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Abstract. This paper studies the optimal controls of stochastic systems of functional type with 

end constraints. The systems considered may be degenerate and the. control region may bc 
nonconvcx. A stochastic maximum principle is derived. The method is based on the idea that 

stochastic systems are essentially infinite dimensional systems. 

w 1. Introduction 
A number of studies have been devoted to the necessary conditions of the 

optimal controls of stochastic systems. Many of these studies, however, are limited 
to the M arkovian type, i .e. ,  the systems are related only to the current state in- 
stead of the whole "pastL For example, Kushner t31 has obtained a maximum prin- 
ciple of the systems with a finite numbers of inequality constraints by employing 
the variational theory of Neustadt. Bensoussan tll has proved a maximum principle 
under the assumption that the control region is convex. But it seems more natural 
to study the stochastic systems of functional type, e.g., time delay system is an ex- 
ample of such systems. Works on the functional type are mainly those of 
Haussmann [2'31 , but his method is based on the Girsanov transformation which is 
effective only. for the nondegenerate systems. 

The purpose of this paper is to derive a stochastic maximum principle for the 
systems of functional type. A rather general case is attacked: the systems may be 
degenerate; an end constraint is posed; the control region is arbitrary. Our meth-  
od is different from those of the existing results in literature; it is based on the 
idea that a stochastic integral $2 ( t ,  to)dt may be regarded as a Bochner integral 
(B)S 2 ( t ,  �9 )dt valued at co, which allows us to apply the theory developed by 
Li and Yao TM for distributed parameter systems. 

The paper is organized as follows: In Section 2 we formulate the problem and 
give some basic notations and assumptions. Section 3 is devoted to the study of 
the variation equation, which is a linear stochastic differential equation of  function- 
al type. A variation-of-constants formula is proved. In Section 4, we give the 
proof of the maximum principle. 

w 2. Preliminaries 

Let ( f~ ,  7 ,  P ) b e  a standard probability space with a right-continuous 
increasing family {.,~: 0~< t~< 1} of sub a-fields of ~ each containing all P-null  
sets. Let { B ( t ) :  0~<t~< 1} be  an r-dimensional ~',- Brownian motion~ Consider 
the following stochastic controlled system : 
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d x ( t ) = a ( t , x ) d B ( t ) + f ( t , x , u ( t ) ) d t ,  

x ( 0 )  = xoE R ~. 

0~<t<~l, 
(2 .1 )  

Let the cost functional be 

J ( u ) : = E  f ~  x% u(s))ds,  u e U ~  (2 .2)  

with the end constraint 
x ' ( 1 ) e Q c L 2 ( f l ;  Rd ) ,  (2 .3 )  

where the totality of  admissible controls is defined as 
U , a : =  { u :  u is a F-valued ,J,- adapted measurable process on [0, 1] }, 

here F being an arbitrarily prescribed subset in R '~ . 
The optimal control problem is to find such controls among U,d satisfying 

(2 .3)  So as to achieve the min imum of the cost (2 .2) .  
Here are some notations throughout  this paper. Let X, Y be Banach spaces. 

~..~(X) denotes the topological a-field in X ;  L (X--~ Y) denotes the totality of  
linear cont inuous mappings from X to Y. We denote by C the space of 
Rd-valued cont inuous functions defined on [0, 1],  under the sup n o r m ;  . .~ , (C) is 
the a-field generated by { x" x ~  C ,  x ( t , ) ~ G , ,  ... , x ( t~ , )eG, ,  } where 0~< tl~< t ,  
Gla re  Borel sets in R a, i = 1 ,  2, ..-, m and m = l ,  2,  ... ; for x e C ,  t e [ 0 ,  1 ] ,  
x , : = x ( t  A �9 ), Ilxll, "=l lx, l l .  Finally, we define 
A . . . .  ={  a" a is a measurable mapping from [ 0 ,  I] x C to R 'X";  and  for each 

t ~ [ 0 ,  1] , a ( t ,  ) is ~ 
where R "x" : = totality of m • n matrices. 

Remark 2. 1. To simplify notations,  we shall assume r = l  ( i .  e. ,  the 
Brownian mot ion  is one-dimensional )  in the sequel. There is no essential diffi- 
culty when r >  1. 

Definition 2.1.  Suppose T is a mapping from C to R d. T is called FreShet 
differentiable at ~} �9 C if there exists S t  L (C --~R d) such that 

T ( y ) = T ( J ) + S ( y - 3 c ) + ~ ( l l y - 3 c l l ) ,  for any y e C .  (2 .4)  

Furthermore,  the operator S is called the FreShet differential of T at ~r We de- 
note Tx(~c ) : = S .  

The following assumptions remains in force throughout  this paper :  
(A1)  a~Aa'~;  for any u e F ,  f ( ' ,  , u ) ~ A d ' l , f ~  �9 , , u )~A I ' ' '  9 

(A2)  For  any ( t , x ) e [ 0 , 1 ] x C , f ( t , x , ' )  and f ~  continuously 
(A3)  For  any ( t ,  u)~ [0,1] x F,  a ( t , . ) , f ( t , ' ,  u ) a n d f ~  �9 , u ) are continuous;  

FreShet differentiable; and a x ( ' ,  �9 ), f x (  ", "," ) and f ~ ( ' , ' ,  :) are measurable; 
(A4) There exists a finite nonnegative measure M on [0, l] and a Positive con- 

stant K such that  

la (t, x ) - a ( t ,  y ) l :+ l f  (t, x, u ) - f ( t ,  y ,~)[~+lf~ x, u ) - f ~  y, u)[ ~ 

I x ( s ) - y ( s ) l : d M ( s ) + l x ( t ) - y ( t ) l :  ,for any u e F ,  x, y e C  ; 

l a ( t ,  x)[2+lf( t ,x ,  u) l :+l f~ u)lZ~K (l+llxll~ ), for any u e F ,  x e C  ; 

(A5)  Q is a relatively convex body with finite condimension in L2(f~ ;Rd)(for 



Maximum Principle of Stochastic Controlled Systems of Functional Type 195 

definition see [6] ). 
Remark 2.2. Under  the above assumptions,  equation (2 .1 )  admits a unique 

solution x ~ for any u e Uod (see Appendix) .  
Remark 2.3. We have by (A3) ,  (A4) ,  

lax(t,z)ylZ=lim [ t r ( t , z+2y) - t r ( t , z )12  (fo' ) -: <~K ly(s)l:dM(s)+ly(t)l 2 . (2 .5 )  A 
The same conclusion holds for fx and f o  x . 

w Variation Equation 
In this section we will derive a variat ion-of-constants formula for the varia- 

tion equation. Suppose (~c, ~ ) is optimal for the problem ( 2 . 1 ) -  (2 .3) ,  the varia- 
tion equation is a linear stochastic differential equation of functional type as fol- 
lows: 

f ^ v ^ 
drx'( t)=ax(t ,  ~c)~xVdB(t)+fx(t, x, ~t(t))~x dt+(f( t , .x ,  v( t))  

- f  (t, ~r ~t (t ) ) )dt , (3 .1 )  

~x'(O)=O, 
where v e Uoa. 

In general we consider the following equat ion:  

I dy(t)=ax(t,  ~c)ydB(t)+fx (t, 3c, ~(t))ydt+h(t)dt 
y ( 0 ) = 0 ,  ' (3 .2 )  

where h is an R d- valued ~ , -  adapted measurable process on [0, 1] . 
It is easy to prove that for any p > 2, there exists a constant k =  k ( p ) >  0 such 

that  (cf. [2] ) 
sup EIIx~llP<~k. (3 .3 )  

So we may assume that 

~0 I E Ih ( t ) l :d t<+~ . (3 .4 )  

We denote by V 0[0, 1] the set of  all functions from [0, 1] to R axd such that 
they are left continuous,  of bounded variation and vanish at 1. By Rietz's repre- 
sentation theorem,  there exist r/i( -, t, o ) ~  II010, 1] , i=  1, 2, such that  

fo' try(t, ~ r  dorh(O, t, to)y(O), 

fx(t ,  3c(a~), h(t, t o ) ) y = f o  j deq2(O, t, co)y(0) ,  for any y e C .  

Lemma 3.1. For any y e C ,  we have 

fo' do ,(o, t, co)y(o),  (3.5) 

fx(t ,  3c(eg), ~(t, o J ) ) y =  dorh(O, t, eg)y(O). (3 .6 )  
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Proof. Since a e A  d'~ , it is well known that for any y, z ~ C ,  i f y , = z , ,  then 
a(t ,  y ) = a ( t ,  z). Hence for a n y y ~  C ,  

a ( t ,  5r (co)+ 2 y ) - a  (t, 3c (co)) 
a~(t, x (co))y= lira 

~ o  

a(t ,  5r )+ 2 y , ) - a ( t ,  5r 
=lira =try(t, 3c (co))y,.  

~ o  2 
P I 

So for any ~peC ([ t, 1] --,- R a ) we have I, d~ ( 0 ) =  0, which leads to 

r/t ( - ,  t ,  o))[~,.i)=0. This concluds (3.5).  Similarly for (3.6).  VI 

Lemma 3.2. r/i is a measurable mapping from [0,1] x [0, 1] x fl to R d• More- 
over, for any 0~[0 ,  1],  r/i(0, ", �9 ) is an RaXa-valued ~J,-adapted process on 
[0, I] ( i=1 ,  2). 

Proof. Denote by ~ n  the totality of measurable subsets of [0, 1] x fl whose 
t-sections belong to .,q~/; by ~.ff~r the totality of measurable subsets of  [0, 1] x C 
whose t-sections belong to ~ , ( C ) . . . ~ a  and ..~r are a-fields on [0, 1] x f l  and 
[0, 1] x C respectively. It is easy to see by assumptions ( A I )  and ( A 3 )  that 
~r ( �9 , ) is a . @ r  ~ Ra)-measurable mapping from [0, 1] x C to 
L ( C ~  Ra), but the mapping:  (t, c o ) e [ 0 ,  1] x f ~ - ~ ( t ,  5 c ( r  1 ] x C  is 
6~a /6~-measurable .  All these facts together with the isomorphism of Riesz's rep- 
resentation imply that the mapping:  (t, co) ~[0,  I] x f~--- rll ( �9 t, co)e Vo[O, 1] is 
. .~a/ . .~(V0[0,  1] )-measurable. Since r/~ ( �9 , t, co) is left continuous, therefore 

r/, ( 0 ,  t, co ) = lira ~7~.~ ( 0 ,  t, co ) ,  

where 

r/i .n (0, t, co ): = n~li., rh ( i-._._~ln , t, co)Z {~2 . , 0< /}  (0) 

This yields the desired results for ~/1- Similarly for r h . [7 
For r e [ 0 ,  1], let r z) be a solution of the following matrix-valued equa- 

tion: 

,p (t, ,)=t+ f, dorh(O,s)~p(O,z)dB(s)+ do~h(O,s)q~(O,z)ds, 

t e [  ~, 1] ; (3.7)  

~p(t, T ) = 0 ,  t~ [0 ,  z). (3 .8)  
where 1 : = the d x d identity matrix. 

(3 .7 )  is a stochastic differential equation of functional type on [z, 1]. 
its coefficients satisfy Lipschitz condition, there exists uniquely on [~, 

Since 
1] an 

Rd• .ff~,-adapted continuous process satisfying (3 .7)  due to the following 
Lemma 3.3 (see Appendix). 

Let C[~, 1] : =C( [z ,  1]-,- Ra), and we can define ~ ( C [ r ,  1] ) in a similar 
way to ~ , ( C )  for / e [ ~ ,  1]. 
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Lemma 3.3. Suppose a~ is a mapping from [r, 1] x fl x C [ r ,  1] to Ra: 
P 1 

a,(t ,  co, y ) : = [  dorl,(O,t, co)y(O) ( i = 1 ,  2).  (3 .9)  

Then a t is measurable. Moreover, ai(t,  �9 , y )  is ~f~,,-measurable and ai(t,  co, �9 ) is 
�9 ~ ,  (C [ r ,  1] )-measurable. 

Proof .  1 ~ When 3=0 ,  we have 

fo I o (t, 3c (co )+ 2y ) - a  ( t, ~c (co ) ) 
dot h (0, t, co )y(O )=ax (t, 3c (co))y = lim 

~ o  2 

but it is easy to see that the mapping :(t, co, y )  ~ [0, 1] x f2 x C [0, 1] --,- a (t,~c (co) 
+ 2y  )~R a is a composit ion of  some measurable mappings,  therefore is measurable 
itself. 

2 o For  a general r e ( 0 , 1 ] ,  i f y ~ C [ z ,  1], d e f i n e y ' ~ C [ 0 ,  1] as follows: 

{ y ( z ) ,  if s e  [0, 3] ,  
~(s )  "= y ( s ) ,  if s t ( r ,  1] . 

Then 

~0 I a,( t ,  co, y ) =  doql(O,t, co) 'y(O)-( t?~(r+,  t, co)- r /~(0 ,  t, co ) )y (3 ) ,  

so we get the first two assertions of the lemma by 1 ~ and Lemma 3.2. Further,  
note that if y,  z ~ C [ r ,  1], and yl{ , . , l=zl t , . , j ,  then by Lemma 3.1 we have a~(t, 
c o , y ) = a ,  ( t ,  co, z) which yields the last assertion of the lemma.  

3 ~ Similarly for a 2 . I-1 
The solution q~ (t, 3, co) of ( 3 . 7 )  is not necessarily measurable in r, which 

will cause some difficulty in the sequel. To solve this technical problem, we shall 
make a "good  " modification of q~. Now let us introduce a result about  the exist- 
ence of a measurable modification. 

Let S be a metric space. Denote by L~ S) the totality of  S-valued random 
variables on (f~,  ~ P ) .  L ~ S) becomes a topological vector space with the 
following psedo-metr ic  (cf. [7] ): 

d ( X ,  Y ) : =  i n f [ e + P { c o :  d ' (X (co ) ,  Y ( c o ) ) > e } ] ,  
,>0 

where d '  is the metric on S. 
Remark 3.1. It is easy to see that d ( X , ,  X)  goes to zero whenever X, goes 

to X in probability. 
Lemma 3 . 4  ( [7 ,  p. 16] ). Suppose T and S are complete separable metric 

spaces. ). is a mapping from T x f ~  to S; and for any t ~ T ,  2 ( t ,  �9 ) ~ L ~  S).  
Suppose 2 is measurable when regarded as a mapping from T to L~ S). Then 
there exists a measurable mapping 2 from T x 12 to S such that for any t ~ T, P{co : 
2"(t, c o ) = 2  (t, co)}= 1. 

Lemma 3. 5. There exists a measurable function ~ ( t ,  z, co): [0, 1] x [0, I] x 
f~--~ R a"a satisfying (3 .7)  and (3 .8) .  

Proof. For  each fixed z ~ [ 0 ,  1] , there exists cp (t ,  z ) ( t . > r ) s a t i s f y i n g  ( 3 . 7 ) .  
cp can be regarded as a mapping from A to L ~  R axa) where A: = { ( t , r ) :  
0,.<z-..<t-..< 1}. We want to show that 
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lim EIq~(t~, 3~)-qJ(t,  3)15=0,  
( t n , X  n ) t  ( t , T )  

where ( t , , ' c , )~( t , 'c )  means: ( t , , 3 , ) e A ,  ( t , x ) ~ A ,  t,~ t t ,  x, t 3. 
rh= 0 for simplicity. First we claim that 

lim E sup I~p(0, q ) - ~ p ( 0 , 3 ) l ~ = 0 .  
n ~  oo : 4 0 4 1  

Indeed, when 0>/~, we can write 

~p(o,3,)-~,(o, 3)=f'f' 
II n 

+fj 

(3.10) 

We assume 

(3.11) 

n 

I ' d p q , ( p , s ) ( ~ p ( p , z . ) - ~ p ( p ,  3 ) ) d B ( s ) .  (3.12) 

Denote by V n, the total variation of 17, on [a, b]. Then (3.12) yields 
a 

E sup I~0(0, x~)-w(0, r)12~<const, h i ( "  ,S ) "  sup I~p(P,~,)I ds 
:<'O<"h n : n  Tn < P<. l  

f.l* f f.t* i + E k / F , ( ' . s )  sup I~o(P.~.)l ds+ E n , ( ' . s )  sup q,(p.T.) 

-~o (p, T)l as 

( f,'t  F ~<const. I ~ n - r l + E  n , ( - , s )  sup I~(p, 3n)12ds 
~n ~ n ~ # 4  I 

~h 

+ J  E ,  ,4,4sup, '~o(fl, Tn )-q)(fl ,  T)12ds). 

Similar to (3 .3)  we can verify that sup E sup I~p(O, 3)lP<.k(p),and by (2.5) 
0~<:41 ~<041 

' ' d M ( O ) + l ) .  Moreover, ~ / n t ( "  s ) - - -0  as we know that V n , ( - , t ,  co)~<K(S 0 
0 'in 

zn r ~ due to the let~ continuity of n,( ", s). Hence (3. 11) follows from the 
Gronwall's inequality. 

Now suppose (t~ ,3~)1' ( t , , ) . W e  may assume that z~<<.z<~ t~<<. t. Then we have 

~o(tn, T~)-q~(t, z)= don~(O, s)q~(O, %)dB(s)  
n n 

f. f: .  f*f + (0, s)tp (0, xn)dB ( s )+  dew , (O,s)(cp(O, 3.) 
t i t  ~IT 

) t . 
- ~p (0, 3))dB (s - doT,(O, s)(p (0, T)aB (s) 

n 

Appealing to (3.11),  and estimating the above term by term, we get (3.10). 
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Applying Lemma 3.4  and Remark 3.1 ( T : = A ,  S'=Rd• w e  get that there 
exists a measurable (0 :A x f~ -,- R d• such that for any (t, r ) e  A, P{to: (0 (t, r ,  to) 
=~0 (t, r, t o ) } = l .  But when r is fixed, it is easy to see that 
E l g p ( t , , z ) - g p ( t 2 , r ) 1 4 = E l q J ( t t , r ) - ~ o ( t 2 , r ) 1 4 ~ c o n s t .  Iq-t212 ( t , ,  t2.->r). 

By the proof of Komogorov 's  theorem (cf. [4, Th. 1.4.3.] ), lim t~(r, ~, to)  exists 

with probability 1, where D is the set 
follows by Fubini 's theorem that there 
lim ~o (r, r ,  co) exists when ( r ,  m) ~" 
r ~ t +  
r E D  

lim ~ ( r ,  r, 
r ~ t +  
r e D  

~'(t ,  3, 09)= tp(t, r, co), otherwise. 

r ~ t +  
r e d  

of all binary rationals on [0, 1]. Hence it 
exists on [0, 1] x f) a null set A 0 such that 

A0. Set 

to), i f ( t ,  r, t o ) e D C x A ~ ,  

It is easy to show that for any r E [ 0 ,  1] , P { t o : ~ ' ( t ,  r, to )= tp  (t, r, to), for any 
t e [ r ,  1] }= 1. Therefore ~" satisfies (3 .7)  which completes the proof. ['l 

Remark 3.2. By virtue of the above lemma, we can assume that q~ in ( 3 . 7 )  
and (3.8)  is measurable in (t, r, to). 

Lemma 3.6 (Stochastic Fubini's theorem). Suppose 2 is a mappihg from [0, 1] 
x [0 ,  1] x ~  to R a satisfying : 

1 ~ 2 is measurable ; 
2 ~ For any r e [ 0 ,  1], 2 (  �9 , r, �9 ) is an ,~,-adaptedprocess;  

3 ~ ES~S '01 ; t ( s , r ) l  ~ d s d ~ < + o o .  
Then for  any [a, b ] c  [0, 1], we have 

2 ( s , r ) d r d B ( s ) =  2 ( s , z ) d B ( s ) d r ,  P-a . s .  

Proof. Using a standard argument (see for example [4, Lemma 2.1.1] ), we 
can show that there exists a sequence of step function 2, such that ES~10{;t,(s, r )  
- 2 ( s ,  ~){2dsdr--,. 0 as n ~  oo. But the lemma is true for step functions. 

Theorem 3.1. The solution of  (3 .2)  can be represented by 

)=f: (t, z, to)h (~, to )d r .  (3. y ( t ,  co 13) 
i /  u 

Proof. The Lebesque integral in ( 3 .  13) is well defined owing to the 
measurability of q~ and (3.4) .  Define y"(t):  = ~  q~ (t, r )h  ( r ) d r .  Then 

;fl flfl ff do~,(O, s)~(O)dB(s)= don,(O,s) ~(O,r)h(r)d~dB(s) 

;2; f/ = doq, (0, s) tp(O, v ) h ( z ) d v d B  (s) 

t t I 
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where the exchangeability of integrations holds due to Lemmas 3.2, 3.5 and 3.6. 

Similarly, we have 

fl f: ff (f [ ) do172(0, s)~(O)ds= do1?2(0, s)~o (0, z)ds h(z )dz  , 
Q q 

hence ~" is a continuous process satisfying (3 .2) .  Now the desired result follows 

from the uniqueness of solutions of (3.2). 13 

w Maximum Principle 
In this section we will derive the maximum principle. 

The following lemma will play an essential role in this paper. 

Lemma 4.1. Suppose 2 is a mapping.from [0, 1] x f] to R d such that it is an 

.~-adapted measurable process and ESI012 (t)l 2 dt< + oo. Then when regarded as a 

mapping from [0, 1] to L2(f~; Ra), 2 is Bochner integrable. Moreover, 

( f O  I ) f0 I (B) 2 ( t , "  )dt (co)= 2(t ,  co)dt, P-a.s .co.  (4.1) 

Proof. It is a known result that there exists a sequence of step functions 

An (here "step function" is in the sense of an L2(fl ;  Ra)-valued function) such 

that 
/ 

E I ]2 , ( t ) -A ( t )12d t -~  O, as n--~ oo . (4.2) 
,/ 0 

Hence we may choose a subsequence An, satisfying 

E I A n , ( t ) - 2 ( t ) l  2--~ O, as n'--~oo, for a.e. t ~ [ 0 , 1 ] ,  

which implies ;t is a strongly measurable L2(f2; R d)-valued function, hence is 

Bochner integrable. Moreover it is clear that (4.1) is true for step functions, so is 

for 2 by (4.2). 17 

Suppose (x, u) is optimal for the problem ( 2 . 1 ) - ( 2 . 3 ) .  For any v~ U~a, set ]" 
x; ( t )"  = E  f ~  x ' ,  v(s))ds,  (4.3) 

0 

A A A 0 A A 

~x'o(t):=E f~  ~ ~  (s ,x ,u(s)))ds , (4.4) 

Now we define a convex cone in R~x L2(fl; where fix" is determined by (3.1).  

R a) as follows: 

z 
l i~l 1))[).=().l  "" ,).,)/>0, ~ 2 i = 1 ,  viEUad, 

i~l t i=1,  . . . ,  n ;  n = l ,  2 ,  . . .  . 

Theorem 4.1. For any ~ ~ =- , there exists an ~0 > 0 such that whenever ~ ~ [ 0 , ~  

there is a u'~ U,j satisfying 

(Xo(1), x~(1))=(~:o(1),  ~c (1 ) )+e~+o( t ) ,  (4.5) 
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g u e u s  ^ ~, 

where Xo: = x  o , x~: = x  , x o" = x  o, and o(~) is concerned with the strong 
topology of R 1 x L 2 (f~ ; R d ). 

Proof.  Fo r  any ~ ~-=, write r := ~ 2,.(6Xo~ (1) ,  3x '~ (1)). Thanks  to Lemma 4.1,  
i - 1  

we can apply the vector-valued measure theorem [6, Lemma 1] which yields that  

when E is sufficiently small, there exists a family of Lebesque measurable sets E~ in 

[0, I] ( i = l ,  ..., n] with E~c~E]=cp(i#j) and ~ # ( E ~ ) = e ,  w h e r e #  is the 
i ~ l  

Lebesque measure, such that  

,-, f (s, .x, v,(s) ) - f  (s, 3c, u(s))  

~ f t  ( E [ f ~ 1 7 6 1 7 6  ) ' (4"6) 
A A 

iol o. d ~e,' f ( s , x , v , ( s ) ) - f ( s , x , ~ ( s ) )  rl(t ,e) 

I r o (t, e)l+ Ilrl (t, e)ll L~<a;~a) < 0 (e) = o (e). (4.7)  

Define 

u ' ( t )  : = 
v,(t),  

u ( t ) ,  

if tEE~, 

if t~[O,  1] \ 0  E~. 
i - I  

Then u'e Uod, and we can write 

x ' ( t ) - .~ ( t )=  ( a ( s , x ' ) - a ( s , ) ) ) d B ( s ) +  

- f  (s, 5c, u'(s)))ds+ ~, f 
i=l to, tl~Ef 

- f  (s, ~c, u(s) ) )ds. 
It follows by Gronwall 's  inequality, 

El lx ' -&] l  ~--  0, as e--- 0 .  

Set 3x~: 2 i3x ' i .  We want to show that 
i = l  

x"( t )=~( t )+e6x~( t )+r( t ,  e), 
where 

II r(t, E)IIL2(, ~ ;.a>.< 0 (~) = o (e). 

In fact ,  (4 .8 )  and (4 .6)  imply 

f0fo x ' ( t ) - x ( t ) =  a~(s, ~+O(x'-~))(x"- .~)dOdB(s)  

( f  (s, x" ,  u " ( s ) )  

(/" (s, J ,  v , (s))  

fo'fo + f~(s,;c+O(x'-;c), u'(s))(x'-;c)dOds 

+ e ~ 2 ,  ( f (s , .x ,  v i ( s ) ) - f ( s , . ~ , u ( s ) ) ) d S - r l ( t , e ) .  
i - I  dO 

(4 .8 )  

(4 .9 )  

(4 .10)  

(4 .11)  
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x~--~c 
Denote y '  �9 = e 

y ' ( t  = a~(s, 3 c + O ( x ' - ~ ) ) y ' d O d B ( s ) +  s, 
dO dO 

r l ( t , t )  
+ r~ (t, e,) 

8 

where 

r2(t, ~ ) ' =  

6x~ . Then noting (3.1), we have 

~+ 0 (x ' - ;c) ,  u'(s))y~dOds 

(4.12) 

o' J[ (ax (s, ( x ' -  5c ) ) - ax (s, ) )6xa dOdB (s) ;c + 0 3c 

flfo + ( f~ ( s ,~c+O(x ' -Sc ) ,  u ' ( s ) ) - f~ ( s ,~c ,~ ( s ) ) )gx~dOds .  
i 

By assumption (A3), (4 .9)and the dominated convergence theorem, we have easily 

Elr2(t,e)lZ<.r(4)--, 'O, as~-~  0. 
Applying (2.5) to (4.12), we have 

(;o;: Ely~(t)lZ<~const. E ly ' (O)l:dM(O)ds+ ly ' (s) l :ds  

+ l r 2 ( t , e ) +  r l ( t ' e )  t z ) ,  

hence again by Gronwall's inequality, we arrive at 

Ely'(t)12<<.r(e) --- O, as 4 ~  0,  

which proves (4.10). A similar argument yields 

X*o(t)=~co(t)+e ~ 2 ,6xo ' ( t )+rs ( t ,  e), 
i=l  

where 

(4.13) 

[r s (t, 4)1~< 0 (4 )=o(e ) .  

Now (4.5) follows by combining (4.10) and (4.13). [7 
Theorem 4.2 (Maximum principle). Suppose (3c, ~ ) is optimal. Then there ex- 

ist ~k o <~ O, ~b ~ L 2 ( f~ ; R a) and an R a- valued #7, adapted process {p( t): 0 < t < 1 } 

such that 
I ~ H( t ,  3c, h ( t ) ,  p ( / ) ) =  max H ( t , x , u , p ( t ) ) ,  P-a.s . ,  a.e. t~ [0 ,  1] ; 

ut~I" 

2 ~ E (~k, x - ~'( 1 ) ) >>. O, for any x ~ Q, where the Hamiltonian 
H (t, x,  u , p ) :  = ( p , f  ( t , x , u )  )+ ~baf~ x, u),  for ( t , x , u , p ) e [ O ,  1] x Cx F x  R a. 

Proof. Define A := ( -  oo, 0] x (Q-So (1) ). Due to  assumption (A5) and The- 
orem 4. I, it follows exactly as in [6] that A and  E can be separated. So there 
exist ~,0eR I and ~k eLZ(f~ ; R a) satisfying 

I ~012+ El ~b 12#0, (4.14) 
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I 1 
~oEIof~ x~ u(t))(~xVdt'~ ~of :o~c~ x, v ( t ) ) - f~  x, u(t)))dl 

+ E  (~,  ~ x ' ( 1 ) ) ~ 0 ,  for any v~U~d, (4 .15)  

~ o X o + E ( ~ , x - x ( 1 ) ) ~ O ,  for any (x o, x - x ( 1 ) ) ~ A .  (4 .16)  

Assume (by Riesz's representation theorem) 

;o ;0 f ~ ( t , ) . , ~ ( t ) ) y - -  (dotlo(O, t), y(O)-~ (doJTo(O,t), y(O)) ,  for a n y y s C .  

Furthermore,  using Theorem 3.1 to represent ~ x ' ,  (4 .15)  can be rewritten as 

o' f ( t ,  v ( t ) ) - f ( t ,  ~ ( t ) ) ) +  ~,o(f ~ v( t ) )  

- f ~  ~, ~(t) ) )}dt<~ O, (4 .17)  

where ~ ' ( t )  : = ~kol I I; tp r (0, t)dorlo (0, z)d~+ O r (1, t) o .  Define p ( t ) : =  E(p ' ( t ) l .~ ' , ) .  
Then p ( t )  is an .~,- adapted process, and (4.17)  still holds with p (t)  replaced by 
p ( t ) ,  which yields 

EH (t, 3c, h( t) ,  p ( t )  )>~ EH (t, ?x, u,p (t) ), for any u E F ,  a.e. t ~ [ 0 ,  1] .  
By a standard trick as in Kushner TM, we can conclude 1 ~ of  the theorem. On the 
other hand,  (4 .16)  yields 2 ~ and ~,0~<0. 

Remark 4.1.  ~,0 and p will not be identical to zero at the same time. In-  
deed, if @0=0, then EIOI2>0 by (4 .14) .  Hence 

Elp(t)12=EIq~r(l ,  t)~kl:~>const. (EICr--EI~kI2EItp(I ,  t ) - l l : ) .  
But E I t p ( 1 ,  t ) - I I 2 - - ~ 0  as t--~l ( s ee3 .10 ) ) ;  it follows that when t is sufficiently 
near 1, E l ~ ' ( t ) [ 2 > 0 ,  hence Elp(t)12>O. 

Appendix. Stochastic Differential Equat ions with Random Coefficients ( S D E R C ) .  
In many cases, we will encounter stochastic differential equations of functional 

type whose coefficients are given also at random,  e.g. open- loop control problem. 
Such equations can be dealt with similarly to those in Ito's sense, but  there are 
still some differences. The most important  difference is that SDERC has no concep- 
tions of weak and strong solution (cf . [4 ,  Ch.  4] ) because SDERC is on a given 
probability space. In this appendix, we shall give the definition of solutions of  
SDERC,  and then give an existence and uniqueness theorem, the proof  of which 
is omitted since it can be supplied by a standard approach (cf. [4, Th.  4.3.1] ). 

Given a standard probability space (f~, ~ ,  P )  with a filtration { ,~',:0~<t~< 1} 
and an r-dimensional  #7,-Brownian mot ion { B ( t ) :  0~<t~<l}. tr and b are 
mappings from [0, 1] x C x f~ to R a~" and R a , respectively. 

Definition. By a solution of the following SDERC 

dx(t,  t a )=a( t , x ,  og)dB( t )+b( t , x ,  to)dt, t ~ [ 0 ,  1] , 

x(0, oJ)=x0eR ~, ( * )  

we mean a d-dimensional  continuous stochastic process x = { x  ( t ) :  0~< t~< 1 } on 
(f~, 7 ,  P )  such that 

1 ~ x is ~q~,-adapted; 
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2 ~ If we denote q~ (t, o9)" = a ( t ,  x(og), o9), ~k (t, o9): =b(t,  x (o9), o9), then 

~0 ~ d  ~" and r e . ~ ' ~  (cf [4, p. i6] ); 

3 ~ With probability one, 

fo f0 x(t ,  og)=Xo + a(s ,x(og) ,og)dB(s ,og)+ b(s ,x(og),o9))ds,  for any t~[O, 11. 

Definition. We say that the uniqueness of  solutions of ( * ) holds if whenever 
x and x '  are two solutions, then P{og:x( t ,  o9)--x'(t ,o9),  for any ts[O, 11}--1. 

Theorem. Under the following conditions, the SDERC ( * )  admits of a 
unique solution" 

(C1)  a and b are measurable mappings: 
( C 2 )  For f i x e d ( t ,  x )  ~[0 ,  1 ] x C ,  a(  t, x ,  �9 ) and b(  t, x, �9 ) are 

measurable; for f i x e d ( t ,  co)E[O, 1]xf~,  a ( t ,  , o9) and b ( t ,  ", o9) are 
( C )-measurable ; 

(C3)  There exists a positive constant K such that 
la (t, x, o9 ) - a (t, y, 09 )l+ ]b (t, x, co ) - b (t, y, 09 )1<__ K I Ix -y l l , ,  for any x, ye  C ; 

la(t,  x, o9)12+ Ib (t, x, o9)12 <_-- K (1 + Ilxll~ ), for any x ~ C .  
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