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ABSTRACT
We conduct an extensive empirical analysis to evaluate the perfor-

mance of the recently developed reinforcement learning algorithms

by Jia and Zhou [11] in asset allocation tasks. We propose an effi-

cient implementation of the algorithms in a dynamic mean-variance

portfolio selection setting. We compare it with the conventional

plug-in estimator and two state-of-the-art deep reinforcement learn-

ing algorithms, deep deterministic policy gradient (DDPG) and

proximal policy optimization (PPO), with both simulated and real

market data. On both data sets, our algorithm significantly outper-

forms the others. In particular, using the US stocks data from Jan

2000 to Dec 2019, we demonstrate the effectiveness of our algorithm

in reaching the target return and maximizing the Sharpe ratio for

various periods under consideration, including the period of the

financial crisis in 2007-2008. By contrast, the plug-in estimator per-

forms poorly on real data sets, and PPO performs better than DDPG

but still has lower Sharpe ratio than the market. Our algorithm also

outperforms two well-diversified portfolios: the market and equally

weighted portfolios.

CCS CONCEPTS
•Applied computing→ Economics;Decision analysis; •Theory
of computation → Reinforcement learning.

KEYWORDS
portfolio choice, dynamic mean-variance analysis, reinforcement
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1 INTRODUCTION
In this paper, we revisit the asset allocation problem in a dynami-

cally traded market where a small investor aims to achieve mean–

variance efficiency in a finite investment horizon through rein-

forcement learning (RL, for short) techniques. Pioneered by the

introduction of the mean–variance analysis framework for a static

asset allocation problem in Markowitz [21], this problem soon be-

came one of the central topics in the classical modern portfolio

theory and the mainstream of quantitative investment. However,

despite significant theoretical implications, practical implementa-

tion of the mean–variance efficient portfolio is challenging. First,

most practical applications of mean–variance analysis are restricted

to static settings to this day [15]. Yet, adopting such static strategies

myopically often becomes inefficient from the dynamic perspective.

Second, accurately estimating the moments of asset returns for

inherently non-stationary financial markets is notoriously difficult,

especially for the expected returns [20, 22]. The computed portfo-

lios (by the analytical solution) to the mean–variance problem in

the static setting are already sensitive to such estimation errors

[1–3], and become much worse for the dynamic one. Therefore,

overcoming the difficulty of those errors and sensitivity and achiev-

ing mean–variance efficiency in the dynamic environment remain

largely an open question.

Due to the recent development in machine learning and optimiza-

tion techniques, there is a trending shift in the practice of dynamic

decision-making under uncertainty – RL-based approaches have

become more popular and recognized in many different application

domains. The research questions of this paper are: how do we apply

RL techniques for dynamic portfolio optimization problems, and

how do they perform compared with conventional methods and

general-purpose RL algorithms, both in theory (with simulated data

and known ground truth) and in practice (with real market data)?

Our main contributions are two-fold. First, we devise RL algo-

rithms for the asset allocation problem under a continuously traded

market for a small investor who is a price-taker with the mean-

variance preference. We discuss its implementation based on the

framework and theoretical analysis for general continuous-time

decision-making problems in Jia and Zhou [11, 12], Wang et al.

[37] and various ways to enhance its performance in the particu-

lar context of portfolio problems. These techniques include offline

pre-training, off-policy learning, mini-batch, and incorporating

constraints in terms of leverage and rebalancing frequency.

Second, we provide a thorough comparative study between the

proposed algorithm and various popular methods using multiple
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common performance metrics on the simulated data and the U.S.

stocks data from 2000 to 2019 (and the 1990-1999 period is burnt-in

for training). In particular, we compare our algorithmwith two state-

of-the-art, general-purpose RL algorithms for continuous action

space – the deep deterministic policy gradient (DDPG) algorithm

[17, 33] and the proximal policy optimization (PPO) algorithm [32].

In the real market data study, besides DDPG and PPO, we use two

computation-free benchmarks: the market portfolio (approximated

by S&P 500 index, which is the market capitalization-weighted

portfolio) and the equally weighted portfolio. Such seemingly naive

benchmarks are not only actual choices of many investors but also

are shown to be robust and reliable and difficult to beat empiri-

cally by DeMiguel et al. [5]. In addition, we also compare with the

conventional model-based methods, that is, to statistically estimate

the model coefficients and then plug the estimated coefficients into

the model-based optimal solution. Our results suggest that the pro-

posed RL method can significantly outperform all the alternative

methods.

Despite a long history of the RL research, its application to fi-

nance only started recently, in the wake of the booming FinTech

revolution and the emerging technology-driven financial services

such as algorithmic trading and robo-advising [44]. There have

been studies that aim to apply RL in dynamic portfolio optimiza-

tion [8, 14, 25–30, 34, 36]. More recently, deep neural networks are

introduced to incorporate high-dimensional stock-level features to

learn policies for trading and hedging [4, 16, 19, 41, 43, 43]. How-

ever, these works typically rely on discrete-time MDPs to derive

their algorithms and do not have comprehensive comparative em-

pirical studies. To develop a theory for continuous-time RL, Wang

et al. [37] propose a general exploratory stochastic control frame-

work with an entropy regularizer to study and devise RL algorithms.

With the entropy regularizer, the policy as a probability distribu-

tion is incentivized to be more exploratory, that is, to have a higher

chance of deviating from the center. Such randomization turns out

to be useful in algorithm design as well. Under this framework, Jia

and Zhou [11] propose model-free actor–critic policy gradient algo-

rithms for general decision-making problems. We apply a variant of

those algorithms for the mean–variance asset allocation problem in

this paper, and provide comprehensive comparative experimental

(both simulated and empirical) results to validate such a model-free

RL approach.

The rest of the paper is organized as follows: We describe the

formulation of the portfolio choice problem in Section 2 and dis-

cuss the theoretical foundation of RL algorithms in Section 3. The

algorithm design is discussed in Section 4. We present numerical

results in Section 5 and Section 6 concludes.

2 DESCRIPTION OF PORTFOLIO CHOICE
PROBLEMS

We first describe a general continuously traded market. There are

𝑑 + 1 assets, and we always say the 0-th asset is a risk-free asset

with interest rate 𝑟 , whose price is denoted by 𝑆0

𝑡 , satisfying d𝑆0

𝑡 =

𝑟𝑆0

𝑡 d𝑡 . The other 𝑑 assets are risky assets, whose prices are denoted

by 𝑆1

𝑡 , · · · , 𝑆𝑑𝑡 . The price movement of risky assets is driven by

an exogenous 𝑑-dimensional standard Brownian motion𝑾𝑡 and

follows

d𝑆𝑖𝑡 = 𝑆𝑖𝑡

𝝁𝑖d𝑡 +
𝑑∑︁
𝑗=1

𝝈𝑖 𝑗
d𝑾 𝑗

𝑡

 , 𝑖 = 1, 2, · · · , 𝑑, (1)

where the vector 𝝁 = (𝝁1, 𝝁2, · · · , 𝝁𝑑 )⊤ ∈ R𝑑 is the instantaneous

expected return, and the matrix 𝝈 = (𝝈𝑖 𝑗 )
1≤𝑖≤𝑑,1≤ 𝑗≤𝑑 ∈ R𝑑×𝑑 ,

and 𝚺 = 𝝈𝝈⊤ ∈ S𝑑++, a symmetric and positive definite matrix, is

the covariance of the returns of risky assets.
1
We assume the above

mentioned price processes are all well-defined and adapted to the

the filtered probability space

(
Ω, F , P; (F𝑡 )𝑡≥0

)
satisfying the usual

conditions.

Consider an agent with an initial wealth 𝑥0 and a pre-specified

investment horizon 𝑇 > 0. The agent is a price taker and can

continuously trade in the market with no frictions, e.g., there are

no transaction costs, no taxes, no bid–ask spread, no price impact,

and no order execution uncertainty. We denote the agent’s portfolio

choice at time 𝑡 by 𝒂𝑡 ∈ R𝑑 , where 𝒂𝑖𝑡 stands for the discounted
dollar amount (or, equivalently, 𝒂𝑖𝑡𝑆

0

𝑡 in nominal dollar amount)

invested in the 𝑖-th risky asset at time t for 1 ≤ 𝑖 ≤ 𝑑 . The sequence

of portfolio choice {𝒂𝑡 , 0 ≤ 𝑡 ≤ 𝑇 } is restricted to be a square-

integrable process throughout this paper; see [18] for this regularity

condition. We denote by {𝑥𝒂𝑡 , 0 ≤ 𝑡 ≤ 𝑇 } the discounted wealth

process of the agent given a portfolio process {𝒂𝑡 , 0 ≤ 𝑡 ≤ 𝑇 },
There are no extra constraints (e.g., the leverage constraints)

on agent’s portfolio choice as long as it is self-financing. Then the

agent’s discounted wealth satisfies

d𝑥𝒂𝑡 = (𝝁 − 𝑟𝒆𝑑 )⊤𝒂𝑡d𝑡 + 𝒂⊤𝑡 𝝈d𝑾𝑡 , 0 ≤ 𝑡 ≤ 𝑇, (2)

with the initial wealth 𝑥𝒂
0
= 𝑥0, where 𝒆𝑑 = (1, · · · , 1)⊤ ∈ R𝑑 is a

𝑑-dimensional vector with all entries 1.

The agent aims to find the mean-variance efficient allocation in

this dynamically tradedmarket. As the continuous-time counterpart

to the Markowitz problem [21], it is to minimize the variance of

the portfolio while achieving a given expected target return:

min

𝒂𝑡 ,0≤𝑡≤𝑇
Var

[
𝑥𝒂𝑇

]
subject to E

[
𝑥𝒂𝑇

]
= 𝑧

(3)

where 𝑧 is the target expected terminal wealth that is pre-specified

at 𝑡 = 0 by the agent as part of the agent’s preference. Larger 𝑧

indicates that the agent pursues higher return and hence is less

risk-averse.

As a remark, this is not a standard stochastic control problem

due to the presence of the variance term in (3). This term causes

time-inconsistency so the dynamic programming principle does not

apply directly. Zhou and Li [46] introduce the method of using a La-

grangemultiplier𝑤 to transform the problem into an unconstrained

expected quadratic utility maximization problem:

min

𝒂𝑡 ,0≤𝑡≤𝑇
E[(𝑥𝒂𝑇 −𝑤)2] − (𝑤 − 𝑧)2

(4)

and then find a proper multiplier𝑤 to enforce the constraint.

If the market coefficients are known, then standard stochastic

control theory [7, 42] can be applied to solve (4). Practically, one

1
In this paper, for simplicity, we assume these are all unknown constants. Alternatively,

they can be unknown deterministic functions of some factors such as stock-specific

features or macroeconomic variables.
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can compute the optimal policy to (4) by plugging in the estimated

model coefficients. This is the classical school of separation principle
between estimation and optimization [40]. However, it is now well

known that it is hard if not impossible to accurately estimate these

market coefficients. In particular, the mean parameter is known

to be “blurred” [20]. On the other hand, solutions to the problem

are extremely sensitive to coefficients, largely due to the need of

calculating the inverse of the covariance matrix.

In contrast to the above conventional plug-in estimators, the

emerging RL approach focuses on interacting with an unknown

(market) environment and learning optimal strategies directly. This

approach is often referred to as model-free. We emphasize here that

a model-free approach does not mean there is no model; indeed,

there is a structural underlying model for generating data (e.g., a

Markov chain, a diffusion process, a jump-diffusion process, among

others) but we do not know the model coefficients and do not aim

to estimate them. From the theoretical perspective, any provable

statement is based upon some assumptions regarding how data is

generated. From the implementation perspective, every algorithm

takes input data and produces an output (a final solution) regardless

of the black box in between, and hence is free from any model as

long as data is available.

Lastly, observe that the (discounted) wealth equation (2) can also

be written as

d𝑥𝒂𝑡 =

𝑑∑︁
𝑖=1

𝒂𝑖𝑡
d𝑆𝑖𝑡

𝑆𝑖𝑡

− 𝒆⊤
𝑑
𝒂𝑡

d𝑆0

𝑡

𝑆0

𝑡

, (5)

where

d𝑆𝑖𝑡
𝑆𝑖𝑡

and

d𝑆0

𝑡

𝑆0

𝑡

are the returns of the risky and risk-free assets

respectively, and can be observed directly from data without the

knowledge of market coefficients. This observation facilitates solv-

ing the asset allocation problem in the model-free and data-driven

fashion.

3 THE FOUNDATION OF REINFORCEMENT
LEARNING ALGORITHMS

The design of an RL algorithm typically involves answering three

questions: how to generate trial-and-error policies to interact with

the environment for learning, how to evaluate the performance

of a given policy, and how to update the policy to improve the

performance. We follow the recent works on continuous-time RL

[11, 12, 37] to address these three questions respectively.

Note that in the mean–variance problem, there is a multiplier𝑤

in (4). It is the usual Lagrange multiplier in the prime-dual approach

for the constrained optimization problem.

3.1 Deterministic versus Stochastic Policies
Although the optimal policy ought to be a deterministic mapping

from the state space to the portfolio space, the agent takes a ran-

domized portfolio process in order to broaden the interaction with

the market. Specifically, the agent searches over the following space

of probability density functions:{
𝜋 : (𝑡, 𝑥) ↦→ 𝜋 (·|𝑡, 𝑥) ∈ P(R𝑑 )

}
,

where P(R𝑑 ) denotes the set of all probability density functions

on R𝑑 .2 At each time 𝑡 , a portfolio 𝒂𝑡 is independently generated

from the distribution 𝜋 (·|𝑡, 𝑥𝑡 ), denoted as 𝒂𝑡 ∼ 𝜋 (·|𝑡, 𝑥𝑡 ). Such a

rule to generate the choice is called a stochastic policy. By contrast,

a deterministic policy refers to the case where 𝜋 degenerates into a

point mass (a Dirac measure).

Under a stochastic policy 𝜋 , the dynamics of wealth are no longer

(2). Using the notion of relaxed stochastic control [45], Wang et al.

[37] propose to use the following dynamics to theoretically de-

scribe the “averaged" (over randomization) wealth process under a

stochastic policy:

d𝑥𝜋𝑡 =(𝝁 − 𝑟𝒆𝑑 )⊤𝒎(𝑡, 𝑥𝜋𝑡 ;𝜋)d𝑡

+𝒎(𝑡, 𝑥𝜋𝑡 ;𝜋)⊤𝝈d𝑾𝑡 +
√︃
⟨𝚺, 𝑪 (𝑡, 𝑥𝜋𝑡 ;𝜋)⟩d�̄�𝑡 ,

(6)

where �̄�𝑡 is an independent standard Brownian motion that repre-

sents the randomness of generating choices from a stochastic policy,

and ⟨𝚺, 𝑪⟩ = 𝑡𝑟𝑎𝑐𝑒 (𝚺⊤𝑪) stands for the inner product between two

matrices. Here 𝒎(𝑡, 𝑥 ;𝜋), 𝑪 (𝑡, 𝑥 ;𝜋) are the mean and covariance

matrix of the distribution 𝜋 (·|𝑡, 𝑥) respectively, with

𝒎(𝑡, 𝑥𝜋𝑡 ;𝜋) =
∫
R𝑑

𝒂𝜋 (𝒂 |𝑡, 𝑥𝜋𝑡 )d𝒂,

𝑪 (𝑡, 𝑥𝜋𝑡 ;𝜋) =
∫
R𝑑

[𝒂 −𝒎(𝑡, 𝑥𝜋𝑡 ;𝜋)] [𝒂 −𝒎(𝑡, 𝑥𝜋𝑡 ;𝜋)]⊤𝜋 (𝒂 |𝑡, 𝑥𝜋𝑡 )d𝒂.

Therefore (6) forms a closed stochastic differential equation system

for any given policy 𝜋 .

To avoid possible degeneracy of a stochastic policy into a deter-

ministic one, we further add an entropy term to regularize the policy

and encourage exploration. The entropy regularizer is related to

the soft-max approximation and Boltzmann exploration [9, 37, 47].

With this entropy regularization, our problem is reformulated as

follows:

min

𝜋∈S(0,𝑥0 )
E

[ (
𝑥𝜋
𝑇
−𝑤

)
2 + 𝛾

∫ 𝑇

0

∫
R𝑑

𝜋 (𝒂 |𝑡, 𝑥𝜋𝑡 ) log𝜋 (𝒂 |𝑡, 𝑥𝜋𝑡 )d𝒂d𝑡

]
− (𝑤 − 𝑧)2,

(7)

whereS(0, 𝑥0) is the set of all admissible stochastic policies starting

from time 0 and initial wealth 𝑥0, and 𝛾 ≥ 0 is called a temperature

parameter and a tuning parameter for the algorithm. Larger𝛾 means

higher weight will be placed on entropy and hence exploration is

more encouraged.

We emphasize that (6) is mainly for the purpose of theoretical

analysis on the averaged property of the wealth process under a

given stochastic policy 𝜋 . The actual portfolio processes and the

corresponding wealth trajectories will still be generated from (5)

with 𝒂𝑡 ∼ 𝜋 (·|𝑡, 𝑥𝑡 ), which do not require any knowledge about the

market coefficients.

The theoretical formulation (6) leads to useful properties for

the RL problem. The first important property is the optimality of

normal distributions for stochastic policies, as stated in Lemma

1. The proof of Lemma 1 is parallel to that of Wang and Zhou

2
The density functions here can be replaced by any distribution functions. We restrict

to density functions since they are the most commonly used and compatible with the

entropy regularization to be introduced subsequently.
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[38, Theorem 1], and hence omitted here. However, the essential

reason behind this result is that the entropy regularization leads to

a Gibbs measure, whose density function is the exponential of the

Hamiltonian scaled by the temperature parameter. The Hamiltonian

is a quadratic function of the control (portfolio) variable in the

current mean–variance setting; hence the normal distribution.

Lemma 1. The optimal stochastic policy with the entropy regular-
izer is a normal distribution.

This suggests that in the current mean–variance setting the best

way for exploration is to generate policies according to normal dis-

tributions. Note that normal distributions are easy and efficient to

sample. Hence, in the following, it suffices to restrict our attention to

the class of normal distributions:𝜋 (·|𝑡, 𝑥) = N (·|𝒎(𝑡, 𝑥 ;𝜋), 𝑪 (𝑡, 𝑥 ;𝜋))
where 𝒎(𝑡, 𝑥 ;𝜋) is the mean vector and 𝑪 (𝑡, 𝑥 ;𝜋) the covariance
matrix. This, in turn, will subsequently lead to a natural policy

approximator.

Given the above parameterization, we can further specify the

objective function (7) by calculating the entropy of a multivariate

normal distribution:

min

𝒎,𝑪
E

[ (
𝑥𝜋
𝑇
−𝑤

)
2 − 𝛾

2

∫ 𝑇

0

log det 𝑪 (𝑡, 𝑥𝜋𝑡 ;𝜋)d𝑡
]

− 𝛾𝑑𝑇

2

log 2𝜋𝑒 − (𝑤 − 𝑧)2 .

(8)

The theoretical solution to (8) can be characterized by an HJB equa-

tion:

inf

𝒎,𝑪

{
𝜕𝐽 ∗

𝜕𝑡
+ (𝝁 − 𝑟𝒆𝑑 )⊤𝒎

𝜕𝐽 ∗

𝜕𝑥
+ 1

2

[𝒎⊤
𝚺𝒎 + ⟨𝚺, 𝑪⟩] 𝜕

2 𝐽 ∗

𝜕𝑥2

− 𝛾

2

[log det 𝑪 + 𝑑 log 2𝜋𝑒]
}
= 0,

and the optimality condition is

𝒎∗ (𝑡, 𝑥) = −
𝜕𝐽 ∗

𝜕𝑥 (𝑡, 𝑥 ;𝑤)
𝜕2 𝐽 ∗

𝜕𝑥2
(𝑡, 𝑥 ;𝑤)

𝚺
−1 (𝝁 − 𝑟𝒆𝑑 )

𝑪∗ (𝑡, 𝑥) = 𝛾

𝜕2 𝐽 ∗

𝜕𝑥2
(𝑡, 𝑥 ;𝑤)

𝚺
−1,

(9)

where 𝐽 ∗ (𝑡, 𝑥 ;𝑤) is the optimal value function for problem (8).

Notice that (9) provides the structure of the optimal policy but

we are not going to solve 𝐽 ∗ using the estimated coefficients even

though the analytical solutions to (9) are available (see in Appendix

A). Instead, we use RL.

3.2 Policy Evaluation
Policy evaluation is a step to estimate the expected payoff of a given,

fixed policy, based on which the agent decides how to update the

policy. In our case, it is to estimate the expected payoff (7) for a

given stochastic policy 𝜋 and a given multiplier𝑤 . Note it requires

learning the whole function 𝐽 of (𝑡, 𝑥), known as the value function,

where

𝐽 (𝑡, 𝑥 ;𝜋 ;𝑤) =E
[ (
𝑥𝜋
𝑇
−𝑤

)
2 − 𝛾

2

∫ 𝑇

𝑡

log det 𝑪 (𝑠, 𝑥𝜋𝑠 ;𝜋)d𝑠
���𝑥𝜋𝑡 = 𝑥

]
− 𝛾𝑑 (𝑇 − 𝑡)

2

log 2𝜋𝑒 − (𝑤 − 𝑧)2 .

The celebrated Feynman–Kac formula stipulates that 𝐽 (·, ·, ·;𝜋 ;𝑤)
solves the following equation:

𝜕𝐽

𝜕𝑡
+ (𝝁 − 𝑟𝒆𝑑 )⊤𝒎(𝑡, 𝑥 ;𝜋) 𝜕𝐽

𝜕𝑥
+ 1

2

[𝒎(𝑡, 𝑥 ;𝜋)⊤𝚺𝒎(𝑡, 𝑥 ;𝜋)

+ ⟨𝚺, 𝑪 (𝑡, 𝑥 ;𝜋)⟩] 𝜕
2 𝐽

𝜕𝑥2
− 𝛾

2

[log det 𝑪 (𝑡, 𝑥 ;𝜋) + 𝑑 log 2𝜋𝑒] = 0.

(10)

Jia and Zhou [12] show that the function 𝐽 is characterized

by two conditions. First, it satisfies a known terminal condition:

𝐽 (𝑇, 𝑥 ;𝜋 ;𝑤) = (𝑥 −𝑤)2 − (𝑤 −𝑧)2
. Second, it ensures the following

process

𝐽 (𝑡, 𝑥𝜋𝑡 ;𝜋 ;𝑤) − 𝛾

2

∫ 𝑡

0

[log det 𝑪 (𝑠, 𝑥𝜋𝑠 ;𝜋) + 𝑑 log 2𝜋𝑒]d𝑠

to be amartingale or, equivalently, the sample trajectory 𝐽 (𝑡, 𝑥𝒂𝑡 ;𝜋 ;𝑤)−
𝛾
2

∫ 𝑡

0
[log det 𝑪 (𝑠, 𝑥𝒂𝑠 ;𝜋) + 𝑑 log 2𝜋𝑒]d𝑠 with 𝒂𝑠 ∼ 𝜋 (·|𝑠, 𝑥𝒂𝑠 ) to be a

martingale.

Suppose we use a class of functions 𝐽𝜃 to approximate 𝐽 . Note

that, for a given policy 𝜋 and a function approximator 𝐽𝜃 , both

𝐽𝜃 (𝑡, 𝑥𝒂𝑡 ;𝑤) and log det 𝑪 (𝑠, 𝑥𝒂𝑠 ;𝜋) + 𝑑 log 2𝜋𝑒 can be computed

by samples. As shown in Jia and Zhou [12], there are several

data-driven ways to characterize the martingality of an observ-

able process. One of the most popular and easy-to-implement

method is the temporal-difference (TD) learning: namely, to force

d𝐽𝜃 (𝑡, 𝑥𝒂𝑡 ;𝑤) − 𝛾
2
[log det 𝑪 (𝑡, 𝑥𝒂𝑡 ;𝜋) +𝑑 log 2𝜋𝑒]d𝑡 to be a “martin-

gale difference sequence” so that such a term is orthogonal to any

adapted process.

3.3 Policy Gradient
Now we have a method to estimate the value function of any given

stochastic policy. To optimize over the feasible policies, we follow

the usual gradient-based method in general optimization theory. In

our setting, we need to estimate the gradient of the (learned) value

function with respect to the policy. As the policy itself is a function

and it is impossible to compute the derivative on a function, we seek

a finite dimensional parametric approximation. Lemma 1 suggests

such an approximation: 𝜋𝜙 (·|𝑡, 𝑥) = N
(
·|𝒎𝜙 (𝑡, 𝑥), 𝑪𝜙 (𝑡, 𝑥)

)
.

It then suffices to consider the gradient of 𝐽 (0, 𝑥0;𝜋𝜙 ;𝑤) with
respective to 𝜙 : 𝜕

𝜕𝜙
𝐽 (0, 𝑥0;𝜋𝜙 ;𝑤). Jia and Zhou [11] derive the

policy gradient representation and find

𝜕

𝜕𝜙
𝐽 (0, 𝑥0;𝜋𝜙 ;𝑤) = E

[ ∫ 𝑇

0

{ 𝜕 log𝜋𝜙

𝜕𝜙
(𝒂𝑡 |𝑡, 𝑥𝒂𝑡 )

[
d𝐽 (𝑡, 𝑥𝒂𝑡 ;𝜋𝜙 ;𝑤)

− 𝛾

2

[log det 𝑪𝜙 (𝑡, 𝑥𝒂𝑡 ) + 𝑑 log 2𝜋𝑒]d𝑡
]

− 𝛾

2

𝜕

𝜕𝜙
log det 𝑪𝜙 (𝑡, 𝑥𝒂𝑡 )d𝑡

}]
.

(11)

The right hand side term inside the expectation can be computed us-

ing sample trajectories and the known parametric forms𝜋𝜙 ,𝒎𝜙 , 𝑪𝜙 ,
together with the learned value function replacing the term

d𝐽 (𝑡, 𝑥𝒂𝑡 ;𝜋𝜙 ;𝑤), without having to know the market coefficients.
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4 ALGORITHM DESIGN
4.1 Implementation Considerations
Since the mean–variance problem has a linear–quadratic nature,

we parameterize the value function using a quadratic function in 𝑥 ,

with parameters 𝜃 = (𝜃1, 𝜃2, 𝜃3) ∈ R × R × R by

𝐽𝜃 (𝑡, 𝑥 ;𝑤) = (𝑥−𝑤)2𝑒−𝜃3 (𝑇−𝑡 ) +𝜃2

(
𝑡2 −𝑇 2

)
+𝜃1 (𝑡−𝑇 )− (𝑤−𝑧)2 .

(12)

Motivated by the structure of the optimal policy (9), we parame-

terize the policy with parameters 𝜙 = (𝜙1, 𝜙2, 𝜙3) ∈ R𝑑 × S𝑑++ × R
by

3

𝝅𝜙 (· | 𝑡, 𝑥 ;𝑤) = N
(
· | −𝜙1 (𝑥 −𝑤), 𝜙2𝑒

𝜙3 (𝑇−𝑡 )
)
. (13)

The entropy regularization value can then be calculated as

H
(
𝝅𝜙 (· | 𝑡, 𝑥 ;𝑤)

)
= −1

2

log

(
(2𝜋𝑒)𝑑 det

(
𝜙2𝑒

𝜙3 (𝑇−𝑡 )
))

=: 𝑝 (𝑡, 𝜙).
(14)

Nowwe are equipped with all the necessary ingredients required

by our analysis in Section 3 to implement an algorithm. To enhance

the performance and to make our algorithm more practical in view

of some realistic restrictions, we describe additional techniques and

modifications for implementation.

Rebalancing frequency. Our market setting allows trading

continuously, meaning that transactions can occur in ultra high

frequency. Such a feature may be relevant to problems such as

high frequency trading and algorithmic market making, but those

problems may have other significant characteristics in terms of

liquidity and market microstructure overlooked by our formulation,

including market impact, taxes, and transaction costs. Less frequent

trading seems to fit better to a small investor as in our setting.

Therefore, we will only rebalance our portfolios on specified dates.

On the rest of the dates, we hold the assets and do not trade, but

the algorithm keeps updating the parameters as if rebalancing took

place continuously. Daily or monthly rebalancing appear to be the

reasonable frequency with which we can ignore the market impact

and liquidity concerns.

Leverage constraint. Putting a constraint on leverage is of-

ten regarded as a simple way to improve the performance of an

optimization-based portfolio. Jagannathan and Ma [10] show such

a constraint is equivalent to shrinking the estimated covariance

matrix in a static mean–variance model. Even though adding con-

straints reduces the search space of feasible policies, it often proves

to be an effective way to mitigate estimation errors and stabilize the

resulting portfolios. In addition, in real life, an investor is always

constrained by leverage limit and hence such a restriction makes

the algorithm more practical. We define a leverage constraint ℓ as

the maximum proportion of the current total wealth that one can

borrow. Specifically, if a portfolio 𝒂𝑡 = (𝒂1

𝑡 , 𝒂
2

𝑡 , ..., 𝒂
𝑑
𝑡 )⊤ is produced

by the algorithm, then the leverage-constrained new portfolio is

𝒂′𝑡 =
𝒂𝑡∑𝑑
𝑖=1

𝒂𝑖𝑡
𝑥𝑡 ℓ1{∑𝑑

𝑖=1
𝑎𝑖𝑡>𝑥𝑡 ℓ }

+ 𝒂𝑡1{∑𝑑
𝑖=1

𝑎𝑖𝑡 ≤𝑥𝑡 ℓ }
. (15)

3
See Appendix A for the form of the theoretical solution, which provides a further

reason for our choice of parameterization. Without taking advantage of the theoretical

results, parametric forms can be more complicated, e.g., using neural networks, and

the performance of the algorithm may vary with different parameterizations. In our

implementation, we only choose the simple form presented here.

Offline pretrain, mini-batch, and eligibility traces. These
are commonly used RL techniques to effectively use data. A pretrain

stage means training before the beginning of the actual task using

the existing data set. For example, if the backtesting period is from

2000 to 2020, then all the historical data before 2000 can be used for

offline learning to have a better initialization. Mini-batch means

using multiple samples to estimate their expectation to reduce the

variance, e.g., the right hand side of (11). An eligibility trace is a

temporary record of the past data and marks the memory that is

eligible for undergoing learning changes. The adoption of eligibility

tracesmeans to use history-dependent processes as “test functions”
4

to enforce the orthogonality conditions and hence to update the

parameters in the value function and the policy. Therefore one still

learns through historical information, e.g., the well-known TD(𝜆)

algorithm [35].

Our algorithm is summarized in Algorithm 1.

Algorithm 1 Off-policy TD(𝜆) Online CTRL Algorithm with Con-

straints

Input
𝛼 , 𝜂𝜃 , 𝜂𝜙 Learning rates of𝑤 , 𝜃 , 𝜙 respectively

𝑑 , 𝑥0, 𝑧 The number of risky assets, initial wealth, target

𝑇 , Δ𝑡 Investment horizon and time interval length

𝑁 ,𝑀 The number of iterations, sample average size

𝛾 , 𝜆, 𝑛 Temperature parameter, weight decay, batch size

ℓ, 𝑓 The max leverage and rebalance frequency

STEP 1:
Initialize parameters 𝜃, 𝜙 and𝑤 .

STEP 2:
for every iterations do

for every timesteps do
Compute next wealth with deterministic action.

Generate random actions by behavior policy (13).

Update parameters 𝜃 and 𝜙 using 𝑇𝐷 (𝜆)
end for
Update lagrange multiplier𝑤

end for

Output
𝜃 , 𝜙 ,𝑤 Trainable parameters

4.2 Relations with Other Algorithms
There is a large body of literature that proposes various algorithms

for general RL problems (in discrete time). The most well-known

ones are deep Q-network (DQN) [24], deep deterministic policy

gradient (DDPG) [17], (asynchronous) advantage actor–critic (A2C,

A3C) [23], trust region policy optimization (TRPO) [31], proxi-

mal policy optimization (PPO) [32], and soft actor–critic (SAC) [9].

Meanwhile, the classical Q-learning algorithms are demonstrated to

be less suitable for continuous controls [6]. Our algorithm belongs

4
See [12] for more discussions for this notions and how such choices affect the

approximation.
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to the class of soft actor–critic (SAC) algorithms for its entropy-

regularization and non-degenerate stochastic policies. In addition,

the representation of the policy gradient (11) involves the Hamilton-

ian term (via Itô’s formula), which is shown to be the continuous-

time counterpart of the advantage function in Jia and Zhou [13].

Therefore, our algorithm can be considered as a combination of

SAC and A2C in continuous time. We do not apply the techniques

to reuse the sample asynchronously as in experience-replay [39]

because of the fluctuation and possible regime changes in financial

markets. On the other hand, TRPO and PPO aim to modify and

improve the updating of parameters in policy gradient without

changing the way to learn the value function or the advantage func-

tion; so their idea can be incorporated to our algorithms. Indeed,

the representation of policy gradient (11) can be rewritten as:

𝜕

𝜕𝜙
𝐽 (0, 𝑥0;𝜋𝜙 ;𝑤)

=
𝜕

𝜕𝜙 ′
E

[ ∫ 𝑇

0

{𝜋𝜙 ′ (𝒂𝑡 |𝑡, 𝑥𝒂𝑡 )
𝜋𝜙 (𝒂𝑡 |𝑡, 𝑥𝒂𝑡 )

[
d𝐽 (𝑡, 𝑥𝒂𝑡 ;𝜋𝜙 ;𝑤)

− 𝛾

2

[log det 𝑪𝜙 (𝑡, 𝑥𝒂𝑡 ) + 𝑑 log 2𝜋𝑒]d𝑡
]

− 𝛾

2

log det 𝑪𝜙
′
(𝑡, 𝑥𝒂𝑡 )d𝑡

}]�����
𝜙 ′=𝜙

.

(16)

Then based on the discussion of Schulman et al. [32], we can update

the policy parameters by constructing a surrogate objective func-

tion and modifying (16). For example, adding a penalty in terms

of the Kullback—Leibler divergence recovers TRPO, or clipping

the likelihood ratio recovers PPO. In this paper, as benchmarks for

comparison, we select PPO as a representative state-of-the-art algo-

rithm, and DDPG as one that is based on fundamentally different

idea from ours.

5 NUMERICAL RESULTS
We use the parameterization described in Section 4.1 for our al-

gorithm, which only takes time and wealth as features. For a fair

comparison, in DDPG and PPO, we use the same feature but with

deep neural networks to parameterize policy and value function.

Moreover, we fix the same rebalancing frequency (daily rebalanc-

ing in simulation study and monthly in real market study) and

leverage constraint (ℓ = 1, meaning no borrowing) for all the algo-

rithms/strategies.

5.1 Test with Simulated Data
We simulate a market with 10 stocks whose prices follow (1). The

coefficients used for simulation are estimated by actual price data

of randomly picked 10 stocks from 2010 to 2020. Then we simulate

stock prices for 510 years. The first 10 years are burnt-in to pretrain,

and the next 500 years are used for online updating for the RL algo-

rithms. The investment horizon is 1 year. For the algorithms that

need an input of a target return, we choose the target annualized

return to be 15%, that is, 𝑧 = 1.15. The risk-free interest rate is taken

as 𝑟 = 0.

We adopt commonly used metrics to measure the performance,

including annualized return, annualized volatility, Sharpe Ratio,

Sortino Ratio, Calmar Ratio, maximum drawdown, and recovery

time. The results are presented in Table 1.

On the simulated data set, our algorithm (CTRL) significantly

outperforms DDPG and PPO in all metrics and performs similarly

to the plug-in estimator (CTMV). DDPG and PPO perform even

worse than the equally weighted (EW) portfolio. Since prices are

simulated from a fixed distribution and coefficients can be consis-

tently estimated with data from a sufficiently long period, it is not

surprising that the plug-in estimator is quite efficient.

Table 1: The performance of various algorithms using simu-
lated data in terms of the return (Rtn), volatility (Vol), Sharpe
Ratio, Sortino Ratio, Calmar Ratio, maximum drawdown
(MDD) and recovery time (RT).

Rtn Vol Sharpe Sortino Calmar MDD RT

CTRL 15.07% 0.121 1.491 2.942 2.770 0.091 24

DDPG 8.93% 0.143 0.691 1.184 0.878 0.162 94

PPO 12.23% 0.181 0.781 1.478 1.398 0.160 48

CTMV 13.99% 0.119 1.465 3.007 2.903 0.090 21

EW 15.02% 0.198 0.919 1.742 1.607 0.170 46

5.2 Test with Real Market Data
The data we used are downloaded from Wharton Research Data

Services (WRDS). The pool of assets for our experiments consists

of 300 US stocks that remained listed from 1990 to 2020. Each time,

10 stocks are randomly selected from the pool. Then we backtested

the different asset allocation methods on these 10 stocks from 2000

to 2020. Data from 1990 to 1999 are burnt-in for pretrain. We then

repeat the experiments 100 times to collect statistics. We compare

our algorithm with the conventional plug-in estimator, DDPG, PPO,

the equally weighted portfolio, and the market portfolio (MKT).

The same metrics as in the simulation study are used for comparing

the performance.

Furthermore, the investment horizon is 𝑇 = 1 year, and we

backtest the 20 years on a rolling yearly basis. For algorithms that

need an input of a target return, we choose the target annualized

return to be 15% noting that the annualized return of S&P 500

during our pretrain period 1990 to 2000 was approximately 15%. It

corresponds to 𝑧 = 1.15 in our method. Finally, the risk-free interest

rate is taken as 𝑟 = 0 as an approximation. In each experiment, we

always reset the initial wealth to be $1.

Results from the whole backtesting period is presented in Table

2. Our algorithm outperforms the others in terms of annualized

return, Sharpe Ratio, Sortino Ratio, Calmar Ratio and recovery

time. Equally weighted portfolio reaches a much higher return and

Sharpe Ratio than the market, while DDPG, PPO, and CTMV signif-

icantly underperform the market. It is worth mentioning that the

model-based method CTMV perform reasonably well on simulated

data, but perform the worst on real data, producing almost zero or

even negative reutrns.

Next, we divide the backtesting period into two parts to further

investigate how different methods adapt to different market con-

ditions. The first period is from 2000 to 2010, shown in Table 3,

which is a very volatile period including two major market crashes:
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the internet bubble in the early 2000s and the financial crisis in

2007-2009. Our algorithm seems to be resilient and delivers rea-

sonably high returns, followed by the equally-weighted portfolio.

All the rest three have losses, especially the plug-in estimator. The

second period is from 2010 to 2020, shown in Table 4, which has

a huge bull run. In this period, our algorithm performs closer but

still significantly better than the two naive portfolios in terms of

return and Sharpe ratio, while DDPG, PPO, and plug-in estimator

far underperform. In both subperiods, CTRL is the best in terms of

all the ratios. Its outperformance is especially notable during the

bear markets.

Table 2: The comparison of the out-of-sample performance
of different allocation methods from 2000 to 2020. The met-
rics include the return (Rtn), volatility (Vol), Sharpe Ratio,
Sortino Ratio, Calmar Ratio, maximum drawdown (MDD)
and recovery time (RT). All metrics are averaged across 100
experiments with randomly picked stocks.

Rtn Vol Sharpe Sortino Calmar MDD RT

CTRL 11.52% 0.212 0.558 0.882 0.197 0.607 464

DDPG 8.51% 0.351 0.246 0.418 0.128 0.680 708

PPO 9.09% 0.298 0.314 0.521 0.141 0.663 765

CTMV -30.77% 0.740 -0.186 -0.214 -0.272 0.800 952

EW 10.28% 0.211 0.496 0.807 0.188 0.565 547

MKT 5.90% 0.190 0.311 0.494 0.107 0.552 869

Table 3: The comparison of the out-of-sample performance
of different allocation methods from 2000 to 2010. The met-
rics include the return (Rtn), volatility (Vol), Sharpe Ratio,
Sortino Ratio, Calmar Ratio, maximum drawdown (MDD)
and recovery time (RT). All metrics are averaged across 100
experiments with randomly picked stocks.

Rtn Vol Sharpe Sortino Calmar MDD RT

CTRL 9.44% 0.258 0.378 0.600 0.164 0.607 158

DDPG 7.16% 0.412 0.178 0.305 0.109 0.680 399

PPO 6.69% 0.347 0.231 0.389 0.121 0.663 436

CTMV -32.15% 0.841 -0.256 -0.328 -0.289 0.800 308

EW 7.69% 0.244 0.319 0.524 0.142 0.565 221

MKT -0.90% 0.224 -0.041 -0.066 -0.017 0.552 N/A

Finally, Figure 1 shows the time series of the average wealth

during the testing period. We can see that the portfolio produced

by our algorithm remains on the top of alternatives constantly for

a long period. It also recovers faster than the others after a few

draw-downs. The plug-in estimator leads to bankruptcy in some of

the experiments, and hence is omitted in this figure.

6 CONCLUSION
This paper studies the problem of high-dimensional mean–variance

asset allocation by continuous-time entropy-regularized reinforce-

ment learning. Based on the recently developed continuous-time

Table 4: The comparison of the out-of-sample performance
of different allocation methods from 2010 to 2020. The met-
rics include the return (Rtn), volatility (Vol), Sharpe Ratio,
Sortino Ratio, Calmar Ratio, maximum drawdown (MDD)
and recovery time (RT). All metrics are averaged across 100
experiments with randomly picked stocks.

Rtn Vol Sharpe Sortino Calmar MDD RT

CTRL 13.69% 0.152 0.951 1.525 0.509 0.299 164

DDPG 10.33% 0.213 0.494 0.835 0.362 0.367 306

PPO 11.95% 0.209 0.574 0.944 0.375 0.323 236

CTMV 10.49% 0.171 0.689 1.133 0.479 0.300 155

EW 13.01% 0.171 0.780 1.263 0.550 0.253 135

MKT 13.10% 0.147 0.887 1.388 0.675 0.193 75

Figure 1: The average wealth trajectory under different al-
location methods from 2000 to 2020. The time series plot
indicates the average wealth on each date across 100 experi-
ments. The plug-in estimator (CTMV) leads to bankruptcy in
some of the experiments, and hence is omitted in this figure.

RL methodology by Jia and Zhou [11, 12], Wang et al. [37], we

design algorithms for the problem and conduct extensive numerical

studies with both simulated and real market data. In particular, we

compare the proposed algorithm with several other algorithms and

strategies. Overall, The model-based plug-in estimator produces

almost no profit on the real market data. Existing deep reinforce-

ment learning algorithms, such as DDPG and PPO, can improve the

conventional plug-in estimator in real market but converge slowly

on simulated data. However, with only price data, they still perform

worse than naively diversified portfolios. By contrast, our method

gets close to the targeted return and generates the highest Sharpe

ratio and other popular risk-adjusted performance metrics com-

pared with the equally weighted portfolio and the market portfolio,

which are well-known to be robust in performance and effective

in diversification. This study shows great potential in applying

data-driven RL methods to the practice of asset management.
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A THEORETICAL SOLUTIONS TO THE
MEAN-VARIANCE PROBLEM

The optimal policy to (8) is

𝜋∗ (𝑢 |𝑡, 𝑥) = N
(
𝒂 | − 𝚺

−1 (𝝁 − 𝑟𝒆𝑑 ) (𝑥 −𝑤∗),

𝛾

2

𝑒 (𝝁−𝑟𝒆𝑑 )
⊤
𝚺
−1 (𝝁−𝑟𝒆𝑑 ) (𝑇−𝑡 )

𝚺
−1

)
,

(17)
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and the optimal value function is

𝐽 ∗ (𝑡, 𝑥) =(𝑥 −𝑤∗)2𝑒−(𝝁−𝑟𝒆𝑑 )⊤𝚺−1 (𝝁−𝑟𝒆𝑑 ) (𝑇−𝑡 )

+ 𝛾𝑑

4

(𝝁 − 𝑟𝒆𝑑 )⊤𝚺−1 (𝝁 − 𝑟𝒆𝑑 ) (𝑇 2 − 𝑡2)

− 𝛾𝑑

2

(
(𝝁 − 𝑟𝒆𝑑 )⊤𝚺−1 (𝝁 − 𝑟𝒆𝑑 )𝑇 − (𝑇 − 𝑡)

𝑑
log

det 𝚺

𝜋𝛾

)
− (𝑤∗ − 𝑧)2,

(18)

where the Lagrange multiplier is

𝑤∗ =
𝑧𝑒 (𝝁−𝑟𝒆𝑑 )

⊤
𝚺
−1 (𝝁−𝑟𝒆𝑑 )𝑇 − 𝑥0

𝑒 (𝝁−𝑟𝒆𝑑 )⊤𝚺
−1 (𝝁−𝑟𝒆𝑑 )𝑇 − 1

. (19)
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