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1 Introduction

In this paper we consider optimal contracting between two parties – the principal

(“she”) and the agent (“he”) – in continuous time, when the effort of the agent

cannot be contracted upon. Cvitanić, Wan and Zhang (2009) develop a theory for

general concave utility functions for the two parties. Motivated by behavioral criteria,

specifically that of the (cumulative) prospect theory (CPT; Kahneman and Tversky

(1979), Tversky and Kahneman (1992)), in the present paper we go a step further

and allow the principal and the agent to have non-concave, CPT type preference

functions.

Our model studies the case of “hidden actions” or “moral hazard”, in which the agent’s

control (effort) of the drift of the output process cannot be contracted upon, either

because it is unobserved by the principal, and/or because it is not legally enforceable.

Hence, the contract is a function of only terminal values of the underlying output

process.

The seminal paper on the continuous-time principal-agent problems is Holmstrom

and Milgrom (1987). In that paper the principal and the agent have exponential

utility functions and the optimal contract is linear. Their work was generalized and

extended by Schättler and Sung (1993, 1997), Sung (1995, 1997), Müller (1998, 2000),

and Hellwig and Schmidt (2002). The papers by Williams (2009) and Cvitanić, Wan

and Zhang (2009) (henceforth CWZ 2009), use the stochastic maximum principle and

forward-backward stochastic differential equations (FBSDEs) to characterize the op-

timal compensation for more general utility functions, under moral hazard. Cvitanić

and Zhang (2007) and Carlier, Ekeland and Touzi (2007) consider also the adverse
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selection case of “hidden type”, in which the principal does not observe the “intrinsic

type” of the agent. Sannikov (2008) re-awakens the interest in the continuous-time

principal–agent problem by finding a tractable model for solving the problem with a

random time of retiring the agent and with continuous payments to the agent.

Optimal contracting with cumulative prospect theory (CPT) preferences, and, in

particular, with the agent being loss averse, has already been studied in Dittmann,

Maug and Spalt (2010). They calibrate the model to CEO compensation data and

find that it explains better the observed compensation contracts than the standard

utility preferences (risk aversion) model. This shows the usefulness of studying such

models.

There are two main contributions of our paper. First, we show that the optimal payoff

depends in a nonlinear way on the value of the output at the time of payment, and

may be “more nonlinear” than with the standard, concave preferences. Second, we

prove that, with a risk-neutral principal, and under some technical conditions, the

optimal contract convexifies the agent’s preference function if it is a classical concave

utility function; and the optimal contract convexifies the agent’s preference function

in the gain part and concavifies it in the loss part if the agent has an S-shaped

behavioral utility function.

We then study in details examples with a risk-neutral principal, and an agent who

has piecewise logarithmic or power objective functions respectively. Notably, we find

that the CPT preferences “increase” the nonlinearity of the optimal contract, thus

providing an additional rationale for the existence of option-like contracts in practice.

The remainder of the paper is organized as follows. Section 2 describes the model.

Section 3 presents the general approach to solving the agent’s and the principal’s

optimization problems. Section 4 studies the case of a risk-neutral principal. Section

5 provides detailed examples. Finally, we conclude with Section 6.
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2 The Model

We would like to have a model for the output process X of the form

dXt = utvtdt+ vtdWt (1)

for a Brownian motion process W , where ut represents the effort of the agent, and vt is

the volatility process. As is usually noted in contract theory, choosing u is equivalent

to choosing a probability measure over the underlying probability space. Thus, we

proceed by developing the following weak formulation of the model (see Cvitanić and

Zhang 2012 for more on the weak formulation).

Let B be a standard Brownian motion under some probability space with probability

measure Q, and FB = {FBt }0≤t≤T be the filtration on [0, T ] generated by B and

augmented by Q-null sets. For any FB-adapted square integrable process v, let

Xt , x0 +

∫ t

0

vsdBs (2)

be the output process (e.g., in the case of a fund manager managing wealth for a client,

Xt is the wealth process). Then, the filtration FX generated by X, is contained in

the filtration FB.

We now introduce the agent’s effort process u, assumed to be a functional of B. Given

u, we define

Bu
t , Bt −

∫ t

0

usds, Mu
t , exp

(∫ t

0

usdBs −
1

2

∫ t

0

|us|2ds
)
, (3)

along with a new probability measure Qu by dQu/dQ , Mu
T . By Girsanov’s Theorem,

under technical conditions, Bu is a Brownian motion under Qu. A well known suffi-

cient condition is the so-called Novikov condition. We will allow only those control
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processes u for which Bu is, in fact, a Brownian motion. We have, then

dXt = vtdBt = utvtdt+ vtdB
u
t . (4)

That is, the triple (X,Bu, Qu) is a weak solution to the SDE (1). The choice of u

corresponds to the choice of the probability measure Qu, thus to the distribution of

the process X. It is well known in the literature that this is the only way to change

probability measures in Brownian models, while keeping them equivalent.

Remark 1.

(i) Even though we start with X as a martingale process under Q, it is in general not

a martingale process under Qu, the relevant measures under which we will be taking

expected values in our optimizations problems below.

(ii) It is also possible to work with a multi-dimensional version of the model, by

starting with a d-dimensional Brownian motion B = (B1, . . . , Bd) under Q, and

then, for a vector process u = (u1, . . . , ud), defining d-dimensional Brownian motion

Bu = (Bu
1 , . . . , Bd) under appropriate measure Qu by Bu

i,t , Bi,t−
∫ t

0
ui,sds. We choose

not to pursue this since there would be no essential difference other than notational

complexity.

At time T , the principal gives the agent compensation in the form of a payoff CT =

I(X·), where I : C[0, T ] → R is a (deterministic) mapping. Clearly, CT is FXT -

measurable. On the other hand, for any FXT -measurable contract payoff CT , there

exists some functional I such that CT = I(X·). Thus, choosing CT is equivalent to

choosing I. Note that the absolute value of v can also be observed by the principal

through the quadratic variation. In this sense, if we allow v to be controlled, it would

be chosen by the principal. In light of this, from now on we fix v and concentrate on

the effort choice. We call CT a contract.

Given a contract CT and a function UA(·, ·) representing the agent’s preferences, the
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agent’s problem is to choose the optimal effort (control) u in order to maximize his

objective

VA(CT ) , sup
u
VA(u;CT ) , sup

u
Eu[UA(CT , G

u
T )], (5)

where

Gu
t ,

∫ t

0

g(s,Xs, us, vs)ds (6)

is the accumulated cost of the agent and Eu , EQu denotes the expectation under

Qu.

A contract CT is implementable if there exists an effort process uCT which maximizes

the agent’s utility given the contract. i.e.

VA(uCT ;CT ) = VA(CT ). (7)

The typical cases studied in the literature are the separable case with UA(x, y) =

UA(x)−y, and the non-separable case with UA(x, y) = UA(x−y), where, with a slight

abuse of notation, UA(·) denotes the function of one argument only.

Given a function UP (·), the principal chooses the optimal C∗T to maximize her objec-

tive

VP (C∗T ) = VP , max
CT ,u

CT

VP (uCT ;CT ), (8)

where

VP (u;CT ) , Eu[UP (XT − CT )] = E[Mu
TUP (XT − CT )] (9)
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under the participation constraint or individual rationality (IR) constraint

VA(CT ) ≥ R. (10)

Following the convention in the principal-agent literature, we assume that if the agent

is indifferent between two actions, he chooses the one that makes the principal better

off. This is why uCT appears as a decision variable in the principal’s problem (8).

If uCT is unique for any given CT , then it can be removed from the set of decision

variables.

3 The Agent’s Problem: Separable Utility and

Quadratic Cost; CWZ (2009)

In this section we consider a particular case when the agent has separable util-

ity UA(x, y) = UA(x) − y and the cost is a quadratic function of the effort, i.e.

g(t, x, u, v) = g(u) = ku2/2. for some k > 0. We also assume that v is given so that

the principal just needs to choose CT . The choice of such a cost function is standard

in the contract theory literature, partly for tractability reasons; see, e.g., Bolton and

Dewatripont (2005). In the context of the example of a portfolio manager, the fact

that cost function g does not depend on x and v means that the cost of effort does

not depend on the volatility or the size of the portfolio.

This is the case solved in Cvitanić, Wan and Zhang (2009) for the case of standard

utility functions. We recall the method here for the convenience of the reader, and

adapt it slightly to be able to apply it to more general preferences.

Under this setting we now define the feasible sets for u and CT . Roughly speaking,

all we need is sufficient integrability so that the weak formulation is meaningful.
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Definition 1. The set A1 of admissible effort processes u is the space of FB-adapted

processes u such that

(i) exp
[∫ T

0
ku2

t/2dt
]
<∞;

(ii) E[|Mu
T |2] <∞;

(iii) E

[(∫ T
0
u2
tdt
)4
]
<∞.

Definition 2. The set A2 of admissible contracts is the space of FXT -measurable

random variables CT such that

(i) E[|UA(CT )|4 + e2UA(CT )/k] <∞;

(ii) û from (12) below satisfies E

[(∫ T
0
û2
tdt
)4
]
<∞;

(ii) E[|UP (XT − CT )|2 + eUA(CT )/k|UP (XT − CT )|] <∞.

Definition 2-(ii) is a natural condition: it requires that the agent’s optimal effort

process in response to a given contract is admissible. In particular, we show in

Remark 2 below that any bounded FXT -measurable CT satisfies this condition.

We first state a useful known result for linear backward stochastic differential equa-

tions (BSDEs); see, for example, CWZ (2009).

Lemma 1. Assume that u is FB-adapted, Girsanov’s Theorem holds true for (Bu, Qu),

and E[|Mu
T |2] < +∞. Then for any FBT -measurable ξ with Eu[|ξ|2] <∞, there exists a

unique Qu−square integrable, FB-adapted pair (Y, Z) that solves the following BSDE

Yt = ξ −
∫ T

t

ZsdB
u
s . (11)

The following theorem is a variation on a result from CWZ (2009). In that paper

UA(·) is assumed to be concave, which we do not need to assume here. Moreover, our

admissible sets A1 and A2 are somewhat different. For these reasons, we provide a

proof here.

We use notation Et for conditional expectation given σ-algebra FBt .
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Theorem 1. For any contract CT ∈ A2, the agent’s optimal effort û ∈ A1 is obtained

from solving the following BSDE

Ȳt = Et[e
UA(CT )/k] = eUA(CT )/k −

∫ T

t

ûsȲsdBs, (12)

which has a unique FB-adapted solution (Ȳ, û). Moreover, the optimal value for the

agent’s problem is

VA(CT ) = k log Ȳ0 = k logE[eUA(CT )/k]. (13)

Proof We first show that the BSDE (12) admits a unique solution and û ∈ A1. By

Definition 2-(i), the following linear BSDE

Ȳt = eUA(CT )/k −
∫ T

t

Z̄sdBs.

has a unique solution (Ȳ, Z̄). Note that Ȳt > 0. Define ût , Z̄t/Ȳt. Then (Ȳ, û)

satisfies (12).

Since Ȳt > 0 is continuous and E
[∫ T

0
|Z̄t|2dt

]
< ∞, we have

∫ T
0
û2
tdt < ∞ a.s.

Moreover, direct calculation yields that

M û
t = Ȳt/Ȳ0,

which means that M û is an FB-martingale under Q. So Girsanov’s theorem holds for

(Bû, Qû). In addition, by Definition 2-(i), E[|M û
T |2] = E[e2UA(CT )/k]/Ȳ 2

0 <∞. Finally,

the definition of A2 implies that û satisfies Definition 1-(iii). Therefore û ∈ A1.

We now show that û is optimal for the agent’s problem. For any u ∈ A1, consider
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the remaining utility of the agent at time t

WA,u
t = Eu

t

[
UA(CT )− k

2

∫ T

t

u2
sds

]
.

Then WA,u
t /k − 1

2

∫ t
0
u2
sds is a Qu-martingale with the terminal value UA(CT )/k −

1
2

∫ T
0
u2
tdt, which is Qu-square integrable by the definitions of A1 and A2. So it

follows from Lemma 1 that there exists an FB-adapted Qu-square integrable process

ZA,u such that

WA,u
t /k − 1

2

∫ t

0

u2
sds = UA(CT )/k − 1

2

∫ T

0

u2
sds−

∫ T

t

ZA,u
s dBu

s .

Switching from Bu to B, we have

WA,u
t /k = UA(CT )/k +

∫ T

t

[
usZ

A,u − 1

2
u2
s

]
ds−

∫ T

t

ZA,u
s dBs. (14)

On the other hand, from (12), it follows

log Ȳt = UA(CT )/k − 1

2

∫ T

t

û2
sds−

∫ T

t

ûsdB
u
s . (15)

Note that WA,u
0 /k = Eu[UA(CT )/k − 1

2

∫ T
0
u2
sds]. Thus log Ȳ0 = WA,û

0 .

Notice that1

WA,û
0 /k −WA,u

0 /k =

∫ T

0

[
1

2

(
û2
t + u2

t

)
− utZA,u

t

]
dt+

∫ T

0

(
ZA,u
t − ût

)
dBt

≥
∫ T

0

(
ûtut − utZA,u

t

)
dt+

∫ T

0

(
ZA,u
t − ût

)
dBt

=

∫ T

0

(
ZA,u
t − ût

)
dBu

t .

1Due to the lack of Lipschitz continuity caused by the quadratic term û2
t , we cannot directly

apply the Comparison Theorem for BSDEs here.
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The equality holds if and only if u = û. Since Eu
[∫ T

0
|ZA,u

t |2dt
]
<∞ and

Eu

[∫ T

0

û2
tdt

]
= E

[
Mu

T

∫ T

0

û2
tdt

]
≤ E

[
|Mu

T |2 +

(∫ T

0

û2
tdt

)2
]
<∞,

we have WA,û
0 ≥ WA,u

0 , where the equality holds if and only if u = û.

Remark 2. If CT is bounded then Definition 2-(ii) is satisfied. Indeed, if (Ȳ, û)

solves (12), then there is a constant ε > 0 such that ε < sup0≤t≤T Ȳt < 1/ε and

E[〈Ȳ 〉4T ] < 1/ε . Since
∫ T

0
û2
t Ȳ

2
t dt = 〈Ȳ 〉T , we have

∫ T
0
û2
tdt < 〈Ȳ 〉T/ε2. As a result,

E

[(∫ T

0

û2
tdt

)4
]
<

1

ε8
E[〈Ȳ 〉4T ] <

1

ε9
<∞.

From (12) we have Ȳt = Ȳ0M
û
t , which, together with (13), yields

M û
T = e−VA(CT )/k · eUA(CT )/k, eVA(CT )/k = E[eUA(CT )/k]. (16)

Equivalently, by taking into account the participation constraint,

M û
T = e−R̃/k · eUA(CT )/k, eR̃/k = E[eUA(CT )/k], (17)

for some R̃ ≥ R. So the principal’s problem becomes

max
CT ,R̃

e−R̃/kE
[
eUA(CT )/kUP (XT − CT )

]
subject to R̃ ≥ R, E[eUA(CT )/k] = eR̃/k.

Proposition 1. For every pair (CT , R̃) in which R̃ > R, there is a pair (C̃T , R) which

attains a strictly higher value in the above problem.

Proof Fix a pair (CT , R̃) such that δ , R̃ − R > 0 and E[eUA(CT )/k] = eR̃/k.
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Define f(x) , U−1
A (UA(x) − δ). Then f(CT ) < CT , UA(f(CT )) = UA(CT ) − δ and

E
[
eUA(f(CT ))/k

]
= eR/k. We have

e−R/kE
[
eUA(f(CT ))/kUP (XT − f(CT ))

]
= e−R̃/kE

[
eUA(CT )/kUP (XT − f(CT ))

]
> e−R̃/kE

[
eUA(CT )/kUP (XT − CT )

]
.

Thus, (f(CT ), R) is strictly better than (CT , R̃) in the above problem.

In the light of the above proposition, we can set R̃ = R. Hence, the principal’s problem

simplifies to

max
CT

e−RE
[
eUA(CT )/kUP (XT − CT )

]
subject to E[eUA(CT )/k] = eR/k.

(18)

Thus, in view of the Lagrange approach, we get the following

Theorem 2. If there exists Cλ
T that maximizes

eUA(CT )/k[UP (XT − CT ) + λ] (19)

where λ ∈ R and there exists λ0 such that

E
[
eUA(C

λ0
T )/k

]
= eR/k, (20)

then Cλ0
T is the optimal contract.
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4 Optimal Contracts with Risk-Neutral Principal

In the above setting (the agent has a separable utility and a quadratic cost), we now

investigate the optimal contracts with a risk-neutral principal, that is, UP (x) = x..

The latter assumption is standard in contract theory, especially in applications to

corporate finance, in which it is assumed that all the shareholders of the firm hiring

the agant represent the principal, and those shareholders are well-diversified in the

market, hence risk-neutral with respect to one particular firm. For simplicity of

notation, we set k = 1 in the rest of the paper. We study two cases for the agent’s

preference, one with a neoclassical (concave) utility function, and the other dictated

by the cumulative prospect theory (CPT).

A main issue we address is how an optimal contract effectively changes the agent’s

risk preference. For this purpose we now introduce the notion of concavifying and

convexifying utility function.

Let AU denote the coefficient of absolute risk aversion of a strictly increasing function

U :

AU(x) , −U
′′(x)

U ′(x)
, (21)

whereever U ′′(x) exists and U ′(x) 6= 0.

Note that AU(x) ≥ 0(≤ 0) if and only if U(·) is concave (convex) at x.

Following Ross (2004), we introduce the following definition.

Definition 3. A contract f(·) concavifies (convexifies) a utility function U(·), if there

exists an increasing concave (convex) function, T (·) such that U(f(x)) = T (U(x)).

Lemma 2. (Ross 2004) A smooth contract f(·) concavifies (convexifies) U(·) if and
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only if

f ′′

f ′
≤ (≥)AU(f)f ′ − AU . (22)

Remark 3. Note that

AU◦f − AU = −U
′′(f)(f ′)2 + U ′(f)f ′′

U ′(f)f ′
− AU = AU(f)f ′ − AU − f ′′

f ′
.

Thus, we deduce by Lemma 2 that f concavifies (convexifies) U if and only if the

coefficient of absolute risk aversion of U ◦ f is larger (smaller) than that of U , i.e.

f concavifies (convexifies) U ⇔ AU◦f ≥ (≤)AU . (23)

We now want to solve the problem of maximizing (19) with UP (x) = x. Define

F (c, y) , eUA(c)(y − c), (24)

where we think of y as XT + λ. Then the target is to maximize F (·, y) for every y.

Clearly, the first order condition is U ′A(c)(y − c) = 1.

4.1 Agent with Concave Utility

We first consider the simpler case with a classical utility function UA(·), i.e. UA(·)

is overall concave. Denote cmin , inf{c : UA(c) > −∞}. We assume that UA(·) is

smooth on (cmin,+∞) and let A(·) be the coefficient of absolute risk aversion of UA(·).

We introduce the following condition.

Condition 1. A′(x) ≤ 0, cmin > −∞, and there exists β ≤ cmin such that A(x)(x−β)

is a convex function with −A′(x)(x− β) ≤ A(x) on x > cmin.
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Example 1. Take UA(c) = log(c− cmin). Then A(x) = 1/(x− cmin), x > cmin, which

implies A′(x) = −1/(x− cmin)2 < 0. Choose β = cmin. Then we have A(x)(x− β) = 1

and −A′(x)(x− β) = A(x). So UA(·) satisfies Condition 1.

Example 2. Let cmin ∈ (−∞,+∞) be given and take UA(c) = (c − cmin)γ/γ with

γ < 1, γ 6= 0. Then

A(x) =
1− γ
x− cmin

, A′(x) = − 1− γ
(x− cmin)2

< 0,

A(x)(x− cmin) = 1− γ, −A′(x)(x− cmin) = A(x).

Again, UA(·) satisfies Condition 1.

Example 3. Let cmin ∈ (−∞,+∞) be given and take UA(c) = − exp{−Ac}. Then

A is a constant and cmin = −∞. So UA(·) does not satisfy Condition 1.

Theorem 3. Denote u(·) = UA(·), which is assumed to be concave and smooth on

(cmin,+∞). Then, the equation

H(c, y) , u′(c)(y − c)− 1 = 0, (c, y) ∈ (cmin,+∞)× R, (25)

admits a unique root c̄(y) ∈ (cmin, y), ∀y > cmin + 1/u′(cmin+), and H(c, y) < 0 on

(cmin,+∞)× (−∞, cmin + 1/u′(cmin+)]. Moreover, we have the following results.

(i) The optimal contract, if it exists, is

C∗T (YT ) =

 c̄(YT ), if YT > cmin + 1/u′(cmin+);

cmin, if YT ≤ cmin + 1/u′(cmin+).

(ii) c̄′(y) ∈ (0, 1), ∀y > cmin + 1/u′(cmin+).

(iii) If Condition 1 holds, or A is a constant function, then c̄(·) convexifies u(·) on

(cmin + 1/u′(cmin+),+∞).
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Proof Note that Hc(c, y) = u′′(c)(y− c)−u′(c) < 0 for c < y, H(c, y) < 0 for c ≥ y.

If y > cmin + 1/u′(cmin+), then H(cmin+, y) > 0, in which case (25) admits a unique

root c̄(y) > cmin. If y ≤ cmin + 1/u′(cmin+), then H(c, y) < 0,∀c > cmin. This proves

(i).

(ii) By dH(c̄(y),y)
dy

≡ 0, y > cmin + 1/u′(cmin+), we have

c̄′(y) =
1

1 + A(c̄(y))(y − c̄(y))
, y > cmin + 1/u′(cmin+). (26)

Since A(·) > 0 and y > c̄(y), it follows that c̄′(y) ∈ (0, 1).

(iii) By Lemma 2, it suffices to prove D(y) , A(y) + c̄′′(y)
c̄′(y)
− A(c̄(y))c̄′(y) ≥ 0, ∀y >

cmin + 1/u′(cmin+). Taking derivative on both sides of (26) with respect to y yields

c̄′′(y) = −(y − c̄(y))[A′(c̄(y)) + A(c̄(y))2]

[1 + A(c̄(y))(y − c̄(y))]2
c̄′(y), y > cmin + 1/u′(cmin+). (27)

Now suppose that Condition 1 holds. Then there exists β ≤ cmin such that A(x)(x−β)

is convex on x > cmin. We thus have

A(y) ≥ (c̄(y)− β)(y − c̄(y))A′(c̄(y))

y − β
+ A(c̄(y)), y > cmin + 1/u′(cmin+). (28)

Therefore

D(y) ≥ A(c̄(y))3(y − c̄(y))2

[1 + A(c̄(y))(y − c̄(y))]2

+ A′(c̄(y))(y − c̄(y))

{
c̄(y)− β
y − β

− 1

[1 + A(c̄(y))(y − c̄(y))]2

}
.

Since A′(x) ≤ 0, ∀x > cmin, if c̄(y)−β
y−β −

1
[1+A(c̄(y))(y−c̄(y))]2

≤ 0, we have D(y) ≥ 0;

otherwise, by −A′(x)(x− β) ≤ A(x), ∀x > cmin we have

D(y) ≥ A(c̄(y))3(y − c̄(y))2

[1 + A(c̄(y))(y − c̄(y))]2
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− A(c̄(y))(y − c̄(y))

c̄(y)− β

{
c̄(y)− β
y − β

− 1

[1 + A(c̄(y))(y − c̄(y))]2

}
=
A(c̄(y))(y − c̄(y))2[1− A(c̄(y))(c̄(y)− β)]2

(c̄(y)− β)(y − β)[1 + A(c̄(y))(y − c̄(y))]2

≥0, ∀y > cmin + 1/u′(cmin+).

Finally, if A is a constant, we have, for any y > cmin + 1/u′(cmin+),

c̄′(y) =
1

1 + (y − c̄(y))A
, c̄′′(y) = − (y − c̄(y))A2

[1 + (y − c̄(y))A]2
c̄′(y).

Therefore

D(y) =
(y − c̄(y))2A3

[1 + (y − c(y))A]2
> 0, ∀y > cmin + 1/u′(cmin+). (29)

The preceding theorem shows that the optimal contract is generally a nonlinear in-

creasing function of the final asset value, and the marginal increasing rate c̄′(·) ∈ (0, 1),

which implies that both the agent’s and the principal’s payoffs are strictly increasing

with respect to the final asset value. We will show later that this is not the case if the

agent has an S-shaped behavioral utility function. More precisely, in some domains

the marginal increasing rate of the optimal contract can be larger than 1; see also

Remark 5 below.

4.2 Agent with S-shaped utility

In this subsection we consider the case where the agent has behavioral preferences.

More precisely, we use an S-shaped utility UA(·) for the agent’s risk preference, with

a reference point K, as defined next.
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An S-shaped utility UA(·) with reference point K is defined by

UA(x) =

 u+(x−K), x ≥ K;

−u−(K − x), x < K,
(30)

where K ≥ 0 is a constant, u+(·) and u−(·) : R+ 7→ R+, are strictly increasing,

concave, with u+(0) = u−(0).

The reference point K separates gains and losses. That is, (x−K)+ is viewed as the

gain part and (K − x)+ the loss part. One often requires u′+(x) ≤ u′−(x) around K

to model the behavior of what is called loss-aversion, meaning that a marginal loss

is greater than a marginal gain of the same size around the reference point. Overall,

the S-shaped utility UA(·) is concave for gains and convex for losses and steeper for

losses than for gains. An agent with such a preference evaluates payoffs relative to the

reference point, rather than at their absolute values. She is not uniformly risk-averse,

but risk-averse on gains and risk-seeking on losses, and more sensitive to losses than

to gains.

Let A be the coefficient of absolute risk aversion of UA, which is defined except at

x = K. Introduce the following conditions, needed to insure the existence of the

optimal solution in the principal’s problem:

Condition 2.

A1. A′(x) ≤ 0 and there exists β ≤ K such that A(x)(x − β) is a convex function

and −A′(x)(x− β) ≤ A(x) on x > K.

A2. A′(x) ≤ 0 and there exists η ≥ K such that A(x)(η − x) is a concave function

and −A′(x)(η − x) ≤ −A(x) on x < K.

A3. −A(x)(K − x) < 1 for x < K.
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Example 4. (Piecewise power, S-shaped) Take

UA(c) =


1
γ
(c−K)γ, c > K;

− θ
γ
(K − c)γ, c ≤ K,

(31)

where θ > 1 (implying loss aversion), K > 0 and 0 < γ < 1 are constants. Then

A(x) = 1−γ
x−K and A′(x) = − 1−γ

(x−K)2
< 0 ∀x 6= K. Choosing β = η = K, we have

A(x)(x− β) = 1− γ and −A′(x)(x− β) = A(x) on x > K; and A(x)(η − x) = γ − 1

and −A′(x)(η − x) = −A(x) on x < K. Furthermore, −A(x)(K − x) = 1 − γ < 1

for x < K. Therefore the S-shaped piecewise power utility defined above satisfies

Condition 2.

We will revisit this example in Subsection 5.2.

Remark 4. One can check that an S-shaped piecewise logarithmic utility also satisfies

Condition 2. However, an S-shaped piecewise exponential utility, whose A(·) is a

negative constant on (−∞, K), does not satisfy Condition 2-A3.

Define H(·, ·) : (K,+∞)× R→ R and L(·, ·) : (−∞, K)× R→ R through Fc(·, ·):

H(c, y) , Fc(c, y)e−UA(c) = U ′A(c)(y − c)− 1, (32)

L(c, y) , Fc(c, y)e−UA(c) = U ′A(c)(y − c)− 1. (33)

That is,

Fc(c, y)e−UA(c) =

 H(c, y), c > K,

L(c, y), c < K.
(34)

Note that H(c, y) is only defined on c > K and L(c, y) is only defined on c < K.

Lemma 3. Let u(·) be the gain part of UA(·), i.e. u(·) is defined on [K,+∞) and
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u(x) = UA(x) for x ∈ [K,+∞). Then, the equation

H(c, y) = u′(c)(y − c)− 1 = 0, (c, y) ∈ (K,+∞)× R, (35)

admits a unique root c̄(y) ∈ (K, y), ∀y > K + 1/u′(K+), and H(c, y) < 0 on

(K,+∞) × (−∞, K + 1/u′(K+)]. Moreover, in the case y > K + 1/u′(K+), we

further have the following results:

(i) c̄(y) = arg maxc≥K F (c, y).

(ii) c̄′(y) ∈ (0, 1).

(iii) Under Condition 2-A1, c̄(·) convexifies u(·).

Proof It can be proved exactly the same as Theorem 3.

Lemma 4. Let u(·) be the loss part of UA(·), i.e. u(·) is defined on (−∞, K] and

u(x) = UA(x) for x ∈ (−∞, K]. Assume that limc→−∞ L(c, y) > 0 for any y < K

and Condition 2.-A3 holds. Then the equation L(c, y) = 0 admits a unique root

c(y) ∈ (−∞, y) for y < K. Moreover, we have the following results:

(i) c(y) = arg maxc∈R F (c, y), ∀y < K.

(ii) c′(y) ∈ (1,+∞), ∀y < K.

(iii) Under Condition 2-A2, c(·) concavifies u(·) on (K,+∞).

Proof Note that we can write Lc(c, y) = U ′(c)(−A(c)(y − c) − 1). By Condition

2-A3., Lc(c,K) < 0. But then because A(c) < 0, we have Lc(c, y) < 0 for y < K.

Since L(c, y) < 0 for c ≥ y and limc→−∞ L(c, y) > 0, L(c, y) = 0 admits a unique root

c(y) < y for y < K. Note that H(c, y) < 0 on (K,+∞)× (−∞, K). Thus, for y < K,

c(y) maximizes F (c, y), as stated in (i).
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(ii) By dL(c(y),y)
dy

= 0, ∀y < K, we obtain

c′(y) =
1

1 + A(c(y))(y − c(y))
, y < K. (36)

Since A(·) < 0 and 1 + A(c(y))(y − c(y)) > 0 (Condition 2-A3), it follows that

c′(y) ∈ (1,+∞).

(iii) In view of Lemma 2, it suffices to prove D(y) , A(y) + c′′(y)
c′(y)
− A(c(y))c′(y) ≤

0 ∀y < K. Taking derivative on both sides of (36) in y yields

c′′(y) = −(y − c(y))[A′(c(y)) + A(c(y))2]

[1 + A(c(y))(y − c(y))]2
c′(y), y < K. (37)

Now suppose that Condition 2.-A2 holds. Then there exists η ≥ K such that A(x)(η−

x) is concave on x < K. We thus have

A(y) ≤ (η − c(y))(y − c(y))A′(c(y))

η − y
+ A(c(y)), y < K. (38)

Therefore

D(y) ≤ A(c(y))3(y − c(y))2

[1 + A(c(y)(y − c(y))]2

+ A′(c(y))(y − c(y))

{
η − c(y)

η − y
− 1

[1 + A(c(y))(y − c(y))]2

}
, y < K.

Since A′(x) ≤ 0 ∀x < K, if η−c(y)
η−y −

1
[1+A(c(y))(y−c(y))]2

≥ 0, we have D(y) < 0; otherwise,

by −A′(x)(η − x) ≤ −A(x), ∀x < K, we have

D(y) ≤ A(c(y))3(y − c(y))2

[1 + A(c(y))(y − c(y))]2

+
A(c(y))(y − c(y))

η − c(y)

{
η − c(y)

η − y
− 1

[1 + A(c(y))(y − c(y))]2

}
=
A(c(y))(y − c(y))2[1 + A(c(y))(η − c(y))]2

(η − y)(η − c(y))[1 + A(c(y))(y − c(y))]2
< 0, ∀y < K.
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Now fix λ and denote YT , XT + λ. Suppose that there is a deterministic function

C∗T (·) : R→ R such that CT = C∗T (YT ) maximizes F (CT , YT ).

Lemma 5. Suppose that limc→−∞ L(c,K) > 0. Then there exists some c0 < K such

that L(c, y) > 0 on (−∞, c0) × [K,∞). Furthermore, there exists some y1 > K such

that L(c, y) > 0 on (−∞, K) × (y1,∞). In particular, C∗T (y) ≥ c0 for y ≥ K and

C∗T (y) ≥ K for y ≥ y1.

Proof By continuity, there exists c0 < K such that L(c,K) > 0 for c < c0. Since

L(c, y) is increasing with respect to y, we have L(c, y) > 0 on (−∞, c0)× [K,∞).

Let y1 = K + 1/U ′A(c0). Then L(c, y) > 0 on [c0, K)× (y1,∞). Therefore L(c, y) > 0

on (−∞, K)× (y1,∞).

Since L(c, y) and Fc(c, y) have the same sign on (−∞, K) × R, we conclude that

C∗T (y) ≥ c0 for y ≥ K and C∗T (y) ≥ K for y ≥ y1.

We summarize the above results in the following theorem.

Theorem 4. Suppose that limc→−∞ L(c, y) > 0 for any y ∈ R and Condition 2-A3

holds. Then an optimal contract C∗T (·) must satisfy the following:

(i) For y < K, C∗T (y) = c(y).

(ii) For y > K + 1/U ′A(K+), if C∗T (y) ≥ K, then C∗T (y) = c̄(y).

(iii) There exists some y1 > K + 1/U ′A(K+) such that C∗T (y) = c̄(y) for y > y1.

(iv) For K ≤ y ≤ K + 1/U ′A(K+), C∗T (y) ≤ K.

(v) For y ≥ K, there exists some c0 < K such that C∗T (y) ≥ c0.

Proof These results follow from Lemma 3, Lemma 4 and Lemma 5.

Remark 5. When the final output is sufficiently low so that y < K (and therefore

C∗T (y) = c(y)), by Lemma 4 the marginal increasing rate of the optimal compensation
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with respect to the final asset value is greater than 1, which means that the marginal

increasing rate of the principal’s payoff, XT − C∗T , is negative. This result is specific

to the S-shaped behavioral utilities. Due to the convexity of the loss part of the

S-shaped utility, c′ > 1 is the most efficient way to meet the participation constraint.

In the case of standard preferences the marginal increasing rate of the compensation

is between 0 and 1, and the principal’s and the agent’s payoffs are both increasing

with respect to the asset value, as is the case in Theorem 3 for the classical utilities

and in Theorem 4 when C∗T (y) = c̄(y). Nevertheless, not unlike the standard case,

both c(·) and c̄(·) are increasing functions, thus providing incentives for the agent to

favor higher outcome of the asset value.

Theorem 5. Suppose that UA(·) satisfies Condition 2 and limc→−∞ L(c, y) > 0 for

any y ∈ R. Then we have the following:

(i) C∗T (·) concavifies UA(·) on the loss part on (−∞, K).

(ii) There exists y1 > K+1/U ′A(K+), such that C∗T (·) convexifies UA(·) on the gain

part on (y1,+∞).

Proof These follow from Lemmas 3 and 4.

Remark 6. By Theorem 5, an optimal contract convexifies the agent’s utility on

the gain part where the agent is risk averse, and concavifies the utility on the loss

part where the agent is risk seeking. Since the principal is risk-neutral, the optimal

contract helps to align the agent’s risk preference with the principal’s.

Denote by Cλ
T the maximizer of (19) and S(λ) , E

[
eUA(CλT )

]
. The following propo-

sition addresses the existence of λ0 that meets the participation constraint (20):

S(λ0) = eR.

Proposition 2. Suppose that UA(±∞) = ±∞, S(λ) is finite for some λ and the
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conditions from Theorem 4 hold. Then

lim
λ→+∞

S(λ) = +∞, lim
λ→−∞

S(λ) = 0.

In particular, if we assume that S(·) is continuous2, then there exists λ0 such that

S(λ0) = eR for any arbitrarily given R ∈ R.

Proof Denote Y λ
T = XT + λ. Define a subset of R, I(λ) , {y > K + 1/U ′A(K+) :

Cλ
T (y) = c̄(y)} and denote Ī(λ) , [K,∞)/I(λ). By Theorem 4, there exists y1 >

K + 1/U ′A(K+) which is independent of λ (see the proof of Lemma 5) such that

I(λ) ⊃ (y1,∞) for any λ. Moreover, Cλ
T (Y λ

T ) consists of three parts: Cλ
T (Y λ

T ) = c(Y λ
T )

for Y λ
T < K; Cλ

T (Y λ
T ) = c̄(Y λ

T ) for Y λ
T ∈ I(λ) and Cλ

T (Y λ
T ) ∈ (c0, K] for Y λ

T ∈ Ī(λ)

where c0 < K is a constant independent of λ.

Recall that both c̄(·) and c(·) are increasing. Since 0 = H(c̄(y), y) = U ′A(c̄(y))(y −

c̄(y))− 1, it is obvious that limy→+∞ c̄(y) = +∞ which implies that for a fixed ω and

hence fixed XT , C
λ
T (Y λ

T )→ +∞ as λ→ +∞. Since c(y) < y, for a fixed ω and hence

fixed XT , C
λ
T (Y λ

T ) → −∞ as λ → −∞. The conclusion follows from the facts that

UA(±∞) = ±∞ and S(λ) is finite for some λ.

4.3 Comparison with First-Best Contracts

In the so-called first-best case in a principal–agent problem, the principal can con-

tract upon the agent actions, therefore can optimally choose the action to maximize

her objective function. The principal’s problem is defined as, upon introducing a

Lagrangian multiplier λ,

max
CT ,u
{E[Xu

T − CT ] + λE[UA(CT )−Gu
T −R]}

2Later we show in Section 5.1 that the corresponding S(·) is continuous.
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= max
u

E[Xu
T − λGu

T ] + max
CT

E[λUA(CT )− CT ]− λR.

Given λ ≥ 0, the first best-optimal contract is determined as

C∗T ∈ arg max
c

[λUA(c)− c] ,

which is a constant (if it exists) and, notably, independent of XT . This is a standard

result, driven by the fact that the risk-neutral principal does not mind taking all the

risk, and, because the principal chooses the actions, she does not have to provide

incentives (related to the final output) to the agent. In contrast, we have seen in the

previous sections that the optimal contracts with moral hazard are (non-constant)

functions of XT . Thus, the value function of the principal is strictly less in the

second-best, moral hazard case than in the first-best case. As an extreme example,

CWZ (2009) show that if dXt = Xt(utdt + σtdBt), σt > 0 is deterministic and there

exists ε > 0 such that ε < σt <
1
ε
, then the principal’s first-best optimal utility is

+∞ (i.e., the principal’s problem is ill-posed). This can also be shown here when the

agent has an S-shaped utility as in the above examples.

4.4 Risk-Averse Principal

The assumption that the principal is risk-neutral is standard in contract theory, be-

cause in the main applications the principal is an institution represented by many

members, such as shareholders of a company, who are likely to have well-diversified

portfolio of assets in the outside market, and are thus not risk-averse with respect to

the performance of this particular institution. Nevertheless, it might be of interest to

consider the case of a risk-averse principal; so we briefly discuss the case when UP is

not linear.

When we have enough smoothness, the first order condition for optimal CT for the
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optimization problem in Theorem 2 is of the form

U ′P (XT − CT )

U ′A(CT )
=

1

k
UP (XT − CT ) + λ (39)

and thus the optimal contract is still a function c(XT ) of the terminal value XT only.

Using this equation we can find the sensitivity c′(x) of the optimal contract with

respect to the output, omitting the functions arguments:

c′ = 1− U ′′A
U ′′P
U ′P
U ′A + U ′′A − 1

k
(U ′A)2

.

We see from here that the difference between the risk-neutral case and the risk-averse

case is the term
U ′′P
U ′P
U ′A, which is zero in the risk-neutral case. With UA increasing,

if we assume that UP is a standard utility function, increasing and strictly concave,

then that term is negative. Thus, in the concave domain in which U ′′A(x) < 0, we

have c′(x) < 1; but c′(x) is likely to be closer to one than when the principal is

risk-neutral. 3 This means that, in the region in which the agent is risk-averse, the

more risk-averse principal (higher risk aversion
U ′′P
U ′P

) is likely to transfer more risk

to the agent, which is not surprising. In the agent’s risk-seeking domain in which

U ′′A(x) > 0, assuming Condition 2.-A3, Lemma 3 implies c′(x) > 1 for the risk neutral

principal. This means that the term U ′′A − 1
k
(U ′A)2 in the denominator is negative,

and subtracting a negative term from it makes c′(x) smaller, keeping everything else

fixed. Thus, under condition Condition 2.-A3 which requires that the agent is only

moderately risk-seeking (i.e., −A(x) should not be too large), the more risk-averse

principal may actually transfer less risk to the agent. This is because the principal’s

risk exposure is |1− c′(x)|, so it gets smaller by making c′(x) smaller when c′(x) > 1.

To summarize, in both cases, the risk-averse principal chooses c′(x) closer to one than

3We say “likely” because when we change from risk-neutral to risk-averse principal, the opti-
mal contract c(x), on which all our functions depend, also changes, so we cannot make a direct
comparison.

26



the risk-neutral principal. Taking this to extreme, the infinitely risk-averse principal

would simply sell the whole firm to the agent (c′(x) = 1), a standard result from the

classical contract theory.

4.5 Randomization under S-Shaped Utility

When the agent preference is behavioral with an S-shaped utility function, he is risk-

seeking in the loss part of the domain of his utility function. It therefore may be

advantageous for the principal to introduce randomized contracts in order to benefit

from the agent’s willingness to engage in some gambles. In this section we show that,

indeed, randomization may strictly Pareto improve the contract. However, we are

unable to find the optimal randomized contract, a task which appears to be a very

hard mathematical problem, and is thus left for future study.

Consider a σ-field GT independent of FXT , and the σ-fieldHT generated by GT and FXT .

We consider the same setting as in Section 3 except that now admissible contracts

are allowed to be HT -measurable. In other words, in addition to FXT -measurable

contracts in the original problem, the principal may randomize such contracts based

on an independent random source corresponding to GT .

Assume that the principal is risk-neutral, i.e., UP (x) = x. Applying the same argu-

ments leading to problem (18), that is, going through the proof of Theorem 1, it can

be verified that the problem now becomes

max
CT

J(CT ) := max
CT

e−RE
[
eE(UA(CT )|FXT )(XT − CT )

]
subject to E[eE(UA(CT )|FXT )] = eR

(40)

where the maximization is taken over contracts CT that are HT -measurable. Clearly,

when no randomization is applied then (40) reduces to (18) (where UP (x) = x).

Let UA be an S-shaped utility function such that UA(c) is strictly concave for c > K
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and strictly convex for c ≤ K where K is the reference point. Let CT be a (non-

randomized) contract which is FXT -measurable, and C̄T be a randomization of CT ,

namely, a HT -measurable random variable such that E(C̄T |FXT ) = CT . We then

construct another randomization of CT only on CT ≤ K:

C̃T := CT1CT>K + C̄T1CT≤K .

We now show that such a randomized contract is Pareto improving if CT ≤ XT (so

that the principal gets a non-negative payoff).4

Clearly, C̃T is HT -measurable, and

E(C̃T |FXT ) = CT1CT>K + E(C̄T |FBT )1CT≤K = CT .

Thus, we also have XT ≥ E(C̃T |FXT ) and

e−RE
[
eE(UA(C̃T )|FXT )(XT − C̃T )1CT≤K

]
≥ e−RE

{
E
[
eUA(E(C̃T |FXT ))(XT − C̃T )1CT≤K

∣∣∣FXT ]}
= e−RE

{
E
[
eUA(CT )(XT − C̃T )1CT≤K

∣∣∣FXT ]}
= e−RE

[
eUA(CT )(XT − CT )1CT≤K

]
,

where the inequality is due to the convexity of UA(c) on c ≤ K and Jensen’s inequality.

On the other hand,

e−RE
[
eE(UA(C̃T )|FXT )(XT − C̃T )1CT>K

]
≡ e−RE

[
eE(UA(CT ))(XT − CT )1CT>K

]
.

Combining the above, we conclude J(C̃T ) ≥ J(CT ). Moreover, by the same argument

4For some parameter configurations the optimal non-randomized contract C∗T satisfies C∗T ≤ XT ,
so that its randomization C̃∗T will be preferable to all non-randomized contracts; see Proposition 3
below for some cases under which C∗T ≤ XT .
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we derive

E
[
eE(UA(C̃T )|FXT )

]
≥ E[eUA(CT )] = eR.

Thus, if P (CT ≤ K) > 0 then due to the strict convexity of UA on c ≤ K the

preceding inequality is equality if and only if E(C̃T |FXT ) = C̃T , that is, if C̃T = CT .

This shows that, for any contract that pays the agent in the loss domain with a positive

probability and in that domain his utility is strictly convex, the above randomization

will strictly increase the agent’s utility while not reducing the principal’s utility. This

is to be contrasted to the static setting of DMS (2010) in which they assume that

there is a lower bound on the contract payoff and the randomization is not optimal5.

5 Examples

In this section, we apply the general theory established in the previous section to spe-

cific examples and obtain more concrete and complete results. As before the principal

is risk-neutral. The agent’s preferences are taken to be the standard preferences from

the behavioral literature, that is, log, power and exponential S-shaped preferences,

with a kink at the inflection point.

5.1 Piecewise Logarithmic Utility

Consider the agent’s preferences given by

UA(c) =

 log(1 + c−K), c > K;

−θ log(1 +K − c), c ≤ K,
(41)

5Instead, whenever the optimal contracts pays a value in the loss space, it pays the lowest possible
amount, the lower bound.
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where θ > 1 (representing loss-aversion) and K > 0 (reference point) are constants.

Here UA(·) is convex on c < K, reflecting a risk-seeking attitude on losses.

By Lemma 3, c̄(y) = (y+K− 1)/2 for y > K+ 1. Recall L(·, ·) defined in (33). Since

L(c, y) ≥ 0 on (−∞, K) × [K + 1/θ,+∞), we have C∗T (y) ≥ K for y ≥ K + 1/θ.

Therefore C∗T (y) = c̄(y) for y > K+1. In addition, recall H(c, y) defined in (32). The

fact that H ≤ 0 on (K,+∞)× (K,K + 1] yields that C∗T (y) = K for K + 1/θ ≤ y ≤

K + 1.

For y < K + 1/θ, L(c, y) is strictly decreasing with respect to c and L(−∞, y) >

0, L(K−, y) < 0. Therefore L(C∗T (y), y) = 0, or C∗T (y) = (θy −K − 1)/(θ − 1).

To summarize, we obtain the optimal C∗T as follows

C∗T (YT ) = f(YT ) ,


YT+K−1

2
, YT > K + 1;

K, K + 1
θ
≤ YT ≤ K + 1;

θYT−K−1
θ−1

, YT < K + 1
θ
,

(42)

where YT = XT + λ.

Remark 7. CWZ (2009), Example 3.1, consider the same problem but with a classical

logarithmic utility for the agent. In that example, the optimal contract is a linear

function C∗T = (XT+λ)/2. Here, with behavioral preferences, the contract is piecewise

linear. This provides an additional explanation for the use of option-like contracts –

non-linearity may arise because of the behavioral preferences of the agent.

Remark 8. (i) By Lemma 3 and Lemma 4, the optimal contract, f(·), convexifies

UA(·) for y > K + 1 and concavifies it for y < K. Note that for y > K + 1 and

y < K,

AUA◦f = AUA(f)f ′ − f ′′

f ′
= AUA(f)f ′.

Since f ′ > 0, AUA◦f and AUA have the same sign for y > K + 1 and y < K,
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which means that UA ◦ f is still concave on y > K+ 1 and convex on y < K. In

other words, f(·) convexifies UA(·) for y > K + 1 but keeps its concavity; f(·)

concavifies UA(·) for y < K but keeps its convexity. The contract f(·) makes

UA(·) in parts less concave and in parts less convex to align better with the

principal’s risk neutrality.

(ii) For K < y < K + 1/θ, UA is concave while UA ◦ f is convex. Thus, f(·) heavily

convexifies UA(·) in order to keep UA ◦ f better aligned with the risk neutrality.

Finally, for y ∈ [K + 1/θ,K + 1], the optimal compensation is a constant K.

In what follows we consider the optimal contract as a function of XT rather than

YT ≡ XT + λ.

Denote α , K + 1− λ. Then (42) reads

C∗T (XT ) = g(XT ) ,


XT−α

2
+K, XT ≥ α;

K, α− θ−1
θ
≤ XT < α;

θ
θ−1

(XT − α) +K + 1, XT < α− θ−1
θ
.

(43)

Let α0 , K + 1− λ0 where λ0 is the Lagrangian multiplier that satisfies the partici-

pation constraint.

Proposition 3. Suppose XT ≥ 0. Then agent has a non-negative payoff if and only if

α0 ≤ θ−1
θ

(K+1). The principal has a non-negative payoff if and only if α0 ≥ θ−1
θ

+K.

Proof The first claim follows from (43). By (43), we also have

XT − C∗T =


X+α0

2
−K, XT ≥ α0;

XT −K, α0 − θ−1
θ
≤ XT < α0;

θ
θ−1

(α0 − XT
θ

)−K − 1, XT < α0 − θ−1
θ
,

from which the second claim follows.
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Thus, even when the final outcome to be shared is non-negative, XT ≥ 0, the principal

or the agent may have negative payoffs. However, it is impossible that both the

principal and the agent receive negative payoffs simultaneously. The probabilities of

receiving negative payoffs depend on the value of α0.

We now show whether and how the contract g(·) in (43) convexifies or concavifies the

agent’s utility function. A direct computation yields

AUA◦g − AUA =



1
2+x−α0

− 1
1+x−K , x > α0 ∨K;

− 1
x−α0

+ 1
1+K−x , x <

(
α0 − θ−1

θ

)
∧K;

1
2+x−α0

+ 1
1+K−x , α0 < x < K;

− 1
x−α0

− 1
1+x−K , K < x < α0 − θ−1

θ
.

(44)

Proposition 4. The optimal contract g(·) concavifies UA(·) on {XT < (α0 − (θ −

1)/θ) ∧K}, which is in the loss domain (C∗T < K). In addition, if α0 ≤ K + 1, then

the optimal contract convexifies UA(·) on {XT > α0∨K}, which is in the gain domain

(C∗T > K).

Proof When XT <
(
α0 − θ−1

θ

)
∧K, we have− 1

XT−α0
+ 1

1+K−XT
> 0; when α0 ≤ K+1

and XT > α0 ∨ K, we have 1
2+XT−α0

− 1
1+XT−K

< 0. By (44) and Lemma 2, the

conclusions follow.

Remark 9. From (43) we see that, when α0 < XT < K, the optimal contract

maps the asset value below the reference point (XT < K) to a compensation above

K (C∗T > K). Since the utility is S-shaped, the contract concavifies the utility by

effectively changing risk-seeking into risk-aversion. For K < XT < α0− (θ−1)/θ, the

situation is opposite, that is, the contract maps the asset value above the reference

point to a compensation below it, convexifying the utility by converting risk-aversion
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into risk-seeking. On the other hand, if

α0 −
θ − 1

θ
≤ K ≤ α0, (45)

or α0 ∈ [K,K + (θ − 1)/θ], then (43) implies that the principal pays the agent more

than K only when the outcome of the managed asset exceeds α0, which is above K,

and pays him less than K only if the outcome falls below a threshold α0 − (θ− 1)/θ,

which is below K.

5.2 Piecewise Power Utility

In this subsection we study the case where the agent has a piecewise power, S-shaped

utility function.

Example 5. (Piecewise power, S-shaped) Take

UA(c) =


1
γ
(c−K)γ, c > K;

− θ
γ
(K − c)γ, c ≤ K,

(46)

where θ > 1, K > 0 and 0 < γ < 1 are constants.

The functions H and L defined in (32) and (33) read

H(c, y) = (c−K)γ−1(y − c)− 1, c > K,

L(c, y) = θ(K − c)γ−1(y − c)− 1, c < K.

Denote

δ , γ(1− γ)
1−γ
γ θ−

1
γ . (47)

Lemma 6. For y ∈ (K,K + δ), L(c, y) = 0 admits two roots cA(y) < cP (y) < K.
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In addition, L(c, y) > 0 for c ∈ (−∞, cA(y)) ∪ (cP (y), K) and L(c, y) < 0 for c ∈

(cA(y), cP (y)). Furthermore, L(c, y) ≥ 0 for (c, y) ∈ (−∞, K)× [K + δ,+∞).

Proof For c < K < y, denote

j(c, y) , Lc(c, y)(K − c)1−γ 1

θ(1− γ)
=
y −K
K − c

− γ

1− γ
. (48)

Note j(·, y) is strictly increasing, j(K−, y) = +∞ and j(−∞, y) < 0. Therefore

L(·, y) attains its minimum at c0(y) < K such that j(c0(y), y) = 0, i.e.

c0(y) =(K − (1− γ)y)γ−1,

L(c0(y), y) =δ−γ(y −K)γ − 1.

Therefore, L(c0(y), y) < 0 if and only if y−K < δ. For the case y−K < δ, L(c, y) = 0

admits two roots since L(−∞, y) = L(K−, y) = +∞ and Lc(c, y) has the same sign

as j(c, y).

Next, define the function B by

B(uA, uP , y) , arg max
u∈{uA,uP }

F (u, y).

Note that L(c,K) = θ(K− c)γ − 1 is strictly decreasing for c < K. Thus L(c,K) = 0

admits a unique root, denoted by c(K). Taking into account that H(c,K) < 0, we

conclude that C∗T (K) = c(K).

Theorem 6. The optimal contract for an agent with the utility function (46), C∗T (y),
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is the following

C∗T (y) =


c̄(y), y ≥ K + δ;

B(c̄(y), cA(y), y), K < y < K + δ;

c(y), y ≤ K.

where c̄(·) and c(·) are from Lemma 3 and Lemma 4 with UA(·) defined in (46).

Proof By Theorem 4, for y > K, if C∗T (y) ≥ K, then C∗T (y) = c̄(y); and for y < K,

C∗T (y) = c(y).

For y ≥ K+ δ, by Lemma 6, Fc(c, y) = L(c, y)eUA(c) ≥ 0, ∀c < K. Thus C∗T (y) ≥ K.

Combining it with Theorem 4, we get C∗T (y) = c̄(y).

For K < y < K + δ, by Lemma 6, cA(y) = arg maxc<K F (c, y). Therefore C∗T (y) =

B(c̄(y), cA(y), y).

Combining Theorem 6 with Lemma 3 and Lemma 4, we obtain the following result.

Corollary 5. The optimal contract, as a function of YT = XT + λ, convexifies UA(·)

for YT ≥ K + δ and concavifies it for YT < K.

Remark 10. Here, we obtain the same qualitative result as that with the piecewise

log utility in the previous example, i.e. the optimal contract induces the agent to be

less risk averse in the gain part and less risk seeking in the loss part (see Remark 3).

However, unlike in the previous example, the optimal contract here is not piecewise

linear; indeed it is “more nonlinear”.

Recall from Lemma 3 and Lemma 4 that 0 < c̄′(y) < 1, ∀y > K and c′(y) > 1, ∀y <

K. The following proposition investigates c̄′′(y) and c′′(y).

Proposition 6. Consider c̄(·) and c(·) from Lemma 3 and Lemma 4 with UA(·)

defined in (46). We have

(i) c̄′′(y) > 0, ∀y > K. In addition, if γ ∈ (0, 1/2], then UA ◦ c̄ is concave on
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(K,+∞).

(ii) c′′(y) > 0, ∀y < K and UA ◦ c is convex on (−∞, K).

Proof (i) By definition, H(c̄(y), y) ≡ 0, y > K. Taking derivative on both sides

with respect to y yields

c̄′(y) =
c̄(y)−K

(1− γ)(y − c̄(y)) + c̄(y)−K
, c̄′′(y) =

γc̄′(y)(1− c̄′(y))

(1− γ)(y − c̄(y)) + c̄(y)−K
. (49)

Since K < c̄(y) < y and 0 < c̄′(y) < 1, ∀y > K, we have c̄′′(y) > 0, ∀y > K. In

addition, for y > K,

AUA◦c̄(y) = AUA(c̄(y))− c̄′′(y)

c̄′(y)
=

(1− γ)[c̄(y)−K + (1− 2γ)(y − c̄(y))]

(1− γ)(y − c̄(y)) + c̄(y)−K
.

Thus, if γ ∈ (0, 1/2], then AUA◦c̄(y) > 0, ∀y > K.

(ii) Similarly, we have

c′′(y) =
γc′(y)(c′(y)− 1)

K − c(y)− (1− γ)(y − c(y))
, ∀y < K. (50)

Then c′′(y) > 0 follows by noting c(y) < y < K and c′(y) > 1. Since the composition

of two increasing convex function is convex, UA ◦ c is convex on (−∞, K).

Remark 11. Note that the optimal contract is also convex on the loss part. Some-

what surprisingly, the convex contract c(·) compounded with the convex function

UA(·) concavifies the latter on the loss part. Since the composition of two increasing

convex functions, UA ◦ c, is still convex, the optimal contract keeps the convexity of

UA(·) on the loss part. In contrast, UA ◦ c̄ is only concave for γ ∈ (0, 1/2] but may not

be overall concave anymore for γ ∈ (1/2, 1). Note that 1− γ is the coefficient of the

relative risk aversion on the gain part of the agent’s utility. Therefore the optimal

contract keeps the concavity of the gain part of UA(·) if the relative risk aversion is
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Figure 1: Piecewise power, γ = 0.1, θ = 1,K is normalized to be 0. The dotted line is UA,
the solid line is UA ◦ c.

higher and possibly converts the concavity into convexity if the relative risk aversion

is lower.

Figure 1 shows the effective concavifying/convexifying of the agent’s utility function

by c̄(·) and c(·). In Figure 2, the contract function is plotted. The dotted line is

linear, comparing to which we see that c(·) is convex, while the dashed line is the

identity function, comparing to which we see that c′(·) > 1 in the loss part.

Suppose a function T (·) satisfies UA(c(y)) = T (UA(y)) (recall Definition 3). The

function T (·) should be convex on the gain part and concave on the loss part. In Figure

3 the dashed lined is linear, compared to which we see the convexity or concavity of

T.

6 Conclusions

We find the optimal contracts that the principal should pay to the agent who ap-

plies effort to the output process, in the moral hazard framework in which they may

have prospect theory type preferences. In particular, we discuss in details the opti-
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mal contracts when the principal is risk-neutral while the agent has a non-standard,

behavioral preference function. We find that the contracts are likely to be more non-

linear with those preferences. It would be of interest to extend this analysis to the

case of a continuous stream of compensation payments, as is done in Sannikov (2008)

for the case of an agent with standard preferences. Moreover, in this paper we only

consider non-randomized contracts, and leave the hard problem of finding the optimal

randomized contract for future research.
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