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Abstract

We formulate and carry out an analytical treatment of a shpgdriod portfolio
choice model featuring a reference point in wealth, S-sthapiéity (value) functions
with loss aversion, and probability weighting under Kahaemand Tversky’s cumu-
lative prospect theory (CPT). We introduce a new measuress dversion for large
payoffs, called théarge-loss aversion degr¢eLAD), and show that it is a critical de-
terminant of the well-posedness of the model. The sensitdfithe CPT value func-
tion with respect to the stock allocation is then invesggatwhich, as a by-product,
demonstrates that this function is neither concave norexanwe finally derive opti-
mal solutions explicitly for the cases when the referendatge the risk-free return
and when it is not (while the utility function is piece-wisedar), and we employ these
results to investigate comparative statics of optimalrieskposures with respect to the
reference point, the LLAD, and the curvature of the prohgbieighting.
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1 Introduction

Expected utility maximization has been a predominant mémtgbortfolio choice. The
model is premised upon the assumption that people are ahtidts basic tenets are as
follows: Investors evaluate wealth according to final aggeditions; they are uniformly
risk averse; and they are able or willing to evaluate prditeds objectively. However,
substantial experimental evidence has suggested thatrhbateaviors may significantly
deviate from or simply contradict these classical prirespihen facing uncertainties. In the
1970s Kahneman and Tversky (1979) propopeaspect theoryPT) for decision-making
under uncertainty. The theory was further developed by Skyeand Kahneman (1992)
into cumulative prospect theoCPT) in order to be consistent with first-order stochastic
dominance. In the context of financial asset allocationktyeelements of CPT are

e People evaluate assets in comparison with certain ben&lsmather than on final
wealth positions;

e People behave differently on gains and on losses; they aneniformly risk averse
and are distinctively more sensitive to losses than to g@ires latter is a behavior
calledloss aversio}y and

e People tend to overweight small probabilities and undegidarge probabilities.

These elements translate respectively into the followaudnical features for the formula-
tion of a portfolio choice model:

¢ Areference point (or neutral outcome/benchmark/breakgeint/status quo) in wealth
that defines gains and los$ps

e A value function (which replaces the notion of utility fuimt), concave for gains
and convex for losses (such a function is catiedhapejland steeper for losses than
for gains; and

e A probability weighting function that is a nonlinear traoghation of probability
measure, which inflates a small probability and deflatesge |lprobability.

There has been burgeoning research interest in incorpgr@iPT into portfolio choice
in a single-period setting; see, for example, Benartzi ahdldr (1995), Levy and Levy
(2004), Gomes (2005), Barberis and Huang (2008), and Betraad Ghossoub (2010).
However, save for the last one, most of these works have édoois empirical/experimental

IMarkowitz (1952) is probably the first to put forth the notioina wealth reference point, termedstomary
wealth



study and/or numerical solutichsMoreover, the portfolio choice models therein are either
rather special or exclude some of the key elements of CPT, f@gpability weighting is
absent, and/or the reference point coincides with thefreskreturn). A sufficiently general
model and its rigorous analytical treatment seem to belatiking in the single-period
setting.

In this paper we consider a single-period portfolio choicedei with a CPT agent in
a market consisting of one risky asset and one risk-freeustcaSince the risky return
distribution is arbitrary in this paper, the risky assetldalso be interpreted as the market
portfolio or an index fund.

The paper aims to address three issueddddeling to establish a behavioral portfolio
selection model featuring all the three key elements of GRimgly, a reference point, an S-
shaped value function, and probability weighting) and tdrads the well-posedness of such
a model; 2)Solutions to carry out an analytical study of the general model andetivd
explicit solutions for some important special cases; an@@&nparative statics analysis
to investigate the sensitivity of the optimal risky alldoat with respect to key exogenous
variables such as the reference point, the level of ageatawesrsion with respect to large
payoffs, and the curvature of the probability weighting.

In the modelling part we highlight the ill-posedness issAe.ill-posed model is one
whose optimal strategy is simply to take the greatest plessikky exposure. Such a sit-
uation arises when the utility associated with gains sultisiéy outweighs the disutility
associated with losses. The ill-posedness has been hardgwe with classical portfolio
choice models such as those of mean variance and expedisd We shall show that this
is no longer the case with a CPT model.

To certify whether a given model is well-posed or otherwige,define a new measure
of loss aversion. Different from the known indices of loser@ion, which are typically
defined for small losses and gains, our measure ikfge values. We show that this mea-
sure is the key to the issue of ill-posedness, and we derigkcily a critical large-loss
aversion level that divides between the well-posednesslignosedness of the underlying
model. The result indicates that market investment oppaits such as stock return and
risk-free return must be consistent with market particigapsychology (including their
preferences), such as utility functions and probabilityghieng functions, before any rea-
sonable model can be formulated. An important implicatibthis is that, in reaching an
equilibrium, the stock return must be adjusted accordingddket participants’ preferences

2The Bernard and Ghossoub (2010) paper came to our atteritaswee had completed the first version of
our paper. An explanation of the differences between thiepand Bernard and Ghossoub (2010) is provided
at the end of this section.

3Perversely, research on dynamic, continuous-time pastisllection models, albeit only a little, has led
to more general, analytical results; see Berkelaar et @04Pand Jin and Zhou (2008). One reason is that a
continuous-time model renders a complete market undeainaronditions, whereas in a single-period model
the market is inherently incomplete.



to avoid the “ill-posedness” of the model. Therefore, theidance of “ill-posedness” will
help us understand the market equilibrium prices better.

The solution part (for a well-posed model) poses the maihrtieal challenges, espe-
cially in comparison to the classical utility or mean-vatga model. The S-shaped util-
ity functions are inherently non-concave and non-smooth amoreover, the probability
weighting generates nonlinear expectations. Conseguémtlknown, standard approaches
in optimization, such as Lagrangian and convex duality, diowork (in particular we can
no longer say anything about global optimality). Indeed, ps@ve in this paper that the
CPT value function (as a function of the stock allocation)niggeneral non-convex and
non-concave. Hence, this function may have many local maxim

The problem of non-concavity and non-smoothness has bé&aowatedged in the liter-
ature, and the approaches to solving this type of problera kaar been largely limited to
numerical schemes. In this paper we resort to an analytiaioach attempting to obtain
closed-form solutions. As with the classical portfolio natsj closed-form solutions will
provide insights in understanding the interrelationshagween solutions and parameters,
in carrying out a comparative statics analysis, and inngstind validating the model. In
the present paper, while a solution in its greatest gemgrialiyet to be derived, we ex-
amine two special cases: one in which the reference poiigksnee return and the other
in which the utility function is piece-wise linear but thefeeence point may differ from
risk-free return. These two cases are important. First,esahmot many, investors nat-
urally choose risk-free return as a benchmark to evaluatie thvestment performances.
Second, in many economic applications, a piece-wise lingtly function is convenient,
yet at the same time it can still reveal many economic insighbr instance, Benartzi and
Thaler (1995) use a piece-wise linear utility function tpkin the equity premium puzzle.
It is noteworthy that no portfolio choice problem was forateld in Benartzi and Thaler
(1995). Furthermore, portfolio choice under CPT with a gaheeference point has not
been thoroughly studied in the literature.

The explicit forms of optimal solutions derived in this papeake it possible to eval-
uate, analytically and numerically, the effects on equlitycation of various parameters,
especially the reference point, the large-loss aversigne#ge(LLAD), the curvature of the
probability weighting, and the planning horizon. In pautar, it is shown that risky ex-
posures monotonically decrease as the LLAD value increasktshese results reinforce
the important role the LLAD plays in both modeling and sotyi@PT portfolio choice
problems.

Before concluding this section, we comment on the diffeesrimetween this paper and
Bernard and Ghossoub (2010), the latter independentlyyistyich similar CPT portfolio
choice model with borrowing constraints and deriving resssimilar to some of the results
here (e.g., Theorem 3 in Section 5.1). First, Bernard ands&hb (2010) do not formu-



late and address the general well-posedness issue, wipaingtakingly dealt with in this
papef. Second, in deriving an optimal portfolio for their modéiey do not consider the
case in which the reference point is different from the fige return. Finally, they focus
on a piece-wise power utility function where the power of gfan part ¢) is no greater
than its loss counterparb), whereas the case > (3 is covered by this paper (see Theorem
3-(i)). On the other hand, Bernard and Ghossoub (2010) tiggde some properties of the
optimal portfolio and show, interestingly, that a CPT ineess very sensitive to the skew-
ness of the stock excess return. This is not covered by owrpalthough we do sensitivity
analysis with respect to other parameters. In summarye tisesome overlap between the
two papers; yet there are sufficient differences in focussaage.

The remainder of this paper is organized as follows. SeQidormulates the CPT
model. In Section 3 the model well-posedness is studiedaatgietail, while in Section
4 the sensitivity of the CPT value function with respect tac&tallocation is investigated.
Section 5 is devoted to the analytical solutions of the méamteivo important special cases.
Finally, Section 6 concludes. All the proofs are relegatedrt appendix.

2 Model

Consider a market consisting of one risky asset (stock) aedrisk-free account and
an agent with an investment planning horizon from date date7". The risk-free total
return over this period is a deterministic quantity7’) (i.e., $1 invested in the risk-free
account returns $(7) atT). The stock total excess retur(7") — r(T'), is a random
variable following a cumulative distribution function (BIPFr(-). Shorting in this market
is allowed and there is no restriction on the levels of stauditipn and leverage It follows
from the no-arbitrage rule that that

0< Fr(0)=PR(T) <r(T)) < 1 1)

There is an agent in the market with CPT preference. She ledsramnce point or bench-
mark in wealth denoted hig, which serves as a base point to distinguish gains fromsosse
evaluated at the end of the investment horizon. Moreovergthare two utility functiorfy
u, (-) andu_ (-), both mapping fronR ;. to R, that measure gains and losses respectively

“Theorem 3.1 in Bernard and Ghossoub (2010) does presentavtase an optimal solution is to take
infinite risky exposure. But they neither formalize nor stiliposedness in a general setting as we do in this
paper.

We think it is more sensible to let the final solution suggesairconstraints should be in place rather than
exogenously and arbitrarily imposing constraints on apteafcation model. For example, later we will study
the conditions under which an optimal solution of the modéllemdogenously avoid shorting.

5These are calledalue functionsn the Kahneman—Tversky terminology. In this paper we st# the term
utility functionin order to distinguish it from th€PT value functiomefined below.

"Strictly speakingy._ (-) is the disutility of losses. Note that in Kahneman and Tvwe(4©79) and Tversky
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There are two additional functions; (-) andw_(-) from [0, 1] to [0, 1], representing the
agent’s weighting (sometimes also termdidtortion) of probability for gains and losses
respectively.

The agent is initially endowed with an amoumty, with an objective to maximize
his CPT preference value at= T by investing once at = 0. Specifically, suppose
an amountg, is invested in the stock and the remainder in the risk-fiemmant, and set
xo = r(T)Wy — B. This quantity,zo, is the deviation of the reference point from the
risk-free payoff. Then the terminal wealth is

X(20,6,T) = 20 + B + [R(T) — r(T)]6. 7

Let X be a random wealth an the reference point. ThePT (preference) valuef
X is defined to be

+o0
V) = [ o~ Bldl-wi(1 - F@)
S 3)

- [ wB-adw- (P,
where F(-) is the CDF of X and the integral is in the Lebesgue—-Stieltjes sense. Notice
that in Tversky and Kahneman (1992) the corresponding CRIeva defined only forX
with discrete values. It is easy to show that the precedingndita does coincide with the
Tversky and Kahneman'’s definition, X is purely discrete; hence (3) is a natural extension
of the Tversky—Kahneman definition that applies to bothréigcand continuou¥'.

Now, we evaluate the CPT value of (2) by applying (3), leadong function of9 (called
CPT value functiojy which is denoted by/(6). Whené = 0,

U(0) = u4(zo), ?f x9 >0 @
—u_(—xg), Iifxg<DO.

Whené > 0, by changing variables, one obtains from (3) that

+o0
UO) = [ uslot+ so)di-ws (1~ Fr(o)

o/t 5)
—x0/0

_/ u_ (=0t — zo)d[w_ (Fr(t))):

and Kahneman (1992) a utility functiom(-) is given on the whole real line, which is convex &1 and
concave orR (corresponding to the observation that people tend to Beaxisrse on gains and risk-seeking
on losses), hence S-shaped. In our model we separate thearnilgains and losses by letting. (z) := u(x)
andu_(z) := —u(—xz) wheneverz > 0. Thus the concavity ofi+(-) corresponds to an overall S-shaped
utility function.



Similarly, whené < 0, one has

—x0/0
U) = / wp (0 + zo)dlws (Fr(t))]
— 6)

+oo
—/ u_ (=0t — xo)d[—w_ (1 — Fr(t))].

—x0/6

The CPT portfolio choice model is, therefore:

max U(®o). (P)

The following assumptions on the utility functions, (-), and the weighting functions,
w4 (+), are imposed throughout this paper.

Assumption 1. u4(-): Ry — R are continuous, strictly increasing, strictly concavedan
twice differentiable, with.4 (0) = 0.

Assumption 2. w4 (-): [0,1] — [0, 1] are non-decreasing and differentiable, with (0) =
0,wy(l) =1.

Other than the differentiability condition, which is purdéechnical, these assumptions
have well-established economic interpretations. Tveeskg Kahneman (1992) use the
following particular functional forms for the utility andeighting functions:

uy (z) = 2%, u_(z) = ka”, (7

P’ P
w = , w_(p) = , 8
= rar YT g ©
and they estimate the parameter values (from experimeata) ds followsa = 8 = 0.88,
k = 2.25,v = 0.61, andd = 0.69. These functions satisfy Assumptions 1 and 2 with the
specified parameters. Other representative weightingiumecinclude the ones proposed
by Tversky and Fox (1995):

o+ (1 =p)

_ 07p7
S (1)

w-—(p)

w4 (p) ©)
where0 < v*,y~ < 1,anddé*, 5~ > 0, and the ones by Prelec (1998):

wy(p) = e CIIT gy (p) = 70 (Clp) (10)

for0 < v < 1 andé™,6~ > 0. Numerical estimates of all the parameters above are
available in Abdellaoui (2000) and Wu and Gonzalez (1996).



Let us end this section by remarking that, when there is nbaghitity weighting,U (0)
reduces to the normal expected utility (although the oVetaity function is still S-shaped
instead of globally concave). The combination of the prdiigbwyeighting and the S-
shaped utility function pose a major challenge in analyang solving our CPT model

(P).

3 Well-posedness

We say that Problem (P) igell-posedf it admits a finite optimal solutio®* € R with
a finite CPT value; otherwise it il-posed Well-posedness is more than a modeling issue;
it also sheds light on the interplay between investors andkets®iand has important impli-
cations on market equilibrium, as will be discussed in di@tgbection 3.3. It appears to us
that well-posedness has not received adequate attentiba literature of portfolio choice.
Well-posedness is usually imposed — explicitly or impljcit as a standing assumption for
modeling.

Since we do not impose constraints on portfolios in this pafpeposedness is equiva-
lent to aninfinite exposure to the risky asset under the assumption that thes@lB& func-
tion is continuou$. Economically, an ill-posed model sets wrong incentives {mis)lead
the investor to take infinite leveraye

This section investigates the conditions under which outfgi@ choice model (P) is
well-posed. The key result is that the well-posedness idgméinantly determined by a
specific measure of loss aversion, a notion which will beoshiiced momentarily.

3.1 Infinite CPT value

To start, we examine whethé&f(d) may have an infinite value at a certain finftéi.e.,
whether a particular portfolio will achieve an infinite CPalwe). We give the following
assumption.

Assumption 3. Fr(-) has a probability density functiofir(-). Moreover, there exists) >
0 such thatw/, (1 — Fr(x))fr(z) = O(|z|~27%), ' (Fr(z))fr(z) = O(|z|~2~¢) for
|z| sufficiently large and) < Fr(z) < 1.

Proposition 1. Under Assumption 3/(#) has a finite value for ang € R, andU() is
continuous orR.

8Mathematically, an infinite risky exposure can be formulags: There exists a sequergzewith |6,,| —
oo such that (6,) — supgcr U(6).

°In the presence of a leverage constraint, one can still sisminether the model sets improper incentives
by checking whether an extreme solution (boundary solyi®optimal.



Assumption 3 quantifies certain minimally needed coorddmabetween the probability
weighting and the mark¥t It is natural to ask whether this assumption is restrictif/e
were, then even the very definition of the CPT value would Estianable). The following
result serves to clarify this point.

Proposition 2. If the stock returnR(T") follows a lognormal or normal distribution, and
Wy (z) = O(z™), w' (1 — x) = O(x~*) for sufficiently smallz > 0 with somex < 1,
then Assumption 3 holds for aay > 0.

It is straightforward to check that the Kahneman-Tverskighting function (8) satis-
fies

wh () = Oz~ "7, w/ (1 -2) = 0@ ")

w' (z) =0 179), w (1—z)=0 179).
Similar estimates hold for the Tversky—Fox weighting (9vadl as for the Prelec weighting
(10) if the return is normal or whef > % (v is estimated to be 0.74 by Wu and Gonzalez
1996) if the return is lognormal. In other words, Assumpt®molds for a number of
interesting cases. That said, it is very wrong to think thatapposite would never occur.
Indeed, it is not difficult to show that the CPT value is in#nfbr any stock allocation for
the lognormal return and the Prelec weighting witk: % Hence, Assumption 3, which we
shall assume to be in force hereafter, specifies some miniraguirement for a reasonable
CPT model!.

3.2 Well-posedness and ill-posedness

We now address the well-posedness issue. In view of thereotytiof U (-), investi-
gating well-posedness boils down to investigating the ggtic behavior ofU (6) when
|0| — oo, namely, the CPT value when the stock is heavily investatigelong or short).

We define the following quantity

S

~—

k:= lim (@
T——+00 u+(x

>0, (11)

~—

assuming that the limit exists. This quantity measuresdkie between the pain of a sub-
stantial loss and the pleasure of a gain of the same magnihgtee, it is a certain indi-
cation of the level of loss aversion. It is referred to heteradslarge-loss aversion degree

19t is noteworthy that the utility functions are not part ofsthequired coordination.

it has already been observed in the literature that CPT gere¢es might lead to infinite preference values
of some prospects having finite expectations. Rieger andy\{2006) give some results similar to Proposition
2. Barberis and Huang (2008) show that the preference valfiriie if the variance of the prospect is finite
and the CPT parameters are in reasonable ranges.

©



(LLAD) 2. Notice that by its definitionk may take an infinite value. It turns out, as will be
seen in the sequel, that the LLAD plays a central role in shglthe CPT portfolio choice
model (P).

Before we proceed, let us remark that this new index of lossséon is markedly dif-
ferent from several existing indices. In CPT loss aversobased on the experimental
observation for small gains and losses. Therefore, thedsdintroduced in the litera-
ture, including those of Tversky and Kahneman (1992), Behand Thaler (1995), and
Kodbberling and Wakker (2005), describe loss aversion irighborhood of zero instead
of one of much greater magnitude, thus representing thedfittke utility function around
the reference point. We argue that the LLAD defined here cleniaes loss aversion from
a different and important, yet hitherto largely overlookedjle for the following reasons.
First of all, it is plausible that people are loss aversehlvaten the loss is small and when
it is big. While there is very little experimental evidendepeople’s attitudes with respect
to large payoffs, our analysis below shows that LLAD detewsiwhether or not people
will take infinite leverage, and hence LLAD affects marketidijrium. So it is important
to consider loss aversion that refers to large payoffs. Shcor the Kahneman—Tversky
utility functions (7) our definition of LLAD coincides withhbse of the aforementioned
indices. However, in general they do not have to be the same, bedaegarte used to ad-
dress different problems. In the context of portfolio clegismall-loss aversion determines
whether one would be better off investing slightly in a risigset when the reference point
is the risk-free return, whereas LLAD determines whether will take infinite leverage if
allowed to do so. Last but not least, the results in this papiéjustify the importance of
this new notion at least on a theoretical (as opposed to impatal) ground: We will prove
that LLAD is an exclusively critical determinant for the Wwpbsedness of a CPT portfolio
choice model and plays an important role in the final solutibthe model. To conclude,
although LLAD in general does not capture loss aversionrizalsgains and losses, it does
provide an additional dimension in addressing the cerdgalé of loss aversion in CPT.

Theorem 1. We have the following conclusions:

(i) If k& = +oo, thenlimy_,;  U(#) = —oo, and consequently Proble(P) is well-
posed.

(ii) If £ =0, then Problen(P)is ill-posed.

This theorem suggests that, if the utility of a large gairéases much faster than that
of a large loss (i.e.k = 0), then the agent will simply buy stock on maximum possible

12For the utilities suggested by Tversky and Kahneman (1988)|.LAD value is 2.25.
BIndeed, Kébberling and Wakker (2005), Section 7, pointtbat there is some technical complication with
their definition when applied to power utilities; so they aw define the corresponding index by a convention.

10



margin since the pain incurred by a loss is overwhelmed byh#ppiness brought by a
possible gain. This leads to a trivial (ill-posed, that i)lgem. Conversely, if the investor
is overwhelmingly loss aversé & +00), then a large equity position, either long or short,
is not preferable (its CPT value decreases to minus infirsttha risky position grows to
infinity). This calls for a finite amount of money allocatedtte stock, giving rise to a
well-posed model.

What if, then,k is finitely positive, i.e., the two utilities increase at th@me speed?
The answer lies in some critical statistics, to be definedhadollowing lemma, which are
related to both individual preferences and market oppadrésn

Lemma 3. ASSUM@im,_, 4 Zf(t;)) = g4+ (t) Vt > 0 andlimy_, oo 1;1<(t§)> = g_(t) Vt >
0, then the following statistics

+oo

ai= [ g®dws (1~ Fr)] (12)
00

ai= [ g(-tdu_ (Pr®)], (13)
0

b= [ gt (Fr)) (14)
e

byt = /0 g-(B)dl—w_ (1 - Fr(t))) (15)

are well-defined and strictly positive. Furthermore, wedav

Jim +°j9 s (08 + ) fus (O))d—ws (1 — Fr(t))] = an,
Jm _:0/9 fu— (=0t — o) /u_(0) dfw- (Fr(t))]dt = a.
lim_ _:0/6 (0% + o) fus (—O)]d[wy (Fr(t))] = b,

i [ u (=0t — 20) fu (—O)d[—w_ (1 — Fr(t)]dt = by,

60— —o0 —30/0

If, in addition,0 < k < 400, theng (t) = g_(¢).

The following is a result of well-posedness when(z) andu_ (x) increase at the same
speed. It involves a critical value,

a1 by

fo = max (21,31, (16)

ag’ b2

Theorem 2. Assume thall < k < +o0, lim, 4 o u4(z) = +00, and
limy s 4 oo ug(tx) /us(z) = g(t) V¢t > 0. We have the following conclusions:

11



(i) Ifk > ko, thenlimg_,, ., U(0) = —oc, and consequently Proble(R)is well-posed.

(i) If & < ko, then eithedimg_, o, U(0) = +o0 or limy_, _, U(#) = 400, and conse-
quently Probler{P)is ill-posed.

To better understand these results, let us first explain ¢baanic interpretations of
the parametersq, as, b1, b2, and (thereforek,. Assume for the moment that there is no
probability weighting, i.e.wy(p) = p. If uy(z) = 2%, u_(x) = kx® withk > 0, 0 <
a < 1,theng, (t) = g_(t) = t. In this casei; = E[(RT)?], anday = E[(R~)"], where
R := R(T) — r(T) is the stock total excess return. Thus the ratio

a _ Bl(RY)]
ay  E[(R)]
Similarly, [(~ o
by E[(R)°
by B[(RY)")

If we take exponential or logarithmic utility functiols namely,

ax

up(z) =1—e" wu_(z) =kl —e %), a>0, k>0,
or
ug(z) =log(l+z), u_(x)=*klog(l+x), k> 0.

In both caseg(t) = g_(t) = 1, so (assuming again that there is no probability weighting)

ap  P(R>0) E[l{R>o}]' by _ P(R < 0)

az  P(R<0) Ellzl b2 PR>0)

Clearly, the ratioa; /ay represents some investor-preference adjusted critefitimeo
upside potential of the stock relative to the downside p@énr the attractiveness of the
stock, if one takes a long position. Maoreover, since in our model stgit allowed, the
ratio b, /b, quantifies the attractiveness of shorting the stock. Thatifyak,, being the
larger of the two ratios, represents the overall desitghdf the investment in the stock,
which is subjective and investor-specific.

Now, if probability weighting is present, the above intdptions are still valid. We only
need to replace the expectation in the definition of the rvitewith one under probability
weighting — the latter is called th@hoquet expectatiora nonlinear expectatidn

An exponential functionuy (z) = 1 — e~ does not satisffimy— 4o ut () = 4oo required by
Theorem 2. Howeveky is still well defined.
15See Denneberg (1994) for a detailed account on the Chogpettion.
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The parametek, is related to, but not the same as, the CPT-ratio introdugd®ebnard
and Ghossoub (2010). It is an easy exercise to show that ifiitity function is a two-
piece power function with the same power parameter for gaiddosses, theky, coincides
with the CPT ratié®. However, the two are different for most other utility fuiocts such
as exponential and logarithmic ones. Theorem 2 suggedtsdtdefined here is a more
appropriate parameter in addressing well-posedness irageneral setting.

So, Theorems 1 and 2 indicate that the LLAD,is crucial in determining whether
the model is well-posed or otherwise. Hf > k, namely the stock is so attractive that it
overrides the large loss aversion, then the investor vk# tafinite leverage leading to an
ill-posed model. Ity < k, the stock is only moderately attractive, then there is detraff
between the stock desirability and avoidance of poteraigd losses, resulting in a well-
posed model. In short, if the investor is not sufficientlyslaserse with large payoffs, then
the model will be ill-posed.

The boundary case whén= kg, which is not covered in Theorem 2, may correspond
to either well-posedness or ill-posedness and thus resjuirther investigatiol¥. However
the boundary case is of technical interest only, as prdistiahithe parameters of the model
— including utilities and probability weighting — are estéites and prone to errors. So we
are not going to pursue this line of inquiry further.

Corollary 4. If the utility functions are of the power ones:
uy(z) =z, u_(x) = kP, E>0,0<a,p<1, a7

then Problem(P) is well-posed whemv < /3, or « = g andk > kg, and is ill-posed
whena > 3, ora = g andk < ko, wherek, is defined by (16) (via Lemma 3) with

g4(t) = g-(t) = to.

Note that in the above it is a slight abuse of notation when sethe same lettsk,
reserved for LLAD, for the coefficient af_(-) in (17). However, the constantin (17) is
indeed the LLAD value when = (3, which is the case of the Kahneman-Tversky utilities
and the only case that is interesting in our investigaticisev.

8In Bernard and Ghossoub (2010) shorting is prohibited; $p @1y a- is necessary in defining,.

"Both ko and the CPT-ratio are also related to the so-called Omegaureintroduced by Keating and
Shadwick (2002) and the gain—loss ratio of Bernardo and it€#000). A key difference though is that both
the Omega measure and the gain—loss ratio depend only oenhegortunities, whereds and the CPT-ratio
involve investor preferences.

BFor example, consider (z) = z + 2 andu—_(z) = kox with 0 < a < 1 fixed andky = a1 /as.
Thenk := lim,; Z;—Ei; = ko. For simplicity, letzo = 0. From the last equation in the proof of Theorem
2 (see Appendix), we see thhimg_, ., U(0) = +oo, which implies ill-posedness. On the other hand, if
ut(z) = z andu— (z) = ko(z + %) with 0 < a < 1 fixed andko = a1/a2, a similar argument shows that

u_(z)

k=limg oo " = ko andlimg_, o, U(0) = —o0, leading to well-posedness.
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3.3 Discussions

Let us discuss several important issues. First, in sharpasirwith a classical expected
utility model, a CPT model could be easily ill-posed. Thegibke ill-posedness suggests
the importance of the interplay between investors and nsrkes shown by Lemma 3, the
critical valuekg in determining a model's well-posedness depends not onltheragent
preference set (utilities, probability weighting, andeéstment horizon) but also on the in-
vestment opportunity set (asset return distributions).weéi@r, an infinite exposure to a
risky portfolio is rarely observed in reality; hence, inpease to the agent’s preference
set, the market is forced to price the assets in such a wayhbagent's CPT model is
well-posed. This, in turn, has potential implications fardying market equilibrium. For
example, De Giorgi et al. (2004) and Barberis and Huang (R@68ne a market equilib-
rium based on the avoidance of essentially that which wellkplbsedness here, assuming
that the reference point is the risk-free return. In the sextion we will also show that the
equilibrium may exist under the same assumption. So, thsilles|l-posedness is by no
means a negative result in relation to CPT; rather, it helpmderstanding the market equi-
librium. More precisely, the market responds to the prefees of the market participants
in such a way that the ill-posedness is avoided.

Secondly, Theorem 2 applies largely to utilities with canstrelative risk aversion
(CRRA) such as power functions, owing to the condition that wtilities have to be un-
bounded. This fails to hold with utilities that exhibit caéast absolute risk aversion (CARA)
— e.g., an exponential function. Although the piece-wisegroutility function is used in
CPT preference in a number of works (Barberis and Huang 2Be8)ard and Ghossoub
2010), it is also argued in some literature that this utilityction may cause several prob-
lems and is less favorable than a piece-wise exponentlay ditinction.

De Giorgi et al. (2004) show that under a multi-asset econuiitly the asset returns
being jointly normally distributed, the equilibrium doestrexist when the agents have
(heterogeneous) piece-wise power utility functions asit-fiee return reference points.
Based on this, they declare that a piece-wise exponeniligy function may perform better.
However, it seems to us that there may be some problem inatggiment®. On the other

¥n De Giorgi et al. (2004) the optimal stock allocation of keagent,i, is determined by the sign of the
function f%(q), defined in the last equation on p. 25. (Actually the CPT pesfee used in that paper is
a special, rank-dependent one: From (1) in the paper, thaighting functions on gains and l0ssés, (),
satisfyT_(z) = T4 (1 — z). However, most of their results can go through with a gen@Ril’ preference.)
If fi(q) < 0, agenti's optimal allocation is to invest only in the risk-free assb f(q) > 0, he will take
an infinite leverage in the risky stocks. fif (¢) = 0, then he is indifferent to the choices available among all
possible allocations. See the discussion on pp. 28-29 trpder. Then the authors argue that “as soon as
the investors are a little heterogeneous (in preferenaespnilibrium exists because there is no commat
which all investors would be indifferent with respect to tiegree of leverage” (p. 29). It is true that there
does not exist a commapsuch that all the agents would be indifferent with respec¢héolevel of leverage,
i.e., fi(g) = 0,5 = 1,...,I. However, the equilibrium still exists as long as there amae agents who are
indifferent among all possible degrees of leverage anddsieaf them optimally invest in the risk-free asset. In
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hand, Barberis and Huang (2008) show that the equilibriuesa@xist when investors have
homogeneous preferences — assuming the same asset retdrifie same type of piece-
wise power utility functions as in De Giorgi et al. (2004). IQ@esult in the next section also
shows that an equilibrium exists.

Rieger and Wang (2006) prefer a piece-wise exponentidyuiinction to a piece-wise
power one as the CPT preference, since the latter may leadiride preference values of
some prospects, in a spirit similar to that of Proposition @ur paper. This, however, is not
a convincing reason to reject the piece-wise power utilityction. Actually, Proposition 1
shows that the preference value is finite as long as the faitee@sset return prospects are
properly controlledjndependentf the utility functions being used! As discussed above,
the condition of Proposition 1 infers a range of market regun an equilibrium.

Rieger (2007) further argues that the piece-wise powaeityufilnction cannot capture
very high degrees of risk-aversion in simple lotteries. sTikicertainly true, since in CPT
the power indexx > 0 and hence the relative Arrow—Pratt indgx— «) does not exceed
1. However, this fact alone is not sufficient to reject thecpigvise power utility function.
First, Rieger (2007) found that the CPT preference withgsi&tse power utility functions
can still capture the levels of risk-aversion of about 70%hefrespondents in the Tversky
and Kahneman (1992) experiment. Second, by incorporatiegptobability weighting
functions, the CPT preference with piece-wise power wtilithctions can still describe
higher levels of risk-averse behavior, while in Rieger (20the weighting functions are
fixed.

Kdbberling and Wakker (2005) reject the piece-wise wtifitnction because it makes
CPT inconsistent when describing the loss aversion refgiid small payoffs and large
payoffs. We have offered an extensive discussion of thigeiss Section 3.2. Here let
us add that there is no inconsistency when the power inditéseoutility functions in
gains and in losses are the same (such as the one proposechbgritan and Tversky).
Furthermore, the inconsistency in describing loss averfitlows from the particular form
of the piece-wise power utility function, and it may disapp#vith other utility functions
that are unbounded.

To take our argument further, we now show that the piece-exp@nential utility can-
not rule out ill-posedness at all. First, recall that a béral model is well-posed if infinite
exposure to the risky asset is not optimal. Assuming thecpigise exponential utility,

up(z) =1—e  u_(z) = A1 —e ), a, >0, A>0,

other words, once there exists some approptjate0 such thainax;e s fi(q) = 0, thenan equilibrium exists.
Such ag can indeed be found because one can show that gdghis continuous iy, limg—« f*(q) = oo,
andf*(0) < 0 under some mild conditions, in the same spirit of Lemma 2 irdbergi et al. (2004).
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we can compute that

wly (1= Fr(0) Mt (Fr(0))
a B

Jim [20°(0)] = £2(0){ a0 [uf, (1= Fr(0) + M’ (Fr(0)] |
When the reference point coincides with the risk-free refue. zo = 0) and there is no
probability weighting, therimg_,.[0?U’ ()] < 0 if A > g In this case the behavioral
model is well-posed. However, a general reference pointtaadgresence of weighting
functions would make things very different. We have carwed some numerical com-
putation which shows that a high (though reasonable) nefergoint, i.e., a sufficiently
negativexr,, can make the problem ill-posed even if there is no prolghiieighting and
the loss aversion\ > g This result can be explained intuitively as follows. Calesi
the case in whichzy < 0. Noting lim, ,c ut(z) = 1, lim,,_o[—u_(—z)] = =\,
the maximum possible increase in CPT valué is u_(—xzg); and the maximum possible
decrease is\ — u_(—uxy), if the agent starts with the prospective value_(—z() and
then takes infinite leverage on stocks. Clearly, for a seffitty negativer,, the maximum
possible happiness dominates the maximum possible paime #fgent takes infinite risky
exposure. This causes the ill-posedness. Our discussiorskabws that the well-posedness
with piece-wise exponential utilities depends not onlylomltLAD () in this case) but also
on the reference point. In contrast, for unbounded utlitialy the LLAD plays a role. Itis
worth mentioning that piece-wise exponential utilitiesdéeen applied to portfolio choice
in the literature. However, most of these works focus on islefree reference point and
thus overlook the problems that reference points may cause.

4 Sensitivity

We have shown that the CPT value functig¢) depends continuously on the amount
allocated to equityf. In this section, we examine the sensitivity of this depewde es-
pecially aroundd = 0. This sensitivity, in turn, will tell whether it is optimabtinvest in
equity at all. As a by-product, we will show th&t(#) is generally neither concave nor
Convex.

We first introduce the following statistics:

= [0 td[wy (Fr(t = [T td[-w, (1 - Fr()))],
(18)

= [F2tdw_ (Fr(t)], Ay = [72 td[-w_ (1 - Fr(t))].

Proposition 5. Supposery # 0. ThenU () is continuously differentiable o, +cc) and
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(—o0, 0], where the derivative at O is the right one and left one respely. In particular,

! Ay 0 ! AT 0
u’,(—xo))\l , To<O0 u’,(—xo))\2 , T <0

Let us look more closely at the signs@f(0+) andU’(0—) by examining the statistics
)\;t, 1 = 1, 2. Indeed, integrating by parts and noting Assumption 3, wize¢he following
alternative definitions of these statistics:

M= [0 = we(Fr())dt — [° we(Pr(t))dt,
(20)
A= [ w1 — Fr(t)dt — [0 _[1 —we(l — Fr(t))]dt.

These formulae show that", \;" are various generalized versions of the expected stock
excess return. One crucial point is that these weightedotafiens are investor-specific,
namely, they all depend on the specific investor probabiligighting functions. If there
were no probability weighting, then they would all reducéht® usual expectatioffs Thus,
if these weighted expectations are larger than 0, then thieatiee of U (0) near 0 is larger
than 0. This suggests that, when the reference point isreiiftédrom the risk-free return
and the investor's expectations on the stock excess retenositive, then to him investing
some amount in the stock is better than not holding the stbak.a

Notice that the case whery = 0 is excluded from consideration in Proposition 5, as it
will be investigated separately in the next section.

We have so far investigated the sensitivity (6{0) neard = 0. Next we study its
asymptotic property a = +oo.

Proposition 6. Assuméim,._, , ., v/, (x) = 0. Then
lim U'(A) = 0. (21)

So, the CPT value function has a diminishing marginal valtheei utility function does.
Corollary 7. If limjg|, 400 U(0) = —oc and lim, o u/y(x) = 0, thenU(-) is non-
concave on eitheR_ or R,. If in addition A\, A > 0, thenU(-) is non-convex ofRk ..

5 Two Explicitly Solvable Cases

The non-concavity of the CPT value functibii-) stated in Corollary 7 imposes a major
difficulty in solving the model (P). Concavity/convexityjweh renders powerful techniques

2n fact, A;’[ are precisely the Choquet expectations.
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such as Lagrangian and duality workable, is crucial in sg\aptimization problems. The

rich theories on mean-variance and classical expectaty uibdels — including the related

asset pricing — have been exclusively built on the premigktkie respective value functions
to be maximized are concave. Now, the non-concavity is ttein a CPT model, and

hence its analysis and solutions call for new techniquesagpdoaches. In this section we
will study two economically interesting and explicitly sable cases, while comparing our
approaches to those in the literature.

5.1 Case 1: Reference point coincides with the risk-free ratn

It is plausible that many investors — especially ordinaryideholds — tend to com-
pare their investment performance with that in fixed incoemusties, especially when the
equity market is bearish. So the risk-free return servesreguaal (if pessimistic) psycho-
logical reference point. For our behavioral model this caseesponds tay = 0, which
simplifies the problem greatly. Specifically, the value fiime in this case reduces to

0

+oo
U() = /O wyp (08)d[—w, (1 - Fr(t))] - / u(—0tydlw_ (Fr(t)], 0> 0,

—00

0 +o0o
U®) = [ uso0do (Fro)] = [ u(00dl—u- (1= Fr)], 0<0.

—0o0

If the utility functions are of the power ones, as in (17),rtlvee can explicitly solve
Problem (P) by investigating the local maximalof:).

Theorem 3. Assumer, = 0 and that the utility functions ankl, are as in Corollary 4. We
have the following conclusions:

() fa> p,ora=pandk < kg, then(P)is ill-posed.

(i) If o =pandk > kg, then the only optimal solution {®)is * = 0.
(i) If « = pandk = ko = a1/az, then anyd* > 0 is optimal to(P).
(iv) If a = pandk = ko = by/bs, then any* < 0 is optimal to(P).

(v) If a < B, then the only optimal solution {®) is

1
laar|?—e
QS 22
o= i52] 22)
if o Jag > b2 /bg, and it is
g [Lab]™= (23)
~ kBB



if o Jag < b7 /bg.

The results in this theorem suggest that a CPT investor wiiskeree reference point
and power utilities will invest in stocks as much as he careifidinot sufficiently large-
loss averse (quantified by the conditions in Theorem 3-Q)).the contrary, if he is over-
whelmingly large-loss averse (corresponding to Theorgw)3), then the optimal solution
would be to take a fixed equity position regardless of hisah&ndowment (although the
level of the position does depend on the other model parag)efehis investment behavior
resembles that of a classical utility maximizer with an engatial utility. Moreover,|0|
monotonically decreases asncreases. This implies that the higher large-loss avelisio
the less risky an exposure (either long or short) becomdsamtoptimal strategy. On the
other hand, whena = 3 (the Kahneman—Tversky utilities) with a sufficiently largeAD
(Theorem 3-(ii)), not holding stocks is the only optimalwg@n. This, however, explains
why many households did not, historically, invest in eesitat af%>. The contrapositive
conclusion is that, if a CPT investor (with the Kahneman—+$kg utilities) does indeed
invest in stocks, then his reference point must be diffefreamb the risk-free return.

Finally, Theorem 3-(iii) has an important implication iretbxistence of a market equi-
librium. In fact, if there are some agents in the market whHiofo CPT in the Tversky
and Kahneman (1992) setting (i.e., (7) and (8), where ) and whose reference point
coincides with the risk-free return, then, whatever thdiAD value k is, there is always
some expected return of the stock (the one that makesk, = a;/az) for which these
agents are willing to hold any positive amount of the stocklgkg as the total shares of the
stock optimally held by all the other investors do not exchexlaggregate number of the
circulating shares of the stock, these CPT investors als@ee the optimality by holding
the remaining shares of the stock. This is consistent wighntbtion of equilibrium where
there is some expected return that clears the market.

It is interesting to compare our findings here with those abBes and Huang (2008),
who consider CPT portfolio selection with multiple stogksUnder the assumption that the
asset prices are normally distributed, they derive arii the optimal solution which is
quite close to the one presented in Theorem 3. They have arimainsolution when the
normality assumption is removéd . Moreover, assuming that all the investors in the market

2t js estimated in Abdellaoui (2000) that the mediangvafnd3 are 0.89 and 0.92 respectively, where the
difference is rather small, corresponding to this case.

22This phenomenon has been noted for a long time; see MankiviZelags (1991) for example. A similar
result to the one presented here is derived in Gomes (2005jd@ortfolio selection model with loss averse
investors, albeit in the absence of probability weighting.

ZThe main focus of Barberis and Huang (2008) is the assetngrichplications of the CPT preferences
(specifically how positive skewness is priced by CPT invetoFor that they need to solve a CPT portfolio
selection problem.

24To be specific, in studying the skewness, Barberis and H20G8] introduce a skewed security in addition
to J risky assets with joint normal distributed return. Thiswke security is independent of therisky assets.
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follow the CPT preference in Tversky and Kahneman (1992h wit= § and that their
reference point is the same as the risk-free return, thegirlhe equilibrium, which is
exactly the case when= k.%> However, the case # 3 or the one in which the reference
point is different from the risk-free return is not treatedBarberis and Huang (2008).

5.2 Case 2: Linear utilities

The second case is the one with linear utility functions, elgm
U+(.§C) =, U,(CC) = k‘.CC, k > kO) (24)

yet with a general reference point (i.ey is arbitrary). We are interested in this case
because for many applications the concavity/convexityngignificant and hence can be
ignored. An analytical solution to this case, accordinguolmest knowledge, is unavailable
in the literature.

In the present case, we have tbr- 0:

400 —x0/0
Ue) = [ w0 Beo)derk [l (Bro) o @)
—x0/0 —o0
and
CC2 X T xT
U%ng%ﬂ—f)@;@—Fﬂ—gﬁ—%wL@H—gg}. (26)

To find the conditions leading to the solution of (P), we neeihtroduce the following

function: L )
wy(l—p

=" 7 0<p<]l. 27

©(p) o ) p (27)

Here we setp(p) = 400 whenever’ (p) = 0. The following assumptions will be in force
throughout this subsection.

Assumption 4. There exist® < p; < po < 1 such that
if 0 < p < b1,

>k,
So(p) < kv if p1 <p <p2,

Assumption 5. U(8) < U(0) for 6 < 0.

We defer the discussions of these two assumptions to thefehi$ section.

By assuming a binomial distribution for this skewed segutliey compute the equilibrium numerically.
Bt is a simple exercise to show thiat= ko reduces to equation (19), p. 12 in Barberis and Huang (2008)
as a special case.
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Theorem 4. If zo # 0 and\] > 0, A > 0, then(25) has a unique roof* > 0 which is
an optimal solution t¢P).

Corollary 8. Under the same assumptions of Theorem 4, an optimal soltdi@if) with
parameterseg, k, andT is given by
Ui—(—]ﬁ,o’]—')’ if Zo < 0)

0* (20, k, T) = (28)

0 .
&)’ if zg > 0,

wherev’ (k,T') andv* (k,T') are the unique roots of

v

h(v) := /+OO tw!y (1 — Pp(t)) fr(t)dt + k/ tw' (Fr(t)) fr(t)dt (29)

on (0, +o0) and(—oo, 0) respectively.
Based on (28) we have the following monotonicity result @ dptimal risky exposure.

Theorem 5. Under the same assumptions of Theorem 4, the stock allocétia, &, T")
strictly increases inx| and strictly decreases ih.

This result shows that the higher the large-loss aversiptihésless the investment in
stocks is. Hence, it confirms decisively, via an analyticguaent, that investors tend to
allocate relatively less to stocks due to the aversion toifsignt losses. The monotonicity
(indeed the proportionality; see (28)) of the equity altamawith respect tdx| is equally
intriguing?®, as it reveals the important role the reference point playasset allocation.
Whenzy > 0, i.e., the reference point is smaller than the risk-frearrét, the larger the
gap (between the reference point and risk-free returésgteater the investment in stocks
is. This can be explained as follows. A greatgryields more room before a loss would
be triggered; hence, the investor feels safer and hencert@scmore aggressive. When
zo < 0, i.e., the reference point is larger than the risk-freerréfiy again the larger the gap
is, the more weight is given to stocks. The economic intnii®that the investor in this
case starts off in a loss position compared to the highereefe wealth set for the final
date; hence, his behavior is risk seeking, trying to get bth@hole as soon as possible.

Next, we investigate the comparative statics in terms otthveatureof the probability
weighting.

ZActually this monotonicity holds for more general powetlitiéis: w, (z) = 2, u_(z) = kz®. In this
case it is easy to see th&lt(0; zo) = xz5U(0;1), whereU(+; zo) denotes the CPT value function givep.
However, for this general case we have yet to obtain a reswabmplete as Corollary 8.

2'This corresponds to the type of investors who would feel thiagof losses only when the investment
returns fall substantially below those of the fixed incomhbisTmay well describe the investment behaviors of
those with higher tolerance for losses, say, some very tuepkople.

ZMost equity and hedge fund managers should belong to thigoat
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Theorem 6. Under the same assumptions of Theorem 4, define= 1 — Fr (v (k,T))
andz_ :=1— Fp(v*(k,T)).

(i) Letwy(-) be a different probability weighting function on gains vehikeeping the
weighting on losses unchanged, and ¢k, k, T') be the corresponding optimal
solution to (P). If

U_/Jr(z) > QUIJF(Z), Vz € (07 Z+)7

then@(mo, k, T) > 9*(.%'0, k, T), Vg < 0.
(i) Letw_(-) be a different weighting function on losses while keepimgwkighting on
gains unchanged, and Ié(xo, k,T) be the corresponding optimal solution to (P). If

W (z) <w' (2), Vze (0,1—2),

thend(xo, k, T) > 6*(xq, k, T), Vo > 0.

Theorem 6-(i) shows that if the agent starts in the loss dopthéen the greater’, ()
aroundz = 0 is, the more risky the allocation becomes. Recall (see (&) the deriva-
tives of the probability weighting on gains around O are thedghts to significant gains
when evaluating risky prospects, thereby indicating thellef exaggerating small proba-
bilities associated with huge gains. In other word$,-) near 0 quantifies the agent's hope
of very good outcomes. Likewise, Theorem 6-(ii) stipulatiest in the gain domain, the
smallerw’_(-) around O is, the more risky is the exposure. The derivatif&segprobability
weighting on losses near 0 capture the agent’s fear of vaysbanarios. Note that, since
the utility function is linear, the behavior of risk-seeffion losses and risk-aversion on
gains is solely reflected by the probability weighting. Tthisorem is consistent with the
intuition that a more hopeful or less fearful agent will isvenore heavily in risky stocks.

The remainder of this subsection examines the interpoatstand validity of Assump-
tions 4 and 5.

First of all, Assumption 4 ensures, via (26), tfidt(6) changes its sign at most twice.
In other words, althougl/(-) is in general not concave, the assumption prohibits it from
switching too often between being convex and being conciwereover, Assumption 4
accommodates the case whan= 0 and/orp, = 1; so  satisfies the assumption if it is
strictly bounded byk, in which casdJ(-) is concave orR . In particular, the case without
weighting, i.e.,wy(p) = p, and the symmetric case as in the so-called rank-dependent
models (see Tversky and Kahneman 1992, p. 302) li-ew (1 —p) = w_(p), do satisfy
Assumption 4 for any LLAD valué > 1 (recall that the Kahneman-Tversky LLAD value
is k = 2.25).
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Next, let us check the Kahneman-Tversky type weighting aghme power parameter:

wi(p) = w_(p) = — (lpz PR 1/2<y<1. (30)

Proposition 9. Supposev, (p) are in the form(30). Then

()<A()’—< —1_—7>1 vp e (0,1)
A=A T W ) P

wherep; (y) is the unique root of the following function ¢, 1/2]:
K(p):=p"+1=p)] =[P =1 -p)7

Now, if we takey = 0.61, then\(0.61) ~ 2.0345; and if we takey = 0.69, then
A0(0.69) ~ 1.5871. Hence, it follows from Proposition 9 that Assumption 4 iidiéor the
Kahneman—Tversky LLAD valug = 2.25 > 2.0345 if we take the same power parameter
in the weighting functions.

We have shown analytically that, for the Kahneman-Tverskigtting functions with
the same parameter (either= 0.61 or v = 0.69), ©(p) is indeed strictly bounded by the
Kahneman—-Tversky LLAD valué = 2.25, and hence, as pointed out earlier, the corre-
sponding value functio®/(-) is uniformly concave. Now, if the weighting functions for
gains and losses have slightly different power parameterns 43) withy = 0.61 and
0 = 0.69, we no longer have an analytical bound. However, one carctiya correspond-
ing function,(p), as Figure 1. By inspection we see that there is no uniforrmtéedness
in this case ¢(p) goes to infinity near 0 and 1); yet Assumption 4 is indeed fsadivith
k= 2.25.

It is also worth mentioning that Assumption 4 holds true wiitd Tversky—Fox weight-
ing (9) and the Prelec weighting (10), if we take the specifimmeter values estimated by
Abdellaoui (2000) and Wu and Gonzalez (1996).

Next, let us turn to Assumption 5, which essentially exchidieort-selling from a good
investment strategy.

Proposition 10. If zg # 0, k > ko andA\{ > 0, A; > 0, thenU () < U(0) V0 < 0 if
either
Y(p) == wl(p)/w_(1-p) <k Vpe(0,1), (31)

or

" w_ (1= Fr(t))

k> max{ J° o wi (Fr(t)dt
0

dt,Cl,CQ}, (32)
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T,(1-p)T_(p)

2.25

Figure 1:¢(p) for Kahneman-Tversky’s distortions with= 0.61 andd = 0.69

where(; = supg_,; %ﬂ% and (s = supg,<; %@_p), both assumed to be finffe

This result shows that prohibition of short-selling is egeloous when the LLAD ex-
ceeds certain critical levels, as determined by (32). Tarsainly makes perfect sense as
short-selling involves tremendous risk and thus is notgsrefl by a sufficiently large-loss
averse investor.

If we take the Kahneman-Tversky weighting functions witraee power parameter
~ = § = 0.61 or 0.69, then the condition (31) is satisfied for ahy> 2.0345 as shown
earlier. If the two parameters are slightly different as welky and Kahneman (1992),
i.e.,v = 0.61, § = 0.69, then both conditions of Proposition 10 fail. However we can
modify the conditions above to ones that are more complicatel heavily dependent on
the probability distribution of the stock return. Sinceytfae unduly technical, we choose
not to pursue any further investigations along that line.

6 Conclusions

This paper formulates and develops a CPT portfolio selecgtiodel in a single period
setting, where three key elements of CPT, namely the referpaint, the S-shaped utilities,
and the probability weighting, are all taken into consitiera We have introduced a new
measure of loss aversion called LLAD, which is relevant dolyarge (instead of small)
gains and losses. This measure is markedly different fraoties commonly employed
in the literature; yet we have shown that it plays a promimetd in portfolio choice. The
model is ill-posed if the investor is not sufficiently losseese in the sense that LLAD is be-

PHere we sei)(p) = +oo if w_ (1 —p) = 0.
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low a certain critical level. For a well-posed model, deriyits solution analytically poses
a great challenge due to the non-convexity nature of theriyidg optimization problem.
We have solved two special but important cases completelyaxiplicit solutions obtained
by exploiting carefully the special structures of the cepanding CPT value functions.
There are certainly many questions yet to be answered. Areirate challenge is to
analyze the model beyond the two special cases. Anotheafmental challenge is building
an equilibrium model or capital asset pricing model builbmmur CPT portfolio selection
theory for an economy where some agents have CPT preferashdeshe rest are rational.

Appendix: Proofs

Proof of Proposition 1.Fix an arbitraryd > 0. Sinceu.(-) is concave, we have (6t +
xo) < C(1 + 6|t]) Vt € R for some constant,’. By Assumption 3, the Lebesgue inte-
grand of the first integral in (5) is of an order of at mest—< whent is large and hence
integrable. Similarly, all the other integrals definibigd) have finite values for ang € R.

Next, we show the continuity df(f) até = 0. Consider onlyry < 0 andé | 0, the
other cases being similar. The firstintegralg®) in (5) goes to 0 whefi | 0 by monotone
convergence theorem. Denoting the second integral {8y (excluding the negative sign),
we have

0

A(6) = / u_ (=0t — zo)djw_ (Fr(t))]

—00

—x0/6
+ /0 u_(—@t — xo)d[w_ (FT(t))]

Clearly, limg g A1 (0) = u_(—xo)w_[Fr(0)], whereas the dominated convergence theo-
rem yieldslimg o A2(6) = u_(—z0)(1 —w_[Fr(0)]). Thus we havéimg o U(¢) = U(0).
Finally, the continuity at any other point can be proved knhy. O

Proof of Proposition 2.SupposeR(T') follows a lognormal distribution, sayn R(T") ~
N(MT, UT). Then

In[r(T) o]~
1 or

Fr(z) = — e 2t

1 1 6_%[w]2

= orT
V2ropr(T)+x
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Using integration by parts, we can easily show that
(z7' — 273) exp(—2?/2) < V2r[l — N(2)] < 2 ' exp(—2?/2) Yz >0,

whereN (z) is the CDF of the standard normal distribution. Thus, we have

wi(1 = Pr(z))fr(z) =0 (612“[“‘“”2:)”]2)

In[r(T)+a]—pr

2
for all large enough: > 0. Notice thate_[ or ] = O(z7P) forall p > 0 and
hence the conclusion holds. The case of normal distributeom be verified in the same
way. ]

Proof of Theorem 1(i) First, we show thatim,_, | o, %(if)) = +oo for anyt > 0. Indeed,

by monotonicity it holds for > 1. For0 < t < 1, the conclusion follows from_ (tx) >
tu_(x) which is due to the concavity of_(z) and the fact that._(0) = 0. On the other
hand, observe that for fixag > 0,

you'y (y + yo) S ty) —ue(y) _ you!y (y)

N O R ur (y) = Tui(y)

—0

asy — +oo. This is because either, (y) — +o0 or v/ (y) — 0, asy — oo (recall
thatu () is non-decreasing and concave). Thius, ;. u+(y + vo)/u+(y) = 1. Asa
consequence, we have
lim u_(tx + x1) ~ lim u_(tz + x1) lim uy(x + 21 /t) oo (33)
z—+oo uy(x 4+ x2)  z—to0 up(x + x1/t) a—+oo uy(x + x2)
for any fixedz, zo, andt > 0.
Now, for 6 > 0 it follows from (5) that

+oo
U(6) = / w0zl (1= Fr(o)

—x0/6
[ b o) (Fr(®)) = - 1o

Due to the concavity ofi., (-), for fixedt, > 0 we have

+oo
B <ucota) [ diw (1= Fro)
—x0/0
+ uﬁr(é?to + .%'0)(9 +oo(t — to)d[—w+ (1 — FT(t))]

to
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Thus,

U(8) < u(Bto + o) [w+[1 — Fr(—20/0)]

u’ x e

—z0/0
_/ h(0,t)d[w_ (FT(t))]]7

—Oo
where

u_(—60t — xq)

W8 = uy (Ot + o) -

Due to (1) we can find < a < 0 such thatw_[Fr(a)] — w_[Fr(b)] > 0. Letd be large
enough such that|xzq|/0 > a. Then for any fixedt € [b,q], it follows from (33) that
limg_, 1 o0 h(6,t) = +00. Consequently,

—z0/0
liminf / h(0,t)d[w— (Fr(t))]

0—+oo J_o

> lim inf /b " 10, Od[w_ (Fr(t))] > oo,

6—+oc0

where the last inequality is due to Fatou’s lemma. On therdtard, the concavity af , (+)

implies that% is bounded irf. Thus, we havéimy_, -, U(#) = —oo. Similarly,
limg_, o U(f) = —oco. So Problem (P) is well-pos#d The conclusion of (i) can be
obtained similarly. O

Proof of Lemma 3We prove only fora; and the first limit, the others being similar. Be-
causeu (-) is increasing and concave, we haui{t, 1} < g, (t) < max{1,¢}. Thus, by
Assumption 3¢, is well-defined and strictly positive. Now for any fixegd, limg_, y o u4 (60t+
xo)/us () = g4(t) V& > 0. Again from the concavity and monotonicity ef, (-),
us (Ot+x0)/us(0) < max{1,t+xzo/0}. By Assumption 3 and the dominated convergence
theorem, the limit exists and equais.

Finally, if 0 < k < oo, we have

g (t) = lim u_(tx) — fim <u(t:c) ug(tz) u+(ac)> —_—

T—+400 U_ (gc) T—+00

Proof of Theorem 2First notice by Lemma 3-(ii)g+(t) = g_(t) = g(¢). Foré > 0, we

*In this casd/(-) is calledcoercive Its (finite) maximum is achieved in a certain bounded irdedue to
the continuity ofU (-).
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have

“+00

U0 =@ [ slo+ a0 @il (= Fr0)

—x0/6

~u(8)/u (9)] /

—00

[ (=0t = w0) /u—(O)ld[w- (Pr(1))]).

Then, it follows from Lemma 3 thdimy_, o U(0) = —c0if k > a; /ag, andlimg_, 1 o, U(0) =
+ooif k < aj/as. The situation wheA — —oo is completely symmetric. Hence, the con-
clusions (i) and (ii) are evident.

]
Proof of Corollary 4. It is a direct consequence of Theorem 2. O
Proof of Proposition 5.If the change of differential and integral is valid, then vex
+oo
U6) = [t (0t+ o)l (1 - Fr(o)
—wo/6 (34)
—x0/0
+/ tu’ (=0t — xg)d[w_(Fr(t))], 6 >0,
and
! —wo/6 ’
U (0) = / ol (0t + z0)dws (Fr(t))]
e oo (35)
+/ tu' (=0t — xo)d[—w_ (1 — Fr(t))], 0<0.
—x0/0

Now, we verify the validity of this change of order. We shovistfor the case in which
rg < 0andd = 0. Letd > 0. Then,

= dl~wy (1= Fr(t))]

Ue)—U(o) /+°° uy (0t + o)
0 200 0

+oo
+(1/0) / u_(—zo)dfw (Fr(t))

—z0/0

0
+ (1/9)/ [u—(=20) — u_ (=0t — xo)ld[w- (Fr(t))]

—00

—z0/0
+(1/0) /O fu_ (—z0) — u(~6t — o)) d[w_ (Fr (1))

=0L + 1+ I3+ 1.

Sinceu (-) is concave, we have, (6t+z) < C(0t+1) forsomeC > 0. Hence, it follows
from Assumption 3 thatl;, o — 0 as# | 0. In addition, the dominated convergence
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theorem yields

0
lin Iy = o’ (~a0) [ tdfu_ (Fr())

Next, by the concavity of._(-), we have
—x0/0
Lz [ (caotd- (Fr)
0
+oo
Sl (—a0) / tdfw_ (Fr(t))] asd | 0.
0

On the other hand,

—x0/0
Iy < /0 u',(—@t — SCo)tw/, [Br(t)] fr(t)ds
_ _ /Oxo[(s + 1‘0)/02]’&/_ (s)w'_ [Fr((—s —10)/0)] fr((—s — x0)/0)ds
- _ /O—zo—e[(s + SCO)/@Q]U,_ (s)w_[Fr((—s — x0)/0)| fr((—s — z0)/0)ds

_ /xo [(s + 20)/0%|u_(s)w'_[Fr((—s — x0)/0)] fr((—s — x0)/60)ds

=I5 + I,

where( < e < —xq is a positive number. Fixing such anwe have

15| = /O—mo—e[(_s — 20)/0%)u_(5)O([(—5 — 0)/0)] "2 ds

=0(0°)—0 asfd | 0
by Assumption 3. Fofs we have
o<~ (=a0 =) [ [(s-+0) 00! [Fr((—s — 20) 0)| (s — a0)/0)ds
€/0
=u_(—z9 —€) /O tw’_[Fr(t)] fr(t)dt

+oo
ol (—20 — €) /O tdlw_ (Fr(t))] asd | 0.
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Now lettinge | 0, we conclude that fory < 0,

, . U(¥) - U(0)
U0+) : = lim ———
610 0 (36)

+oo
= ul(—xo)/ td[w, (FT(t))] = u',(—:co))\l_

—00

Similarly, we can derive the other identities in (19). Semianalysis can be employed to
show thatl/ () is continuously differentiable & - 0 and that

. ! _ ! . ! _ ! _

so long asey # 0. O

Proof of Proposition 6.Considerzy < 0 andé > 0:

“+00

U'(0) = / s 0 (1 Fr(0) ()

0
+ / tu’_ (=0t — zo)w’_(Fr(t)) fr(t)dt

—zo
- / [(s + 20)/0%|ul_(s)w (Pr((—s — 20)/0)) fr((=s — z0)/0)dt
0
=10+ 1+ Is.
By the monotone convergence theorém/; — 0 asf# — +oo. By the dominated conver-

gence theorenfi; — 0 asf — +oo. Thus, we havéimy_, ., U'(0) = 0. The other cases
can be proved in exactly the same way. O

Proof of Corollary 7. The non-concavity is evident by combinitign |, o U (¢) = —o0
andlimg_, 1o, U'(0) = 0. If AT, A\ > 0, thenU’(0+) > 0. Hence,U(#) cannot be
convex onRk .. O

Proof of Theorem 3Case (i) is clear by Corollary 4. Next, we calculate the folltg
derivatives:

U'(0) = 0% Haa; — k0P ~*Bay], 6 >0,
U'(0) = —(—0)*"[aby — k(—0)7"Bby], 0 <0.

Hence, in the case of (ii), we hav&(§) < 0 for & > 0 andU’(d) > 0 for & < 0. Thus,
0* = 0 is the unique optimal solution. (iii) and (iv) can be provéaitarly.
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Now, we turn to (v). Clearly,

1 1
_|Taag B-a B laby|s—-
= [/ﬂﬁaJ o = [’fﬁbJ

are the unique roots df’(f) = 0 on R, andR_ respectively. Notice that/’() > 0

atf > O near 0, and/'(f) < 0 atd < 0 near 0. Thusf; andé, are the only two local
maximums ofU/ (-). To find which one is better, we need only to compare the cporeding
CPT values. Straightforward calculation yields

U(6y) =k 5-a [(%> ~ <%>aﬁ] [% m’
U61) =k 7= [(%)T B (%>%] [% m.

The conclusion follows immediately. O

Proof of Theorem 4Notice thatp(0) := Fr(—xz/6) is monotone ord € R, and that
Fr(-) has no atom due to assumption 3. Thus, under Assumptiéfi(4) is nonnegative
on (0, 6,), negative onfy, 6,), and nonnegative again dfz, +oo) for somel < 0; <
2 < +oo. SinceU’(0+) > 0 due toA; > 0, \f > 0, U’(d) > 0 on[0,0]. Also
U'(6) < 0 on [0, +00), otherwiseU (#) will increase from some poims > 6, due to
U”(0) > 0 whené > 6, and consequently this contradicts the fact tiét-oco) = —oc.
Therefore, there must exist a root of (28), that must lie or{#;, 6,). SinceU” (-) is strictly
negative on this interval, such a root is unique. O

Proof of Corollary 8. The conclusion is clear via a change of variables —z /6. O

Proof of Theorem 5Consider the case in whicty < 0. Sincev (k,T) > 0, it follows
from Corollary 8 that*(x¢, k, T') strictly increases in-z,. To see the monotonicity ik,
let k; > ki. Rewrite (29) asi(v,k) = h(v) = hi(v) 4+ kho(v). Sincevy (ky,T) > 0
solvesh(v, k1) = 0 andhi(v) > 0 Vv > 0, we must havehy (v (k1,7)) < 0. Thus,
h(vi(k1,T),kg) = h(vi(k1,T), k1) + (ko — k1)ho(vi(k1,T)) < 0. However,h(v, k) is
strictly negative orv € (0, v* (k,T)) and strictly positive on € (v (k,T'), +00); hence,
v (ko, T) > vk (k1,T), which meang(zo, k, T) strictly decreases iA.

For the case in whichy > 0, the argument is similar. O

Proof of Theorem 6We only prove (i), the other one being similar. Let) be defined
by (29), wherew, () is replaced byo, (), and letv, (k, T') be the unique root of(-) on
(0, +00). Itfollows fromw/, (2) > w!, (2) Vz € (0, 24) thath (v’ (k,T)) > h(vi(k,T)) =
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0. However, the proof of Theorem 4 and the change of varialte—x(/6 yield h(-) > 0
on (04 (k,T),00) andh(-) < 0 on (0,54 (k,T)). As aresultp, (k,T) < vi(k,T), and
consequently(xg, k, T) > 0*(xo, k, T) for g < 0. O

Proof of Proposition 9.Write w(p) := wy(p) = w_(p). We have

w'(p) = a(p) "y alp) — (@ - (1—p)"TY)], 0<p<1,

wherea(p) := p” + (1 — p)?. We now introduce a parametgr> 1/~ (> 1), along with a
function

Up) : = [y (1 —p) — M’ (p)la(p)'/ !
=1 =) =P+ (L =)= [(L=p) + (L —p) " =p .

The rest of the proof is devoted to showing thgt) < 0, 0 < p < 1, for some carefully
chosen\. Indeed, wherl /2 < p < 1, we have(l — p)"~! > p?~L. Noting that\ > 1, we
have

tp) <"+ 1 =p)" (L =M "+ (v=D(1-p)7 '] <0.

When0 < p < 1/2, we rewrite/(p):

tp) ==y =D ' =1 =p) " + (1 -p)]
—(A=1y(1=p) " + (1 - p)7]
+ A=)t — (1 —p)Y.

Since0d < p < 1/2, we havep?’~! > (1 — p)7~L. Thus4(p) < 0, if
(A =D+ 1 =p)] = A= 1)p,

which is equivalent to

. 1 1
p < po:=min{ =,

2 14 [%]1/7

If po = 1/2, then we are done. So consider the case in whick p < 1/2. In this case,
from

lp) <—A=Dy(L=p) ' P"+ 1 =p) ]+ A=1)p" [P = (1L —p)7]
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it follows that/(p) < 0 provided both inequalities below hold:
A=Dy@=p 2 =1p", P +A-p) 12 ~1-p)"7 (37
The first inequality of (37) is equivalent to
J(p):=Iny+ (y—1)In(1 —p) —ylnp > 0.

However, the above is seen from the facts tH#p) < 0 onp € (0,1/2) (sincep < v) and
that 7(1/2) > 0 (due toy > 1/2). So it suffices to prove the second inequality of (37),
which is equivalent td< (p) > 0 for py < p < 1/2. Itis easy to verify thaf<(p) is strictly
increasing orp € (0,1/2] andK(1/2) > 0, K(0+) = —oco. ThusK(+) has a unigque root
on (0, 1/2), denoted by (7). Now, by a direct calculation it can be shown that> p; ()
aslong as

320 = ( —1‘—7)1 > 1/7) (38)
=T W) -1 7

Consequently, when &is chosen satisfying the above, it must hold th& > p > py >
p1() and hencek (p) > 0 or the second inequality of (37) holds. O

Proof of Proposition 10.Foré < 0, it can be calculated that

2
" _ _To _ o / _Toy\ / _ _ o
U"(0) =~ (=) [0 (Pr(=T) — ke (1=Pr(=T)]. (39)
Thus, under condition (31), we ha¥é&’(¢) < 0. SinceA] > 0, \; > 0, we have
U’(0—) > 0, and thereforel/’(9) > 0, V0 < 0. This leads td/(0) < U(0) onR_.
Next, suppose (32) is valid, in which case we focué/gn) itself. Denotingy = —x /6,
we have

v +oo v, v=>0
= —/ wy (Fr(t))dt + k/ w_(1— Fp(t))dt + .
—00 v kv, v<0
It suffices to show that
g(v) >0, YveR (40)
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Forv > 0, (40) reduces to

o S w (P =
TP w_(1 - Pr(t))dt

[a

—~
4

~—

(41)

To prove the above we are to fiadp, - ¢1(v). Note that

0

h(v) = /U w+(FT(t))dt—v:/

— 00 —00

w (Fr(t))dt - /0 (1 = wa (Fr(t))) dt:

hence,h(+00) = —)\f < 0, and/;(v) < 0 for all sufficiently largev > 0. However,
¢1(0) > 0; so the maximum point* of /5(-) onR exists, which satisfies eithef = 0 or
the following first-order condition:

—+00

wePr) = 1) [ (L Pr(o)

*

*

+w_(1— Fr(v")) (/ wy (Pr(t))dt — v*> 0.

—00

Consequently,
oy _ L—wy (Fr(vY))
{1 (v") = .
) = T Fr(on)
If we have
6= sup 2@
0<p<1 Uff(l _P)
then

sup £1(v) < max{¢;(0), ¢}
Let us now turn to the case in whieh< 0. First of all, g(v) > 0, Yv < 0 if and only
if j(v) := [ w_(1 - Fp(t))dt +v >0, Yo < 0 and

Y wi(F d
k> f+oof 1+_(Fi((?)))di =), W<o (42)

Notice that
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Thus,j(-) is non-decreasing in < 0. However,j(—oco) = A; > 0; so it holds automati-
cally thatj(v) > 0 Vv < 0. To handle (42), a similar argument as above yields

sup £2(v) < max{fl2(0), (2},
v<0

where

wy (p)
—= Su <.
2 0<p51 1—w_(1-p)
IO wilPr(t)dt

Noting £1(0) = ¢2(0) = T [1—Fp(1)de

, we complete our proof. O
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