a given such cost function c, we

4Cross validation, while a standard technique, is generally data intensive and time consuming. In the rolling
horizon setting, for instance, one has to assume the parameter δ to be constant during the horizon and estimate
it. In contrast, in our data-driven approach, the parameter δ changes over the horizon in a way that is sensitive
to the variability in the data.
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introduce Dc (·, ·) representing some “discrepancy” between two probability measures as follows:

Dc(P,Q) := inf{Eπ[c(U, V )] : π ∈ P(Rd × Rd), πU = P, πV = Q},

where P and Q are two probability measures supported on Rd. This can be interpreted as the

optimal (minimal) transportation cost (also known as the optimal transport discrepancy or the

Wasserstein discrepancy) of moving the mass from P into the mass of Q under a cost c (x, y)

per unit of mass transported from x to y.

If for a given p > 0, c1/p (·, ·) is a metric, then so is D
1/p
c (·, ·); see Villani (2003). Such a

metric D
1/p
c (·, ·) is known as a Wasserstein distance of order p. Most of the times in this paper,

we choose the following cost function

c(u, v) = ||u− v||2q

where q ≥ 1 is fixed (which leads to a Wasserstein distance of order 2).5

Recall that R is the d-dimensional vector of random returns of the d stocks. Let Pn be the

empirical probability measure on Rd with a sample size n, i.e

Pn(dx) =
1

n

n∑
i=1

δRi(dx)

where Ri (i = 1, 2, ..., n) are realizations of R and δRi(·) is the indicator function. Define the

ambiguity set as

Uδ(Pn) = {P : Dc(P,Pn) ≤ δ},

and the feasible region of portfolios as

Fδ,ᾱ (n) = {φ ∈ Rd : φ>1 = 1, min
P∈Uδ(Pn)

[EP

(
φ>R

)
] ≥ ᾱ}.

The DRMV approach then consists in choosing a portfolio φ ∈ Fδ,ᾱ (n) which achieves the

optimal min-max value in (2).

3 Transformations, Duality and Regularization

Problem (2) appears, in principle, very complex. First of all, the inner maximization prob-

lem is over a set of probability measures, which renders it an infinite dimensional optimization

problem. Second, it is not clear whether the outer minimization problem, while finite dimen-

sional, is convex. Therefore (2) at its outset seems computational insurmountable. In this

section, we reformulate (2), through a series of transformations and a duality argument, as an

equivalent problem that is computationally tractable.

The following theorem, whose proof is relegated to Appendix A, is the main result of the

paper, which states that (2) is equivalent to a non-robust portfolio selection problem in terms

5Different cost functions can be used, resulting in different regularization penalties, as we will discuss at the
end of Section 3 and in Section 6.
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of the empirical measure Pn, with an additional “regularization” term.

Theorem 1 The primal formulation given in (2) is equivalent to the following dual problem{
minφ∈Rd

√
φ>VarPn (R)φ+

√
δ||φ||p,

subject to φ>1 = 1, EPn(φ>R) ≥ ᾱ+
√
δ||φ||p,

(3)

in the sense that the two problems have the same optimal solutions and optimal value.

It is not hard to verify that the mapping φ→
√
φ>VarPn (R)φ+

√
δ||φ||p is convex, and the

feasible region of (3) is clearly convex. So (3) and therefore (2) are both convex optimization

problems. As such, they are tractable optimization problems.

Problem (3) has an additional term,
√
δ||φ||p, in its objective function. In asset management

industry, fund managers using mean–variance portfolio selection model often add a “penalty”

or “regularization” term – in the form of k||φ|| where || · || is an appropriately chosen norm -

in order to enhance the sparsity of the vector as a way to include less stocks to the portfolios

and to address the issue of overfitting.6 Here, we provide interpretability of this regularization

technique (which is based on experience or heuristics) by a well-established robustification idea,

backed by precise rationality principles; see for example Delage et al. (2019). Moreover, the

parameter δ that reflects the level of regularization will also be endogenously informed by data,

as we will show in the next section.

Theorem 1 has another interesting interpretation related to transactions costs. Introducing

the Lagrange multiplier to the second constraint in Problem (3), the latter is equivalent to{
minφ∈Rd γ

√
φ>VarPn (R)φ− EPn(φ>R) + k||φ||p,

subject to φ>1 = 1
(4)

for some constants γ > 0 and k ≥ 0. Following Olivares-Nadal and DeMiguel (2018), we can

regard the term in the objective function, k||φ||p, as a transaction cost term. Therefore, (4)

is a classical mean–variance model with transaction costs.7 With this interpretation, Theorem

1 yields that a mean–variance model with transaction costs in the form of (4) is equivalent

to a distributionally robust mean–variance model in the form of (2). This result is related to

one of the results in Olivares-Nadal and DeMiguel (2018) which states that a mean–variance

portfolio problem with Lp-norm transaction costs is equivalent to a robust optimization prob-

lem. However, there are important differences between the two results. The robust problem

in Olivares-Nadal and DeMiguel (2018) has an ellipsoidal uncertainty set around the sample

mean only, and there is no robustification on the variance. The distributional robust model

in our paper is the most comprehensive one, because it robustifies not only the mean but also

the variance, and indeed the whole distribution. Methodologically, the result of Olivares-Nadal

6In practice, it is not desirable to include, in the case of S&P 500 stocks for example, all the 500 stocks in
one’s portfolios, even though one of the key implications of the mean–variance model is diversification. From
a practical perspective including too many stocks is costly and prone to mismanagement. Therefore, adding a
proper regularization term not only reduces overfitting, but also helps achieve a balance between diversification
and manageability.

7Strictly speaking, (4) is a mean–standard-deviation model, which is equivalent to the mean–variance one.
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and DeMiguel (2018) follows directly (and indeed trivially) from what is essentially the Legen-

dre transformation or the convex conjugate (see the online companion of Olivares-Nadal and

DeMiguel (2018)). This implication was actually well documented in earlier papers such as

Bertsimas et al. (2004) and, in a portfolio selection context, Gotoh and Takeda (2011), which

shows that any norm constraint can be turned into a robust constraint associated with the

return vector. In contrast, the proof of Theorem 1 is much more involved and subtle because of

the distributional constraint (see Appendix A). In turn, the distributional formulation is key in

providing a natural statistical approach to selecting the size of the uncertainty. These constitute

one of the main methodological contributions of this paper.

As indicated earlier, it should be noted that Theorem 1 does not directly follow from any of

the strong duality results mentioned in the introduction. This is because the portfolio variance

in the objective function (2) is not a linear function of the probability measure. A related work,

Gao et al. (2017) proves only an asymptotic equivalence to regularization. On the other hand,

we have the exact equivalence between (2) and a regularized optimization problem given in

Theorem 1.

To conclude this section, we note that while the cost function is chosen as c(u, v) = ||u−v||2q
in the study here, our result (Theorem 1) actually holds for any cost function of the form

c(u, v) = ||u − v||2 where || · || is any given norm with a suitable dual. More precisely, define

the dual norm as ||x||∗ = sup
||z||=1

|x>z|. Then the primal distributionally robust model under this

alternative cost function is equivalent to the following dual problem:

min
φ∈Fδ,ᾱ(n)

(√
φ>VarPn (R)φ+

√
δ||φ||∗

)2

,

where the feasible region is modified as

Fδ,ᾱ (n) = {φ ∈ Rd : φ>1 = 1,EPn(φ>R) ≥ ᾱ+
√
δ||φ||∗}.

For example, consider a norm as ||x|| = (xTΣx)1/2 where Σ is a strictly positive definite matrix.

Then ||x||∗ = (xTΣ−1x)1/2. Interested readers may refer to Blanchet and Kang (2017) for

discussions on some other interesting norms.

4 Choice of Model Parameters

There are two key parameters, δ and ᾱ, in the formulation (2), the choice of which is not

only curious in theory, but also crucial in practical implementation and for the success of our

algorithm. The idea is that the choice of these parameters should be informed by the data

(i.e. in a data-driven way) based on some statistical principles, rather than being arbitrarily

exogenous. Specifically, we define the distributional uncertainty region just large enough so

that the correct optimal portfolio (the one which we would apply if the underlying distribution

was known) becomes a plausible choice with a sufficiently high confidence level. Once this is

determined, then we determine the feasible set of portfolios just large enough so that the correct

optimal portfolio is feasible with adequately high confidence.
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We need to impose several technical/statistical assumptions.

A1) The underlying return time series (Rk : k ≥ 0) is a stationary, ergodic process satisfying

EP∗
(
||Rk||42

)
< ∞ for each k ≥ 0. Moreover, for each measurable g (·) such that |g (x)| ≤

c(1 + ‖x‖22) for some c > 0, the limit

Υg := lim
n→∞

VarP∗

(
n−1/2

n∑
k=1

g (Rk)

)

exists and the central limit theorem holds:

n1/2 [EPn (g (R))− EP∗ (g (R))]⇒ N (0,Υg) ,

where (and henceforth) “⇒” denotes weak convergence.

A2) For any matrix Λ ∈ Rd×d and any vector ζ ∈ Rd such that either Λ 6= 0 or ζ 6= 0,

P∗ (‖ΛR+ ζ‖2 > 0) > 0.

A3) The classical model (1) has a unique solution φ∗. Moreover, VarP∗ [R] is positive definite.

Assumption A1) is standard for most time series models (after removing seasonality). As-

sumption A2) holds assuming, for example, that R has a density. Assumption A3) is a technical

assumption which can be relaxed, but then the evaluation of the optimal choice of δ would be-

come more cumbersome, as we shall explain.

4.1 Choice of δ

The choice of the uncertainty size δ is crucial. If δ is too large, then there is too much model

ambiguity and the available data becomes less relevant. In this case, the resulting optimal

portfolios will tend to be just equal allocations. If δ is too small, then the effect of robustification

will be negligible. Therefore, the choice of δ should not be exogenously specified; rather it should

be endogenously informed by the data.

Theorem 1 actually suggests an appropriate order of δ = δn (here n is the size of the available

return time series data) in terms of n. Because the differences between the optimal standard

deviation by solving (1) and that obtained by solving the empirical version of (1) are of order

O
(
n−1/2

)
, it follows from Theorem 1 that any choice of δn in the order of o

(
n−1

)
would be too

small. Hence, an “optimal” order of δn should be of order O
(
n−1

)
.

In order to choose an appropriate δn, here we follow the idea behind the RWPI approach

introduced in Blanchet et al. (2016). Intuitively, δ should be chosen such that the set Uδ(Pn) =

{P : Dc(P,Pn) ≤ δ} contains all the probability measures that are plausible variations of the

data represented by Pn. Denote by Q (P) the classical Markowitz portfolio selection problem
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with target return ρ assuming that P is the underlying model:

min
1>φ=1

φ>EP[RR>]φ (5)

subject to φ>EP[R] = ρ,

and by φP a solution to Q (P) and ΦP the set of all such solutions. According to Assumption A3)

we have ΦP∗ = {φ∗} for some portfolio φ∗. Therefore there exist (unique) Lagrange multipliers

λ∗1 and λ∗2 such that

2EP∗(RR
>)φ∗ − λ∗1EP∗ [R]− λ∗21 = 0, (6)

(φ∗)>EP∗ [R]− ρ = 0.

Now, when δ is suitably chosen so that Uδ(Pn) constitutes the models that are plausible

variations of Pn, any φP with P ∈ Uδ(Pn) is a plausible estimate of φ∗. This intuition motivates

the definition of the following set

Λδ(Pn) = ∪P∈Uδ(Pn)ΦP,

which corresponds to all the plausible estimates of φ∗. As a result, Λδ(Pn) is a natural confidence

region for φ∗ and, therefore, δ should be chosen as the smallest number δ∗n such that φ∗ belongs

to this region with a given confidence level. Namely,

δ∗n = min{δ > 0 : P∗ (φ∗ ∈ Λδ(Pn)) ≥ 1− δ0},

where 1− δ0 is a user-defined confidence level (typically 95%).

However, by the mere definition, it is difficult to compute δ∗n. We now provide a simpler

representation for δ∗n via an auxiliary function called the robust Wasserstein profile (RWP)

function. To this end, first observe that any φ ∈ Λδ (Pn) if and only if there exist P ∈ Uδ(Pn)

and λ1, λ2 ∈ (−∞,∞) such that

2EP(RR>)φ− λ1EP[R]− λ21 = 0,

φTEP(R)− ρ = 0.

From these two equations, multiplying the first equation by φ, substituting the expression in

the second equation and noting that φ · 1 = 1, we obtain

λ2 = 2 (φ)> EP(RR>)φ− λ1ρ.

We now define the following RWP function

R̄n(φ, λ1,Σ, µ) := inf

Dc(P,Pn) :

2Σφ− λ1µ =
(

2 (φ)>Σφ− λ1µ · φ
)

1

µ = EP[R],Σ = EP(RR>)

 ,
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for (φ, λ1,Σ, µ) ∈ Rd × R × Sd×d+ × Rd where Sd×d+ is the set of all the symmetric positive

semidefinite matrices and we convent that inf ∅ := +∞. Moreover, define

R̄∗n(φ∗) := inf
Σ∈Sd×d+ ,µ∈Rd,λ1∈R

R̄n(φ∗, λ1,Σ, µ).

It follows directly from the definitions that

φ∗ ∈ Λδ (Pn) =⇒ R̄∗n(φ∗) ≤ δ, (7)

while for any given ε > 0

R̄∗n(φ∗) ≤ δ + ε =⇒ φ∗ ∈ Λδ (Pn) . (8)

Let us define

δ̃∗n = inf{δ > 0 : P∗(R̄∗n(φ∗) ≤ δ) ≥ 1− δ0}.

It follows from (7) and (8) that δ̃∗n ≤ δ∗n ≤ δ̃∗n + ε. As ε > 0 is arbitrary, we obtain

δ∗n = δ̃∗n = inf{δ : P∗(R̄∗n(φ∗) ≤ δ) ≥ 1− δ0}.

In other words, δ∗n is the quantile corresponding to the 1 − δ0 percentile of the distribution of

R̄∗n(φ∗).8

Still, even under A3), the statistic R̄∗n(φ∗) is somewhat cumbersome to work with as it is

derived from solving a minimization problem in terms of the mean and variance. So, instead,

we will define an alternative statistic involving only the empirical mean and variance while

producing an upper bound of δ = δn which still preserves the target rate of convergence to zero

as n→∞ (which, as we have argued, should be of order O
(
n−1

)
).

Denote Σn = EPn
(
RR>

)
, and let λ∗1 be the Lagrange multiplier in (6). Set

µn = ρ1 + 2
(
Σnφ

∗ − φ∗TΣnφ
∗1
)
/λ∗1. (9)

Define

Rn(Σn, µn) := R̄n(φ∗, λ∗1,Σn, µn).

It is clear that

Rn(Σn, µn) ≥ R̄∗n(φ∗).

Therefore,

Rn(Σn, µn) ≤ δ =⇒ R̄∗n(φ∗) ≤ δ

and, consequently,

δ̄∗n = inf{δ ≥ 0 : P∗ (Rn(Σn, µn) ≤ δ) ≥ 1− δ0} ≥ δ∗n. (10)

8Herein the analysis is under Assumption A3). If ΦP∗ contained more than just one element, then there would
be several possible options to formulate an optimization problem for choosing δ. For example, we may choose δ
as the smallest uncertainty size such that ΦP∗ ⊂ Λδ (Pn) with probability 1− δ0, in which case we would need to
study supφ∗∈ΦP∗

R̄∗n(φ∗).
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Moreover, because of the choice of Σn and µn, we have

Rn(Σn, µn) = inf{Dc(P,Pn) : EP[RR>] = Σn,EP[R] = µn}.

The next result shows δ̄∗n = O
(
n−1

)
as n→∞.

Theorem 2 Assume A1) and A2) hold and write µ∗ = EP∗ (R) and Σ∗ = EP∗
(
RR>

)
. Define

g (x) = x+ 2
(
xx> · φ∗ − φ∗Txx>φ∗1

)
/λ∗1. Then

nRn(Σn, µn)⇒ L0 := sup
λ̄∈Rd

(
λ̄>Z − inf

Λ̄∈Rd×d
EP∗ [

∥∥Λ̄R+ λ̄
∥∥2

p
]

)
where Z ∼ N (0,Υg). Moreover, if p = 2 then

L0 =
‖Z‖22

4
(
1− µ>∗ Σ−1

∗ µ∗
) .

A proof of Theorem 2 is provided in Appendix B.

Note that L0 has an explicit expression when p = 2. When p 6= 2, using the inequalities

that ||x||2p ≥ ||x||22 if p < 2 and d
( 1

2
− 1
p

)||x||2p ≥ ||x||22 if p > 2, we can find a stochastic upper

bound of L0 that can be explicitly expressed. In that case we can obtain δ̄∗n in exactly the same

way, namely, first compute the 1− δ0 quantile of L0 and then let δ̄∗n be such quantile multiplied

by 1/n. The distribution of L0 can be calibrated using a natural plug-in estimator, leading to

an asymptotically equivalent estimator of δ̄∗n. The validity of this type of (plug-in) approach

is explained in the next section in the context of choosing ᾱ, but the principle applies directly

in the setting of L0 as well. In simple words, whenever an asymptotic limiting distribution

depends continuously on various parameters and consistent estimators are available for those

parameters, then consistent plug-in estimators can be safely used and still preserving exactly

the same asymptotic distributions. The details of this approach are investigated in Proposition

2 of Blanchet et al. (2019), and the performance of such plug-in estimators are tested empirically

in Section 5 of this paper.

4.2 Choice of ᾱ

Once δ has been chosen, the next step is to choose ᾱ. The idea is to select ᾱ just large

enough to make sure that we do not rule out the inclusion φ∗ ∈ Fδ,ᾱ (n) with a given confidence

level chosen by the user, where φ∗ is the optimal solution to (1). It is equivalent to choosing υ0

where

ᾱ = ρ−
√
δ ‖φ∗‖p υ0.

Therefore, it follows from Proposition 2 (in Appendix A) that φ∗ ∈ Fδ,ᾱ (n) if and only if

(φ∗)> EPn (R)−
√
δ ‖φ∗‖p ≥ ρ−

√
δ ‖φ∗‖p υ0.
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However, ρ = (φ∗)> EP∗ (R); so the previous inequality holds if and only if

(φ∗)> [EPn (R)− EP∗ (R)] ≥ ‖φ∗‖p
√
δ (1− υ0) . (11)

Hence, we can choose
√
δ (1− υ0) < 0 sufficiently negative so that the previous inequality holds

with a specified confidence level. We hope to choose a v0 such that φ∗ will satisfy (11) with

confidence level 1 − ε. This can be achieved asymptotically by a central limit theorem as the

following result indicates.

Proposition 1 Suppose that A1) and A3) hold and let {φ∗n}
∞
n=1 be any consistent sequence of

estimators of φ∗ in the sense that φ∗n → φ∗ in probability as n→∞. Then,

n1/2

{
(φ∗n)> [EPn (R)− EP∗ (R)]

‖φ∗n‖p

}
⇒ N (0,Υφ∗)

as n→∞, where

Υφ∗ := lim
n→∞

VarP∗

(
n−1/2

n∑
k=1

(φ∗)>Rk/ ‖φ∗‖p

)
.

A proof of this proposition is delayed to Appendix C.

Using the previous result we can estimate v0 asymptotically. Let φn denote the optimal

solution of problem Q(Pn). We know that φn converges to φ∗ in probability. So, we choose a

v0 such that the following inequality will hold with confidence level 1− ε,

1

||φn||p
(φn)> [EPn(R)− EP∗(R)] ≥

√
δ(1− v0). (12)

According to Proposition 1 the left-hand side of (12) is approximately normally distributed and

thus we can choose its 1− ε quantile and consequently decide the value of v0 > 1.

For reader’s convenience, we present a simple “menu” for estimating δ and ᾱ.

1. Choose the target return rate ρ.

2. Collect return data {Ri}ni=1.

3. Use the sample mean µn = EPn (R) and the sample second-moment matrix Σn = EPn
(
RR>

)
to approximate µ∗ and Σ∗, respectively, appearing in Theorem 2.

4. Use the solution φn, which is the solution to problem Q(Pn) (see (5)), to approximate φ∗

in Theorem 2.

5. Apply Theorem 2 and (10) to determine δ = δ̄∗ with the 95% confidence level.

6. Choose v′0 based on the 95% quantile according to (12) and Proposition 1, and con-

sequently obtain ᾱ. Choose v′′0 such that the equation (φn)> EPn (R) −
√
δ ‖φn‖p =

ρ−
√
δ ‖φn‖p υ′′0 holds. Then set v0 = max(v′0, v

′′
0).
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To conclude this section, we note that the choices of δ and α are separate, each with a given

confidence level. Jointly, the chosen (δ,α) may have a completely different confidence level. It

remains an interesting problem to develop a joint way of choosing the two parameters to ensure

a given, fixed confidence level.

5 Empirical Performance and Comparisons

In this section we report the results of our backtesting experiments on S&P 500 constituents

that compare the performance of our DRMV portfolios with those of the portfolios based on the

following models: classical (non-robust) single-period Markowitz, continuous-time Markowitz,

Fama–French, Black–Litterman, robust Goldfarb–Iyengar, Olivares-Nadal–DeMiguel, and an

equally weighted portfolio. The first four models are well-known and have been widely used in

practice, the fifth one is an alternative robust model not based on distributional uncertainty,

and the sixth one has transaction costs turned into an equivalent robust model that has an

ellipsoidal uncertainty around the mean. The equally weighted strategy is actually an extreme

outcome of the DRMV model when the uncertainty size δ =∞.

5.1 Experiment design and data preparation

We backtested for the period January 2000–December 2016 with the training (estimation)

period being January 1991–December 1999 (i.e. the previous 10 years).9 All the stock monthly

price data had been obtained from the database of Wharton Business School. At the beginning

of 2000, we randomly chose 100 stocks from the constituents of S&P 500 that have at least

10 years’ histroical price data available.10 The basic period is set to be one year in all the

single-period models involved with target annual mean return rate fixed to be ρ = 10% where

applicable. Then we used the training period to estimate the out-of-sample parameters, namely

the mean and the variance, to construct the optimal strategies of the various models tested.

5.1.1 DRMV model

Let us first describe in details the construction of the DRMV strategy for the selected 100

stocks. We generated this 17-year long strategy in an (overlapping) rolling horizon fashion, with

each horizon being a month. Specifically, on the first trading day of January 2000, we solved

our DRMV model to obtain a portfolio, denoted as φR. In doing so, we set p = q = 2 and

9We chose the period 2000–2016 for our backtestings for a reason: the market was overall very volatile during
this period, experiencing two major crashes: the dot com bubble burst and the subprime financial crisis, followed
by a long bull run until this day of writing (February 2018). We were particularly interested to see how “robust”
our DRMV strategies would have been when sailing through such a bumpy journey.

10In theory, we should have included all the constituents of S&P 500 in our portfolios. However, that would
be computationally inefficient and practically (almost) infeasible for most of the models under testing (e.g. the
original Markowitz model). Therefore, it is desirable to choose a small subset of stocks based on which to apply
various models. This “stock selection” is an ultimately important part of the overall portfolio management. In
this paper, however, we aim to test the performances of “stock allocation” (namely, to allocate wealth among the
stocks that have been already selected in order to achieve the best risk-adjusted return) of these models. That
is why we randomly selected the small subset of stocks in order to focus on the part of the stock allocation. On
the other hand, the requirement that the selected stocks have at least 10 years’ price data is due to the length of
the training period.
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ρ = 10%, and obtained the parameters, δ and ᾱ, using the menu at the end of Section 4. We

then substituted δ and ᾱ in the optimization problem described in Theorem 1 to obtain φR.

We kept φR until only the first trading day of February 2000. At that point we re-estimated

the parameters δ and ᾱ using the immediate previous 10-year (namely February 1991 – January

2000) price data and re-solved the DRMV model, and generated a new portfolio φR for February

2000, the second month in our backtesting period. We repeated the same steps for all the

subsequent months.

If at the beginning of a month, some stocks in our portfolio had been removed out of the S&P

500 during the previous month, then we would also remove them from our portfolio, replace

them by the same number of stocks that were randomly picked from S&P 500 (yet having

at least 10 years’ historical data), and then re-balance based on our DRMV model. We still

denoted by φR the overall portfolio for the 17-year period and kept track of the wealth process

that had been updated at the end of each month.

In what follows we will describe the implementations of the other models, mentioned at the

beginning of this section, under comparison. Except for the continuous-time Markowitz model,

all the rest are single-period models so we applied the same monthly rolling horizon approach to

build the respective strategies. Moreover, for these single-period models, whenever there were

stocks dropped from S&P 500, we would replace them with exactly the same set of stocks as

in the DRMV model so as to maintain consistency across different models. The case of the

continuous-time model is slightly more complicated, and we will explain how we deal with these

issues separately.

5.1.2 Single-period and continuous-time Markovitz models

For the single-period Markovitz model, for each period (month) we used the sample mean

and sample covariance matrix of the immediate previous 10-year return data to estimate the

corresponding parameters in problem (1). Then we generated the optimal portfolio of the

classical Markowitz model, φM , by setting ρ = 10% and solving problem (1), on exactly the

same rolling horizon basis as the DRMV model.

The continuous-time Markowitz mean-variance model is based on Cui et al. (2012) in which

portfolios are constructed on risky stocks only. This setting is consistent with ours.11 It is

assumed that the stock price process follows correlated time-inhomogeneous Black-Scholes dy-

namics. Let {X (t) : t ∈ [0, T ]} be the wealth process (also called an admissible wealth process)

under any given admissible portfolio. The mean–variance problem is

Minimize Var(X(T )) (13)

subject to

{X (t) : t ∈ [0, T ]} is admissible , X(0) = x0, E[X(T )] = z,

where z is a given parameter representing the expected payoff at the end of the investment

11There is an extensive literature on continuous-time Markowitz models; however to our best knowledge all the
other existing models include a risk-free asset.
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horizon, T . An optimal strategy is given explicitly in Theorem 1.1 of Cui et al. (2012), which

gives the portfolio at each given time t ∈ [0, T ] as a function of the wealth, a couple of auxiliary

feedback processes and the estimates (at time t) of the (time-inhomogeneous) diffusion and drift

coefficients.

In theory, a continuous-time model requires continuous rebalancing all the times. Naturally,

it is not possible (indeed not necessary) in practice nor in our empirical implementation. In

our experiments, we set T = 1 (year) and z = 1.1x0 corresponding to an annual expected

return ρ = 10%, and we rebalance only monthly (instead of continuously). The one-year period

is consistent with the other models under comparison. Therefore, on the first trading day of

January 2000, we estimated all the necessary parameters/coefficients based on the previous

10-year data and then applied the explicit formula for optimal portfolio, denoted as φC , given

by Theorem 1.1 of Cui et al. (2012). On the first trading day of February 2000, we applied the

same formula but with updated estimates of the parameters/coefficients based on the immediate

previous 10-year data. This way we have constructed a strategy for the whole year of 2000. For

all the subsequent years, we repeat the same procedure to generate a 17-year long strategy φC

and the corresponding wealth process.

It is important to note that this model does not have an explicit no-bankruptcy constraint

(i.e. it does not rule out the possibility that the wealth process may go negative during [0, T ]).

Indeed, as we will see in the discussions below, this model had led to bankruptcy in all of our

numerical experiments for portfolios of 100 stocks.12 Once a bankruptcy happened, we then

considered it game over and kept the zero wealth until December 2016.13

5.1.3 Fama-French model

The celebrated Fama-French model helps estimate the covariance matrix when the number

of stocks d is close to or greater than the sample size n. In this section, we follow the approach

proposed by Fan et al. (2011) to implement the Fama-French model. Specifically, we assume

the stock returns follow the factor model

r = Bf + u, (14)

where r = (R1, ..., Rd)
> is the random vector of stock returns, f = (f1, f2, f3)> consists of

the three factors of the Fama-French model (i.e Rm-Rf, SMB and HML) respectively, B =

(b1, ..., bd)
> is the vector of factor loading, and u = (u1, ..., ud)

> is the vector of uncorrelated

errors.

Let (f1, r1), ..., (fn, rn) be n independent and identically distributed (i.i.d.) samples of (f , r).

12We have also tested for portfolios with 20 stocks and observed bankruptcy in more than half of our experi-
ments. On the other hand, although the other six single-period models have no explicit no-bankruptcy constraint
either, a total of only two instances of bankruptcy occurred in our experiments.

13Bielecki et al. (2005) solved a continuous-time mean–variance model with the no-bankruptcy constraint.
However, there is a risk-free asset in that model. To have a fair comparison with the other models in which
there is no risk-free account available, it is proper to choose the model of Cui et al. (2012) in our experiments.
We are not aware of a work on continuous-time Markowitz model without risk-free asset and with bankruptcy
prohibition.

16



For notational simplicity, we define

X = (f1, ..., fn), R = (r1, ..., rn) and U = (u1, ...,un),

where ui, i = 1, ..., n, are the corresponding error vectors. Under model (14), the covariance

matrix Σ of stock returns satisfies

Σ = Bcov(f)B> + Σu, (15)

where Σu is the covariance matrix of u.

Then we estimate Σ using a substitution estimator

Σ̂ = B̂ ˆcov(f)B̂> + Σ̂τ
u, (16)

where B̂ = Y X>(XX>)−1, ˆcov(f) = 1
n−1XX

> − 1
n(n−1)X11>X>, and Σ̂τ

u is obtained by

applying the same adaptive thresholding approach in Fan et al. (2011) on Σ̂u with Σ̂u = ˆcov(Û)

being the sample covariance matrix of Û with Û = Y − B̂X. Σ̂τ
u is obtained by applying the

same adaptive thresholding approach mentioned in Fan et al. (2011) on Σ̂u. In that paper, they

used the threshold ω = C ∗ 3 ∗
√

log d
n where C = 0.1. However, in our experiment, the value

C = 0.1 leads to bankruptcy in all the cases. So we tune this parameter and find the optimal

C = 0.01.

Finally, we have a substitution estimator

µ̂ = B̂f̄ (17)

of the mean vector µ, where f̄ = 1
n

n∑
i=1

fi.

In implementing the Fama–French model, we first downloaded the monthly data of the

three factors 14 from Kenneth French’s personal website.15 Then on the first trading day of

each month during January 2000–December 2016, we used its immediate prior 10-year history

returns and factors data to estimate the covariance matrix and mean vector using (16) and

(17) respectively. We used these estimates for all the randomly chosen 100 stocks as the mean

vector and solve the single-period classical Markowitz model with ρ = 10%. The generated

portfolio was denoted as φF . This process was then repeated in the subsequent months on a

rolling horizon basis.

5.1.4 Black–Litterman model

The Black–Litterman model has been developed to address the mean-blur problem, namely,

the fact that compared with variance, it is much more difficult to estimate within a workable

accuracy the expected returns of stocks purely based on sample means. The model estimates

the stock returns by the market portfolio while keeping the sample covariance matrix, and feed

14We assume that the factors have been processed according to the available papers (Fama and French (1992)
and Fama and French (1993)).

15 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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them into the classical Markowitz model to obtain the optimal strategies.

To implement this model, on the first trading day of each month during January 2000–

December 2016, we calculated the implied returns of all the S&P 500 constituent stocks having

at least 10 years’ historical data, by using the following formula:

Rimplied = λΣφmarket,

where λ = 3.07, Σ was the sample covariance matrix of the previous 10 years’ returns of

these stocks and φmarket was the corresponding market portfolio (i.e., φmarket is a vector whose

components add up to 1, and are proportional to the capitalizations of the S&P 500 constituents

having at least 10 years’ historical data) at the closing prices of the previous trading day; see

Idzorek (2002).16 Then we picked from Rimplied the implied returns of the 100 stocks that

had been randomly chosen. We input these returns and the sample covariance matrix into the

classical Markovitz model with ρ = 10% to obtain the portfolio φB. This process was repeated

in subsequent months on a rolling horizon fashion.

5.1.5 Goldfarb–Iyengar robust model

Goldfarb and Iyengar (2003) consider the following robust Markovitz problem with a factor

model for the return rate:

Minimize φ max
V∈Sv , D∈Sd

Var[r>φ]

subject to min
µ∈Sm

E[r>φ] ≥ ρ, 1>φ = 1,

where

r = µ+ V>f + ε, ε ∼ N(0,D),

Sv = {V : V = V0 +W, ||Wi||g ≤ ρi, i = 1, ..., n}

with Wi being the ith column of W and ||w||g =
√
w>Gw for some positive definite matrix G,

Sd = {D : D = diag(d), di ∈ [dmini , dmaxi ], i = 1, ..., n},

Sv = {V : V = V0 +W, ||Wi||g ≤ λi, i = 1, ..., n},

and

Sm = {µ : µ = µ0 + ξ, |ξi| ≤ γi, i = 1, ..., n}.

So the uncertainty set of this model is based on vector/matrix distance, as opposed to our

uncertainty set that is defined through the Wasserstein distance between probability measures.

In implementing this model, we followed the instructions in Section 7.2 of Goldfarb and

Iyengar (2003). Specifically, we calculated the 10 years’ sample returns r of the chosen 100

stocks. Then we used the top 5 principal components of r together with the return data

of DJA, NDX, SPC, RUT and TYX to be the factor vector f . By choosing the confidence

16Here we include only those having at least 10 years’ historical data to be consistent with the other models.
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threshold ω to be 95%, we estimated µ0, V0, σ2
i , γi, G and λi. With the target annual return

ρ = 10% and plugging all the parameters from the above steps, we used SeDuMi to solve the

SOCP formulation (problem (32) in Goldfarb and Iyengar (2003)) to obtain the portfolio φG

for each month on a rolling horizon basis, starting from January 2000.

5.1.6 Olivares-Nadal–DeMiguel model

Olivares-Nadal and DeMiguel (2018) examine, in the context of a mean–variance model, the

equivalence between certain transaction costs and ellipsoidal robustification around the mean.

They then devise a data-driven approach to portfolio selection by treating the transaction costs

as a regularization term to be calibrated. Their numerical experiments test for different variants

of their model, but the minimum-variance portfolios (MVPs) based on quadratic transaction

costs have the overall best performance in terms of the Sharpe ratio (see Table 1 of Olivares-

Nadal and DeMiguel (2018)), with which we will compare in our setting.

The MVP model is
Minimize φ φ>Σφ

subject to 1>φ = 1
(18)

where φ ∈ Rd is the portfolio weight vector and Σ ∈ Rd×d the estimated covariance matrix

of asset returns. Adding a quadratic transaction cost, Olivares-Nadal and DeMiguel (2018)

consider the following model:

Minimize φ φ>Σφ+ κ||Σ
1
2 (φ− φ0)||22

subject to 1>φ = 1
(19)

where κ ∈ R is the transaction cost parameter and φ0 ∈ Rd is the starting portfolio. By the

conjugate representation of the L2-norm, the connection of (19) to a robust model is straight-

forward.

It can be shown that the optimal solution φODM of (19) is

φODM =
1

1 + κ
φM +

κ

1 + κ
φ0, (20)

where φM solves (18).

In model (19), one needs to calibrate the parameter κ. Olivares-Nadal and DeMiguel (2018)

do this by calibrating the trading volume τ (i.e., ||φ − φ0||1 ≤ τ). They use 10-fold cross-

validation to select the best τ . Specifically, they divide the empirical returns into 10 intervals.

For each j from 1 to 10, they remove the jth interval and use the remaining returns to estimate

parameters and obtain the corresponding portfolio. Then they evaluate the portfolio on the jth

interval. After completing this process for each of the 10 intervals, they compute the variance of

the out-of-sample returns for different τ from the set {0%, 0.5%, 1%, 2.5%, 5%, 10%} and then

choose the τ that corresponds to the portfolio with the smallest variance.

Now we show how to infer the value of κ from that of τ , once the latter has been calibrated.
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By (20), the trading volume can be expressed as

||φODM − φ0||1 =
1

1 + κ
||φM − φ0||1.

To determine κ we equate the trading volume to τ , i.e.,

||φODM − φ0||1 =
1

1 + κ
||φM − φ0||1 = τ.

This leads to

κ =

(
||φM − φ0||1

τ
− 1

)
+

,

where (x)+ := max(x, 0).17

In implementing this model, we followed the instructions in Section 3.1 of Olivares-Nadal and

DeMiguel (2018). Specifically, we calculated the 10 years’ sample monthly return r of the chosen

100 stocks. In the first month (January 2000), since we did not have the value of φ0, we set κ = 0

and generated the optimal portfolio φODM of (19) for that month. In any subsequent month,

we took the portfolio of the previous month as φ0, applied the aforementioned cross-validation

method on the 10 years’ sample return r to select the best τ , and plugged the corresponding κ

into (19) to generate the optimal portfolio φODM .

5.2 Comparisons

Assume that the initial wealth at the start of the backtesting period (i.e. January 2000) is

1. For each randomly selected set of 100 stocks, we generate the wealth process for the period

2000-2016 under each of the seven models as described in the previous subsection as well as that

under the equal weighting. Then we repeat the experiments on 100 such sets of 100 stocks and

obtain the average realized wealth process for each model. These processes, along with that of

S&P500 (normalized to start from 1 at the start of the testing period), are plotted in Figure 1.

Graphically, Figure 1 is “corrupted” because of the extreme behavior of the continuous-time

Markowitz model. Its average performance went through the roof initially and then quickly

dived to zero (all the 100 experiments ended up bankruptcy). So the continuous-time Markowitz

is an extremely volatile model. This may be explained as follows. The dynamic strategies

incorporate considerable feedback effects which are computed assuming the underlying model

is correct. As such, model misspecifications are compounded precisely due to feedback effects.

The inclusion of feedback in the optimal dynamic policy, in outputs which are close to typical

realizations of the underlying assumed model, result in highly profitable portfolios. On the

other hand, even moderate discrepancies from the underlying model dynamics might lead to

relatively poor performance. As a consequence, the dynamic model exhibits significantly high

variability than the static-rolling-horizon robust counterpart.

In order to be able to visualize the comparison among other portfolios, it is necessary to

remove the continuous-time Markowitz from Figure 1, resulting in Figure 2. It is evident that

17Here, if ||φM − φ0||1 ≤ τ , then φM satisfies the trading volume constraint and hence itself is the optimal
portfolio. In this case κ = 0.
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Figure 1: This graph presents wealth processes of all portfolios (including continuous time
Markowitz) and S&P 500 from January 2000 to December 2016. All the portfolios except S&P
500 consist of 100 stocks and the averages are calculated over 100 numerical experiments. The
x-axis indicates the time in months (from 1 to 204) and the y-axis indicates the portfolio wealth.
Initial wealth is set to be 1.

all the seven models except Black–Litterman (almost) uniformly and substantially outperform

S&P500 during the 17-year period. In terms of the final realized wealth, of the seven models,

DRMV, equal-weighting and Fama–French lead by a substantial margin. The second-tier league

includes Olivares-Nadal–DeMiguel and Goldfarb–Iyengar. The classical single-period Markowitz

lags behind but still manages to outperforms the market most of the time.

The average performances of DRMV and equal-weighting are close, although the former

beats the latter most of the time. This is no surprise as the latter can be regarded as an

extreme case of the distributionally robust model when the uncertainty size δ =∞, whereas the

former has a nearly “optimal” choice of δ informed by the data.18 We can study more closely

the variability of the performances and the overall return–risk efficiency of the two models,

by examining their histograms of annualized returns (i.e. the distributions of the annualized

returns of the 100 experiments) and those of Sharpe ratios. These are plotted in Figures 3

and 4 respectively. In both figures, DRMV is more shifted to the right than equal-weighting,

indicating the former outperforms the latter in the two criteria. Moreover, the two are almost

equally concentrated, suggesting that both strategies have stable performance. We can also

compare the histograms of kurtosis of the two; see Figure 5. There is no statistically significant

differences between the two: most return distributions under both strategies are platykurtic

(i.e. the kurtosis values are less than 3), implying there are fewer extreme outliers than the

standard normal. Overall, we can conclude that both DRMV and equal-weighting are robust

and stable, but the former is superior to the latter in terms of the return–risk efficiency.

18The good performance of the equally weighted portfolio is well documented in the literature; see e.g. DeMiguel
et al. (2009).
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Figure 2: This graph presents wealth processes of all portfolios (excluding continuous-time
Markowitz) and S&P 500 from January 2000 to December 2016. All the portfolios except S&P
500 consist of 100 stocks and the averages are calculated over 100 numerical experiments. The
x-axis indicates the time in months (from 1 to 204) and the y-axis indicates the portfolio wealth.
Initial wealth is set to be 1.

Figure 3: This graph presents the histograms of the annualized returns of the 100 different
experiments on DRMV (blue) and equal-weighting (orange) portfolios. The x-axis represents
the annualized returns and the y-axis represents the numbers of returns.
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Figure 4: This graph presents the histograms of the Sharpe ratio of the 100 different experiments
on DRMV (blue) and equal-weighting (orange) portfolios. The x-axis represents the Sharpe
ratio and the y-axis represents the numbers of Sharpe ratios.

Figure 5: This graph presents the histograms of the kurtosises of the 100 different experiments
on DRMV (blue) and equal-weighting (orange) portfolios. The x-axis represents the kurtosis
and the y-axis represents the numbers of kurtosises.
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Figure 6: This graph presents the histograms of the annualized returns of the 100 different
experiments on DRMV (blue) and Fama-French (orange) portfolios. The x-axis represents the
annualized returns and the y-axis represents the numbers of returns.

Similarly, we compare the respective histograms between DRMV and Fama–French; see

Figures 6– 8. DRMV has a much more concentrated return histogram indicating a significantly

more robust performance, a much more right-shifted Sharpe ratio histogram, and a more left-

shifted kurtosis histogram implying fewer extreme returns. We can therefore conclude that

DRMV compares favorably with Fama–French in all the key metrics reported. However, it

is interesting to note that DRMV utilizes only the price data, whereas Fama–French requires

additional fundamental information on the companies concerned.

Likewise, DRMV outperforms the Olivares-Nadal–DeMiguel model (Olivares-Nadal and

DeMiguel (2018)) based on all the histogram comparisons; see Figures 9–11. This suggests

that, among other things, the inference method for selecting the uncertainty/regularization size

is advantageous compared with the cross validation.

As for the robust portfolio model by Goldfarb and Iyengar (2003), we notice that it has

a reasonably concentrated return histogram (Figure 12), indicating its robustness. However,

DRMV’s returns are not only more concentrated, but also distributed more to the right than

Goldfarb–Iyengar’s. Together with the Sharpe ratio histogram (Figure 13), the kurtosis his-

togram (Figure 14), and the average wealth comparison (Figure 2), it is clear that our un-

certainty set formulation based on Wasserstein distance is a significant improvement to the

matrix/vector distance.

Finally, we provide comparisons of histograms between DRMV and single-period Markowitz,

and between DRMV and Black–Litterman; see Figures 15–20. Clearly, DRMV has far superior

performance in all the metrics.
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Figure 7: This graph presents the histograms of the Sharpe ratio of the 100 different experiments
on DRMV (blue) and Fama-French (orange) portfolios. The x-axis represents the Sharpe ratio
and the y-axis represents the numbers of Sharpe ratios.

Figure 8: This graph presents the histograms of the kurtosises of the 100 different experiments
on DRMV (blue) and Fama-French (orange) portfolios. The x-axis represents the kurtosis and
the y-axis represents the numbers of kurtosises.
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Figure 9: This graph presents the histograms of the annualized returns of the 100 different
experiments on DRMV (blue) and Olivares-Nadal–DeMiguel (orange) portfolios. The x-axis
represents the annualized returns and the y-axis represents the numbers of returns.

Figure 10: This graph presents the histograms of the Sharpe ratios of the 100 different experi-
ments on DRMV (blue) and Olivares-Nadal–DeMiguel (orange) portfolios. The x-axis represents
the Sharpe ratios and the y-axis represents the numbers of Sharpe ratios.
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Figure 11: This graph presents the histograms of the kurtosises of the 100 different experiments
on DRMV (blue) and Olivares-Nadal–DeMiguel (orange) portfolios. The x-axis represents the
kurtosis and the y-axis represents the numbers of kurtosises.

Figure 12: This graph presents the histograms of the annualized returns of the 100 different
experiments on DRMV (blue) and Goldfarb–Iyengar (orange) portfolios. There are 2 experi-
ments in which Goldfarb-Iyengar went bankruptcy, which are not included in this histogram.
The x-axis represents the annualized returns and the y-axis represents the numbers of returns.
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Figure 13: This graph presents the histograms of the Sharpe ratios of the 100 different exper-
iments on DRMV (blue) and Goldfarb–Iyengar (orange) portfolios. The x-axis represents the
Sharpe ratios and the y-axis represents the numbers of Sharpe ratios.

Figure 14: This graph presents the histograms of the kurtosises of the 100 different experiments
on DRMV (blue) and Goldfarb–Iyengar (orange) portfolios. The x-axis represents the kurtosis
and the y-axis represents the numbers of kurtosises.
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Figure 15: This graph presents the histograms of the annualized returns of the 100 different
experiments on DRMV (blue) and single-period Markowitz (orange) portfolios. The x-axis
represents the annualized returns and the y-axis represents the numbers of returns.

Figure 16: This graph presents the histograms of the Sharpe ratios of the 100 different experi-
ments on DRMV (blue) and single-period Markowitz (orange) portfolios. The x-axis represents
the Sharpe ratios and the y-axis represents the numbers of Sharpe ratios.
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Figure 17: This graph presents the histograms of the kurtosises of the 100 different experiments
on DRMV (blue) and single-period Markowitz (orange) portfolios. The x-axis represents the
kurtosis and the y-axis represents the numbers of kurtosises.

Figure 18: This graph presents the histograms of the annualized returns of the 100 different
experiments on DRMV (blue) and Black–Litterman (orange) portfolios. The x-axis represents
the annualized returns and the y-axis represents the numbers of returns.
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Figure 19: This graph presents the histograms of the Sharpe ratios of the 100 different exper-
iments on DRMV (blue) and Black–Litterman (orange) portfolios. The x-axis represents the
Sharpe ratios and the y-axis represents the numbers of Sharpe ratios.

Figure 20: This graph presents the histograms of the kurtosises of the 100 different experiments
on DRMV (blue) and Black–Litterman (orange) portfolios. The x-axis represents the kurtosis
and the y-axis represents the numbers of kurtosises.
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Figure 21: This graph presents DRMV’s average wealth processes from January 2000 to Decem-
ber 2016 with different values of ρ. The averages are calculated over 100 numerical experiments.
The x-axis indicates the time and the y-axis indicates the portfolio wealth. Initial wealth is set
to be 1.

5.3 Discussions

In this subsection we offer discussions on various issues related to our empirical experiments.

5.3.1 Wasserstein order p = 1

In all the previously reported experiments we set the order of the Wasserstein distance to

be p = 2. We have also tried p = 1 (and hence q =∞), and found that the performance of the

resulting strategies becomes very volatile. So we recommend using p = 2.

5.3.2 Different targeted returns

We have also tested different (plausible/reasonable) values of the targeted return ρ =

5%, 15%, 20% in addition to ρ = 10%, and found that DRMV maintains the same outper-

formance with respect to other models and, indeed, some other models become worse under

higher targets. Figure 21 plots DRMV’s average wealth processes under these four values of ρ

when d = 100. They are almost identical so one could probably see only one plot in Figure 21.

Hence, the average performance is very robust with different ρ’s. This, in turn, suggests that

the choice of a specific value of ρ is unimportant for DRMV so long as it is in the reasonable

range of [5%, 20%], thereby releasing us from the tuning and calibration of this parameter.

5.3.3 Turnover rates

Fabozzi et al. (2007) observe empirically that robust portfolios have low turnover rates. This

phenomenon is justified theoretically by the stipulation that robust models are equivalent to
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Figure 22: This graph presents the histograms of the DRMV (blue) and equally weighted
portfolio (orange) monthly turnover rates of 100 experiments. The x-axis represents the turnover
rate (%) and the y-axis the numbers of turnover rates.

non-robust models with transaction costs (see the discussion in Section 3) whereas transaction

costs in general discourage active trades. We support this with our distributionally robust

strategies. Figure 22 shows the histograms of the turnover rates (including buy and sell) with

100 experiments for d = 100 stocks for both DRMV and equally weighted portfolio . We include

the latter as it is known to have low turnovers and is a special instance of distributionally robust

portfolios.

Clearly, our result reconciles with the finding of Fabozzi et al. (2007). Indeed, the two

histograms are almost identical, and most of the monthly turnover rates are lower than 10%

which is considered to be very good and reasonable in practice. If we take the average monthly

turnover rate to be 10% (definitely an upper bound for the average), then the annual turnover

rate is around only 120%.

5.3.4 Shrinkage estimators

In all the experiments reported so far, sample covariance was used for the single-period

Markovitz model as well as the Black–Litterman model. Upon the recommendation of one of

the referees of an earlier version of the paper, we tested using the shrinkage covariance matrices

for these two models.

We used the shrinkage estimator of Ollila and Raninen (2018):

Σα,β = βΣn + αIn, (21)
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Figure 23: This graph presents portfolios’ average wealth processes using shrinkage estimators
from January 2000 to December 2016. All the portfolios except S&P 500 consist of 100 stocks
and the averages are calculated over 100 numerical experiments. The x-axis indicates the time
in months (from 1 to 204) and the y-axis indicates the portfolio wealth. Initial wealth is set to
be 1.

where Σn is the sample covariance matrix and In is the n× n identity matrix. The parameters

α and β are estimated by the following

α̂ = (1− β̂)η̂, β̂ =
(γ̂ − 1)

(γ̂ − 1) + κ̂(2γ̂ + d)/n+ (γ̂ + d)/(n− 1)
,

where d is the number of stocks, η̂ = tr(Σn)
d , γ̂ = nd

n−1 [tr(Σ2
sgn)− 1

n ] with Σsgn = 1
n

∑n
i=1

(Ri−µ̂)(Ri−µ̂)T

||Ri−µ̂||

and µ̂ = arg min
µ

∑n
i=1 ||Ri−µ||, κ̂ = max

(
− 2
d+2 ,

1
3d

∑d
j=1 K̂j

)
with K̂j = n−1

(n−2)(n−3) [(n+1)k̂j+

6] and k̂j =
m

(4)
j

(m
(2)
j )2
− 3, m

(q)
j denoting the qth order sample moment.

The two models, single-period Markowitz and Black–Litterman, have both been improved

with the shrinkage estimators. Figure 23 presents the comparison of average wealth processes

between the two models, DRMV and S&P 500. Notably, the Black–Litterman model now

outperforms S&P 500 most of the times, as opposed to that without shrinkage (see Figure 2).

However, DRMV still dominates all the two models. Histograms of return distributions and

Sharpe ratio distributions show superiority of DRMV over the other models similar to those

without shrinkage.19

19As those histograms are similar, we do not present them here.
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6 Concluding Remarks

We have provided a data-driven distributionally robust theory for Markowitz’s mean–variance

portfolio selection. The robust model can be solved via a non-robust one based on the empirical

probability measure with an additional regularization term. The size of the distributional un-

certainty region is not exogenously given; rather it is informed by the return data in a scheme

which we have developed in this paper.

Our results may be generalized in different directions. We have chosen the lq norm in defining

our Wasserstein distance due to its popularity in regularization, but other transportation costs

can be used. For example, one may consider the type of transportation cost related to adaptive

regularization that has been studied by Blanchet et al. (2017), or the one related to industry

cluster as in Blanchet and Kang (2017). Another significant direction is a dynamic (discrete-

time or continuous-time) version of the DRMV model.
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Appendices

A Proof of Theorem 1

The first step is to show that the feasible region over φ in the outer minimization part of

Problem (2) can be explicitly evaluated. This is given in the following proposition.

Proposition 2 For c(u, v) = ||u− v||2q, q ≥ 1, we have

min
P∈Uδ(Pn)

EP(φ>R) = EPn(φ>R)−
√
δ||φ||p, (22)

where p satisfies 1/p+ 1/q = 1.

Proof We consider the following problem

min
P∈Dc(P,Pn)≤δ

φ>EP[R] (23)

or, equivalently,

− max
P∈Dc(P,Pn)≤δ

EP[(−φ)>R]. (24)

By checking Slater’s condition and using Proposition 4 of Blanchet et al. (2016) we obtain the

dual problem:

max
P∈Dc(P,Pn)≤δ

EP[(−φ)>R] = inf
λ≥0

[
λδ +

1

n

n∑
i=1

Φλ(Ri)

]
(25)

where

Φλ(Ri) = sup
u
{h(u)− λc(u,Ri)}

= sup
u
{(−φ>)u− λ||u−Ri||2q}

= sup
∆
{(−φ>)(∆ +Ri)− λ||∆||2q}

= sup
∆
{(−φ>)∆− λ||∆||2q} − φ>Ri

= sup
∆
{||φ||p||∆||q − λ||∆||2q} − φ>Ri

=
||φ||2p
4λ
− φ>Ri.

Thus, (25) becomes

max
P∈Dc(P,Pn)≤δ

EP[(−φ)>R] = inf
λ≥0

{
λδ +

1

n

n∑
i=1

[
||φ||2p
4λ
− φ>Ri]

}

= inf
λ≥0

{
λδ +

||φ||2p
4λ
− φ>EPn [R]

}
=
√
δ||φ||p − φ>EPn [R]
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or

min
P∈Dc(P,Pn)≤δ

φ>EP[R] = φ>EPn [R]−
√
δ||φ||p. (26)

Therefore, the feasible region can be rewritten as

Fδ,ᾱ (n) = {φ ∈ Rd : φ>1 = 1,EPn(φ>R) ≥ ᾱ+
√
δ||φ||p},

which can now be seen as clearly convex.

Next, by fixing EP(φ>R) = α ≥ ᾱ in the inner maximization part of problem (2) we obtain

the following equivalent formulation

min
φ∈Fδ,ᾱ

{
max
α≥ᾱ

[
max

P∈Uδ(Pn),EP(φ>R)=α
{φ>EP

(
RR>

)
φ} − α2

]}
. (27)

Introducing EP(φ>R) = α is useful because the inner-most maximization problem in the above

is now linear in P. So, let us concentrate on the problem

max
P∈Uδ(Pn),EP(φ>R)=α

φ>EP(RR>)φ. (28)

The following proposition solves this problem in terms of a general cost function c.

Proposition 3 For any cost function c that is lower semicontinuous and non-negative, the

optimal value function of problem (28) is given by

inf
λ1≥0,λ2

[
1

n

n∑
i=1

Φ(Ri) + λ1δ + λ2α

]
, (29)

where

Φ(Ri) := sup
u

[
(φ>u)2 − λ1c(u,Ri)− λ2φ

>u
]
.

Proof The proof is based on a duality argument. Introducing a slack random variable S ≡ v,

where v is a deterministic number. Then we can recast problem (28) as

max{EP[(U>φ)2] : Eπ[c(U,R) + S] = δ, πR = Pn, π(S = v) = 1, (30)

Eπ[U>φ] = α, π ∈ P(Rm ×Rm ×R+)}. (31)

Define

Ω := {(u, r, s) : c(u, r) <∞, s ≥ 0, r ∈ {R1, ..., Rn}},

and let
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f (u, r, s) =



1r=R1(u, r, s)

...

1r=Rn(u, r, s)

φ>u

1s=v(u, r, s)

c(u, r) + s


and q =



1
n

...
1
n

α

1

δ


. (32)

Thus (30) can be written as,

max{Eπ[(U>φ)2] : Eπ[f(U,R, S)] = q, π ∈ PΩ}. (33)

Let f0 = 1Ω, f̃ = (f0, f), q̃ = (1, q), Qf̃ := {
∫
f̃(x)dµ(x) : µ ∈ M+

Ω} where M+
Ω denote the set

of non-negative measures on Ω. If φ 6= 0, then it is easy to see that q̃ lies in the interior of Qf̃ .

By Proposition 6 in Blanchet et al. (2016), the optimal value of problem (33) equals to that of

its dual problem, i.e.,

max{Eπ[(U>φ)2] : Eπ[f(U,R, S)] = q, π ∈ PΩ} (34)

= inf
a=(a0,...,an+3)∈A

{a0 +
1

n

n∑
i=1

ai + αan+1 + an+2 + δan+3},

where

A :={a = (a0, ..., an+3) ∈ Rn+4 : a0 +
1

n

n∑
i=1

ai1r=Ri(u, r, s) + an+1φ
>u

+an+21s=v(u, r, s) + an+3[c(u, r) + s] ≥ (φ>u)2, ∀(u, r, s) ∈ Ω}.

From the definition of A, replacing r = Ri, we obtain that the inequality

a0 + ai + an+2 ≥ sup
(u,s)∈Ω

{(φ>u)2 − an+3[c(u,Ri) + s]− an+1φ
>u} (35)

holds for each i ∈ {1, ..., n}. It follows directly that

sup
(u,s)∈Ω

{(φ>u)2 − an+3[c(u,Ri) + s]− an+1φ
>u} (36)

=

+∞, if an+3 < 0

sup
u
{(φ>u)2 − an+3c(u,Ri)− an+1φ

>u}, if an+3 ≥ 0.
(37)

Thus, the dual problem can be expressed as

inf{a0+
1

n

n∑
i=1

ai+αan+1+an+2+δan+3 : an+3 ≥ 0, a0+ai+an+2 ≥ sup
u
{(φ>u)2−an+3c(u,Ri)−an+1φ

>u}}

(38)
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which can be transformed into

inf
an+3≥0

{ 1

n

n∑
i=1

Φ(Ri) + αan+1 + δan+3}, (39)

with

Φ(Ri) := sup
u
{(φ>u)2 − an+3c(u,Ri)− an+1φ

>u}.

Using λ1 to replace an+3 and λ2 to replace an+1, the dual problem becomes

inf
λ1≥0
{ 1

n

n∑
i=1

Φ(Ri) + λ2α+ λ1δ} (40)

where

Φ(Ri) := sup
u
{(φ>u)2 − λ1c(u,Ri)− λ2φ

>u}.

Thanks to this proposition, we are able to reduce the inner (infinite dimensional) optimiza-

tion problem in (2) into a two-dimensional optimization problem in terms of λ1 and λ2, which

can be further simplified if the cost function c has additional structure. We make this statement

precise in the case of a quadratic lq cost.

Proposition 4 Let c(u, v) = ||u − v||2q with q ≥ 1 and 1/p + 1/q = 1. If (α − φ>EPn [R])2 −
δ||φ||2p ≤ 0, then the value of (28) is equal to

h(α, φ) :=EPn

[
(φ>R)2

]
+ 2(α− φ>EPn [R])φ>EPn [R] + δ||φ||2p

+ 2
√
δ||φ||2p − (α− φ>EPn [R])2

√
φ>VarPn (R)φ.

Proof Writing ∆ := u−Ri, we have

Φ(Ri) = sup
u
{(φ>u)2 − λ1c(u,Ri)− λ2φ

>u}

= sup
u
{(φ>u)2 − λ1||u−Ri||2q − λ2φ

>u}

= sup
∆
{(φ>(∆ +Ri))

2 − λ1||∆||2q − λ2φ
>(Ri + ∆)}

= sup
∆
{(φ>Ri)2 + (φ>∆)2 + 2(φ>Ri)(φ

>∆)− λ1||∆||2q − λ2φ
>(Ri + ∆)}

= (φ>Ri)
2 − λ2φ

>Ri + sup
∆
{(φ>∆)2 + 2(φ>Ri)(φ

>∆)− λ1||∆||2q − λ2φ
>∆}

= (φ>Ri)
2 − λ2φ

>Ri + sup
∆
{(||φ||2p − λ1)||∆||2q + |2(R>i φ)− λ2|(||φ||p||∆||q)}.

We can consider four cases: 1) ||φ||2p > λ1, Φ(Ri) = +∞; 2) ||φ||2p = λ1, 2R>i φ 6= λ2, Φ(Ri) =

+∞; 3) ||φ||2p = λ1, 2R>i φ = λ2, Φ(Ri) = 0; 4) ||φ||2p < λ1, Φ(Ri) = (φ>Ri)
2 − λ2φ

>Ri +
(2R>i φ−λ2)2||φ||2p

4(λ1−||φ||2p)
.
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For any of the first three cases, the value of 1
n

n∑
i=1

Φ(Ri) is +∞. Hence only the fourth case

is non-trivial. In this case, problem (29) is transformed into

inf
λ1≥0,λ2

[
1

n

n∑
i=1

Φ(Ri) + λ2α+ λ1δ]

= inf
λ1≥||φ||2p,λ2

{
1

n

n∑
i=1

[
(φ>Ri)

2 − λ2φ
>Ri +

(2R>i φ− λ2)2||φ||2p
4(λ1 − ||φ||2p)

]
+ λ2α+ λ1δ

} (41)

Define

H =
1

n

n∑
i=1

(φ>Ri)2
− λ2φ

>Ri +

(
2R>i φ− λ2

)2 ‖φ‖2p
4
(
λ1 − ‖φ‖2p

)
+ λ2α+ λ1δ.

Taking partial derivative with respect to λ2 and setting it to be 0, we get

∂H

∂λ2
= α− 1

n

n∑
i=1

[
φ>Ri +

(2φ>Ri − λ2)||φ||2p
2(λ1 − ||φ||2p)

]
= 0

which implies (note that φ>1 = 1 guarantees that ||φ||2p > 0)

λ2 = 2α− 2C
λ1

||φ||2p
(42)

where C := α− φ>EPn [R]. Moreover, λ2 is optimal because

∂2H

∂λ2
2

=
||φ||2p

2(λ1 − ||φ||2p)
> 0. (43)

We plug (42) into (41) and obtain

inf
λ1≥0,λ2

[
1

n

n∑
i=1

Φ(Ri) + λ2α+ λ1δ

]

=
1

n

n∑
i=1

(φ>Ri)
2 + inf

λ1≥||φ||2p,λ2

{
1

n

n∑
i=1

[
−λ2φ

>Ri +
(2R>i φ− λ2)2||φ||2p

4(λ1 − ||φ||2p)

]
+ λ2α+ λ1δ

}

=
1

n

n∑
i=1

(φ>Ri)
2 + inf

λ1≥||φ||2p,λ2

{
1

n

n∑
i=1

[
(2R>i φ− λ2)2||φ||2p

4(λ1 − ||φ||2p)

]
+ λ2C + λ1δ

}

=
1

n

n∑
i=1

(φ>Ri)
2 + inf

λ1≥||φ||2p

 1

n

n∑
i=1

(2R>i φ− 2α+ 2C λ1
||φ||2p

)2||φ||2p
4(λ1 − ||φ||2p)

+ (2α− 2C
λ1

||φ||2p
)C + λ1δ

 .
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Writing λ1 = κ+ ||φ||2p, we have

inf
λ1≥0,λ2

[
1

n

n∑
i=1

Φ(Ri) + λ2α+ λ1δ

]

=
1

n

n∑
i=1

(φ>Ri)
2 + inf

κ≥0

 1

n

n∑
i=1

(R>i φ− α+ C
k+|φ||2p
||φ||2p

)2N

κ

+ (2α− 2C
κ+ ||φ||2p
||φ||2p

)C + (κ+ ||φ||2p)δ


=

1

n

n∑
i=1

(φ>Ri)
2 + inf

κ≥0
{ C2

1

||φ||2p
k + 2||φ||2p(φ>W̄ − α+ C) +

1

n

n∑
i=1

(R>i φ− α+ C)2||φ||2p
κ

+ 2αC − 2C2 + κ(δ − 2C2

||φ||2p
) + ||φ||2pδ}

=
1

n

n∑
i=1

(φ>Ri)
2 + 2αC − 2C2 + |φ||2pδ + inf

κ≥0

{
1

n

n∑
i=1

(R>i φ− EPn [R]φ)2||φ||2p
κ

+ κ(δ − C2

||φ||2p
)

}
.

If δ−C2/||φ||2p < 0, then the optimal value of the above problem is −∞, which means that the

primal problem (28) is not feasible. If δ − C2/||φ||2p ≥ 0, then

1

n

n∑
i=1

(φ>Ri)
2 + 2αC − 2C2 + |φ||2pδ + inf

κ≥0

{
1

n

n∑
i=1

(R>i φ− EPn [R]φ)2||φ||2p
κ

+ κ(δ − C2

||φ||2p
)

}

=
1

n

n∑
i=1

(φ>Ri)
2 + 2(α− φ>EPn [R])φ>EPn [R] + δ||φ||2p

+ 2
√
δ||φ||2p − (α− φ>EPn [R])2

√√√√ 1

n
φ>

n∑
i=1

(Ri − EPn [R])(Ri − EPn [R])>φ

=
1

n

n∑
i=1

(φ>Ri)
2 + 2(α− φ>EPn [R])φ>EPn [R] + δ||φ||2p

+ 2
√
δ||φ||2p − (α− φ>EPn [R])2

√
φ>VarPn [R]φ.

Thus, problem (28) can be written as

min
φ

1

n

n∑
i=1

(φ>Ri)
2 + 2(α− φ>EPn [R])φ>EPn [R] + δ||φ||2p

+ 2
√
δ||φ||2p − (α− φ>EPn [R])2

√
φ>VarPn [R]φ,

subject to 1>φ = 1 and (α− φ>EPn [R])2 − δ||φ||2p ≤ 0.

The condition (α − φ>EPn [R])2 − δ||φ||2p ≤ 0 is to make sure that (28) is feasible, failing

which the optimal value h(α, φ) = −∞. Proposition 4 ultimately leads to the following main

result of the paper, one that transforms (2) into a non-robust portfolio selection problem in

terms of the empirical measure Pn, with an additional “regularization” term.

We are now ready to prove Theorem 1.
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Proof of Theorem 1. Note that

h(α, φ)− α2

= EPn

[
(φ>R)2

]
+ 2(α− φ>EPn [R])φ>EPn [R]− α2 + δ||φ||2p

+ 2
√
δ||φ||2p − (α− φ>EPn [R])2

√
φ>VarPn (R)φ

= EPn

[
(φ>R)2

]
+ 2αφ>EPn [R]− (φ>EPn [R])2 − α2 − (φ>EPn [R])2 + δ||φ||2p

+ 2
√
δ||φ||2p − (α− φ>EPn [R])2

√
φ>VarPn (R)φ

= φ>VarPn (R)φ+ {δ||φ||2p − (α− φ>EPn [R])2}

+ 2
√
δ||φ||2p − (α− φ>EPn [R])2

√
φ>VarPn (R)φ

=

(√
φ>VarPn (R)φ+

√
δ||φ||2p − (α− φ>EPn [R])2

)2

.

Therefore, it follows from Proposition 4 that

max
α≥ᾱ,(α−φ>EPn [R])2−δ||φ||2p≤0

[
h(α, φ)− α2

]
=

(√
φ>VarPn (R)φ+

√
δ||φ||p

)2

,

with the optimal αopt = φ>EPn [R] ≥ ᾱ. This concludes the proof.

B Proof of Theorem 2

Define

h0 (R,Σ) = RR> − Σ and h1 (R,µ) = R− µ.

Then, by Proposition 1 of Blanchet et al. (2016) we have that for any given µ and Σ,

Rn(Σ, µ) = sup
Λ∈Rd×d,λ∈Rd

{
−EPn [ sup

u∈Rd
{Tr (Λh0(u,Σ)) + λ>h1 (u, µ)− ||u−R||2q}]

}
.

Observe that

sup
u∈Rd
{Tr (Λh0(u,Σ)) + λ>h1 (u, µ)− ||u−R||2q}

= sup
∆∈Rd

{Tr (Λh0(∆ +R,Σ)) + λ>h1 (∆ +R,µ)− ||∆||2q}

= sup
∆∈Rd

{Tr (Λ [h0(∆ +R,Σ)− h0(R,Σ)]) + λ>∆− ||∆||2q}

+ Tr(Λh0(R,Σ)) + λ>h1 (R,µ) .

Moreover, let us write

Tr (Λ [h0(∆ +R,Σ)− h0(R,Σ)]) =

∫ 1

0

d

dt
Tr (Λh0 (R+ t∆)) dt.
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However,

d

dt
Tr (Λh0 (R+ t∆)) = 2Tr

(
Λ (R+ t∆) ∆>

)
= 2Tr

(
ΛR∆>

)
+ 2t∆>Λ∆.

Furthermore,

EPn [Tr(Λh0(R,Σ))]|Σ=Σn
= 0. (44)

So, we deduce

Rn(Σn, µ)

= sup
λ∈Rd
{−EPn [λ> (R− µ)]+

sup
Λ∈Rd×d

(−EPn [sup
∆
{2Tr

(
ΛR∆>

)
+ ∆>Λ∆ + λ>∆− ||∆||2q}])}.

Introduce the scaling ∆ = ∆̄/n1/2 and λ̄ = λn1/2 and Λ̄ = Λn1/2. Then we obtain

nRn(Σn, µn)

= sup
λ̄∈Rd
{−n−1/2

n∑
i=1

λ̄> (Ri − µn) +

sup
Λ̄∈Rd×d

(−EPn [sup
∆̄

{2Tr
(

Λ̄R∆̄>
)

+ ∆̄>Λ̄∆̄/n1/2 + λ̄>∆̄− ||∆̄||2q}])}.

In the proof of Proposition 3 in Blanchet et al. (2016), under Assumption A2), a technique is

introduced to show that ∆̄ and λ̄ can be restricted to compact sets with high probability and

therefore the term ∆̄>Λ̄∆̄/n1/2 is asymptotically negligible. On the other hand,

sup
∆
{2Tr

(
∆̄>Λ̄R

)
+ ∆̄>λ̄− ||∆̄||2q}

= sup
∆
{2
∥∥Λ̄R+ λ̄

∥∥
p

∥∥∆̄
∥∥
q
− ||∆̄||2q} =

∥∥Λ̄R+ λ̄
∥∥2

p
.

Therefore, if

n−1/2
n∑
i=1

(Ri − µn)⇒ −Z

for some Z (to be characterized momentarily), then we conclude that

Rn(Σn, µn)⇒ L0 = sup
λ̄∈Rd
{λ̄>Z − inf

Λ̄∈Rd×d
EP∗ [

∥∥Λ̄R+ λ̄
∥∥2

p
]}.

If p = 2 then we have

EP∗ [
∥∥Λ̄R+ λ̄

∥∥2

2
] =

∑
i

EP∗
(
Λ̄i· ·R+ λ̄i

)2
.
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So, taking derivative with respect to the i-th row, Λ̄i·, of the matrix Λ̄, Λ̄i·, we obtain

∇Λ̄i·EP∗ [
∥∥Λ̄R+ λ̄

∥∥2

2
] = 2EP∗

((
R>Λ̄i· + λ̄i

)
R
)

= 2EP∗
(
R>Λ̄i·R

)
+ 2λ̄iEP∗ (R) = 0. (45)

Writing

µ∗ = EP∗ (R) and Σ∗ = EP∗
(
RR>

)
,

we obtain

Σ∗Λ̄i· = −λ̄iµ∗.

Solving this equation yields Λ̄i· = −λ̄iΣ−1
∗ µ∗. Therefore,

EP∗
(
Λ̄i·R+ λ̄i

)2
= Λ̄>i·Σ∗Λ̄i· + 2λ̄iΛ̄

>
i·µ∗ + λ̄2

i

= λ̄2
i

(
1− µ>∗ Σ−1

∗ µ∗

)
.

By assumption A3), VarP∗ (R) is positive definite; hence invertible. It then follows from the

ShermanMorrison formula that

(Σ∗)
−1 = (VarP∗ (R) + µ∗µ

T
∗ )−1

= VarP∗ (R)−1 − VarP∗ (R)−1 µ∗µ
T
∗VarP∗ (R)−1

1 + µT∗VarP∗ (R)−1 µ∗
.

So

µT∗ (Σ∗)
−1µ∗ = µT∗VarP∗ (R)−1 µ∗ −

(µT∗VarP∗ (R)−1 µ∗)
2

1 + µT∗VarP∗ (R)−1 µ∗

=
µT∗VarP∗ (R)−1 µ∗

1 + µT∗VarP∗ (R)−1 µ∗
< 1,

leading to

L0 = sup
λ̄∈Rd
{λ̄>Z − inf

Λ̄∈Rd×d
EP∗ [

∥∥Λ̄R+ λ̄
∥∥2

2
]}

= sup
λ̄∈Rd
{λ̄>Z −

∥∥λ̄∥∥2

2

(
1− µ>∗ Σ−1

∗ µ∗

)
}

=
‖Z‖22

4
(
1− µ>∗ Σ−1

∗ µ∗
) .

It remains to identify Z. Observe that

µn = ρ1 + 2
(
Σnφ

∗ − φ∗TΣnφ
∗1
)
/λ∗1

= ρ1 + 2
(
Σ∗φ

∗ − φ∗TΣ∗φ
∗1
)
/λ∗1

+ 2
(
Hnφ

∗ − φ∗THnφ
∗1
)
/λ∗1

= µ∗ + 2
(
Hnφ

∗ − φ∗THnφ
∗1
)
/λ∗1,
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where Hn := Σn − Σ∗. By A1) we have

n−1/2
n∑
i=1

(Ri − µ∗)⇒ Z0 ∼ N(0,Υg1),

n1/2Hn ⇒ Y ∼ N(0,Υg2).

Thus,

n−1/2
n∑
i=1

λ̄> (Ri − µ∗) + 2n1/2λ̄>
(
Hnφ

∗ − φ∗THnφ
∗1
)
/λ∗1

⇒ λ̄>Z = λ̄> (Z0 + Z1) ,

where

Z1 := 2
(
Y φ∗ − φ∗TY φ∗1

)
/λ∗1.

C Proof of Proposition 1

Note that

n1/2

{
(φ∗n)> [EPn (R)− EP∗ (R)]

‖φ∗n‖p

}
= n1/2

{
(φ∗n − φ∗)

> [EPn (R)− EP∗ (R)]

‖φ∗n‖p

}

+ n1/2

{
(φ∗)> [EPn (R)− EP∗ (R)]

‖φ∗‖p
·
‖φ∗‖p
‖φ∗n‖p

}
.

By the standard central limit theorem and the fact that φ∗n → φ∗ in probability, we conclude

n1/2

{
(φ∗n)> [EPn (R)− EP∗ (R)]

‖φ∗n‖p
− (φ∗)> [EPn (R)− EP∗ (R)]

‖φ∗‖p

}
⇒ 0

as n→∞. However, again by the central limit theorem we have

n1/2

{
(φ∗)> [EPn (R)− EP∗ (R)]

‖φ∗‖p

}
⇒ N (0,Υφ∗) ,

which yields the desired result.
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