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We aim to characterize the trading behavior of an agent, in the context of a continuous-time portfolio choice
model, if she measures the risk by a so-called weighted value-at-risk (VaR), which is a generalization of
both VaR and conditional VaR. We show that when bankruptcy is allowed the agent displays extremely
risk-taking behaviors, unless the downside risk is significantly penalized, in which case an asymptotically
optimal strategy is to invest a very small amount of money in an extremely risky but highly rewarded lottery
and save the rest in the risk-free asset. When bankruptcy is prohibited, extremely risk-taking behaviors are
prevented in most cases in which the asymptotically optimal strategy is to spend a very small amount of
money in an extremely risky but highly rewarded lottery and put the rest in an asset with moderate risk.
Finally we show that the trading behaviors remain qualitatively the same if the weighted VaR is replaced
by a law-invariant coherent risk measure.
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1. Introduction Return and risk are two indispensable sides of investment activities. Both

practitioners and researchers have tried for a long time to understand the tradeoff between them.

On the one hand, the expected utility theory has been developed, in which the tradeoff between

the return and risk of an investment is coded into a single number, the so-called expected utility.

Abundant research has been devoted to optimal portfolio choice in this framework. On the other

hand, Markowitz [35] proposes a portfolio choice problem in which the agent chooses among the

portfolios that yield a pre-specified level of expected return while minimizing the variance of the

portfolio’s return. The pair of the expected return level and the corresponding minimal variance

represent the best tradeoff between risk and return under this mean-variance portfolio theory,

which traces out what is known as an efficient frontier on the return-risk plane.
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Although the mean-variance theory has achieved a great success in portfolio choice and asset
pricing, there have been criticisms about using variance as a risk measure, especially in terms of
treating volatile positive returns as part of the risk. Some alternative risk measures have been
put forth, examples including semi-variance and value-at-risk (VaR). On the other hand, some
researchers argue that a good risk measure should satisfy a set of reasonable axioms, one example
being the so-called coherent risk measures [5]. An interesting and important coherent risk measure
is the conditional VaR, or CVaR. Numerous studies have been conducted to characterize and extend
the notion of coherent risk measures; see also more discussions in Section 2.

Researchers have been applying VaR and CVaR to portfolio choice in the same way Markowitz
developed mean-variance theory. For instance, Kast et al. [27], Alexander and Baptista [3, 4],
Campbell et al. [12], and Vorst [43] study single-period mean-VaR portfolio choice problems in
different settings; Krokhmal et al. [30], Acerbi and Simonetti [1], and Bassett et al. [9] consider
single-period mean-CVaR portfolio choice models, in which the dual representation formula for
CVaR established by Rockafellar and Uryasev [38, 39] plays a key role.

There have been also extensions of the Markowitz model from the single-period setting to the
dynamic, continuous-time one in the past decade; see for instance Zhou and Li [45], Bielecki et al.
[10]. In addition, Jin et al. [23] consider a continuous-time mean-risk portfolio choice problem where
the risk is measured by a general convex function of the deviation of the random wealth from its
mean. This risk measure includes variance and semi-variance as special cases. An intriguing result
therein is that optimality of the corresponding mean-risk problem may not be achievable by any
admissible portfolios.

The study of continuous-time mean-risk portfolio choice problems with VaR or a general coherent
law-invariant risk measure is still lacking in the literature. Two relevant papers in this study
are Basak and Shapiro [8] and Gabih et al. [21], where the authors consider continuous-time
expected utility maximization problems with a risk constraint on the terminal wealth. The risk
is quantified by different risk measures including VaR, limited expected loss and expected loss of
the terminal wealth. However, in the problems considered in those two papers, it is the (strictly
concave) expected utility of the terminal wealth, rather than the mean of the terminal wealth, that
is maximized. As a result, the problems therein do not exactly belong to the class of mean-risk
portfolio choice problems.

The present paper complements the portfolio selection literature by studying continuous-time
mean-risk portfolio choice problems with general risk measures including VaR, CVaR and law-
invariant coherent risk measures. We first consider the case in which the risk is quantified by
the so-called weighted VaR, or WVaR in short, which includes both VaR and CVaR as special
cases. Applying the so-called quantile formulation technique, which has been developed recently
for solving mainly robust or behavioral portfolio selection problems (see Schied [41], Carlier and
Dana [13], Jin and Zhou [24], and He and Zhou [22]), we solve the problem completely. Specifically,
we provide sufficient and necessary conditions for both well-posedness (i.e., the optimal value
is finite) and existence of optimal solutions.1 These results indicate that the model is prone to
be ill-posed especially when bankruptcy is allowed, leading to extremely risk-taking behaviors.
Moreover, we find that the optimal value is independent of the expected terminal wealth target,
which leads to a vertical efficient frontier on the mean-risk plane. Furthermore, the optimal terminal
wealth, if it exists, must be a binary or digital option. When the problem is well-posed, we find an
asymptotically optimal solution, which is also a digital option. This solution suggests the following
strategy: bank most of the money and invest the rest to buy an extremely risky but highly rewarded
lottery. The winning chance of this lottery is extremely small, but the winning payoff is sufficiently

1 The well-posedness is equivalent to, in our setting, the absence of “nirvana strategies” defined by Kim and Omberg
[28].
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high to boost the expected terminal wealth to the desired target. A characterizing feature of this
strategy is that it entails little downside risk since the agent saves most of his money in the risk-
free asset. This type of strategy underlines the key investment methodology behind the so-called
principal guaranteed fund.2

We then consider the case in which bankruptcy is not allowed.3 Again, we are able to solve the
problem thoroughly. A major difference, though, is that an optimal solution, when it exists, is no
longer binary. It is ternary, i.e., takes only three values. Furthermore, an asymptotically optimal
solution we derive is also three-valued, implying the following strategy: spend a very small amount
of money buying an extremely risky but highly rewarded lottery to boost the expected return and
invest the rest to an asset with medium risk. As a result, when the market turns out to be very
good, the agent wins the lottery yielding an extremely high payoff. When the market is mediocre,
the agent loses the lottery but wins the investment in the asset, which leads to a moderate level of
terminal wealth. When the market is bad, the agent loses all his investment.

Finally, we change the mean-risk portfolio choice problem by replacing WVaR with a law-
invariant coherent risk measure. While the latter is not a special case of the former, we are able to
solve the latter based on the obtained results for the former along with a minimax theorem. We
find that the optimal value of the problem is again independent of the expected terminal wealth
target. Furthermore, when bankruptcy is allowed, the same strategy as in the case of WVaR is
derived.

The main contributions of our paper are two-fold. First, by solving explicitly and completely the
corresponding continuous-time portfolio choice problems, we are able to understand economically
the dynamic portfolio behaviors when the risk is measured by VaR and its variants/generalizations.
We find that the solutions have a significant qualitative change compared with those using variance
as the risk measure. Moreover, the model is very likely to be ill-posed, indicating an improper
modeling of the tradeoff between return and risk. As noted by Bassett et al. [9], portfolio choice is
“... an acid test of any new criterion designed to evaluate risk alternatives”. In this sense our results
constitute a critique, rather than advocacy, of using WVaR (and its similar peers) to measure risk.

Secondly, the technical analysis performed in our paper contributes mathematically to the lit-
erature. Although one of the main techniques in the analysis, i.e., quantile formulation, has been
employed in the literature [e.g., 41, 13, 24, 22], we develop new techniques in other parts of the
analysis. For instance, after applying the quantile formulation, we need to solve an optimization
problem in which the optimal quantile function is to be found. This problem is nontrivial and
cannot be solved by directly applying the Lagrange dual method as in the literature [e.g., 22]. We
design a new machinery that combines the dual method and a “corner-point searching” idea.

Finally, let us comment on the setting of our model. Following the classical mean-variance anal-
ysis, we measure investment risk by applying a risk measure on the terminal wealth. This setting is
standard and dominant in the literature even for continuous-time models. There are papers, e.g.,
Cuoco et al. [16], Yiu [44] and Leippold et al. [33], that study investment problems with dynamic
VaR constraint. More precisely, at each time t, the portfolio risk in a small time period [t, t+ τ ]
(e.g., in every day) is evaluated as the VaR of profit in this period by assuming the portfolio is
“constant”. The agent then maximizes the expected utility of her terminal wealth or consumption
while the portfolio risk at any time is controlled at certain level. In Section 7.2, we investigate this
dynamic VaR version of our problem and discuss how the optimal trading strategies will change.

2 A principal guaranteed fund is a mutual fund that ensures the return of the whole principal (or a large percentage
of it) while providing potential additional return. The fund manager of such a fund typically adopts the strategies
described above.

3 Precisely, here and hereafter, by “bankruptcy is not allowed” we really mean “a strictly negative wealth is not
allowed”. A zero wealth is still allowed, in which case the agent is no longer able to trade, and therefore forced to
exit the market.
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Generally speaking, the mean-risk problem in this paper is not time consistent, i.e., the optimal
dynamic trading strategy solved today is not necessarily optimal in the future if the agent has
the same expected wealth target and risk attitude. In this paper, we focus on the so-called pre-
committed strategies, which the agent commits herself to follow. Note that pre-committed strategies
are important. Firstly, they are frequently applied in practice, sometimes with the help of certain
commitment devices. For instance, Barberis [6] finds that the pre-committed strategy of a casino
gambler is a stop-loss one (when the model parameters are within reasonable ranges). Many gam-
blers indeed follow this strategy by applying some commitment measures, such as leaving ATM
cards at home or bringing little money to the casino; see Barberis [6] for a full discussion. The
results in the present paper are useful to understand trading behaviors of a pre-committed mean-
risk optimizer. Secondly, time-inconsistency arises in most mean-risk portfolio choice problems.
Indeed, the dynamic Markowitz mean-variance portfolio choice problem itself is time-inconsistent
[see e.g., 7, 11]. Further, Kupper and Schachermayer [31] show that the only dynamic risk measure
that is law-invariant and time consistent is the entropic one. In this sense, time-consistent risk
measures are too restrictive to accommodate many interesting cases such as VaR and CVaR.

The rest of the paper is organized as follows: In Section 2 we review different risk measures such
as VaR, coherent risk measures, and convex risk measures, as well as a representation theorem for
law-invariant convex risk measures. We then formulate the mean-WVaR portfolio choice problem
in Section 3 and solve it completely. In Section 4 we revise the portfolio choice problem by adding
a no-bankruptcy constraint and then provide the solution. Section 5 is devoted to solving the
mean-risk portfolio choice problem in which the risk is measured by a law-invariant coherent risk
measure. Several examples are provided in Section 6. Discussions and conclusions are presented in
Section 7. Proofs are placed in an Appendix.

2. Risk Measures on the Space of Lower-Bounded Random Variables Artzner et al.
[5] argue that a good risk measure should satisfy several reasonable axioms and introduce the
notion of coherent risk measures. Föllmer and Schied [17] and Frittelli and Rosazza Gianin [19]
extend this notion to convex risk measures. It is notable that VaR, a risk measure commonly
used in practice, is not a convex risk measure. Kou et al. [29], Cont et al. [15], and Cont et al.
[14] note that when using historical data to estimate the risk of a portfolio, VaR leads to more
robust estimates than convex risk measures do. In this section, we give a brief review of these risk
measures for the purpose of our later study of mean-risk portfolio choice. Note that, unlike most
existing works which define risk measures on the space of essentially bounded random variables, we
define them on the space of lower-bounded random variables. We choose the latter space because
in the portfolio choice problem we are going to consider, the payoffs are lower-bounded due to the
classical tame portfolio setting [26].

Let (Ω,F ,P) be a probability space, L∞(Ω,F ,P) be the space of essentially bounded random vari-
ables, and LB(Ω,F ,P) be the space of lower-bounded finite-valued random variables (but different
random variables in the space may have different lower bounds). Each element in LB(Ω,F ,P) rep-
resents the profit and loss (P&L) of a portfolio (in a fixed period). A mapping ρ from LB(Ω,F ,P)
to R∪{−∞} with ρ(0) = 0 is called a risk measure if it satisfies

1 Monotonicity: ρ(X)≥ ρ(Y ) for any X,Y ∈LB(Ω,F ,P) such that X ≤ Y ;
2 Cash Invariance: ρ(X + c) = ρ(X)− c for any X ∈LB(Ω,F ,P) and c∈R; and
3 Truncation Continuity: ρ(X) = limn→+∞ ρ(X ∧n) for any X in LB(Ω,F ,P).

The truncation continuity property, which is new compared to the risk measures defined on the
space of bounded P&Ls, is imposed to guarantee that the risk of any unbounded P&L can be
computed through its truncations. A simple example in which this property is violated is as follows:
ρ(X) = 0 if X is bounded and ρ(X) =−∞ otherwise. The truncation continuity property essentially
excludes this type of risk measures.

A risk measure is convex if it satisfies



Author: Dynamic Portfolio Choice when Risk is Measured by Weighted VaR
Article submitted to Mathematics of Operations Research; manuscript no. (Please, provide the mansucript number!) 5

4 Convexity: ρ(αX+(1−α)Y )≤ αρ(X)+(1−α)ρ(Y ) for any X,Y ∈LB(Ω,F ,P) and α∈ (0,1),
and is coherent if it further satisfies

5 Positive Homogeneity: ρ(λX) = λρ(X) for any X ∈LB(Ω,F ,P) and λ> 0.
Before we proceed, let us remark that in order to verify that a mapping from LB(Ω,F ,P) to

R ∪ {−∞} satisfies some of the aforementioned Properties 1–5, we only need to show that these
properties are satisfied when the mapping is restricted on L∞(Ω,F ,P) and the truncation continuity
property is satisfied.

Two random variables X and Y on (Ω,F) are called comonotone if

(X(ω)−X(ω′)) (Y (ω)−Y (ω′))≥ 0 for all (ω,ω′)∈Ω×Ω.

A risk measure ρ is called comonotonic additive if

ρ(X +Y ) = ρ(X) + ρ(Y )

for any comonotone pair (X,Y ) in LB(Ω,F ,P). Convex risk measures that are comonotonic addi-
tive are of particular interest in the literature, and it is easy to see that they are actually coherent
risk measures.

Throughout this paper we are interested in law-invariant risk measures. A risk measure ρ is law-
invariant if ρ(X) = ρ(Y ) for any X,Y ∈LB(Ω,F ,P) that share the same probability distribution.
There is a representation theorem in the literature for law-invariant convex risk measures. To state
this theorem, let us first define two simple risk measures that are commonly used in practice.

For any random variable X ∈LB(Ω,F ,P), let GX be its left-continuous quantile function. As a
result, GX is a left-continuous increasing function defined on (0,1] with the possibility of taking
+∞ at 1. We extend GX to the whole unit interval [0,1] by defining GX(0) := limz↓0GX(z)>−∞,
where the inequality is the case because X is lower-bounded. From the definition we see that GX

is continuous at 0. In the rest of the paper, denote by G the set of such quantile functions, i.e.,

G := {G : [0,1]→R∪{+∞} |G is increasing and left-continuous on [0,1],
continues at 0, and finite-valued on [0,1)}. (1)

The α-VaR, denoted by V@Rα(X), of a P&L, X, is defined as

V@Rα(X) :=−GX(α) (2)

where α ∈ [0,1] is the confidence level. The α conditional VaR or CVaR in short, denoted by
CV@Rα(X), is defined as

CV@Rα(X) :=
1

α

∫ α

0

V@Rs(X)ds (3)

where α∈ (0,1], with the convention

CV@R0(X) := V@R0(X) =−GX(0).

Hence, CV@Rα(X) is decreasing and continuous with respect to α on [0,1] and finite-valued on
[0,1).

It is easy to verify that both VaR and CVaR are comonotonic additive risk measures defined on
LB(Ω,F ,P). In addition, CVaR is convex, but VaR is not.4 The following representation theorem
shows that CVaR is the building block for law-invariant convex risk measures. To state the theorem,
let us introduce the notation P([0,1]) as the set of all probability measures on [0,1]. After equipped
with the usual weak topology, P([0,1]) becomes a compact space [36].

4 Indeed, it is known that both VaR and CVaR satisfy the monotonicity and cash invariance properties on L∞(Ω,F ,P),
and CVaR is convex on L∞(Ω,F ,P); see for instance Pflug [37]. On the other hand, using the monotone convergence
theorem, it is easy to show that both VaR and CVaR satisfy the truncation continuity property. Thus, both VaR and
CVaR are risk measures defined on LB(Ω,F ,P) and CVaR is convex on this space.



Author: Dynamic Portfolio Choice when Risk is Measured by Weighted VaR
6 Article submitted to Mathematics of Operations Research; manuscript no. (Please, provide the mansucript number!)

Theorem 1. Assume that (Ω,F ,P) is an atomless probability space. Then, ρ is a law-invariant
convex risk measure on LB(Ω,F ,P) if and only if there exists a lower-semi-continuous convex
function v :P([0,1])→ [0,+∞] satisfying infµ∈P([0,1]) v(µ) = 0 such that

ρ(X) = sup
µ∈P([0,1])

{∫
[0,1]

CV@Rz(X)µ(dz)− v(µ)

}
. (4)

Furthermore, ρ is coherent if and only if

ρ(X) = sup
µ∈A

{∫
[0,1]

CV@Rz(X)µ(dz)

}
(5)

for some closed convex set A⊂P([0,1]), and ρ is convex and comonotonic additive if and only if

ρ(X) =

∫
[0,1]

CV@Rz(X)µ(dz) (6)

for some µ∈P([0,1]).

This theorem has been proved in the literature when the risk measure is defined on L∞(Ω,F ,P);
see for instance Kusuoka [32] for the coherent case, Frittelli and Rosazza Gianin [20], Jouini
et al. [25], and Rüschendorf [40] for the convex case, and Föllmer and Schied [18] for the convex
and comonotonic additive case. We will supply a proof for the current setting of LB(Ω,F ,P) in
Appendix.

From Theorem 1, a law-invariant, convex, and comonotonic additive risk measure has represen-
tation (6). Using integration by parts, we obtain∫

[0,1]

CV@Rz(X)µ(dz) = µ({0})V@R0(X) +

∫
[0,1]

V@Rz(X)

∫
[z,1]

1

s
µ(ds)dz. (7)

Thus, a law-invariant, convex, and comonotonic additive risk measure can be regarded as a weighted
average of VaR at different confidence levels.

In general, we define the weighted VaR (or WVaR):

WV@Rm(X) :=

∫
[0,1]

V@Rz(X)m(dz) (8)

for some m∈P([0,1]). It is easy to verify that WVaR is a law-invariant comonotonic additive risk
measure on LB(Ω,F ,P). 5 In addition, according to representation (6), WVaR is convex if and
only if m on (0,1] admits a decreasing density with respect to the Lebesgue measure.

WVaR generalizes many known risk measures, and meanwhile can generate other types of risk
measures. If m is a Dirac measure, WVaR just becomes VaR. Acerbi [2] considers a family of risk
measures defined as

∫ 1

0
V@Rz(X)φ(z)dz for some probability density φ on (0,1). This class of risk

measures are obviously special examples of WVaR. When φ is a decreasing function, Acerbi calls
such a risk measure spectral risk measure, which is a law-invariant convex comonotonic additive
risk measure according to Theorem 1 and equation (7).

Furthermore, let us define the mapping ϕ :P([0,1])→P([0,1]) as

ϕ(µ)(A) = µ({0})10∈A +

∫
A\{0}

∫
[z,1]

1

s
µ(ds)dz, (9)

5 A law-invariant and comonotonic additive risk measure is not necessarily WVaR. For instance, for a fixed α∈ (0,1),
the risk measure limz↓α V@Rz(X) is comonotonic additive, but it is not a WVaR risk measure.
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where A is any measurable subset of [0,1]. Using this notation, risk measure (7) can be written
as WV@Rϕ(µ). Moreover, any law-invariant convex risk measure on LB(Ω,F ,P) can be writ-
ten as supµ∈P([0,1]){WV@Rϕ(µ) − v(µ)} for some lower-semi-continuous function v on P([0,1])
with infµ∈P([0,1]) v(µ) = 0. For a law-invariant coherent risk measure, it has the representation
supµ∈M

{
WV@Rϕ(µ)

}
for some closed convex set M⊂P([0,1]).

In the rest of the paper, we study a mean-risk portfolio choice problem and its variants in which
the risk of a portfolio is evaluated by either WVaR or law-invariant coherent risk measures. The
reason of using these two types of risk measures in the study of mean-risk portfolio choice is twofold.
On the one hand, coherent risk measures has the desirable property that diversification reduces
risk, as reflected by the convexity property. On the other hand, VaR, which is not a coherent risk
measure, is popularly employed in practice. As discussed earlier, WVaR either covers or is building
blocks to these two, and indeed many more, types of risk measures.

3. Mean-WVaR Portfolio Choice Model In this section, we formulate our continuous-
time mean-risk portfolio choice problem in which the risk of a portfolio is measured by WVaR.

3.1. A Continuous-Time Market Let T > 0 be a given terminal time and
(Ω,F , (Ft)0≤t≤T ,P) be a filtered probability space on which is defined a standard Ft-adapted n-
dimensional Brownian motion W (t)≡ (W 1(t), · · · ,W n(t))> with W (0) = 0, and hence the probabil-
ity space is atomless. It is assumed that F is P-complete and Ft = σ{W (s) : 0≤ s≤ t} augmented
by all the P-null sets in F . Here and henceforth, A> denotes the transpose of a matrix A and
x∨ y := max(x, y).

We consider a continuous-time financial market where there are m+1 assets being traded contin-
uously. One of the assets is a bank account with risk-free interest rate r. We assume without loss of
generality that r≡ 0. The other m assets are risky stocks whose price processes Si(t), i= 1, · · · ,m,
satisfy the following stochastic differential equation (SDE):

dSi(t) = Si(t)

[
bi(t)dt+

n∑
j=1

σij(t)dW
j(t)

]
, t∈ [0, T ]; Si(0) = si > 0, (10)

where bi(·) and σij(·), the appreciation and volatility rate of stock i, respectively, are scalar-valued,
Ft-progressively measurable stochastic processes with∫ T

0

[
m∑
i=1

|bi(t)|+
m∑
i=1

n∑
j=1

|σij(t)|2
]
dt <+∞, a.s.

Define the appreciation rate of return process

B(t) := (b1(t), · · · , bm(t))>,

and the volatility matrix process σ(t) := (σij(t))m×n. The following assumption, which leads to the
market being arbitrage-free, is imposed throughout this paper:

Assumption 1. There exists an Ft-progressively measurable, Rn-valued process θ0(·), the so-

called market price of risk, with E
[
e

1
2

∫ T
0 |θ0(t)|2dt

]
<+∞ such that

σ(t)θ0(t) =B(t), a.s., a.e. t∈ [0, T ].
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Consider an agent who has an initial endowment x> 0 and the investment period [0, T ]. Assume
that the trading of shares takes place continuously in a self-financing fashion and there are no
transaction costs. Then, the agent’s wealth process X(·) satisfies

dX(t) = π(t)>B(t)dt+π(t)>σ(t)dW (t), t∈ [0, T ]; X(0) = x, (11)

where πi(t) denotes the total market value of the agent’s wealth in stock i at time t. The process
π(·)≡ (π1(·), · · · , πm(·))> is called an admissible portfolio if it is Ft-progressively measurable with∫ T

0

|σ(t)>π(t)|2dt <+∞, a.s.

and is tame (i.e., the corresponding wealth process X(·) is almost surely bounded from below—
although the bound may depend on π(·)). It is standard in the continuous-time portfolio choice
literature that a portfolio be required to be tame so as to, among other things, exclude the doubling
strategy.

3.2. Mean-WVaR Portfolio Choice Problem We consider the following mean-risk port-
folio choice problem: At time 0, the agent decides the dynamic portfolio in the period [0, T ] so as to
minimize the risk of his portfolio given that some pre-specified expected return target is achieved
at time T . The risk is evaluated by a WVaR risk measure on LB(Ω,FT ,P): WV@Rm for some
given m∈P([0,1]). Then, the portfolio choice problem can be formulated as

Min.
π

WV@Rm(X(T ))

subject to: π is admissible,
dX(t) = π(t)>B(t)dt+π(t)>σ(t)dW (t), t∈ [0, T ], X(0) = x,
E[Xx,π(T )]≥Θ,

(12)

where x is the initial wealth and Θ is the expected terminal wealth target set by the agent.6 It
is reasonable to assume that the expected terminal wealth target is larger than the initial wealth,
i.e., Θ>x.

In general, problem (12) is time-inconsistent (i.e., the class of problems in the future using the
same objective function as in (12) are time-inconsistent). We aim only at solving (12) at t = 0;
namely, we are interested in pre-committed strategies only. Because of time-inconsistency, dynamic
programming is not applicable and we use the martingale method instead. We assume

Assumption 2. The market price of risk is unique, i.e., the market is complete.

With the complete market assumption, we can define the pricing kernel

ξ := exp

{
−
∫ T

0

1

2
|θ0(s)|2ds−

∫ T

0

θ0(s)>dW (s)

}
, (13)

where θ0 is the unique market price of risk. Then, by the standard martingale approach [26], finding
the optimal portfolio in the mean-risk portfolio choice problem is equivalent to finding the optimal
terminal wealth in the following optimization problem:

Max.
X

−WV@Rm(X)

subject to: X is FT -measurable and bounded from below,
E[X]≥Θ,
E[ξX]≤ x,

(14)

6 Recall that in Section 2 risk measures are defined on P&Ls. Thus, the more appropriate objective function in the
mean-risk portfolio choice problem should be WV@Rm(X(T )− x). However, the cash-invariance property implies
that WV@Rm(X(T )− x) =WV@Rm(X(T )) + x, for which reason we simply use WV@Rm(X(T )) as the objective
function in the portfolio choice problem.
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where X represents the terminal (time T ) payoff of certain portfolio. Here, we switch from mini-
mization to maximization because doing so could simplify the notation.

3.3. Optimal Solutions In this section we present the solution to the mean-WVaR portfolio
choice problem (14). Note that the objective function in (14) is neither convex nor concave in X;
hence the normal optimization technique fails. To overcome this difficulty, we employ the quantile
formulation technique. To this end, we impose the following assumption:

Assumption 3. ξ has no atom, i.e., its distribution function is continuous.

This assumption is satisfied when the investment opportunity set, i.e., the triplet (r(·), b(·), σ(·)), is
deterministic, in which case ξ is lognormally distributed (which is the case with the Black–Scholes
market). This assumption, together with Assumptions 1 and 2 will be in force throughout of the
paper.

The basic idea of the quantile formulation technique is to change the decision variable of a
portfolio choice problem from terminal payoffs to their quantile functions so as to obtain some nice
properties of the problem. The details of the quantile formulation are provided in Appendix A,
and here we focus on presenting the solution to (14).

We will use the following terminology frequently. An optimization problem is feasible if it admits
at least one feasible solution (i.e., a solution that satisfies all the constrained involved) and is well-
posed if it has a finite optimal value. A feasible solution is optimal if it achieves the finite optimal
value.

Before we present the optimal solution to (14), let us introduce the following assumption

Assumption 4. essinf ξ = 0, i.e., P(ξ ≤ x)> 0 for any x> 0.

This assumption stipulates that, for any given value, there exists a state of nature in which the
market offers a return exceeding that value. In particular, when the investment opportunity set,
i.e., the triplet (r(·), b(·), σ(·)), is deterministic and ξ is lognormally distributed (which is the case
with the Black–Scholes market), this assumption is satisfied.

In the following, we denote Fξ(·) as the CDF of ξ and F−1
ξ (·) as the quantile function of ξ, i.e.,

left-continuous inverse of Fξ(·). It is straightforward to see that
∫ 1

0
F−1(1− z)dz =E [ξ] = 1.

We further introduce the function

ζ(c) :=
m((c,1])∫ 1

c
F−1
ξ (1− z)dz

, 0< c< 1 (15)

and define the quantity

γ∗ := sup
0<c<1

ζ(c). (16)

This quantity plays an important role in determining the optimal solution.

Theorem 2. Let Assumption 4 holds. We have the following assertions:
(i) If γ∗ > 1, then V (m) = +∞. Moreover, there exists β∗ > 0 such that

Xn := x−nE [ξ1ξ≤β∗ ] +n1ξ≤β∗

is feasible to problem (14) and its objective value goes to infinity as n→∞.
(ii) If γ∗ ≤ 1, then V (m) = x. Furthermore, for any βn > 0 such that limn→∞ βn = 0, the following

terminal wealth

Xn :=
xP(ξ ≤ βn)−ΘE [ξ1ξ≤βn ]

P(ξ ≤ βn)−E [ξ1ξ≤βn ]
+

Θ−x
P(ξ ≤ βn)−E [ξ1ξ≤βn ]

1ξ≤βn (17)

is feasible and asymptotically optimal to problem (14) as n→∞, i.e., its objective value converges
to the optimal value of (14) as n→∞.
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(iii) If γ∗ = 1 and there exists c∗ ∈ (0,1) such that ζ(c∗) = γ∗, then

X∗ :=
xP(ξ ≤ β∗)−ΘE [ξ1ξ≤β∗ ]

P(ξ ≤ β∗)−E [ξ1ξ≤β∗ ]
+

Θ−x
P(ξ ≤ β∗)−E [ξ1ξ≤β∗ ]

1ξ≤β∗ ,

where β∗ := F−1
ξ (1− c∗), is optimal to (14).

(iv) If ζ(c)< 1,0< c< 1, then the optimal solution to (14) does not exist.

We observe from Theorem 2 that the well-posedness of mean-WVaR model depends only on
the market parameter (represented by ξ) and the risk measure (represented by m). As discussed
extensively in Jin and Zhou (2008) and He and Zhou (2011), an ill-posed model is one where the
incentives implied by the specific model parameters are set wrongly, and hence the agent can push
the objective value to be arbitrarily high. In the context of portfolio choice an ill-posed model
usually leads to trading strategies that take the greatest possible risk exposure; see also Kim and
Omberg [28], pp. 142-143, for a similar observation. For example, in the case of Theorem 2-(i)
when the model is ill-posed, one can take terminal payoff Xn := x−nE [ξ1ξ≤β∗ ]+n1ξ≤β∗ to achieve
as large objective value, or as small risk value, as possible. Note that this payoff may place the
investor in a deep loss position (with loss amount, nE [ξ1ξ≤β∗ ]− x, arbitrarily large as n goes to
infinity). Hence, in the region of the parameter space specified by γ∗ > 1, the chosen risk measure
– the WVaR – will lead (or indeed mislead) the agent to take extremely risky positions.

Theorem 2-(i) gives a qualitative characterization of the ill-posedness (or the presence of nirvana
strategies): the less risk measure penalizes the downside outcomes, or the higher the market return,
the more likely the model becomes ill-posed (and hence the more risk the agent is tempted to take).
On the other hand, when the problem is well-posed, the optimal value is x, which is irrelevant to
the expected terminal wealth target Θ and is even irrelevant to the risk measure (represented by
m)! In addition, (17) provides an asymptotically optimal solution when the problem is well-posed.
Write this solution as Xn = an+ bn1ξ≤βn . It is easy to show that an→ x and bn→+∞ as n→+∞.
Thus, the approximating solution implies the following strategy: banking most of you money (an)
and using the rest (x − an) to buy a lottery (bn1ξ≤βn). The probability of winning the lottery,
P(ξ ≤ cn), is small, but the winning payoff, bn, is high. By implementing this strategy, the agent
bears little risk because this strategy barely entails losses. Meanwhile, the lottery could boost the
expected terminal wealth to the desired level. In particular, since x> 0, we have an > 0 and hence
Xn > 0 a.s. when n is sufficiently large, implying a no-bankruptcy strategy.

We plot the efficient frontier for the mean-WVaR portfolio choice problem (12). Because the
optimal value does not depend on the expected terminal wealth target Θ, the efficient frontier is a
vertical line on the return-risk plane, as shown by Figure 3.3.

4. Mean-WVaR Portfolio Choice with Bankruptcy Prohibition Following the classical
setting for mean-variance portfolio choice problems like in Markowitz [35] and Zhou and Li [45], we
have assumed in the mean-WVaR portfolio choice problem (14) that the agent can continue trading
even when she is bankrupt. In some circumstances, however, bankruptcy may not be allowed (i.e.
the agent is no longer able to trade when her wealth reaches zero). Thus, in the following we
consider the mean-WVaR portfolio choice problem in the presence of the no-bankruptcy constraint.

Consider the following portfolio selection problem

Max.
X

−WV@Rm(X)

subject to: X is FT -measurable and bounded from below,
E[X]≥Θ,
E[ξX]≤ x,
X ≥ 0.

(18)
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Figure 1. Efficient frontier of problem (12) on return-risk panel.

Compared to problem (14), we have an additional constraint X ≥ 0 preventing the wealth from
going strictly negative. It is easy to see that replacing the constraint X ≥ 0 with X ≥ b for some
b < x does not essentially change the problem because we could do the change-of-variable X̃ =X−b.
The constraint X ≥ b can be understood as a stop-loss bound preset by the agent or a limited
borrowing constraint.

For the same reason as in problem (14), we assume that Θ>x> 0. Denote the optimal value of
problem (18) by V̄ (m). Recall ζ(·) defined by (15) and γ∗ defined by (16). The following theorem
provides the solutions to (18) completely.

Theorem 3. Let Assumption 4 hold. Then, we have the following assertions:
(i) If γ∗ = +∞, then V̄ (m) = +∞. Moreover, there exists βn, β′n, bn, and b′n with βn→ 0 and

bn→∞ as n→∞ so that Xn := b′n1ξ≤β′n + bn1ξ≤βn is feasible to problem (18) and its objective
value goes to infinity.

(ii) If γ∗ ≤ 1, then V̄ (m) = x. Furthermore, the terminal payoff (17) is asymptotically optimal
to problem (18).

(iii) If 1<γ∗ <+∞, then V̄ (m) = γ∗x. Furthermore, there exists βn, β′n, bn, and b′n with βn→ 0
and bn→∞ as n→∞ so that

Xn := b′n1ξ≤β′n + bn1ξ≤βn (19)

is feasible and asymptotically optimal to problem (18).
(iv) Problem (18) admits an optimal solution if and only if 1≤ γ∗ <+∞ and there exists c∗ ≥ c0

such that γ∗ = ζ(c∗) where c0 is the unique solution in (0,1) to the equation 1−c∫ 1
c F
−1
ξ

(1−z)dz
= Θ

x
. In

this case,

X∗ :=
x

E [ξ1ξ≤β∗ ]
1ξ≤β∗ ,

where β∗ := F−1
ξ (1− c∗), is optimal to problem (18).

Theorem 3 shows, again, that the optimal value of (18) is independent of the expected terminal
wealth target Θ, as with the case in which bankruptcy is allowed. Thus, if we draw the efficient
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frontier on the mean-risk plane, we will also obtain a vertical line as shown in Figure 3.3. However,
unlike problem (12) whose optimal value, if finite, does not depend on the choice of risk measure
(represented by m), the optimal value of (18) depends on the risk measure (through γ∗).

We have noted in the previous section that when bankruptcy is allowed, one can always construct
a series of asymptotically optimal strategies that automatically avoid bankruptcy, so long as the
problem is well-posed. At a first glance, this result seems to defeat the need of introducing the
model with bankruptcy prohibition. However, whether the bankruptcy constraint is in place or
not significantly changes the likelihood of the problem being ill-posed (and, correspondingly, the
risk-taking degree of the agent). Indeed, when bankruptcy is not allowed, the problem is ill-posed
only when γ∗ = +∞, while when bankruptcy is allowed, the model is much more likely to be ill-
posed—as long as the same γ∗ > 1! This certainly makes perfect sense economically: other things
being equal, no restriction on bankruptcy leads the agent to be exposed to more risk in order to
increase her objective value.

When the bankruptcy constraint is absent, we have shown in Theorem 2 that the set of binary
payoffs is sufficiently large to achieve the optimal value. The resulting asymptotically optimal
strategy (in Theorem 2-(ii)) is to invest a very small amount of money in an extremely risky
but highly rewarded lottery and the rest in the bank account. The agent’s final payoff is binary,
depending on whether the eventual market outcome is extremely favorable or otherwise. However,
in the presence of the bankruptcy constraint, the asymptotically optimal solution (in Theorem 3-
(iii)) is ternary, which suggests the following strategy: invest little in an extremely risky but highly
rewarded lottery and the rest in an asset with medium risk. In good states of world, the agent wins
the lottery and his payoff is boosted. In medium states, the agent loses the lottery but wins the
investment in the asset, ending up with a moderate level of payoff. In bad states, the agent simply
goes bankrupt and exits the market.

Indeed the following proposition stipulates that it is just impossible to use only binary payoffs
to achieve the optimal value when bankruptcy is not allowed.

Proposition 1. Let Assumption 4 hold. Let V̂ (m) be the optimal value of problem (18)
restricted to binary payoffs, i.e., the optimal value of the following problem

Max.
X

−WV@Rm(X)

subject to: X is FT -measurable and bounded from below,
E[X]≥Θ,
E[ξX]≤ x,
X ≥ 0,
X is binary.

If γ∗ > 1 and supc0≤c<1 ζ(c)<γ∗, then V̂ (m)< V̄ (m).

To conclude, the presence of the no-bankruptcy constraint markedly alters the model and the
resulting (asymptotically) optimal investment behaviors.

5. Mean-Risk Portfolio Choice with Law-Invariant Coherent Risk Measures In this
section, we consider a mean-risk portfolio choice problem where the risk is evaluated by a law-
invariant coherent risk measure, with both bankruptcy allowed and prohibited. The market setting
is the same as in Sections 3 and 4.

Because the probability space (Ω,FT ,P) is atomless, any law-invariant coherent risk measure
can be represented as in (5). Therefore, we may just consider the following law-invariant coherent
risk measure in our portfolio choice problem:

sup
µ∈M

WV@Rϕ(µ)(X),
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whereM is a given closed convex set in P([0,1]) and ϕ is defined as in (9). Given this risk measure,
the mean-risk portfolio choice problem with bankruptcy allowed can be formulated as

Max.
X

infµ∈M−WV@Rϕ(µ)(X)

subject to: X is FT -measurable and bounded from below,
E[X]≥Θ,
E[ξX]≤ x.

(20)

When bankruptcy is not allowed, the portfolio choice problem is

Max.
X

infµ∈M−WV@Rϕ(µ)(X)

subject to: X is FT -measurable and bounded from below,
E[X]≥Θ,
E[ξX]≤ x,
X ≥ 0.

(21)

Theorem 4. Let Assumption 4 hold.
(i) Problem (20) is well-posed if and only if

inf
µ∈M

sup
0<c<1

ϕ(µ)((c,1])∫ 1

c
F−1
ξ (1− z)dz

≤ 1. (22)

Furthermore, when problem (20) is well-posed, its optimal value is x, and the terminal wealth (17)
is asymptotically optimal as n→∞.

(ii) Problem (21) is well-posed if and only if

inf
µ∈M

sup
0<c<1

ϕ(µ)((c,1])∫ 1

c
F−1
ξ (1− z)dz

<+∞. (23)

Furthermore, when problem (21) is well-posed, its optimal value is

max

{
inf
µ∈M

sup
0<c<1

ϕ(µ)((c,1])∫ 1

c
F−1
ξ (1− z)dz

,1

}
x. (24)

So, the efficient frontiers here inherit the same property of those with the WVaR case: they are
vertical lines on the corresponding mean-risk planes. Furthermore, in the absence of the bankruptcy
constraint, the terminal wealth (17) that is asymptotically optimal in the WVaR case is also
asymptotically optimal in the case with law-invariant coherent risk measures.

6. Examples In this section we present two examples to illustrate the general results obtained
in the previous sections. For simplicity, we assume that essinf ξ = 0 and that F−1

ξ (·) is continuous.
Example 1. Let m= ϕ(µ) where µ= (1−w)δ0 +wδz1 , ϕ is defined as in (9), z1 ∈ (0,1), and

w ∈ [0,1]. In this case,

WV@Rm(X) = (1−w)CV@R0(X) +wCV@Rz1(X),

which is a weighted average of two CVaR risk measures at two different confidence levels (hence a
law-invariant, convex, and comonotonic additive risk measure). In particular, when w = 0 or 1, it
degenerates into a single CVaR.

By straightforward calculation, we have

ζ(c) =


w− w

z1
c∫ 1

c F
−1
ξ

(1−z)dz
, 0< c≤ z1,

0, z1 < c< 1.
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Taking the derivative with respect to c, we have, for any c∈ (0, z1), that

ζ ′(c) =

w
z1
h(c)(∫ 1

c
F−1
ξ (1− z)dz

)2 ,

where

h(c) =−
∫ 1

c

F−1
ξ (1− z)dz+ (−c+ z1)F−1

ξ (1− c).

Observe that

h(c) =

∫ z1

c

[F−1
ξ (1− c)−F−1

ξ (1− z)]dz−
∫ 1

z1

F−1
ξ (1− z)dz

=

∫ z1

0

max{F−1
ξ (1− c)−F−1

ξ (1− z),0}dz−
∫ 1

z1

F−1
ξ (1− z)dz.

Because max{F−1
ξ (1−c)−F−1

ξ (1−z),0} is decreasing with respect to c, we have that h(·) is strictly
decreasing in (0, z1). In addition, it is easy to observe that h(z1)< 0.

If F−1
ξ (1−) ≤ 1

z1
, then h(c) < h(0+) ≤ 0 for any c ∈ (0, z1). Thus, ζ(c) is strictly decreasing in

(0, z1). As a result, γ∗ = ζ(0+) = w ≤ 1 and cannot be achieved by any c ∈ (0,1). By Theorems 2
and 3, the optimal values for both problem (14) and problem (18) are x and the optimal solutions
do not exist.

If F−1
ξ (1−)> 1

z1
, which is the case for a lognormally distributed ξ, then h(0+)> 0. Hence ζ(·) is

first strictly increasing and then strictly decreasing in (0, z1); so there exists a unique c∗ ∈ (0, z1)
such that γ∗ = ζ(c∗). Furthermore, c∗ is the unique root of h(·) in (0, z1), leading to

γ∗ = ζ(c∗) =
w

z1F
−1
ξ (1− c∗)

.

Clearly, c∗ does not depend on w; hence we can denote c∗ = c∗(z1), which is strictly increasing in
z1. On the other hand,

z1F
−1
ξ (1− c∗) =

∫ 1

c∗
F−1
ξ (1− z)dz+ c∗F−1

ξ (1− c∗)

=

∫ 1

0

min{F−1
ξ (1− z),F−1

ξ (1− c∗)}dz,

showing that z1F
−1
ξ (1− c∗) is strictly decreasing in z1. In conclusion, γ∗ is strictly increasing in z1

and strictly increasing in w. Therefore, by Theorem 2, when w > z1F
−1
ξ (1− c∗), problem (14) is

ill-posed. When w= z1F
−1
ξ (1− c∗), the optimal value of (14) is x and the optimal solution exists.

When w< z1F
−1
ξ (1− c∗), the optimal value of (14) is x and the optimal solution does not exist.

Interestingly, in the special case in which w= 1 and thus WV@Rm becomes CV@Rz1 , problem
(14) is ill-posed. This is because

z1F
−1
ξ (1− c∗) =

∫ 1

c∗
F−1
ξ (1− z)dz+ c∗F−1

ξ (1− c∗)<
∫ 1

0

F−1
ξ (1− z)dz = 1.

As a result, γ∗ = 1

z1F
−1
ξ

(1−c∗)
> 1. By Theorem 2, problem (14) is ill-posed.

Next, consider problem (18), in which bankruptcy is not allowed, under the condition that
F−1
ξ (1−) > 1

z1
. It is always well-posed because γ∗ < +∞, and the optimal value is γ∗x. So the
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corresponding CVaR problem is also well-posed, as opposed to the case when bankruptcy is allowed.
On the other hand, the optimal solution exists if and only if c∗ ≥ c0 where c0 is defined as in
Theorem 3. Notice that the existence of optimal solution does not depend on w. Moreover, by
Proposition 1, if w > z1F

−1
ξ (1− c∗) and c∗ < c0, then V̂ (µ) < V̄ (µ), and consequently the set of

two-valued quantile functions cannot achieve the optimal value.
Example 2. Consider

m=
n∑
i=0

wiδzi

where wi ≥ 0, i= 0, . . . , n,
∑n

i=0wi = 1, and 0 = z0 < z1 < · · ·< zn = 1. This problem covers VaR as
a special case. It is easy to compute that

ζ(c) =

∑n

j=iwj∫ 1

c
F−1
ξ (1− z)dz

, zi−1 < c≤ zi, i= 1, . . . , n.

As a result,

γ∗ = sup
0<c<1

ζ(c) =

max1≤i≤n−1

∑n
j=iwj∫ 1

zi
F−1
ξ

(1−z)dz
, wn = 0,

+∞, wn > 0.

Then, by Theorem 2, we know problem (14) is ill-posed if and only if wn > 0 or

max1≤i≤n−1

∑n
j=iwj∫ 1

zi
F−1
ξ

(1−z)dz
> 1, and is well-posed and admits an optimal solution if and only if wn = 0

and max1≤i≤n−1

∑n
j=iwj∫ 1

zi
F−1
ξ

(1−z)dz
= 1, and is well-posed but does not admit a solution in other cases.

If we consider the special case in which m= δz1 for some z1 ∈ (0,1), corresponding to the VaR,
then γ∗ = 1∫ 1

z1
F−1
ξ

(1−z)dz
> 1. As a result, problem (14) is ill-posed.

Next, we consider problem (18). By Theorem 3, this problem is well-posed if and only if wn = 0.
Moreover, it admits an optimal solution if and only if wn = 0 and there exists i∗ such that zi∗ ≥ c0

and

max
1≤i≤n−1

∑n

j=iwj∫ 1

zi
F−1
ξ (1− z)dz

=

∑n

j=i∗ wj∫ 1

zi∗
F−1
ξ (1− z)dz

.

The preceding two examples indicate that the mean-risk model with VaR or CVaR as risk
measure is ill-posed if bankruptcy is allowed, and well-posed if otherwise. Note that even in the
well-posed case, an optimal solution may not exist in general. Basak and Shapiro [8] and Gabih
et al. [21] also consider the VaR constraint on the terminal wealth in a dynamic, complete-market
setting. Their problems admit (unique) optimal solutions due to the strong concavity and the Inada
condition of their utility functions, while our problem may not because our objective function is
linear.

7. Discussions and Conclusions

7.1. Comparison with mean-variance problems We have shown in the previous sections
that optimal portfolios of the continuous-time mean-risk portfolio choice problems where the risk is
measured by WVaR or law-invariant coherent risk measures exhibit markedly different qualitative
behaviors than their mean-variance counterpart.

First, the mean-WVaR portfolio choice problem is prone to be ill-posed, especially when
bankruptcy is allowed. The mean-variance problem, however, is always well-posed in the same
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market setting [45]. This difference is one of the most significant: it indicates that if one uses VaR,
CVaR, a coherent risk measure, or a generalized version of these as a risk measure in a dynamic
portfolio choice model, then one will be likely to be attracted to take excessive risk in order to
achieve “optimality” or “nirvana”. One important implication of our results is that imposing a
no-bankruptcy constraint (or generally an upper bound constraint for losses) will greatly curtail,
but not completely eliminate, the aforementioned risk-taking behavior.

Secondly, no matter whether or not bankruptcy is allowed, the optimal value of the mean-risk
portfolio choice problem with WVaR or law-invariant coherent risk measures is independent of
the expected terminal wealth target; in other words, the efficient frontier on the mean-risk plane
is a vertical line. By contrast, the minimal variance in the mean-variance model depends on the
expected terminal wealth target, yielding a nontrivial efficient frontier curve on the mean-variance
plane; see Zhou and Li [45] and Bielecki et al. [10]. This suggests one of the disadvantages of
the mean-WVaR model, that is, there is no explicit tradeoff between risk and return if the risk
is evaluated by WVaR. This feature itself leads to some of the unusual trading behaviors to be
discussed in details below.

Thirdly, according to Theorem 2, the optimal terminal payoff of the mean-WVaR model (when
bankruptcy is allowed), if it exists, is a digital option: it has two deterministic values, depending on
the market condition (whether ξ ≤ β∗ or otherwise). Even when an optimal solution does not exist,
we have found that the two-valued terminal wealth (17) to be asymptotically optimal, as shown by
Theorems 2 and 4. When bankruptcy is prohibited, from the proof of Theorem 3, asymptotically
optimal terminal wealth can be three-valued. By contrast, the optimal terminal wealth in the
mean-variance model changes continuously with respect to the market condition (represented by
the pricing kernel ξ); see for instance Bielecki et al. [10].

Finally, the asymptotically optimal solution (17) in the mean-risk problems (14) and (20) rep-
resents the following strategy: bank most of the capital and invest the rest to an extremely risky
by highly rewarded lottery. The chance of winning the lottery is slight, and consequently the prob-
ability of the terminal wealth exceeding the expected payoff target is tiny. A similar observation
can be made for the asymptotically optimal solutions to problem (18) in which bankruptcy is not
allowed. By contrast, the probability of the optimal terminal wealth exceeding the expected ter-
minal wealth target in the mean-variance portfolio choice problem is high, at least theoretically.
Indeed, Li and Zhou [34] show that this probability is at least 80% under all parameter values,
assuming a deterministic investment opportunity set.

For classical continuous-time models such as the mean-variance or expected utility maximization,
the optimal trading strategies are to continuously re-balance in such a way that the proportion
among risky allocations is kept in a pre-determined pattern. While one cannot claim that such a
trading behavior captures most of what we see in practice, it does describe what would be the
best in an ideal world. In comparison, the strategies derived from the mean-WVaR model and its
variants display a very specific pattern of trading behavior, one that is typically taken by the so-
called principal guaranteed funds. This type of strategies is not commonly seen in real investment
practice, nor does it provide an investment guide suitable for a typical investor.

The essential reason behind our resulting strategies can be seen from the quantile formulation
of the mean-WVaR model (27): it is a linear program in G due to the linearity of U(G(·),m) in
G(·). This linearity is intrinsic to the comonotonic additivity of WVaR. For law-invariant coher-
ent risk measures, the objective function becomes sublinear in G(·), and this sublinearity is the
result of the positive homogeneity property. This sublinearity in turn leads to the optimal quantile
functions being “corner points”, or step functions. The corresponding terminal random payoffs are
therefore like digital options, leading to the class of “gambling” trading strategies discussed above.
For expected utility or mean-variance models, however, the objective functions involved are not
sublinear.
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7.2. Comparison with Cuoco et al. [16] In this paper, we evaluate portfolio risk by apply-
ing a risk measure on the terminal wealth only. In real world, however, people may monitor the
risk of investment dynamically as time goes by. Cuoco et al. [16] study a model in which the VaR
of the portfolio’s profit is constrained to be no higher than some specified level at any time t. To
compare their results and ours, we consider a variant of our mean-risk portfolio selection problem
(12) with a dynamic risk constraint as in Cuoco et al. [16].

To match the setting in Cuoco et al. [16], we switch the roles of the return and risk in the mean-
risk problem by fixing a risk level and optimizing the return. As in Cuoco et al. [16], we prohibit
bankruptcy. At each time t, the VaR of a portfolio in the period [t, t+ τ ] is evaluated by assuming
the portfolio in this period is static, where τ > 0 is a given horizon. For simplicity, we assume there
is only one risky stock in the market and the appreciation rate B(·) and volatility σ(·) of the stock
are positive constants. In addition, we assume that at each time t the limit imposed on the VaR
of the portfolio in the period [t, t+ τ ] is a constant proportion β of the portfolio’s value at time t.

According to Cuoco et al. [16, Remark 2], the VaR constraint can be translated into the following
portfolio constraint

a≤ π(t)

X(t)
≤ b, 0≤ t≤ T

for some constants a ∈ R and b > 0 that are dependent on the appreciation and volatility of the
stock, the confidence level of VaR and the duration τ .7 Consequently, the revised portfolio choice
problem can be formulated as

Max
π(·)

E[X(T )]

subject to dX(t) = π(t)Bdt+π(t)σdW (t), 0≤ t≤ T, X(0) = x,

a≤ π(t)

X(t)
≤ b, X(t)≥ 0, 0≤ t≤ T.

(25)

One can apply the same dynamic programming method as in Cuoco et al. [16] to obtain the
optimal percentage allocation to the stock: π∗(t)/X∗(t) = b,0≤ t≤ T .8 In other words, the optimal
portfolio must bind the VaR constraint. Note that the optimal portfolio in Cuoco et al. [16] does
not necessarily bind the VaR constraint because the expected utility rather than the mean of the
terminal wealth is maximized therein.

Let us return to the mean-risk problem (18) (having no-bankruptcy constraint). When the risk
is measured by VaR, Example 2 illustrates that problem (18) is well-posed, terminal wealth (19)
is asymptotically optimal, and the optimal value is independent of the expected return target, i.e.,
the mean-risk efficient frontier is vertical. This efficient frontier in turn suggests that if an agent
restricts the VaR of her terminal wealth to be lower than a fixed risk level and then maximizes
the mean of the terminal wealth, the optimal value is infinity (i.e., the problem is ill-posed) and a
sequence of terminal wealths in form (19) with βn→ 0 and bn→+∞ can be constructed to achieve
the infinity.9 Furthermore, the trading strategies that replicate this sequence of terminal wealths

7 Note that π(t) stands for the percentage allocation to the stock in Cuoco et al. [16] while it is used as the dollar
amount allocation in the present paper.

8 Indeed, one can check that the value function corresponding to this portfolio satisfies the HJB equation (15) in
Cuoco et al. [16] when the utility function u(·) is the identity function.

9 The optimal value of problem (18) is γ∗x (when γ∗ > 1), which shows that with any expected terminal wealth target
(higher than the risk-free payoff), the minimum risk level one can achieve is −γ∗x. Consequently, in order to make
the mean-VaR problem, in which the VaR of the terminal wealth is restricted to be lower than a fixed risk level and
the expected terminal wealth is maximized, meaningful, one needs to set this fixed risk level to be strictly higher
than −γ∗x.
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must involve asymptotically infinite leverage on the stock. Indeed, as problem (25) shows, when
the percentage allocation to the stock is bounded at any time (e.g., a≤ π(t)/X(t)≤ b, t≥ 0), the
maximum expected terminal wealth one can attain is finite. Hence infinite leverage must be taken
to achieve infinitely high expected terminal wealth, which is the case when the portfolio risk is
evaluated as the VaR of the terminal wealth.

To summarize, when portfolio risk is evaluated only on the terminal wealth, investors tend to
take infinite leverage on risky stocks in order to achieve mean-risk optimality. When portfolio risk is
evaluated dynamically as in Cuoco et al. [16], investors are prevented from taking excess leverage.

7.3. Conclusions To conclude, when the risk criterion is changed from variance to WVaR
or a law-invariant coherent risk measure, the solutions in the mean-risk portfolio choice problem
have a significant qualitative change. Although the resulting optimal trading strategies can explain
or capture the behavior of a specific class of agents, they do not seem to be appropriate for
many other investors. Moreover, the model is very likely to be ill-posed, indicating an improper
modeling of the tradeoff between return and risk. So, while mathematically this paper has solved
this class of portfolio selection problems thoroughly and explicitly, economically it is more a critique,
than advocacy, of using WVaR or law-invariant coherent measures (including VaR and CVaR) on
terminal wealth only to model risk for portfolio choice.

Appendix A: Quantile Formulation Quantile formulation, developed in a series of papers
including Schied [41], Carlier and Dana [13], Jin and Zhou [24], and He and Zhou [22], is a technique
of solving optimal terminal payoff in portfolio choice problems. This technique can be applied once
the objective function and constraints, except for the initial budget constraint, in a portfolio choice
problem are law-invariant and the objective function is improved with a higher level of the terminal
wealth (i.e., the more the better). The basic idea of quantile formulation is to choose quantile
functions as the decision variable.

The mean-risk problem (14) satisfies the aforementioned assumptions, so we can apply quantile
formulation here. Recall that G is the quantile function set as defined in (1). Define

U(G(·),m) :=

∫
[0,1]

G(z)m(dz), G(·)∈G. (26)

By this definition, WV@Rm(X) =−U(GX ,m). Then, the quantile formulation of (14) is the fol-
lowing optimization problem

Max.
G(·)

U(G(·),m)

subject to:
∫ 1

0
G(z)dz ≥Θ,∫ 1

0
F−1
ξ (1− z)G(z)dz ≤ x,

G(·)∈G.

(27)

The following theorem verifies the equivalence of the portfolio selection problem (14) and the
quantile formulation (27) in terms of feasibility, well-posedness, and existence and uniqueness of
the optimal solution.

Theorem 5. We have the following assertions.
(i) Problem (14) is feasible (well-posed) if and only if problem (27) is feasible (well-posed).

Furthermore, they have the same optimal value.
(ii) The existence (uniqueness) of optimal solutions to (14) is equivalent to the existence (unique-

ness) of optimal solutions to (27).
(iii) If X∗ is optimal to (14), then GX∗(·) is optimal to (27). If G∗(·) is optimal to (27), then

G∗(1−Fξ(ξ)) is optimal to (14).
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Proof. This can be proved in exactly the same way as in He and Zhou [22]. �
Theorem 5 stipulates that in order to study the mean-WVaR problem (14), we only need to

study its quantile formulation (27).
The quantile formulation technique also applies to the mean-WVaR problem with bankruptcy

prohibition (18), mean-risk problem (20) when risk is measured by law-invariant coherent risk
measures, and mean-risk problem with bankruptcy prohibition (21) when risk is measured by law-
invariant coherent risk measures, and their quantile formulations are presented, respectively, as
follows:

Max.
G(·)

U(G(·),m)

subject to:
∫ 1

0
G(z)dz ≥Θ,∫ 1

0
F−1
ξ (1− z)G(z)dz ≤ x,

G(0)≥ 0, G(·)∈G,

(28)

Max.
G(·)

infµ∈MU(G(·),ϕ(µ))

subject to:
∫ 1

0
G(z)dz ≥Θ,∫ 1

0
F−1
ξ (1− z)G(z)dz ≤ x,

G(·)∈G,

(29)

and

Max.
G(·)

infµ∈MU(G(·),ϕ(µ))

subject to:
∫ 1

0
G(z)dz ≥Θ,∫ 1

0
F−1
ξ (1− z)G(z)dz ≤ x,

G(0)≥ 0, G(·)∈G.

(30)

Theorem 5 applies to these problems as well.
Finally, let us comment that although we use the complete market setting here, i.e., Assumption

2 is in force, quantile formulation can also be applied in the incomplete markets in which the
investment opportunity set, (r(·), b(·), σ(·)), is deterministic and conic constraints are imposed on
the portfolios. In this case, the pricing kernel is not unique, and we need to choose the so-called
minimal pricing kernel; see He and Zhou [22] for details.

Appendix B: Proofs

B.1. Proof of Theorem 1 We only consider the convex case here, the other two cases being
similar.

When restricted on L∞(Ω,F ,P), ρ is still law-invariant and convex. According to Jouini et al.
[25, Theorem 1.1], there exists v :P([0,1])→ [0,+∞] such that

ρ(X) = sup
µ∈P([0,1])

{∫
[0,1]

CV@Rz(X)µ(dz)− v(µ)

}
=: ρ̃(X)

for all X ∈ L∞(Ω,F ,P). Because we normalize the risk measure ρ so that ρ(0) = 0, we must have
infµ∈P([0,1]) v(µ) = 0. On the other hand, because

∫
[0,1]

CV@Rz(X)µ(dz) is continuous in µ for each

fixed X ∈ L∞(Ω,F ,P), replacing v with its lower-semi-continuous envelop does not change ρ̃(X).
Thus, we can assume that v is lower-semi-continous in P([0,1]).

Clearly, ρ̃(X) is well-defined for any X ∈LB(Ω,F ,P). In order to prove the representation (4),
we only need to prove that ρ̃ is truncation continuous on LB(Ω,F ,P).
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With the notation f(X,µ) :=
∫

[0,1]
−CV@Rz(X)µ(dz), we have

ρ̃(X) =− inf
µ∈P([0,1])

{f(X,µ) + v(µ)} .

Because −CV@Rz(X), z ∈ [0,1], is increasing and continuous on [0,1] and is finite-valued on [0,1),
there exists a sequence of bounded continuous functions converging point-wisely to −CV@Rz(X)
from below. Consequently, f(X,µ) is lower-semi-continuous in µ. On the other hand, it is obvious
that f(X,µ)≤ f(Y,µ) for any X ≤ Y .

Now, consider a fixed X ∈ LB(Ω,F ,P). For any n ≥ 1, due to the compactness of P([0,1])
and the lower-semi-continuity of f and v in µ, there exists µn ∈ P([0,1]) such that ρ̃(X ∧ n) =
− [f(X ∧n,µn) + v(µn)]. Thanks again to the compactness of P([0,1]), we can assume that µn
converges to µ̄. Then, for any m≥ 1, we have

limsup
n→+∞

ρ̃(X ∧n) = limsup
n→+∞

{− [f(X ∧n,µn) + v(µn)]}

=− lim inf
n→+∞

[f(X ∧n,µn) + v(µn)]

≤− lim inf
n→+∞

[f(X ∧m,µn) + v(µn)]

≤− [f(X ∧m, µ̄) + v(µ̄)]

where the first inequality is due to the monotonicity of f in its first argument and the second
one is due to the lower-semi-continuity of f and v in µ. Sending m to infinity, by the monotone
convergence theorem, we conclude that

limsup
n→+∞

ρ̃(X ∧n)≤− [f(X, µ̄) + v(µ̄)]≤− inf
µ∈P([0,1])

[f(X,µ) + v(µ)] = ρ̃(X).

On the other hand, it is easy to check that lim infn→+∞ ρ̃(X ∧ n)≥ ρ̃(X). Therefore, we conclude
that ρ̃ satisfies the truncation property.

B.2. Proof of Theorem 2 The proof of Theorem 2 is decomposed into two steps: first solve
(27) by Lagrange dual method; secondly, solve (14) by recalling Theorem 5.

We apply the Lagrange dual method to solve (27). However, we apply the multiplier only to
the expected return constraint and keep the initial budget constraint unchanged. For any λ≥ 0,
consider the following problem

Max.
G(·)

Uλ(G(·),m) :=
[∫

[0,1]
G(z)m(dz)

]
+λ

∫ 1

0
G(z)dz−λΘ

Subject to
∫ 1

0
F−1
ξ (1− z)G(z)≤ x,

G(·)∈G

(31)

and denote its optimal value by Vλ(m). Recall that V (m) is the optimal value of problem (14),
thus is also the optimal value of problem (27). Then, the following weak duality must hold:

V (m)≤ inf
λ≥0

Vλ(m).

In the following, we solve (31) and show that the strong duality holds.
Let S be the set of two-valued quantile functions, i.e.,

S := {G(·)∈G |G(z) = a+ b1c<z≤1, a∈R, b∈R+, c∈ (0,1)} (32)
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and consider

Max.
G(·)

Uλ(G(·),m) :=
[∫

[0,1]
G(z)m(dz)

]
+λ

∫ 1

0
G(z)dz−λΘ

Subject to
∫ 1

0
F−1
ξ (1− z)G(z)≤ x,

G(·)∈ S.

(33)

Denote its optimal value by Ṽλ(m).

Proposition 2. Problems (31) and (33) have the same optimal value, i.e., Vλ(m) = Ṽλ(m).

Proof. The proof is similar to that of Jin and Zhou [24, Proposition D.3]. Because the proof
is short, we supply it here for completeness. Clearly, we have Vλ(m)≥ Ṽλ(m). If Vλ(m)> Ṽλ(m),
by the monotone convergence theorem, we can find a bounded feasible G(·) such that Ṽλ(m) <
Uλ(G(·),m) < +∞. Then, by the dominated convergence theorem, we can find a feasible step
function

G̃(·) := a0 +
n∑
i=1

bi1(ti,1], 0< t1 < · · ·< tn < 1, b1, · · · , bn > 0

such that U(G̃(·),m)> Ṽλ(m). Given any {αi}ni=1 such that αi > 0, i= 1, · · · , n and
∑n

i=1αi = 1, let

di =
bi
αi
, ai =

∫ 1

0

F−1
ξ (1− z)G̃(z)dz− di

∫ 1

ti

F−1
ξ (1− z)dz.

Then, we can check that Gi(·) := ai + di1(ti,1], i= 1, · · · , n are feasible to problem (31) and G̃(·) =∑n

i=1αiGi(·). By the linearity of Uλ in G, there exists i0 such that Uλ(G̃(·),m)≤ Uλ(Gi0(·),m)≤
Ṽλ(m), which is a contradiction. �

Next, we solve (33). Thanks to the monotonicity property of WVaR, we only need to consider
those feasible solutions that bind the initial budget constraint. Thus, for any feasible solution
a+ b1(c,1], we may set

a= a(b, c) := x− b
∫ 1

c

F−1
ξ (1− z)dz. (34)

Straightforward calculation shows that

Uλ(a(b, c) + b1(c,1],m) = (k1(c)λ− k2(c))b+x− (Θ−x)λ,

where

k1(c) :=
∫ 1

c

[
1−F−1

ξ (1− z)
]
dz, k2(c) :=

∫ 1

c
F−1
ξ (1− z)dz−m((c,1]).

Therefore, (33) is equivalent to

supc∈(0,1),b≥0 (k1(c)λ− k2(c))b+x− (Θ−x)λ. (35)

Because ξ is atomless, F−1
ξ (·) is strictly increasing on (0,1); hence k1(·) is strictly concave and

k1(0+) = k1(1−) = 0. Consequently, k1(c)> 0 for any 0< c< 1.
Define

λ∗ := inf
0<c<1

k2(c)

k1(c)
= inf

0<c<1

∫ 1

c
F−1
ξ (1− z)dz−m((c,1])∫ 1

c

[
1−F−1

ξ (1− z)
]
dz

. (36)
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For any λ ≤ λ∗ and c ∈ (0,1), we have k1(c)λ − k2(c) ≤ 0; hence the optimal value of (35) is
x− (Θ−x)λ. For any λ> λ∗, there exists c∈ (0,1) such that k1(c)λ−k2(c)> 0; hence the optimal
value of (35) is +∞. Thus, we have

Vλ(m) = Ṽλ(m) =

{
x− (Θ−x)λ, λ≤ λ∗,
+∞, λ > λ∗,

(37)

Therefore, λ∗ is the possible multiplier that closes the duality gap. The next proposition makes
precise this observation.

Proposition 3. We have the following assertions:
(i) If λ∗ < 0, then V (m) = infλ≥0 Vλ(m) = V0(m) = +∞.
(ii) If λ∗ ≥ 0, then V (m) = infλ≥0 Vλ(m) = Vλ∗(m) = x− (Θ−x)λ∗.

(iii) If λ∗ ≥ 0 and there exists c∗ ∈ (0,1) such that λ∗ = k2(c∗)
k1(c∗) , then problem (27) has an optimal

solution given in the form a+ b1(c∗,1] with a∈R and b > 0.

Proof. We first prove assertion (i). In this case, there exists c∗ ∈ (0,1) such that k2(c∗) < 0.
Consider Gb(·) := a(b, c∗) + b1(c∗,1] where a(b, c∗) is given as in (34). Then, we have∫ 1

0

Gb(z)dz = a(b, c∗) + b(1− c∗) = x+ k1(c∗)b=: g(b).

Clearly, limb→+∞ g(b) = +∞. Consequently, when b is large enough, the expected return constraint
is satisfied. On the other hand, we have

U(Gb(·),m) =−k2(c∗)b+x,

which goes to infinity as b goes to infinity. Therefore, V (m) = +∞.
Next, consider assertion (ii). By the weak duality, we have V (m) ≤ infλ≥0 Vλ(m) = Vλ∗(m) =

x− (Θ−x)λ∗. On the other hand, let cn ∈ (0,1), n≥ 1, be a sequence such that k2(cn)/k1(cn) ↓ λ∗.
Let Gn(·) := a(bn, cn) + bn1(cn,1] and bn ∈ R+ be the one binding the expected return constraint,
i.e.,

bn =
Θ−x∫ 1

cn

[
1−F−1

ξ (1− z)
]
dz
.

Then, we have

U(Gn(·),m) =−k2(cn)bn +x

=− (Θ−x)
k2(cn)

k1(cn)
+x,

which converges to x− (Θ−x)λ∗ as n goes to infinity. Therefore, we have V (m)≥ x− (Θ−x)λ∗ =
Vλ∗(m).

Finally, we prove assertion (iii). From (35), it follows that for any b∈R+, Gb(·) := a(b, c∗)+b1(c∗,1]

is optimal to (33) and therefore optimal to (31). On the other hand

g(b) :=

∫ 1

0

Gb(z)dz = a(b, c∗) + b(1− c∗) = x+ k1(c∗)b

is strictly increasing and g(0) = x, limb↑∞ g(b) = +∞. Therefore, there exists a unique b∗ > 0 such
that g(b∗) = Θ. Consequently, Gb∗(·) is optimal to (27). �

Now, we are ready to prove Theorem 2.
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Proof of Theorem 2. Because F−1
ξ (1− z) is decreasing in z, we have

limsup
c↑1

k2(c)

k1(c)
≤ limsup

c↑1

∫ 1

c
F−1
ξ (1− z)dz∫ 1

c
[1−F−1

ξ (1− z)]dz
≤ limsup

c↑1

(1− c)F−1
ξ (1− c)

(1− c)(1−F−1
ξ (1− c))

= 0,

where the equality is due to F−1
ξ (0+) = 0, which follows from Assumption 4. Thus, we obtain

that λ∗, as defined in (36), is larger than or equal to zero, and is equal to zero if and only if
sup0<c<1 ζ(c)≤ 1, i.e., γ∗ ≤ 1. Therefore, recalling the equivalence between problems (14) and (27),
we conclude V (m) = +∞ in case (i) and V (m) = x in case (ii) from Proposition 3.

From the proof of Proposition 3, we find that when γ∗ > 1, there exists c∗ ∈ (0,1) such that
Gn(·) := a(n, c∗) + n1(c∗,1] is feasible and its objective value goes to infinity as n→∞. Letting
β∗ := F−1

ξ (1− c∗) and recalling Theorem 5-(iii), we conclude that Xn := x− nE [ξ1ξ≤β∗ ] + n1ξ≤β∗
is feasible and its optimal value goes to infinity.

Next, we prove that the terminal wealth in (17) is asymptotically optimal in case (ii). It is easy
to verify that E[ξXn] = x and E[Xn] = Θ. Thus, Xn is feasible to problem (14). On the other hand,
we have

V (m)≥−WV@Rm(Xn)≥ xP(ξ ≤ βn)−ΘE [ξ1ξ≤βn ]

P(ξ ≤ βn)−E [ξ1ξ≤βn ]
→ x= V (m).

Therefore, the objective value of Xn converges to the optimal value as n→∞.
For case (iii), we have k1(c∗)/k2(c∗) = 0 = λ∗. Recalling Proposition 3-(iii), G∗ = a(b∗, c∗) +

b∗1(c∗,1] is optimal to (27), where b∗ is the positive number so that
∫ 1

0
G∗(z)dz = Θ. According to

Theorem 5-(iii),

X∗ =G∗(1−Fξ(ξ)) =
xP(ξ ≤ β∗)−ΘE [ξ1ξ≤β∗ ]

P(ξ ≤ β∗)−E [ξ1ξ≤β∗ ]
+

Θ−x
P(ξ ≤ β∗)−E [ξ1ξ≤β∗ ]

1ξ≤β∗

is optimal to (14).
Finally, we prove (iv). Suppose problem (14) admits an optimal solution, so does problem (27),

and we denote the solution as G∗(·). Then, G∗(·) can not be constant on (0,1) because it must
satisfy the initial budget constraint and expected terminal wealth constraint at the same time and
Θ>x. Let dG∗(s+) be the measure on [0,1) induced by G∗, i.e.,

G∗(z)−G∗(0) =

∫
[0,z)

dG∗(s+), z ∈ [0,1).

The above equality also holds true for z = 1 because G∗(1) = limz↑1G
∗(z). Then, we have∫

[0,1]

G∗(z)m(dz) =

∫
[0,1]

∫
[0,z)

dG∗(s+)m(dz) +G∗(0)

=

∫
[0,1)

m((s,1])dG∗(s+) +G∗(0).

Similarly, we have∫ 1

0

F−1
ξ (1− z)G∗(z)dz =

∫
[0,1)

(∫ 1

s

F−1
ξ (1− z)dz

)
dG∗(s+) +G∗(0).

Because G∗ is nonconstant on [0,1), dG∗(s+) must be a strictly positive measure. Then, because
ζ(c)< 1 for all c∈ (0,1), we conclude that∫

[0,1]

G∗(z)m(dz)<

∫ 1

0

F−1
ξ (1− z)G∗(z)dz ≤ x,

which contradicts the optimality of G∗(·). �
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B.3. Proof Theorem 3 We only need to solve (28) and then apply Theorem 5.
For any γ ≥ 1, we apply the multiplier γ − 1 to the last constraint in (28), i.e., consider the

following problem

Max.
G(·)

U(G(·),m) + (γ− 1)G(0) = γ [U(G(·),mγ)]

subject to:
∫ 1

0
G(z)dz ≥Θ,∫ 1

0
F−1
ξ (1− z)G(z)dz ≤ x,

G(·)∈G

(38)

where mγ := 1
γ
m+ γ−1

γ
δ0 and δ0 is the Dirac measure at 0. Denote the optimal value of (38) by

V̄γ(m). Obviously, we have V̄γ(m) = γV (mγ). On the other hand,

sup
c∈(0,1)

mγ((c,1])∫ 1

c
F−1
ξ (1− z)dz

=
1

γ
sup
c∈(0,1)

m((c,1])∫ 1

c
F−1
ξ (1− z)dz

=
γ∗

γ
.

Thus, it follows from Theorem 2 that

V̄γ(m) = γV (mγ) =

{
γx γ ≥ γ∗

+∞ γ < γ∗.

Then, by the weak duality, we have

V̄ (m)≤ inf
γ≥1

V̄γ(m) = (γ∗ ∨ 1)x.

Next, we prove that actually the strong duality holds.
First, consider the case in which γ∗ ≤ 1. Choosing γ = 1, then problem (38) becomes problem

(27). By Theorem 2, the optimal value of problem (27) is x, and we can find a sequence of feasible
quantiles Gn such that U(Gn,m)→ x and Gn(0)→ x as n→∞. As a result, Gn’s are also feasible
to problem (28), which implies that V̄ (m) ≥ U(Gn,m)→ x. Combining this fact with the weak
duality, we conclude that V̄ (m) = x. In addition, it is easy to see that the terminal wealth (17) is
feasible and asymptotically optimal to problem (18).

Next, we consider the case in which 1<γ∗ <+∞. We can find a sequence {c′n}n≥1 in (0,1) such
that ζ(c′n) goes to γ∗. Because F−1

ξ (0+) = 0, we have

lim inf
c↑1

1− c∫ 1

c
F−1
ξ (1− z)dz

≥ lim inf
c↑1

1− c
(1− c)F−1

ξ (1− c)
= +∞.

Consequently, we can find a sequence {cn} in (0,1) increasing to 1 and a sequence {wn} in [0,1]
converging to 0 such that

wn
1− cn∫ 1

cn
F−1
ξ (1− z)dz

→+∞.

Let

Gn(·) := (1−wn)
x∫ 1

c′n
F−1
ξ (1− z)dz

1(c′n,1] +wn
x∫ 1

cn
F−1
ξ (1− z)dz

1(cn,1]. (39)

Then, it is easy to see that∫ 1

0

Gn(z)dz ≥wnx
1− cn∫ 1

cn
F−1
ξ (1− z)dz

→+∞.
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Therefore, Gn(·) is feasible when n is sufficiently large. On the other hand, we have

U(Gn(·),m) =

[
(1−wn)

m((c′n,1])∫ 1

c′n
F−1
ξ (1− z)dz

+wn
m((cn,1])∫ 1

cn
F−1
ξ (1− z)dz

]
x

≥

[
(1−wn)

m((c′n,1])∫ 1

c′n
F−1
ξ (1− z)dz

]
x→ γ∗x.

Thus, we have V̄ (m)≥ γ∗x. Together with the weak duality, we have V̄ (m) = γ∗x. As a consequence,
Xn :=Gn(1−Fξ(ξ)) is feasible and asymptotically optimal to problem (18). With βn := F−1

ξ (1−cn),
β′n := F−1

ξ (1− c′n), bn := wn
x∫ 1

cn
F−1
ξ

(1−z)dz
, and b′n := (1− wn) x∫ 1

c′n
F−1
ξ

(1−z)dz
, Xn coincides with the

one in (19).
Assertion (i) can be proved similarly.
Finally, we prove (iv). We only need show that (30) admits optimal solutions if and only if there

exists c∗ ≥ c0 such that γ∗ = ζ(c∗).
Because 1−c∫ 1

c F
−1
ξ

(1−z)dz
is continuous and strictly increasing in c on (0,1) with

lim
c↓0

1− c∫ 1

c
F−1
ξ (1− z)dz

= 1, lim
c↑1

1− c∫ 1

c
F−1
ξ (1− z)dz

= +∞,

the existence and uniqueness of c0 ∈ (0,1) are justified.
First, we prove the sufficiency. Let c∗ ≥ c0 such that γ∗ = ζ(c∗)≥ 0. Let

G∗(z) :=
x∫ 1

c∗ F
−1
ξ (1− z)dz

1c∗<z≤1, 0< z < 1.

Then, ∫ 1

0

G∗(z)dz =
1− c∗∫ 1

c∗ F
−1
ξ (1− z)dz

x≥Θ

where the last inequality is due to c∗ ≥ c0. Therefore, G∗(·) is feasible. On the other hand,

U(G∗(z),m) =
m((c∗,1])∫ 1

c∗ F
−1
ξ (1− z)dz

x= γ∗x.

Thus, G∗(·) is an optimal solution to (30). As a result, G∗(1−Fξ(ξ)) is optimal to (18)
Next, we prove the necessity. Suppose problem (18) admits an optimal solution, then so does

problem (28). Denote G∗(·) as the optimal solution to problem (28). Then, we must have γ∗ <+∞.
By the strong duality we just proved, G∗(·) is also optimal to (38) with γ = γ∗ ∨ 1. If γ∗ < 1,
problem (38) with γ = γ∗ ∨ 1 = 1 just becomes problem (27). Consequently, G∗(·) is optimal to
problem (27), which, however, contradicts the result in Theorem 2-(iv) that the optimal solution
to problem (27) does not exist when γ∗ < 1. Thus, we must have γ∗ ≥ 1.

Because 1≤ γ∗ <+∞, again by the strong duality, we conclude that G∗(·) is optimal to problem
(38) with γ chosen to be γ∗ ∨ 1 = γ∗. Note that in this case problem (38) is equivalent to problem
(27) with m replaced by mγ∗ . Then, by Theorem 2, there must exist c∗ ∈ (0,1) such that

sup
c∈(0,1)

1
γ∗m((c,1])∫ 1

c
F−1
ξ (1− z)dz

=
1
γ∗m((c∗,1])∫ 1

c∗ F
−1
ξ (1− z)dz

,
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i.e., γ∗ = ζ(c∗). Next, we show that we can actually find c∗ ≥ c0 so that γ∗ = ζ(c∗).
If it is not the case, we must have ζ(c)<γ∗ for all c∈ [c0,1). Because G∗(·) is optimal to problem

(28), by the strong duality, G∗(·) is also optimal to problem (38) with γ chosen to be γ∗ ∨ 1 = γ∗.
Then, by the strong duality in Proposition 3, G∗(·) is optimal to problem (31) with λ chosen to be
0 and m replaced by mγ∗ . Define

Ḡ(z) :=G∗(z ∧ c0) +

∫ 1

c0

F−1
ξ (1− s)(G∗(s)−G∗(c0))ds, 0< z < 1.

Then, Ḡ(·) is feasible to (31). On the other hand,

U(Ḡ(z),mγ∗)

=U(G∗(· ∧ c0),mγ∗) +

∫ 1

c0

F−1
ξ (1− z)(G∗(z)−G∗(c0))dz

=U(G∗(·),mγ∗)− 1

γ∗

∫
(c0,1]

(G∗(z)−G∗(c0))m(dz) +

∫ 1

c0

F−1
ξ (1− z)(G∗(z)−G∗(c0))dz

=U(G∗(·),mγ∗)− 1

γ∗

∫
(c0,1]

∫
[c0,z)

dG∗(s+)m(dz) +

∫ 1

c0

F−1
ξ (1− z)

∫
[c0,z)

dG∗(s+)dz

=U(G∗(·),mγ∗) +

∫
[c0,1)

[∫ 1

s

F−1
ξ (1− z)(z)dz− 1

γ∗
m((s,1])

]
dG∗(s+),

where dG∗(s+) is the measure on [0,1) induced by G∗. Because∫ 1

c

F−1
ξ (1− z)dz > γ∗m((c,1]), c∈ [c0,1),

we conclude that

U(Ḡ(z),mγ∗)≥U(G∗(z),mγ∗)

and the inequality becomes equality if and only if G∗(z) =G∗(c0), z ≥ c0. Therefore, by the opti-
mality of G∗(·), we must have G∗(·) =G∗(· ∧ c0). Consequently∫ 1

0

G∗(z)dz =G∗(0) +

∫
[0,1)

(1− s)dG∗(s+)

=G∗(0) +

∫
[0,c0)

(1− s)dG∗(s+)

≤G∗(0) +
Θ

x

∫
[0,c0)

∫ 1

s

F−1
ξ (1− z)dzdG∗(s+)

=G∗(0) +
Θ

x

∫
[0,1)

∫ 1

s

F−1
ξ (1− z)dzdG∗(s+)

=−
(

Θ

x
− 1

)
G∗(0) +

Θ

x

∫ 1

0

F−1
ξ (1− z)G∗(z)dz

≤Θ,

where the first inequality is due to the definition of c0. Furthermore, both inequalities become
equalities if and only if G∗(·) ≡ 0, which is impossible because G∗(·) satisfies the initial budget
constraint. Therefore, we must have ∫ 1

0

G∗(z)dz <Θ,

which contradicts the feasibility of G∗(·).
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B.4. Proof of Proposition 1 According to Theorem 5, V̂ (m) is the optimal value of the
following problem

Max.
G(·)

U(G(·),m)

Subject to
∫ 1

0
G(z)dz ≥Θ,∫ 1

0
F−1
ξ (1− z)G(z)dz ≤ x,

G(·)∈ S, G(0)≥ 0,

where S is the set of two-valued quantile functions as defined in (32).
Because of the monotonicity property of the WVaR risk measure, we only need to consider the

feasible solutions in the following form

a(b, c) + b1(c,1]

where b∈R+, c∈ (0,1), and a(b, c) is defined as in (34). The feasibility implies that

a(b, c)≥ 0, a(b, c) + b(1− c)≥Θ,

which is equivalent to

c≥ c0,
Θ−x

1− c−
∫ 1

c
F−1
ξ (1− z)dz

≤ b≤ x∫ 1

c
F−1
ξ (1− z)dz

.

On the other hand,

U(a(b, c) + b1(c,1],m) =

[
m((c,1])−

∫ 1

c

F−1
ξ (1− z)dz

]
b+x.

Therefore, we have

V̂ (m)≤ sup
c0≤c<1

{max{ζ(c)− 1,0}x+x}= max{ sup
c0≤c<1

ζ(c),1}x< γ∗x.

B.5. Proof Theorem 4 The following minimax result is useful in the proof of Theorem 4.

Lemma 1. Let H ⊂ G be a nonempty convex set. Let v be a lower-semi-continuous convex
function on P([0,1]) and assume that the domain of v is closed. Then, we have

sup
G(·)∈H

inf
µ∈P([0,1])

{U(G(·),ϕ(µ)) + v(µ)}= inf
µ∈P([0,1])

sup
G(·)∈H

{U(G(·),ϕ(µ)) + v(µ)} .

Proof. Let M be the domain of v. Then, we only need to prove

sup
G(·)∈H

inf
µ∈M
{U(G(·),ϕ(µ)) + v(µ)}= inf

µ∈M
sup
G(·)∈H

{U(G(·), µ) + v(µ)} .

Because M is a closed set in P([0,1]), which is a compact space, M is compact. Furthermore,
because v is convex, M is convex. On the other hand, using the same argument as in the proof of
Theorem 1, we can show that U is lower-semi-continuous with respect to µ. Thus, if we write

f(G,µ) :=U(G(·),ϕ(µ)) + v(µ),

then f is lower-semi-continuous in µ on P([0,1]) and thus lower-semi-continuous onM. Moreover,
it is easy to see that f is convex in µ and linear (thus concave) in G.
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Let 0< tn < 1, n≥ 1 be a sequence of real numbers increasing to 1, and define

Hn := {G(· ∧ tn) |G(·)∈H}.

Then, Hn is a nonempty convex subset of G. Furthermore, f takes finite values on Hn×M because
any G(·)∈Hn is bounded. Thus, by Sion [42, Theorem 4.2’], we obtain that

sup
G(·)∈Hn

inf
µ∈M

f(G(·), µ) = inf
µ∈M

sup
G(·)∈Hn

f(G(·), µ).

Because f is lower-semi-continuous in µ and M is compact, there exists µn ∈M such that

sup
G(·)∈Hn

f(G(·), µn) = inf
µ∈M

sup
G(·)∈Hn

f(G(·), µ).

Again thanks to the compactness of M, we can assume that µn→ µ̄ without loss of generality.
Now for any fixed Ḡ(·)∈H and m≥ 1, we have

sup
G(·)∈H

inf
µ∈M

f(G(·), µ)≥ lim inf
n→+∞

sup
G(·)∈Hn

inf
µ∈M

f(G(·), µ)

= lim inf
n→+∞

sup
G(·)∈Hn

f(G(·), µn)

≥ lim inf
n→+∞

f(Ḡ(· ∧ tn), µn)

≥ lim inf
n→+∞

f(Ḡ(· ∧ tm), µn)

≥ f(Ḡ(· ∧ tm), µ̄)

where the third inequality is due to the monotonicity of f with respect to G and the last inequality
is due to the low-semi-continuity of f in µ. Letting m go to infinity, by the monotone convergence
theorem, we have

sup
G(·)∈H

inf
µ∈M

f(G(·), µ)≥ f(Ḡ(·), µ̄)

for any Ḡ(·)∈H. Consequently,

sup
G(·)∈H

inf
µ∈M

f(G(·), µ)≥ sup
G(·)∈H

f(G(·), µ̄)≥ inf
µ∈M

sup
G(·)∈H

f(G(·), µ)≥ sup
G(·)∈H

inf
µ∈M

f(G(·), µ). �

Proof of Theorem 4. First, we prove case (i). Recall that problem (20) is equivalent to its quantile
formulation (29), so we only need to investigate the latter.

Let H be the set of quantiles that are feasible to problem (29). It is obvious that H is a
nonempty convex set. Now, applying Lemma 1, we obtain that the optimal value of problem (29) is
infµ∈M V (ϕ(µ)). As a result, problem (29) is well-posed if and only if V (ϕ(µ))<∞ for some µ∈M.
Recall that V (m)<∞ if and only if sup0<c<1

m((c,1])∫ 1
c F
−1
ξ

(1−z)dz
≤ 1. Thus, problem (29) is well-posed

if and only if sup0<c<1
ϕ(µ)((c,1])∫ 1

c F
−1
ξ

(1−z)dz
≤ 1 for some µ ∈M, which is equivalent to (22) because M is

closed and

ϕ(µ)((c,1]) =

∫
(c,1]

s− c
s

µ(ds)

is lower-semi-continuous in µ for each fixed c∈ (0,1).
In addition, from Theorem 2, if V (m)<∞, then V (m) = x. Thus, if problem (29), thus problem

(20), is well-posed, then its optimal value must be x. Finally, it is easy to show that Xn’s are
feasible to problem (20) and

inf
µ∈M

(
−WV@Rϕ(µ)(Xn)

)
≥ xP(ξ ≤ cn)−ΘE [ξ1ξ≤cn ]

P(ξ ≤ cn)−E [ξ1ξ≤cn ]
→ x

as n→∞. Thus, the payoffs Xn’s approximate the optimal value as n→∞.
Case (ii) can be proved similarly. �
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