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Abstract

An optimal consumption problem is studied in a growth model for the

Cobb-Douglas production function in a finite horizon. The problem is trans-

fered into a stochastic Ramsey problem so as to reduce the dimension of

the state space. The corresponding state equation is a stochastic differential

∗The second author is supported in part by a start-up fund at University of Oxford, and RGC

Earmarked Grants CUHK418605 and CUHK418606.

1



equation with inherently non-Lipschitz coefficients, whose unique solvability

is established. The unique existence of the classical solution of the Hamilton-

Jacobi-Bellman equation associated with the original problem is proved, and

a synthesis of the optimal consumption policy is presented in the feedback

form.
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1 Introduction

We deal with the economic growth model originated by R.C. Merton [7] for the Cobb-

Douglas production function in the finite horizon. Define the following quantities:

T = finite horizon,

yt = labour supply at time t ∈ [0, T ],

zt = capital stock at time t ∈ [0, T ],

ν = the constant rate of depreciation, ν ≥ 0,

ctzt = consumption rate at time t ∈ [0, T ], 0 ≤ c(t) ≤ 1,

ctzt/yt = the totality of consumption rate per person,

F (z, y) = the Cobb-Douglas production function zαy1−α, 0 < α < 1,

producing the commodity for the capital stock z > 0 and the labour force y > 0,

n, σ = nonzero constant coefficients,

U(c) = the utility function for the consumption rate c ≥ 0.

We assume that the labour supply yt and the capital stock zt are governed by the

stochastic differential equation

dyt = nytdt + σytdBt, y0 = y > 0, (1.1)

żt = F (zt, yt) − νzt − ctzt, 0 < t ≤ T, z0 = z > 0, (1.2)

on a complete probability space (Ω,F , P ) carrying a standard Brownian motion

{Bt}. Let c = {ct} be a consumption policies per capita such that

ct is progressively measurable w.r.t. the filtration Ft = σ(Bs, s ≤ t),

0 ≤ ct ≤ 1, 0 ≤ t ≤ T, (1.3)

and we denote by A the class of all consumption policies {ct} per capita.
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The purpose of this paper is to present a synthesis of optimal consumption policy

c∗ so as to maximize the the expected utilities:

J(c) = E[

∫ T

0

U(ctzt/yt) dt] (1.4)

per person with finite horizon T over the class A. The Hamilton-Jacobi-Bellman

(for short, HJB) equation associated with this problem is given by

Vt +
1

2
σ2y2Vyy + nyVy + {F (z, y) − νz}Vz + max

0≤c≤1
{U(cz/y) − czVz} = 0, 0 ≤ t < T,

V (T, z, y) = 0, z > 0, y > 0, (1.5)

where the subscripts denote the partial derivatives and the utility function U(c) is

assumed to have the following properties:

U ∈ C[0,∞) ∩ C2(0,∞), U ′′(c) < 0 for c > 0,

U ′(∞) = U(0+) = 0, U ′(0+) = U(∞) = ∞. (1.6)

The last two conditions constitute what is known as the Inada condition. Its eco-

nomic interpretation is that, while the utility is very small (respectively very large)

for a very small (respectively very large) consumption rate, the marginal utility

diminishes as the consumption rate becomes extremely large.

Under (1.6), by the uniform continuity of U near 0, we have that

∀ε > 0,∃Cε > 0 : |U(c) − U(c̄)| ≤ Cε|c − c̄| + ε for c, c̄ > 0. (1.7)

The technical difficulty in solving the problem lies in the fact that the HJB

equation (1.5) is a parabolic PDE with two spatial variables y and z. The main

approach to be employed is to reduce the dimension by turning the problem into a

so-called Ramsey problem [7]. Through an analysis on the Ramsey problem together
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with the viscosity solution technique, we are able to show that (1.5) admits a smooth

solution V and the optimal consumption policy c∗ can be represented in a feedback

form. A major technical hurdle to overcome is to prove the existence and uniqueness

of solutions to the state equation of the Ramsey problem, whose drift coefficient

is inherently non-Lipschitz. Moreover, we need to estimate the Hölder order of

the solution in time. It should be noted that the stochastic Ramsey problem is

analytically studied in [5], nevertheless in the infinite time horizon. The resulting

HJB equation is an elliptic PDE, which is very different from the parabolic PDE

dealt with in the present paper. We also refer to [6] for the growth model with the

CES production function replacing F (z, y) of (1.2).

This paper is organized as follows. In sections 2 and 3, we reduce (1.5) to the

2-dimensional HJB equation associated with the stochastic Ramsey problem, and

we show the existence of viscosity solutions of the HJB equation. Sections 4 and

5 are respectively devoted to the C2-regularity and the concavity of the viscosity

solution. In section 6, we give a synthesis of the optimal consumption policy.

2 The Stochastic Ramsey Problem

We consider the HJB equation (1.5) and seek the solution V (t, z, y) of (1.5) of the

form

V (t, z, y) = v(t, x), x = z/y. (2.1)

Clearly,

yVy = −xvx, yVz = vx, y2Vyy = x2vxx + 2xvx. (2.2)
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Then, by (1.5), v(t, x) solves the HJB equation

vt(t, x) +
1

2
σ2x2vxx(t, x) + (xα − µx)vx(t, x) + Ũ(x, vx(t, x)) = 0, 0 ≤ t < T,(2.3)

v(T, x) = 0, x > 0,

where µ = n + ν − σ2 and

Ũ(x, p) = max
0≤c≤1

{U(cx) − cxp}, p ∈ R. (2.4)

We observe that (2.3) is the HJB equation associated with the stochastic Ramsey

problem so as to maximize

J̄(c) = E[

∫ T

0

U(ctRt)dt], (2.5)

over the class A, subject to

dRt = (Rα
t − µRt − ctRt)dt − σRtdBt, 0 < t ≤ T, (2.6)

R0 = x > 0.

The above SDE does not satisfy the Lipschitz condition as normally required for

the existence and uniqueness. Moreover, we need to estimate the dependence of the

solution, if any, on the time and the initial state. We solve these problem by an ad

hoc technique.

Proposition 2.1 For each c ∈ A, there exists a unique positive solution {Rt} =

{Rx
t } of (2.6), which satisfies

E[ sup
0≤t≤T

R2
t ] ≤ C(1 + x2), (2.7)

E[|Rr − Rs|] ≤ C(1 + x)|r − s|1/2, 0 ≤ s ≤ r ≤ T, (2.8)

E[|Rx
s − Ry

s |] ≤ C|x − y|1−α(1 + xα + yα), x, y > 0, 0 ≤ s ≤ T, (2.9)

where the constant C > 0 depends only on α, T, µ, σ.

6



Proof. By Itô’s formula

dR1−α
t = (1 − α)R−α

t {(Rα
t − µRt − ctRt)dt − σRtdBt}

+
1

2
σ2(1 − α)(−α)R−α−1

t R2
t dt.

Hence, setting xt = R1−α
t , we have

dxt = (1 − α){1 − (µ + ct +
1

2
σ2α)xt}dt − (1 − α)σxtdBt (2.10)

= (1 − α){1 − (ct +
1

2
σ2α)xt}dt − xt(1 − α)(µdt + σdBt), x0 = x1−α.

By linearity, (2.10) admits a unique solution {xt}. Also, we apply the comparison

theorem to (2.10) and

dx̄t = (1 − α){−(µ + ct +
1

2
σ2α)x̄t}dt − (1 − α)σx̄tdBt, x̄0 = x0.

Then

xt ≥ x̄t (2.11)

= x0 exp{(1 − α)(−µt −

∫ t

0

csds −
1

2
σ2αt)

−(1 − α)σBt −
1

2
(1 − α)2σ2t} > 0.

Thus, we obtain a positive solution {Rt} of (2.6). Let {x̂t} be the solution of

dx̂t = −x̂t(1 − α)(µdt + σdBt), x̂0 = x0.

Setting Ht = xt/x̂t and ᾱ = σ2(1 − α)α/2, we have

dHt = (1 − α){
1

x̂t

− (ct +
1

2
σ2α)Ht}dt

≤ (
1 − α

x̂t

− ᾱHt)dt, H0 = 1.
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Therefore

xt ≤ x̂te
−ᾱt{1 + (1 − α)

∫ t

0

eᾱs

x̂s

ds}, (2.12)

which yields (2.7).

Now, let β = 1/(1 − α) > 1 and Mt = exp{−(1 − α)σBt −
1
2
(1 − α)2σ2t}. By

(2.12) and Doob’s maximal inequality, we have

E[ sup
0≤t≤T

xβ
t ] ≤ C(1 + xβ

0E[ sup
0≤t≤T

Mβ
t ])

≤ C(1 + xβ
0 (

β

β − 1
)βE[Mβ

T ]) (2.13)

≤ C ′(1 + x),

where the constant C ′ > 0 depends only on α, T, µ, σ. Hence, by (2.10), (2.13) and

the moment inequality for martingales, we get

E[|xr − xs|
β] ≤ 2β

(

E[|

∫ r

s

(1 − α){1 − (µ + ct +
1

2
σ2α)xt}dt|β]

+E[|

∫ r

s

(1 − α)σxtdBt|
β]

)

≤ C

(

E[(

∫ r

s

(1 + x2
t )dt)β/2]|r − s|β/2 + E[(

∫ r

s

x2
t dt)β/2]

)

≤ C ′(1 + x)|r − s|β/2, 0 ≤ s ≤ r ≤ T.

Since

|xβ − yβ| = |

∫ x

y

βtβ−1dt| ≤ β|x − y|(|x|β−1 + |y|β−1), x, y ≥ 0,

we observe by Hölder’s inequality that

E[|Rr − Rs|] = E[|xβ
r − xβ

s |]

≤ β(E[|xr − xs|
β])1/β(E[(|xr|

β−1 + |xs|
β−1)β/(β−1)])1−1/β

≤ β(C ′(1 + x)|r − s|β/2)1/β(E[2β/(β−1) sup
0≤t≤T

|xt|
β])1−1/β

≤ C(1 + x)|r − s|1/2,
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which implies (2.8).

Next, we set rt = (Ry
t )

1−α. Then, by (2.10)

d(xt − rt) = (1 − α)(−µ − ct −
1

2
σ2α)(xt − rt)dt − (1 − α)σ(xt − rt)dBt,

or equivalently

xs−rs = (x0−r0) exp{(1−α)(−µt−

∫ s

0

ctdt−
1

2
σ2αs)−(1−α)σBs−

1

2
(1−α)2σ2s}.

Hence

E[|xs − rs|
β] ≤ C|x0 − r0|

β.

By Hölder’s inequality, we deduce

E[|Rx
s − Ry

s |] = E[|xβ
s − rβ

s |]

≤ β(E[|xs − rs|
β])1/β(E[(|xs|

β−1 + |rs|
β−1)β/(β−1)])1−1/β

≤ C|x0 − r0|(1 + xα + yα),

which implies (2.9).

3 Viscosity solutions

We study the viscosity solution v of the HJB equation (2.3), i.e.,

vt +
1

2
σ2x2vxx + (xα − µx)vx + Ũ(x, vx) = 0 in Q := [0, T ) × (0,∞), (3.1)

v(T, x) = 0, x > 0. (3.2)

Definition 3.1 Let v ∈ C([0, T ]× (0,∞)) satisfy (3.2). Then v is called a viscosity

solution of (3.1) if the following assertions are satisfied:

a+
1

2
σ2x2X+(xα−µx)λ+Ũ(x, λ) ≥ 0, ∀(a, λ,X) ∈ P2,+v(s, x), ∀(s, x) ∈ Q,
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a+
1

2
σ2x2X+(xα−µx)λ+Ũ(x, λ) ≤ 0, ∀(a, λ,X) ∈ P2,−v(s, x), ∀(s, x) ∈ Q,

where P2,+ and P2,− are the second parabolic superdifferentials and subdifferentials

[1] defined by

P2,+v(s, x) = {(a, λ,X) ∈ R3 :

lim sup
(t,y)∈Q→(s,x)

v(t, y) − v(s, x) − a(t − s) − λ(y − x) − 1
2
X(y − x)2

|t − s| + |y − x|2
≤ 0},

P2,−v(s, x) = {(a, λ,X) ∈ R3 :

lim inf
(t,y)∈Q→(s,x)

v(t, y) − v(s, x) − a(t − s) − λ(y − x) − 1
2
X(y − x)2

|t − s| + |y − x|2
≥ 0}.

Define

v(s, x) = sup
c∈A

E[

∫ T

s

U(ctXt) dt], (3.3)

where {Xt} is the solution of (2.6) for t ∈ (s, T ] with Xs = x, that is,

dXt = (Xα
t − µXt − ctXt)dt − σXtdBt, s < t ≤ T, Xs = x > 0, (3.4)

and the supremum is taken over all systems (Ω,F , P, {Ft}; {Bt}, {ct}). We choose

b1 > 0 such that xα − µx ≤ b1. Taking sufficiently large b0 > b1, we observe that

ζ(t, x) := eT−t(x + b0) fulfils

ζt +
1

2
σ2x2ζxx + (xα − µx)ζx + Ũ(x, ζx) ≤ eT−t{−b0 + (xα − µx)} + Ũ(x, eT−t)

≤ eT−t(−b0 + b1) + U ◦ (U ′)−1(eT−t) (3.5)

≤ −b0 + b1 + U ◦ (U ′)−1(1) < 0, (t, x) ∈ [0, T ) × (0,∞).
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Lemma 3.2 We assume (1.6). Then the following assertions are valid:

0 ≤ v(s, x) ≤ ζ(s, x). (3.6)

For any ε > 0, there exists Cε > 0 such that

|v(s, x) − v(r, y)| ≤ Cε{|s − r|1/2(1 + x + y) + |x − y|} + ε(1 + x + y),

x, y > 0, 0 ≤ r ≤ s ≤ T. (3.7)

Proof. By Itô’s formula and (3.5), we have

0 ≤ ζ(T,XT )

= ζ(s, x) +

∫ T

s

{ζt(t,Xt) + [(Xt)
α − µXt − ctXt]ζx(t,Xt)

+
1

2
σ2X2

t ζxx(t,Xt)}dt −

∫ T

s

σXtζx(t,Xt)dBt (3.8)

≤ ζ(s, x) −

∫ T

s

U(ctXt)dt −

∫ T

s

σXte
T−tdBt, a.s.

By (2.7), we note that {
∫ t

s
σXre

−rdBr} is a martingale. Therefore, we deduce (3.6).

Now, by (3.3), we have

|v(s, x) − v(r, y)| ≤ sup
c∈A

E[|

∫ T

s

U(ctXt)dt −

∫ T

r

U(ctYt)dt|] (3.9)

≤ sup
c∈A

E[

∫ T

s

|U(ctXt) − U(ctYt)|dt] + sup
c∈A

E[

∫ s

r

U(ctYt)dt]

≡ J1 + J2,

where {Yt} denotes the solution of (3.4) with Yr = y. By (2.9) and Young’s inequal-

ity, choosing a suitable constant δ > 0 for any ε′ > 0, we note that

E[|Xt − Yt|] ≤ C{
1 − α

δ
(|x − y|1−α)1/(1−α) + αδ(1 + xα + yα)1/α}

= Cε′|x − y| + ε′(1 + x + y).
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Also, by (2.7)

E[Xt] ≤ C(1 + x).

Hence, by (1.7)

J1 ≤ sup
c∈A

E[

∫ T

0

{Cε|Xt − Yt| + ε}dt]

≤ CεT{Cε′|x − y| + ε′(1 + x + y)} + εT.

By the same calculation as (3.8), taking into account (2.7) and (2.8), we get

J2 ≤ E[ζ(r, Yr) − ζ(s, Ys)]

≤ E[|ζ(r, Yr) − ζ(r, Ys)|] + E[|ζ(r, Ys) − ζ(s, Ys)|]

≤ eT{E[|Ys − Yr|] + E[|s − r||Ys + b0|}

≤ C|s − r|1/2(1 + y).

Therefore, we deduce (3.7).

Theorem 3.3 We assume (1.6). Then the value function v of (3.3) is a viscosity

solution of (3.1).

Proof. By Lemma 3.2, we see that v ∈ C([0, T ]×(0,∞)), and by (3.3), v(T, x) = 0.

According to [2], the viscosity property of v follows from the dynamic programming

principle for v, that is,

v(s, x) = sup
c∈A

E[

∫ τ

s

U(ctXt)dt + v(τ,Xτ )], ∀(s, x) ∈ [0, T ) × (0,∞) (3.10)

for any τ ∈ [s, T ), where the supremum is taken over all systems (Ω,F , P, {Ft}; {Bt}, {ct}).

Let v̄ be the right-hand side of (3.10) and we set J(s,x)(c) = E[

∫ T

s

U(ctXt)dt].

For each c = {ct} ∈ A, let X̃t = Xt+τ and B̃t = Bt+τ − Bτ . Then we have

dX̃t = (X̃α
t − µX̃t − c̃tX̃t)dt − σX̃tdB̃t, t ∈ (0, T − τ ], X̃0 = Xτ ,
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where c̃ = {c̃t} is the shifted process of c by τ , i.e., c̃t = ct+τ . By (3.4), we see that

E[

∫ T

τ

U(ctXt)dt|Fτ ] = E[

∫ T−τ

0

U(c̃tX̃t)dt|Fτ ] = J(τ,Xτ )(c), a.s.,

with respect to the conditional probability measure P (·|Fτ ). Hence

J(s,x)(c) = E[

∫ τ

s

U(ctXt)dt +

∫ T

τ

U(ctXt)dt]

≤ E[

∫ τ

s

U(ctXt)dt + v(τ,Xτ )].

Taking the supremum, we deduce v ≤ v̄.

Conversely, let {Sj : j = 1, . . . , n + 1} be a sequence of disjoint subsets of (0,∞)

such that

diam(Sj) < δ,
n
∪

j=1
Sj = (0, R) and Sn+1 = [R,∞)

for δ,R > 0 chosen later. For any ε > 0, we take xj ∈ Sj and c(j) ∈ A such that

v(τ, xj) − ε ≤ J(τ,xj)(c
(j)), j = 1, . . . , n + 1. (3.11)

By the same argument as (3.7), we note that

|J(τ,x)(c)−J(τ,y)(c)|+ |v(τ, x)− v(τ, y)| ≤ Cε|x− y|+
ε

4
(1+x+ y), x, y > 0, c ∈ A

for some constant Cε > 0. We choose 0 < δ < 1 such that Cεδ < ε/2. Then, we

have

|J(τ,x)(c
(j)) − J(τ,y)(c

(j))| + |v(τ, x) − v(τ, y)| ≤ ε(1 + x), x, y ∈ Sj,

from which

J(τ,Xτ )(c
(j)) ≥ J(τ,xj)(c

(j)) − ε(1 + Xτ ) if Xτ ∈ Sj, j = 1, . . . , n.
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Hence

J(τ,Xτ )(c
(j)) = J(τ,Xτ )(c

(j)) − J(τ,xj)(c
(j)) + J(τ,xj)(c

(j))

≥ −ε(1 + Xτ ) + v(τ, xj) − ε (3.12)

≥ −2ε(1 + Xτ ) + v(τ,Xτ ) − ε if Xτ ∈ Sj, j = 1, . . . , n.

By definition, we find c ∈ A such that

v̄(s, x) − ε ≤ E[

∫ τ

s

U(ctXt)dt + v(τ,Xτ )].

As in the proof of Theorem IV-1.1 [3], we can take c, c(j) on the same probability

space. Define

cτ
t = ct1{t<τ} + c

(j)
t 1{τ≤t≤T} if Xτ ∈ Sj, j = 1, . . . , n + 1.

It is easy to see that {cτ
t } belongs to A. Let {Xτ

t } be the solution of

dXτ
t = [(Xτ

t )α − µXτ
t − cτ

t X
τ
t ]dt − σXτ

t dBt, s < t ≤ T, Xτ
s = x > 0.

Clearly, Xτ
t = Xt a.s. if s ≤ t < τ . Further, for each j = 1, . . . , n + 1, we have on

{Xτ ∈ Sj}

Xτ
r = Xτ +

∫ r

τ

[(Xτ
t )α − µXτ

t − cτ
t X

τ
t ]dt −

∫ r

τ

σXτ
t dBt, τ < r ≤ T, a.s.

Hence Xτ
t = X

(j)
t for all t ∈ [τ, T ] a.s. on {Xτ ∈ Sj}, where {X

(j)
t } denotes the

solution of

dX
(j)
t = [(X

(j)
t )α − µX

(j)
t − c

(j)
t X

(j)
t ]dt − σX

(j)
t dBt, τ < t ≤ T, X(j)

τ = Xτ .

Thus, we get

J(τ,Xτ )(c
τ ) = E[

∫ T

τ

U(cτ
t X

τ
t )dt|Fτ ]

= E[

∫ T

τ

U(c
(j)
t X

(j)
t )dt|Fτ ] (3.13)

= J(τ,Xτ )(c
(j)) a.s. on {Xτ ∈ Sj}.
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Next, taking into account (3.6) and (2.7), we choose R > 0 such that

sup
c∈A

E[v(τ,Xτ )1{Xτ≥R}] ≤ sup
c∈A

eT E[(Xτ + b0)1{Xτ≥R}]

≤ sup
c∈A

eT

R
E[X2

τ + b0Xτ ] (3.14)

≤
eT

R
{(1 + b0)C(1 + x2) + b0} < ε.

By (3.11)-(3.14) and (2.7), we have

E[

∫ T

τ

U(cτ
t X

τ
t )dt] = E[E[

∫ T

τ

U(cτ
t X

τ
t )dt|Fτ ]]

= E[J(τ,Xτ )(c
τ )]

= E[
n+1
∑

j=1

J(τ,Xτ )(c
(j))1{Xτ∈Sj}]

≥ E[
n

∑

j=1

{v(τ,Xτ )) − 3ε(1 + Xτ )}1{Xτ∈Sj}]

≥ E[{v(τ,Xτ )) − v(τ,Xτ )1{Xτ≥R}}] − 3εE[1 + Xτ ]

≥ E[v(τ,Xτ )] − ε − 3ε{2 + C(1 + x2)}.

Thus

v(s, x) ≥ E[

∫ τ

s

U(cτ
t X

τ
t )dt +

∫ T

τ

U(cτ
t X

τ
t )dt]

≥ E[

∫ τ

s

U(ctXt)dt + v(τ,Xτ )] − 4ε{2 + C(1 + x2)}

≥ v̄(s, x) − ε − 4ε{2 + C(1 + x2)}.

Therefore, letting ε → 0, we obtain v̄ ≤ v. The proof is complete.

4 Classical solutions

In this section, we study the classical solutions of the HJB equation (3.1) with the

terminal condition (3.2). First, for any interval [ξ1, ξ2] with ξ1 > 0, we consider the
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parabolic equation

ut +
1

2
σ2x2uxx + (xα − µx)ux + Ũ(x, ux) = 0, 0 ≤ t < T, ξ1 < x < ξ2, (4.1)

with the (parabolic) boundary condition

u(T, x) = v(T, x) = 0, x ∈ [ξ1, ξ2], (4.2)

u(t, ξ1) = v(t, ξ1), u(t, ξ2) = v(t, ξ2), t ∈ [0, T ). (4.3)

Theorem 4.1 Let ui ∈ C([0, T ] × [ξ1, ξ2]), i = 1, 2, be two viscosity solutions of

(4.1)-(4.3). Then, under (1.6), we have u1 = u2.

Proof. It is sufficient to show that u1 ≤ u2. Suppose there exists (t0, x0) ∈ [0, T ) × (ξ1, ξ2)

such that u1(t0, x0) − u2(t0, x0) > 0. Then we find η > 0 such that

̺ := sup
(t,x)∈(0,T )×(ξ1,ξ2)

{u1(t, x) − u2(t, x) − 2η
1

t
} > 0.

By boundedness, we have

u1(t, x) − u2(t, x) − 2η
1

t
→ −∞, uniformly in x as t ↓ 0. (4.4)

Thus, by (4.2) and (4.3), there exists (t̄, x̄) ∈ (0, T ) × (ξ1, ξ2) such that

̺ = u1(t̄, x̄) − u2(t̄, x̄) − 2η
1

t̄
.

Define

Ψk(t, x, y) = u1(t, x) − u2(t, y) −
k

2
|x − y|2 − 2η

1

t

for k > 0. By (4.2) and (4.4), there exists (tk, xk, yk) ∈ (0, T ) × [ξ1, ξ2]
2 such that

Ψk(tk, xk, yk) = sup Ψk(t, x, y) ≥ Ψk(t̄, x̄, x̄) = ̺, (4.5)
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from which

k

2
|xk − yk|

2 < u1(tk, xk) − u2(tk, yk) − 2η
1

tk
.

Thus

|xk − yk| → 0 as k → ∞. (4.6)

By the definition of (tk, xk, yk), we have

Ψk(tk, xk, yk) ≥ Ψk(tk, xk, xk).

Hence, by uniform continuity

k

2
|xk − yk|

2 ≤ u2(tk, xk) − u2(tk, yk) → 0 as k → ∞. (4.7)

By (4.6), (4.5) and (4.3), extracting a subsequence, we have

tk → t̃ ∈ (0, T ), (xk, yk) → (x̃, x̃) ∈ (ξ1, ξ2)
2 as k → ∞.

Now, we may consider that (tk, xk, yk) ∈ (0, T )×(ξ1, ξ2)
2. Applying Ishii’s lemma

[1, Thm. 8.3] to

Ψk(t, x, y) = w1(t, x) − w2(t, y) −
k

2
|x − y|2,

we obtain a, b ∈ R and X,Y ∈ R such that

(a, k(xk − yk), X) ∈ P̄2,+w1(tk, xk),

(b, k(xk − yk), Y ) ∈ P̄2,−w2(tk, yk), (4.8)

a − b = 0,







X 0

0 −Y






≤ 3k







1 −1

−1 1






,

where w1(t, x) = u1(t, x) − η/t and w2(t, y) = u2(t, y) + η/t. From the definition of

P2,+u1(tk, xk),P
2,−u2(tk, yk), it follows that

P2,+u1(t, x) = {(â, λ, X̂) + η(
−1

t2
, 0, 0) : (â, λ, X̂) ∈ P2,+w1(t, x)},
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P2,−u2(t, x) = {(â, λ, X̂) − η(
−1

t2
, 0, 0) : (â, λ, X̂) ∈ P2,−w2(t, x)}.

Hence

(ā, λ1, X̄) := (a, k(xk − yk), X) + η(
−1

t2k
, 0, 0) ∈ P̄2,+u1(tk, xk),

(b̄, λ2, Ȳ ) := (b, k(xk − yk), Y ) − η(
−1

t2k
, 0, 0) ∈ P̄2,−u2(tk, yk).

By Definition 3.1

ā +
1

2
σ2x2

kX̄ + (xα
k − µxk)λ1 + Ũ(xk, λ1) ≥ 0,

b̄ +
1

2
σ2y2

kȲ + (yα
k − µyk)λ2 + Ũ(yk, λ2) ≤ 0.

Putting these inequalities together, we get

2η
1

t2k
≤

1

2
σ2(x2

kX̄ − y2
kȲ ) + {(xα

k − µxk)λ1 − (yα
k − µyk)λ2}

+ |Ũ(xk, λ1) − Ũ(yk, λ2)|

≡ I1 + I2 + I3, say.

By (4.8) and (4.7), it is clear that

I1 =
σ2

2
(x2

kX − y2
kY ) ≤

σ2

2
3k|xk − yk|

2 → 0 as k → ∞.

Since xα is Lipschitz on [ξ1, ξ2], we see by (4.7) that

I2 = k{(xα
k − yα

k ) − µ(xk − yk)}(xk − yk) → 0 as k → ∞.

By (1.7), (4.6) and (4.7), we have

I3 ≤ max
0≤c≤1

|U(cxk) − U(cyk)| + |xkλ1 − ykλ2|

≤ Cε|xk − yk| + ε + k|xk − yk|
2

→ 0 as k → ∞ and ε → 0.
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Consequently, we deduce

2η
1

T 2
≤ 2η

1

t̃2
≤ 0,

which is a contradiction.

Theorem 4.2 We assume (1.6). Then there exists a solution v ∈ C1,2([0, T ) ×

(0,∞)) ∩ C([0, T ] × (0,∞)) of (3.1), (3.2).

Proof. By (1.6), we have

U(0) ≤ U ′(c)(−c) + U(c), ∀c > 0.

Then for any ξ1 > 0,

C0 := sup
0<c≤ξ1

cU ′(c) ≤ U(ξ1) < ∞.

Hence, for x1, x2 ∈ [ξ1, ξ2] where ξ2 > ξ1,

|U(cx1) − U(cx2)| ≤ cU ′(cξ1)|x1 − x2| ≤
C0

ξ1
|x1 − x2|, 0 ≤ c ≤ 1.

Thus, for p1, p2 ∈ R

|Ũ(x1, p1) − Ũ(x2, p2)| ≤ max
0≤c≤1

|U(cx1) − U(cx2)| + |x1p1 − x2p2|

≤ (
C0

ξ1

+ |p1|)|x1 − x2| + ξ2|p1 − p2|.

According to [4], by uniform ellipticity, there exists a unique solution u ∈ C([0, T ]×

[ξ1, ξ2])∩C1,2([0, T )×(ξ1, ξ2)) of (4.1)-(4.3). Clearly, v is a viscosity solution of (4.1)-

(4.3). By Theorem 4.1, we have u = v and v is smooth. Since ξ1, ξ2 are arbitrary,

we obtain the assertion.

Corollary 4.3 We make the assumption of Theorem 4.2. Then there exists a solu-

tion V ∈ C1,2([0, T ) × (0,∞)2) of (1.5).

Proof. The proof follows from Theorem 4.2 and (2.1).

19



5 Concavity

In this section, we study the concavity of the solution v to (3.1), (3.2).

Theorem 5.1 We assume (1.6). Then v(s, x) is concave in x ∈ (0,∞) for each

s ∈ [0, T ]. In addition, we have

vx(s, x) > 0 for x > 0. (5.1)

Proof. Let xi > 0, i = 1, 2, and 0 ≤ θ ≤ 1. For any ε > 0, there exists c(i) ∈ A

such that

v(s, xi) − ε < E[

∫ T

s

U(c
(i)
t X

(i)
t )dt],

where {X
(i)
t } denotes the solution of (3.4) corresponding to c(i) with X

(i)
s = xi on

the same probability space. We set

c̄t =
θc

(1)
t X

(1)
t + (1 − θ)c

(2)
t X

(2)
t

θX
(1)
t + (1 − θ)X

(2)
t

,

which belongs to A. Define {X̄t} and {X̃t} by

dX̄t = [(X̄t)
α − µX̄t − c̄tX̄t]dt − σX̄tdBt, s < t ≤ T, X̄s = θx1 + (1 − θ)x2,

X̃t = θX
(1)
t + (1 − θ)X

(2)
t .

By concavity

X̃r ≤ θx1 + (1 − θ)x2 +

∫ r

s

[(X̃t)
α − µX̃t − c̄tX̃t]dt −

∫ r

s

σX̃tdBt, a.s.

By the comparison theorem, we have

X̃t ≤ X̄t, t ∈ (s, T ], a.s.
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Thus

v(s, θx1 + (1 − θ)x2) ≥ E[

∫ T

s

U(c̄tX̄t)dt] ≥ E[

∫ T

s

U(c̄tX̃t)dt]

= E[

∫ T

s

U(θc
(1)
t X

(1)
t + (1 − θ)c

(2)
t X

(2)
t )dt]

≥ θE[

∫ T

s

U(c
(1)
t X

(1)
t )dt] + (1 − θ)E[

∫ T

s

U(c
(2)
t X

(2)
t )dt]

> θv(s, x1) + (1 − θ)v(s, x2) − ε.

Therefore, letting ε → 0, we obtain the concavity of v.

To prove (5.1), by Theorem 4.2, we note that v is smooth. By non-negativity

and concavity, we see that

vx(s, x) ≥ 0, x > 0

for every s ∈ [0, T ). Suppose that vx(s, x0) = 0 for some x0 > 0. Then, vx(s, x) = 0

for all x ≥ x0. Hence v(s, x) can be written as v(s, x) = h(s) for x ≥ x0. By (3.1),

we have

U(x) = −vt(s, x) = −h′(s), x ≥ x0.

This is contrary with (1.6). Therefore we obtain (5.1).

6 Optimal policies

We give a synthesis of the optimal policy c∗ = {c∗t} for the optimization problem

(1.4) subject to (1.1) - (1.3). We consider the stochastic differential equation

dX∗
t = [(X∗

t )α−µX∗
t −γ(t,X∗

t )X∗
t ]dt−σX∗

t dBt, 0 < t ≤ T, X∗
0 = x > 0, (6.1)
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where γ(t, x) = I(x, vx(t, x)) and I(x, p) denotes the maximizer of (2.4) for x, p > 0,

i.e.,

I(x, p) =











(U ′)−1(p)/x if U ′(x) ≤ p,

1 otherwise.

(6.2)

Lemma 6.1 Under (1.6), there exists a unique positive solution {X∗
t } of (6.1).

Proof. By (5.1), we notice that γ(t, x) is well defined. Let {Nt} be the solution of

(2.6) corresponding to ct = 0. Define the probability measure P̂ on (Ω,FT , P ) by

dP̂ /dP = exp{

∫ T

0

γ(s,Ns)/σ dBs −
1

2

∫ T

0

(γ(s,Ns)/σ)2ds}.

By the very definition (6.2) we have 0 ≤ γ(t, x) ≤ 1; so Girsanov’s theorem yields

that

B̂t := Bt −

∫ t

0

γ(s,Ns)/σ ds is a Brownian motion on (Ω,FT , P̂ ).

Hence

dNt = [(Nt)
α − µNt − γ(t, Nt)Nt]dt − σNtdB̂t, under P̂ .

Thus, (6.1) admits a positive weak solution.

Now, by (6.2), we have

γ(t, x)x = min{(U ′)−1 ◦ vx(t, x), x}.

Also, by (1.6) and concavity

∂

∂x
(U ′)−1 ◦ vx(t, x) =

vxx(t, x)

U ′′ ◦ (U ′)−1 ◦ vx(t, x)
≥ 0.

Thus, γ(t, x)x is nondecreasing on (0,∞) for each t. We rewrite (6.1) as the form

of (2.10). Then, we see that the pathwise uniqueness holds for (6.1). Therefore, by
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the Yamada-Watanabe theorem [3], we deduce that (6.1) admits a unique strong

solution {X∗
t }.

Theorem 6.2 We assume (1.6). Then the optimal consumption policy {c∗t} is given

by the feedback form

c∗t = c⋆(t, z∗
t , yt), (6.3)

where c⋆(t, z, y) = I(z/y, yVz(t, z, y)) and {z∗
t } is the unique solution of

ż∗
t = F (z∗

t , yt) − νz∗
t − c∗tz

∗
t , 0 < t ≤ T, z∗

0 = z > 0. (6.4)

Proof. We set X⋆
t = z∗

t /yt. By Itô’s formula and (2.2), we see that X⋆
t solves (6.1).

Therefore, by Lemma 6.1, there exists a unique positive solution {z∗
t } of (6.4).

By Theorems 4.2 and 5.1, we note that

0 < vx(t, x)x ≤ v(t, x) − v(t, 0+) ≤ v(t, x), x > 0.

Hence, by (3.6) and (2.7)

E[

∫ T

0

{vx(s,X
⋆
s )X⋆

s}
2ds] ≤ E[

∫ T

0

{v(s,X⋆
s )}2ds]

≤ E[

∫ T

0

ζ(s,X⋆
s )2ds] < ∞.

By (2.2), this yields that {
∫ t

0
σysVy(s, z

∗
s , ys)dBs} is a martingale. By (1.5) and (6.2),

c⋆ satisfies

Vt +
1

2
σ2y2Vyy + nyVy + {F (z, y) − λz}Vz + {U(c⋆z/y) − c⋆zVz} = 0.

Applying Itô’s formula to (1.1) and (6.4), we get

E[V (T, z∗
T , yT )] = V (0, z, y) − E[

∫ T

0

U(c∗tz
∗
t /yt)dt],
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which implies

E[

∫ T

0

U(c∗tz
∗
t /yt)dt] = V (0, z, y).

By the same calculation as above, we obtain

E[

∫ T

0

U(ctzt/yt)dt] ≤ V (0, z, y)

for any c ∈ A. The proof is complete.

Remark 6.3 From the proof of Theorem 6.2, it follows that

inf
c∈A

E[

∫ T

s

U(ctzt/yt)dt] = V (s, z, y).

Thus, under (1.6), we see that the smooth solution V of the HJB equation (1.5) is

unique. Furthermore, let u be the solution of (4.1) on the entire domain [0, T ) ×

(0,∞) with u(T, x) = 0, x > 0. Setting x = z/y and V (t, z, y) = u(t, z/y) for

z, y > 0, by (2.2), we have that V satisfies (1.5). Therefore, we obtain the uniqueness

of u.
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