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Abstract. In this paper we analyze how changes in inverse S-shaped proba-
bility weighting influence optimal portfolio choice in a rank-dependent utility

model. We derive sufficient conditions for the existence of an optimal solu-

tion of the investment problem, and then define the notion of a more inverse
S-shaped probability weighting function. We show that an increase in inverse

S-shaped weighting typically leads to a lower allocation to the risky asset,

regardless of whether the return distribution is skewed left or right, as long
as it offers a non-negligible risk premium. Only for lottery stocks with poor

expected returns and extremely positive skewness does an increase in inverse
S-shaped probability weighting lead to larger portfolio allocations.

1. Introduction. When making decisions under risk many people display a ten-
dency to overweight both extremely positive and extremely negative events that
occur with small probabilities. Overweighting of the probability of tail events can
explain why some people buy both lottery tickets and insurance policies. This type
of behaviour can be modelled by an inverse S-shaped probability weighting function,
one of the central features of prospect theory [18]. In financial economics, probabil-
ity weighting has been incorporated into portfolio choice models to explain portfo-
lio underdiverification [24] and the demand for lottery stocks [3]. Inverse S-shaped
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weighting functions fit the aggregate experimental data well; see [13].1 However,
there is considerable heterogeneity in the degree of inverse S-shaped weighting at
the individual level. Therefore, it is important to understand how changes in in-
verse S-shaped weighting influence optimal portfolio choice, an open question that
we aim to address in this paper.

In this paper we study a general one-period portfolio choice problem with one
risky asset (e.g., a stock) and one riskless asset, when the investor’s preferences
are modelled by rank-dependent utility (RDU). RDU is a parsimonious preference
model that accommodates probability weighting, including overweighting of extreme
events. The portfolio choice problem considered in this paper allows the return dis-
tribution to be very general including non-continuous distributions, and includes a
constraint on short-selling. We first derive two sufficient conditions for the existence
of an optimal solution of the investment problem, and then show that an investor
with a more risk-averse RDU preference relation will invest less in the risky asset,
generalizing an existing result of [9] to possibly non-continuous return distributions.

To study the impact of overweighting the probability of unlikely events, we first
define the notion of a more inverse S-shaped probability weighting function, using
a concave-convex transformation function. Intuitively, the impact of more inverse
S-shaped probability weighting on the optimal asset allocation should depend on
whether the risky asset’s return distribution is skewed to the right or the left. When
the risky asset return follows a skewed Bernoulli distribution, we prove analytically
that the impact of a more inverse S-shaped weighting function on the stock alloca-
tion depends on the skewness parameter of the distribution.

For general return distributions, however, the effect of more inverse S-shaped
weighting on the risky asset allocation is complicated, and will depend on the in-
terplay between the weights given to the tails and the middle region of the return
distribution, as well as the curvature of the utility function (risk aversion). We
illustrate these effects numerically, using simulations of a skew-normal return dis-
tribution, and two different utility functions: power and exponential functions. We
find that an increase in inverse S-shaped weighting typically leads to a lower al-
location to the risky asset, regardless of whether the distribution is skewed left or
right, as long as the asset offers a reasonable risk premium. An explanation is that
an increase in inverse S-shaped weighting lowers the probability weight given to the
positive returns around the median of the distribution, while also increasing the
weight of negative extremes. The extra weight given to extremely positive returns
cannot compensate for these two negative effects even if the return is skewed to
the right. Only when the risk premium of the stock is close to zero or even neg-
ative (thereby offering a poor reward-to-risk ratio), and the return distribution is
skewed to the right, then do we find a positive relation between the inverse S-shaped
weighting and the optimal stock weight.

Finally, we use empirical stock market data to demonstrate the potential effects
of probability weighting on investor portfolios in practice. We calibrate a skew-
normal distribution using a time series of aggregate U.S. stock market returns, as
well as the return distribution of a randomly sampled individual stock. As the
returns of the aggregate U.S. stock market have a left-skewed distribution, a more

1 Fehr-Duda and Epper [13] provide a review of the probability weighting literature, as well
as empirical evidence in favor of inverse S-shaped probability weighting functions for a large

representative sample from the Swiss population. Earlier experimental evidence supporting inverse
S-shaped probability weighting can be found in [26] and [15].
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inverse S-shaped weighting function leads to a lower optimal stock allocation. We
find similar results if the return distribution has positive skewness and a relatively
high expected return, using the historical return distribution of the listed company
Apple as an example. Only for stocks offering relatively poor expected returns,
or very extreme positive skewness, features often associated with so-called lottery
stocks [20], is the relation between inverse S-shaped weighting and the optimal stock
weight positive.

Related to our work are [9], [24], [3], [12], [17] and [16], amongst others, who
study the influence of probability weighting on optimal portfolio choice and asset
pricing, either using RDU or cumulative prospect theory. The contribution of our
work to this literature is that we explicitly focus on the question whether an increase
in inverse S-shaped probability weighting leads to a lower or higher allocation to
stocks, and under what conditions. We discover that it is the combination of the
agent preferences (utility function and probability weighting function) and the stock
return characteristics (skewness and mean return) that dictates the demand for
stocks, and there are no simple comparative statics.

In the following, Section 2 reviews the RDU theory and the characterization of a
more risk-averse attitude in this framework. We then propose a single-period port-
folio choice model in Section 3 and investigate the impact of changes in probability
weighting on asset allocation theoretically in Section 4. Numerical experiments are
presented in Section 5 and some technical results are placed in the Appendix.

2. Rank-dependent utility. A preference relation < is a partial order on a set
of random payoffs. A mapping V from the set of random payoffs to real numbers
is said to be a representation of < if X < Y if and only if V (X) ≥ V (Y ), in which
case V (X) is called the preference value of X. Rank-dependent utility (RDU) is a
representation of preference relation defined as follows:

V (X) :=

∫
R
U(x)d[1− w(1− FX(x))], (1)

where FX(·) is the cumulative distribution function (CDF) of X. The function U ,
which is increasing and continuous in its domain, is called a utility function and
the function w, which is an increasing mapping from the unit interval onto itself, is
called a probability weighting function.

A preference relation is called law-invariant if any two random payoffs sharing
the same distribution are equivalent. Obviously, RDU represents a law-invariant
preference relation.

Let < be a law-invariant preference relation, and denote its implied equivalence
relation as ∼. A distribution F differs from another one F ∗ by a simple compensated
spread from the point of view of < if F ∼ F ∗ and there exists x0 ∈ R such that
F (x) ≥ F ∗(x) for all x < x0 and F (x) ≤ F ∗(x) for all x ≥ x0.

A law-invariant preference relation <∗ is said to be more risk averse than another
one < if F ∗ <∗ F for any distributions F and F ∗ such that F differs from F ∗ by a
simple compensated spread from the point view of <.

The following theorem proved by [9] characterizes when one RDU preference
relation is more risk averse than another.

Theorem 2.1. Let Vi(X) be the RDU preference measure with utility function Ui
and probability weighting function wi, i = 1, 2, and assume that w1 and w2 are
differentiable on [0, 1]. Then, the preference relation represented by V1 is more risk
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averse than the preference relation represented by V2 if and only if U1 is a concave
transformation of U2 and w1 is a convex transformation of w2.

Proof. See Theorem 1 and Corollary 1 in [9].

The precise definition of concave and convex transformation and its connection
with the Arrow-Pratt index are provided in Appendix A. Intuitively, Theorem 2.1
shows that making the utility function more concave, or the probability weighting
function more convex, makes the agent’s preference relation more risk averse.

3. Portfolio choice under RDU in single period. We consider a market in
which two assets are tradeable: one is a risk-free asset and the other one is a risky
stock. An agent, who is endowed with initial capital x0, decides the allocation
between these two assets in one period. Suppose the return of the risk-free asset is
zero and the net (excess) return of the stock is R. In the following, for any random
variable X, denote its distribution function and quantile function as FX(·) and
GX(·), respectively. For simplicity, we assume in the following theoretical analysis
that FR(·) has a compact support, i.e., GR(·) is bounded. In some of the numerical
examples, we may consider distributions with noncompact support.

In the following, we denote R := essinfR = GR(0+) and R := esssupR =
GR(1−). To avoid arbitrage, we always assume that R < 0 and R > 0.

Suppose the agent invests an amount θ in the risky stock and the rest in the
risk-free asset. Then the terminal wealth becomes

X = x0 + θR.

We assume that shorting is not allowed, namely, θ ≥ 0.
The agent’s preference is represented by RDU with utility function u(·) which is

strictly increasing in its domain and probability weighting function w(·) which is a
strictly increasing function mapping [0, 1] onto [0, 1]. As a result, the RDU value of
the agent’s terminal wealth, with allocation θ, is

f(θ) := V (X) =

∫
R
u(x)d[−w(1− FX(x))].

Denote x := inf{x|u(x) > −∞}. Then, the interior of the domain of u(·) is (x,+∞).
In the following, we assume that w(·) is absolutely continuous. Then, we have

f(θ) =

∫ 1

0

u(GX(z))w′(1− z)dz =

∫ 1

0

u(x0 + θGR(z))w′(1− z)dz.

Because we assume that GR(·) is bounded, u(·) is increasing and w(·) is increasing,
f(θ) is always a well-defined function whose value may possibly be −∞, i.e., f(θ) ∈
[−∞,+∞).2 Note that if u(·) is concave, then f(·) is concave as well.

The agent’s portfolio choice problem is

max
θ≥0

f(θ). (2)

We will study the impact of the utility function and probability weighting function
on the optimal allocation θ∗.

To exclude trivial cases, we always assume that x0 is in the interior of the domain
of u(·), which means that investing all the money in the risk-free asset leads to a
finite preference value.

2If GR(·) is unbounded, some technical conditions are needed to make sure f(·) is well-defined.
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Lemma 3.1. The interior of the domain of f(·) is (0, θ) where θ := −x0−x
R . If

u(·) is continuous in its domain, then f(·) is continuous in its domain. If u(·) is
continuously differentiable in the interior of its domain, then f(·) is continuously
differentiable in [0, θ). Here, the differentiability of f(·) at 0 is understood to be the
right-differentiability.

Proof. For any θ > θ, there exists δ > 0 and z0 > 0 such that x0 + θGR(z) ≤ x− δ
for all z ≤ z0. As a result, f(θ) = −∞. For any θ < θ, we have x0 + θGR(z) ≥
x0 + θR > x for any z ∈ (0, 1). Thus, f(θ) > −∞ in this case. Consequently, the
interior of the domain of f is (0, θ).

When u(·) is continuous, the continuity of f(·) in [0, θ) is a result of the bounded
dominance theorem. Next, we show that f(·) is continuous at θ When θ < +∞. It
is obvious to see that f(θ) > −∞ if and only if∫ 1

0

u(x0 − θmax(−GR(z), 0))w′(1− z)dz <∞.

Because for any θ ∈ [0, θ), we have u(x0 − θmax(−GR(z), 0))w′(1 − z) ≤ u(x0 +
θGR(z))w′(1 − z) ≤ u(x0 + θmax(GR(z), 0))w′(1 − z) ≤ u(x0 + θR)w′(1 − z),
the bounded dominance convergence theorem shows that limθ↑θ f(θ) = f(θ) when

f(θ) > −∞. On the other hand,

u(x0 + θGR(z))w′(1− z)
= u(x0 + θGR(z))w′(1− z)1GR(z)≤0 + u(x0 + θGR(z))w′(1− z)1GR(z)>0

≤ u(x0 + θGR(z))w′(1− z)1GR(z)≤0 + u(x0 + θR)w′(1− z).

The monotone convergence theorem shows that limθ↑θ f(θ) = −∞ = f(θ) when

f(θ) = −∞.
Finally, the dominated convergence theorem can be applied to show that f(·) is

continuously differentiable in [0, θ).

Lemma 3.2. Suppose u(·) is continuous in its domain. Then, an optimal solution
to (2) exists if one of the following two conditions holds:

1. θ < +∞ (which is equivalent to x > −∞).
2. θ = +∞ (which is equivalent to x = −∞), limx↓−∞ u(x) = −∞, and there

exist C ≥ 0, 0 ≤ γ+ < γ− such that for any λ ≥ 1,

u(λx) ≤ λγ+(u(x) + C) + C, ∀x ≥ 0,

u(λx) ≤ λγ−(u(x) + C) + C, ∀x ≤ 0.
(3)

Proof. If θ < +∞, then from Lemma 3.1, it is either the case in which f(θ) > −∞
and f(·) is continuous in [0, θ] or the case in which f(θ) = −∞, f(·) is continuous
in [0, θ), and limθ↑θ f(θ) = −∞. Thus, the optimal solution exists.

Next, consider the case in which θ = +∞. In this case, the domain of u(·) is the
whole real line. Denote x+ := max(x, 0) and fix δ ∈ (0, 1) such that γ+ < δγ−. We
have

f(θ) =

∫ 1

0

u(x0 + θGR(z))w′(1− z)dz

=

∫ 1

0

u(x0 + θGR(z))w′(1− z)1GR(z)≥0dz
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+

∫ 1

0

u(x0 + θGR(z))w′(1− z)1GR(z)<0dz

≤
∫ 1

0

u(x+0 + θGR(z))w′(1− z)1GR(z)≥0dz

+

∫ 1

0

u(x+0 + θGR(z))w′(1− z)1
GR(z)<− x

+
0
θ

dz

+

∫ 1

0

u(x+0 + θGR(z))w′(1− z)1
− x

+
0
θ ≤GR(z)<0

dz

≤ C + θγ+
∫ 1

0

[u(
x+0
θ

+GR(z)) + C]w′(1− z)1GR(z)≥0dz

+ θδγ−
∫ 1

0

[u(
x+0
θδ

+ θ1−δGR(z)) + C]w′(1− z)1
GR(z)<− x

+
0
θ

dzdz

+

∫ 1

0

u(x+0 )w′(1− z)1
− x

+
0
θ ≤GR(z)<0

dz.

Because u(−∞) = −∞, there exists θ0 ≥ 0 and ε0 > 0 such that for any θ ≥ θ0,∫ 1

0

[u(
x+0
θδ

+ θ1−δGR(z)) + C]w′(1− z)1
GR(z)<− x

+
0
θ

dz ≤ −ε0.

In addition,
∫ 1

0
u(x+0 )w′(1 − z)1

− x
+
0
θ ≤GR(z)<0

dz goes to zero as θ goes to infinity.

Consequently, limθ→+∞ f(θ) = −∞ and the optimal solution exists.

Lemma 3.2 provides two sufficient conditions for the existence of optimal solution
to problem (2). The first condition yields that u(x) = −∞ ∀x < x for some x ∈ R,
which can be interpreted as a no-bankruptcy constraint or a limited borrowing
constraint once we set x > −∞. The second condition stipulates that the disutility
of losing the same amount of money dominates the utility of wining a significant
amount of money.3 Either of the two conditions guarantees that the agent will not
take infinite leverage, leading to the existence of optimal portfolios.

Note that condition (3) is preserved under affine transformation of u(·). This
condition is related to the asymptotic elasticity of u(·) at infinity. In the following,
we show that

lim inf
x→+∞

xu′(x)

u(x)
< lim sup

x→−∞

xu′(x)

u(x)
,

implies condition (3). Indeed, suppose

lim inf
x→+∞

xu′(x)

u(x)
< γ+ < γ− < lim sup

x→−∞

xu′(x)

u(x)

for some γ− > γ+ ≥ 0. Then according to Lemma 6.3 of [19], there exist x2 ≤ 0 ≤ x1
such that

u(λx) ≤ λγ+u(x), ∀x ≥ x1, u(λx) ≤ λγ−u(x), ∀x ≤ x2.

3To see this, let us fix x = 1 in the first inequality in condition (3) and fix x = −1 in the
second inequality. Then, for a sufficiently large λ, condition (3) implies that the utility of a gain

of λ dollars, u(λ), is approximately smaller than λγ+ and that the disutility of a loss of λ dollars,
−u(−λ), is approximately larger than λγ− and thus dominates the utility of a gain of λ dollars.
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On the other hand, for any x ∈ [0, x1], we have u(λx) ≤ u(λx1) ≤ λγ+u(x1). For
any x ∈ [x2, 0], we have λγ−u(x) ≥ λγ−u(x2) and u(λx) ≤ u(0). As a result,
condition (3) is satisfied with C := max(0, u(0), u(x1),−u(x2)).

It is straightforward to verify that the exponential utility function u(x) = 1 −
e−ηx, x ∈ R, for some η > 0, satisfies condition (3) with γ+ = 0 and any γ− > 0.
On the other hand, the following S-shaped utility function u(x) = (x−B)α, x ≥ B,
u(x) = −k(B− x)β , x ≤ B for some k > 0, 0 < α < β ≤ 1, B ∈ R, which appears in
the cumulative prospect theory [26], satisfies condition (3) with γ+ = α and γ− = β.

A similar condition is used in [8] to prove the existence of the optimal solution
in a multi-period expected utility portfolio choice problem. Condition (3) is also
related to Theorem 2 of [17].

4. Comparative statics. Consider two agents whose preferences are represented
by RDU. The first agent’s utility function and probability weighting function are
u(·) and w(·), respectively. The second agent’s utility function and probability
weighting function are ũ(·) and w̃(·), respectively. As usual, u(·) and ũ(·) are
strictly increasing mappings from R to R ∪ {−∞} and w(·) and w̃(·) are strictly
increasing and absolutely continuous mappings from [0, 1] onto [0, 1].

Suppose ũ(x) = H(u(x)) for some function H(·) : R ∪ {−∞} → R ∪ {−∞} with
H(−∞) = −∞ and w̃(x) = T (w(x)) for some increasing and absolutely continuous
function T (·) mapping [0, 1] onto [0, 1]. Denote the objective functions for the first

and the second agents as f(·) and f̃(·), respectively. Define θ∗ := inf{θ0 | f(θ0) =

supθ≥0 f(θ)} when the optimal solution exists and define θ̃∗ similarly.

4.1. Risk aversion and asset allocation. We first investigate the impact of risk
aversion on the optimal allocation. The following theorem is a (slight) generalization
of Theorem 3 of [9] to allow non-continuous return distributions.

Theorem 4.1. Assume both θ∗ and θ̃∗ exist and u(·) and ũ(·) are continuously
differentiable. If H(·) is concave and T (·) is convex in their domains, respectively,

then θ̃∗ ≤ θ∗.

Proof. We first conclude from Theorem A.1 in the Appendix that the domain of
ũ(·) is contained in the domain of u(·). As a result, according to Lemma 3.1, the

domain of f̃(·) is contained in the domain of f(·).
Let z0 := sup{z ∈ [0, 1] | GR(t) ≤ 0}. Then, GR(z) ≤ 0,∀z ≤ z0 and GR(z) >

0,∀z > z0. Consider the functions

g(θ) :=
1

u′(x0)w′(1− z0)
f(θ), g̃(θ) :=

1

ũ′(x0)w̃′(1− z0)
f̃(θ). (4)

Then, θ∗ and θ̃∗ are the maximizers of g(θ) and g̃(θ), respectively.
We find that

g̃′(θ)− g′(θ) =
1

ũ′(x0)w̃′(1− z0)

∫ 1

0

GR(z)ũ′(x0 + θGR(z))w̃′(1− z)dz

− 1

u′(x0)w′(1− z0)

∫ 1

0

GR(z)u′(x0 + θGR(z))w′(1− z)dz

=

∫ 1

0

GR(z)
T ′(u(x0 + θGR(z)))u′(x0 + θGR(z))H ′(w(1− z))w′(1− z)

T ′(u(x0))u′(x0)H ′(w(1− z0))w′(1− z0)
dz
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−
∫ 1

0

GR(z)u′(x0 + θGR(z))w′(1− z)
u′(x0)w′(1− z0)

dz

=

∫ 1

0

u′(x0 + θGR(z))w′(1− z)
u′(x0)w′(1− z0)

[
T ′(u(x0 + θGR(z)))H ′(w(1− z))

T ′(u(x0))H ′(w(1− z0))
− 1

]
GR(z)dz.

Because T (·) is concave and H(·) is convex, we conclude that

T ′(u(x0 + θGR(z)))H ′(w(1− z))
T ′(u(x0))H ′(w(1− z0))

is larger than 1 when z ≤ z0 and is less than 1 when z > z0. Consequently,
g̃′(θ)− g′(θ) ≤ 0 for any θ in the interior of the domain of f̃ .

Next, we show that θ̃∗ ≤ θ∗. Otherwise, θ̃∗ > θ∗. Then, because g̃′(θ)−g′(θ) ≤ 0

for any θ in the interior of the domain of f̃(·), we conclude that

g̃(θ̃∗)− g(θ̃∗)− (g̃(θ∗)− g(θ∗)) ≤ 0.

As a result,

g(θ̃∗) ≥ g̃(θ̃∗)− g̃(θ∗) + g(θ∗) > g(θ∗),

which is a contradiction.

Theorem 4.1 shows that an investor with a more risk-averse RDU preference
relation will invest less in the risky asset, generalizing an existing result in [9] to
non-continuous return distributions. Note that in Theorem 3 of [9], it is implicitly
assumed that the distribution of the excess return R is continuous. Indeed, the
authors wrote

f(θ) =

∫
R
u(x0 + θx)w′(1− FR(x))dFR(x),

which is valid only when FR(·) is continuous. On the other hand, Theorem 4.1 does
not impose any assumption on the distribution of R. In particular, Theorem 4.1
also holds when R follows a discrete distribution, such as a Bernoulli distribution.
We refer to [16] for a similar result in a single-period complete market in which the
RDU investor can trade a continuum of Arrow-Debreu securities.

An interesting problem is if the converse of Theorem 4.1 is true. Precisely, if the
agent with utility function ũ(·) and probability weighting function w̃(·) invests less
in the risky stock than the agent with utility function u(·) and probability weighting
function w(·), can we conclude that ũ(·) is a concave transformation of u(·) and w̃(·)
is a convex transformation of w(·)? To our best knowledge this problem is still open.

4.2. A sufficient and necessary condition. In general, if ũ(·) is not a concave
transform of u(·) or w̃(·) is not a convex transform of w(·), it is unclear whether

θ̃∗ ≤ θ∗. The following theorem provides a sufficient and necessary condition under
which θ̃∗ ≤ θ∗.

Theorem 4.2. Assume that both u(·) and ũ(·) are continuously differentiable with

ũ(x) = H(u(x)) and u(·) is concave. Suppose that both θ̃∗ and θ∗ exists and θ̃∗ is

in the interior of the domains of f(·) and f̃(·). Then, θ̃∗ ≤ θ∗ if and only if∫ 1

0

u′(x0 + θ̃∗GR(z))w′(1− z)
u′(x0)w′(1− z0)

[
T ′(u(x0 + θ̃∗GR(z)))H ′(w(1− z))

T ′(u(x0))H ′(w(1− z0))
− 1

]
×GR(z)dz ≤ 0. (5)
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Proof. Because θ̃∗ is optimizer of f̃(·) and is in the interior of the domain of f̃(·),
we immediately conclude that f̃ ′(θ̃∗) = 0. On the other hand, because u(·) is

concave, f(·) is also concave. Because θ̃∗ is in the interior of the domain of f(·)
and θ∗ is the maximizer of f in its domain, we conclude that θ∗ ≥ θ̃∗ if and only
if f ′(θ̃∗) ≥ 0 = f̃ ′(θ̃∗), which is the case if and only if g̃′(θ̃∗) − g′(θ̃∗) ≤ 0 by the
definition of g̃ and g in (4). Finally, one can see from the calculation in the proof

of Theorem 2 that g̃′(θ̃∗)− g′(θ̃∗) ≤ 0 if and only if (5) holds.

Suppose the interior of the domain of f(·) and f̃(·) are (0, θ) and (0, θ̃), respec-
tively. Lemma 3.1 shows that under certain conditions, limθ→θ f(θ) = −∞ and

lim
θ→θ̃

f̃(θ) = −∞. In this case, θ̃∗ is an interior point of the domain of f̃(·) and

f(·) if and only if θ̃∗ > 0. A sufficient condition for θ̃∗ > 0 is that f̃ ′(0) > 0, which
is equivalent to ∫ 1

0

GR(z)w̃′(1− z)dz > 0.

This condition states that the expected excess return adjusted for probability weight-
ing is strictly positive.

4.3. More inverse S-shaped probability weighting. Our aim is to study the
effect of changes in the degree of inverse S-shaped probability weighting on opti-
mal portfolio choice. We define a probability weighting function w̃(·) to be more
inverse S-shaped than another one w(·) if there exists z0 ∈ (0, 1), a concave func-
tion H(·), and a convex function H̄(·) such that H(0) = 0, H(w(z0)) = w(z0) =
H̄(w(z0)), H̄(1) = 1 and

w̃(z) =

{
H(w(z)) z ∈ [0, z0],

H̄(w(z)) z ∈ [z0, 1].

We call this z0 the reflection point. It is easy to check that

d

dz
(w̃(z)− w(z)) = (H ′(w(z))− 1)w′(z)

is first positive and then negative on [0, z0] because H(·) is concave. Thus, we have
w̃(z) ≥ w(z) on [0, z0]. A similar argument shows that w̃(z) ≤ w(z) on [z0, 1]. As
a result, for any p ∈ (0, z0) and any q ∈ (z0, 1), we have

w̃(p)− w̃(0) ≥ w(p)− w(0), w̃(1)− w̃(q) ≥ w(1)− w̃(q), (6)

w̃(z0)− w̃(p) ≤ w(z0)− w(p), w̃(q)− w̃(z0) ≤ w(q)− w(z0)

Thus, the decision weight for the worst outcome of a random payoff that occurs
with probability p is higher under w̃ than under w. Similarly, the decision weight
for the best outcome of a random payoff that occurs with probability 1− q is higher
under w̃ than under w. Consequently, the total decision weights for the outcomes
other than the worst and the best ones is lower under w̃ than under w. Letting p
go to 0 and z0, respectively, and letting q go to 1 and z0, respectively, we can also
conclude that

w̃′(0+) ≥ w̃′(0+), w̃′(z0−) ≤ w′(z0−), w̃′(z0+) ≤ w′(z0+), w̃′(1−) ≥ w′(1−). (7)

To further illustrate probability weighting functions with different degrees of
inverse S-shape, we plotted a family of probability weighting functions, w(z) =
az2 +

(
1− a/2

)
z, z ∈ [0, 0.5], w(z) = 1−w(1− z), z ∈ (0.5, 1], for three values of a,



688 XUE DONG HE, ROY KOUWENBERG AND XUN YU ZHOU

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

z

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w
(z

)

a=0
a=-1
a=-2

Figure 1. Comparative inverse S-shape. A family of probability
weighting functions, w(z) = az2 +

(
1 − a/2

)
z, z ∈ [0, 0.5], w(z) =

1 − w(1 − z), z ∈ (0.5, 1], are plotted for three values of a, 0, −1,
and −2, in dash-dotted, solid, and dashed lines, respectively. As a
becomes more negative, the probability weighting function becomes
more inverse S-shaped.

0, −1, and −2, in dash-dotted, solid, and dashed lines, respectively, in Figure 1. As
a becomes more negative, the probability weighting function becomes more inverse
S-shaped.

4.4. Explicit result for skewed Bernoulli distributions. Inverse S-shaped
probability weighting has two conflicting effects as it exaggerates the small prob-
abilities of both good and bad extremes. Hence, intuitively, its overall impact on
optimal portfolio choice should depend on the skewness of the stock return distri-
bution. We examine this net impact via a family of Bernoulli distributions with
the same mean and variance but different skewness. Fix σ > 0 and s ∈ R, which
stand for the standard deviation and Sharpe ratio of the excess return R, respec-
tively. Let µ be the expected excess return, then µ = sσ. We consider the following
distribution of R, parameterized by p:

P

(
R = σ

(
s+

(
p

1− p

)1/2
))

= 1− p, P

(
R = σ

(
s−

(
1− p
p

)1/2
))

= p. (8)

It is easy to check that E(R) = sσ = µ and var(R) = σ2. In addition, straightfor-
ward calculation shows that the skewness of the distribution, denoted as Skew(R)
is

2p− 1

(p(1− p))1/2
.
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It is easy to see that Skew(R) is strictly increasing in p, Skew(R) = 0 at p = 1/2,
and

lim
p→1

Skew(R) = +∞, lim
p→0

Skew(R) = −∞.

There is a restriction on p to ensure that R > 0 and R < 0, making p lie in
the range (0, 1/(1 + s2)). Because typical values of the Sharpe ratio (s) are less
than 60%, p can still take values in a fairly large interval. As a result, the family
of Bernoulli distributions (8) is flexible enough to generate a fairly wide range of
levels of skewness with the mean and standard deviation being fixed. The family of
distributions (8) is also employed by [22] to study skewness-award asset allocation
problems.

We now prove that the skewness (parameter p) of the Bernoulli distribution de-
termines if an investor with a more inverse S-shaped probability weighting function
invests more or less in the risky asset.

Theorem 4.3. Suppose ũ(·) = u(·) and w̃(·) is more inverse S-shaped than w(·)
with the reflection point z0. Assume the return rate R follows the distribution (8).

Suppose that both θ∗ and θ̃∗ exist. Then, if p ≥ 1 − z0, θ̃∗ ≥ θ∗. If p ≤ 1 − z0,
θ̃∗ ≤ θ∗.

Proof. Denote b = σ

(
s+

(
p

1−p

)1/2)
> 0 and a = −σ

(
s−

(
1−p
p

)1/2)
> 0. Then,

GR(z) =

{
−a 0 < z ≤ p,
b p < z < 1.

As a result,

f(θ) = u(x0 − θa)(1− w(1− p)) + u(x0 + θb)w(1− p)
and

f ′(θ) = −au′(x0 − aθ)(1− w(1− p)) + bu′(x0 + θb)w(1− p).
Similarly,

f̃ ′(θ) = −au′(x0 − aθ)(1− w̃(1− p)) + bu′(x0 + θb)w̃(1− p).
Because w̃(z) ≥ w(z) on [0, z0] and w̃(z) ≤ w(z) on [z0, 1], we immediately conclude
that

d

dθ
(f̃(θ)− f(θ)) = [bu′(x0 + θb)− (−au′(x0 − aθ))] [w̃(1− p)− w(1− p)]

is negative if p ≤ 1− z0 and is positive otherwise. The conclusion follows.

The above theorem shows that when the probability weighting function of the
agent becomes more inverse S-shaped and the excess return follows a Bernoulli dis-
tribution, the allocation to negatively skewed assets (corresponding to p ≤ min(1−
z0, 1/2)) becomes less and the allocation to positively skewed assets (corresponding
to p ≥ max(1− z0, 1/2)) becomes more. This result is intuitive. Suppose the excess
return R follows a negatively skewed Bernoulli distribution, with sufficiently low p
such that an increase in inverse S-shaped weighting will amplify the weight of the
bad outcome: p ≤ min(1 − z0, 1/2). A more inverse S-shaped weighting function
will then increase the bad outcome’s weight, w(p), while simultaneously decreasing
the weight of the good outcome, 1−w(p). As a result, the risky stock becomes less
attractive, and the investor reduces his optimal allocation.
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For general distributions with more than two outcomes, a more inverse S-shaped
weighting function will increase the weight given to both positive and negative ex-
treme outcomes with small probabilities, while reducing the weight of intermediate
outcomes that have larger probabilities; see (6). The implication is that not only
the skewness of the return distribution matters, but also its location parameter (the
weights given to intermediate outcomes around the mean), as well as the investor’s
level of risk aversion. This makes it difficult to derive general analytical results.
In the following section, we investigate the impact of inverse S-shaped probability
weighting on asset allocation through numerical experiments.

5. Numerical experiments. In our numerical experiments we will use the fol-
lowing probability weighting function

w(p) =
δpγ

δpγ + (1− p)γ
, (9)

with γ > 0 and δ > 0. This two-parameter weighting function was introduced by
[14], and subsequently applied in influential papers by [21] and [25]. For γ < 1 the
probability weighting is inverse S-shaped, while it is S-shaped for γ > 1. The pa-
rameter δ captures general overweighting of probabilities, with δ < 1 corresponding
to underweighting (pessimism) and δ > 1 to overweighting (optimism). Indeed, we
can calculate that

w′(p) = δγpγ−1(1− p)γ−1(δpγ + (1− p)γ)−2

and

w′′(p)

w′(p)
= −δ(1 + γ − 2p)pγ + (1− γ − 2p)(1− p)γ

p(1− p)(δpγ + (1− p)γ)

= −1 + γ − 2p

p(1− p)
+

2γ(1− p)γ

p(1− p)(δpγ + (1− p)γ)
.

Obviously, w′′(p)/w′(p) is strictly decreasing w.r.t. δ for each fixed p ∈ (0, 1) and
fixed γ > 0. Thus, the larger value δ takes, the less risk averse the preference
relation represented by RDU with the probability weighting function (9) is.

On the other hand, we can see that

lim
p↓0

pw′′(p)

w′(p)
= −(1− γ), lim

p↑1

pw′′(p)

w′(p)
= 1− γ.

As a result, when γ takes a smaller value, w′′(p)/w′(p) becomes more negative for
p in a neighbourhood of 0 and becomes more positive for p in a neighbourhood of
1, and, consequently, Theorem A.1-(v) in Appendix A shows that w becomes more
concave in the neighbourhood of 0 and becomes more convex in the neighbourhood
of 1.

We note that expected utility, or no probability weighting, is a special case for
γ = 1 and δ = 1. The case with δ = 1 is also of importance; in this case, we have

w′′(p)

w′(p)
= − 1− 2p

p(1− p)
+

γ
(
(1− p)γ − pγ

)
p(1− p)(pγ + (1− p)γ)

.

Straightforward calculation yields

d

dγ

(
w′′(p)

w′(p)

)
=

pγ−1(1− p)γ−1

(pγ + (1− p)γ)2
·

[(
1− p
p

)γ
−
(

1− p
p

)−γ
+ 2γ ln

(
1− p
p

)]
.
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Because f(x) := xγ − x−γ + 2γ lnx is strictly increasing in x with f(1/2) = 0, we

immediately conclude that d
dγ

(
w′′(p)
w′(p)

)
is strictly increasing in γ when p < 1/2 and

strictly decreasing in γ when p > 1/2. Consequently, when δ = 1, a decrease in γ
makes the weighting function more inverse S-shaped according to our definition. As
we will be focusing on the effect of being more inverse S-shaped, in our numerical
examples we will use the probability weighting function in (9) with δ = 1, while
varying the parameter γ to illustrate its impact on optimal portfolio choice.

5.1. Numerical examples.

5.1.1. Skew-normal return distribution. We assume an exponential utility function,
that is,

u(x) = 1− e−βx, x ∈ R (10)

for some β > 0. We use the Goldstein-Einhorn probability weighting function (9)
with δ = 1. We assume that the excess return R follows a skew-normal distribution.

Denote by Φ(·) the CDF of the standard normal distribution. The skew-normal
distribution is defined by the following probability density function; see [1]:

fξ,ω,α(x) =
2

ω
Φ′
(
x− ξ
ω

)
Φ

(
α

(
x− ξ
ω

))
, x ∈ R, (11)

where ξ is the location parameter, ω is the scale parameter, α is the shape parameter.
The mean, variance, and skewness of this distribution are ξ + ωκ, ω2

(
1− κ2

)
, and

4−π
2

κ3

(1−κ2)3/2
, respectively, where κ := α√

1+α2

√
2
π .

Suppose that the mean and standard deviation of the distribution are fixed at µ
and σ, respectively. Then, we choose different values for κ from −

√
2/π to

√
2/π

(i.e., choose different values of α from −∞ to ∞) to model skewness, and set

ω =
σ√

1− κ2
, ξ = µ− σκ√

1− κ2

to match the mean and standard deviation.
In the following simulation study, we set µ = 6% and σ = 20%, representing the

typical expected return and volatility of the aggregate U.S. stock market portfolio
in one year. Because the exponential utility function has the property of constant
absolute risk aversion, the optimal allocation does not depend on the initial wealth
x0, and hence we assume x0 = 1.4 Setting δ = 1, we depict in Figure 3 the optimal
allocation to the risky asset with different values of γ (recall the smaller γ is, the
more inverse S-shaped the probability weighting function is). Three values of the
skewness of R are chosen: −0.5, 0, and 0.5, representing the cases of a negatively
skewed distribution, a symmetric distribution, and a positively skewed distribution,
respectively; see Figure 2 for the probability density function of R in these three
cases.

We observe from Figure 3 that when the distribution is negatively skewed, the
optimal allocation decreases with respect to 1 − γ. This is consistent with the
intuition. Indeed, a more inverse S-shaped probability weighting function implies
that the agent put higher weights on both the best and the worst outcomes that
occur with small probability. For a negatively skewed distribution the magnitude of
the best outcomes is relatively smaller than the magnitude of the worst outcomes;

4We refer to Appendix B for comparable results with a power utility function.
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Figure 2. Probability density function of the excess return R of
the risky asset when R follows a skew-normal distribution. The
mean and standard deviation of R are set to be µ = 6% and σ =
20%, respectively, and the skewness of R takes three values: −0.5,
0, and 0.5, corresponding to the probability density functions in
the left, middle, and right panes, respectively.

so the second impact dominates the first one, making the agent invest less in the
stock market.

However, it is surprising that when the distribution is positively skewed or sym-
metric (dashed-dotted line and dashed line, respectively), the optimal allocation
still decreases with respect to 1 − γ. This can be explained by the following two
effects: decreasing marginal utility and lower weights given to the middle region
of the distribution. If a return distribution is symmetric, a more inverse S-shaped
probability distribution makes the agent put higher weights on both the worst and
the best outcomes (both of small probability). However, assuming the investor has
a concave (i.e., risk averse) utility function, the marginal loss is higher than the
marginal gain of the same magnitude. Hence, when the return distribution is sym-
metric, other things being equal a risk averse investor with a more inverse S-shaped
weighting function will find the stock less attractive and reduce the allocation.

There is however a more important reason. Apart from increasing the weights
given to the tails, a more inverse S-shaped function also lowers the weights given to
the middle part of the return distribution. Typically, with a mean annual return rate
of 6%, in the middle part of the return distribution the investor is more likely to earn
positive returns than negative ones, and hence lowering the weights here makes the
stock less attractive. We can observe in Figure 3 that positive skewness of 0.5 is not
sufficient to overcome the two negative effects of more inverse S-shaped weighting:
large losses hurting more than large gains for concave utility, and lower weights
assigned to the middle region of the distribution. The highest level of positive
skewness we can numerically assign to the skew-normal distribution is 0.99, and
even for this value we get the same result: an increase in inverse S-shaped weighting
(higher 1− γ) leads to a lower optimal stock weight.

To illustrate the effect of the middle part of the distribution on the optimal
allocation, we change the expected excess stock return to µ = 1%. The stock in-
vestment is now overall less attractive, offering a low ratio of expected return to
risk. Figure 4 shows that in this case when skewness is 0.5, the optimal allocation
now does increase with respect to 1 − γ for most values of γ. The density func-
tions of the return distributions in Figure 5 help us see why: the positively skewed
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Figure 3. Optimal dollar amount θ∗ invested in the risky asset
with respect to different degrees of inverse S-shape of the probabil-
ity weighting function. The utility function is the exponential one
in (10) with β = 1. The probability weighting function is given by
(9), so 1 − γ represents the degree of inverse S-shape of the prob-
ability weighting function. We set δ = 1. The excess return of the
risky asset R follows a skew-normal distribution with mean µ = 6%
and standard deviation σ = 20%. The skewness takes three values
−0.5, 0, and 0.5, corresponding to the solid line, dashed line, and
dash-dotted line, respectively.

distribution (skewness = 0.5) has a negative mode and median, indicating that
negative returns are more frequent than positive returns in the middle region of the
distribution. An increase in inverse S-shaped weighting will also lower the weight
assigned to the middle region, and hence make the stock relatively more attractive
in this case. In Appendix B we show similar results for a power utility function,
using a log-transformed skew-normal distribution.

5.2. Empirical return distributions. The simulation study above shows that
the impact of a more inverse S-shaped probability weighting function on the alloca-
tion to risky assets not only depends on the skewness of the asset return distribution,
but also on its location parameter. One may wonder what the overall impact is for
the empirical return distributions of the aggregate stock market and the return of
typical individual, exchange-listed stocks. In this section, we use historical data to
address this question.

We use data on the annual excess returns of the aggregate U.S. stock market port-
folio from the data library of Professor Kenneth French.5 In the period 1962–2016,
the estimated average excess return of the U.S. market is µ = 6.5%, with standard

5The link to the library is http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_
library.html.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


694 XUE DONG HE, ROY KOUWENBERG AND XUN YU ZHOU

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1-

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

*

=1%, =20%

skewness=-0.5
skewness=0
skewness=0.5

Figure 4. Optimal dollar amount θ∗ invested in the risky asset
with respect to different degrees of inverse S-shape of the probabil-
ity weighting function. The utility function is the exponential one
in (10) with β = 1. The probability weighting function is given by
(9), so 1 − γ represents the degree of inverse S-shape of the prob-
ability weighting function. We set δ = 1. The excess return of the
risky asset R follows a skew-normal distribution with mean µ = 1%
and standard deviation σ = 20%. The skewness takes three values
−0.5, 0, and 0.5, corresponding to the solid line, dashed line, and
dash-dotted line, respectively.
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Figure 5. Probability density function of the excess return R of
the risky asset when R follows a skew-normal distribution. The
mean and standard deviation of R are set to be µ = 1% and σ =
20%, respectively, and the skewness of R takes three values: −0.5,
0, and 0.5, corresponding to the probability density functions in
the left, middle, and right panes, respectively.
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Figure 6. Optimal dollar amount θ∗ invested in the U.S. stock
market as a function of the degree of inverse S-shape of the prob-
ability weighting function. The utility function is the exponential
one in (10) with β = 1. The probability weighting function is given
by (9), so 1 − γ represents the degree of inverse S-shape of the
weighting function. We set δ = 1. The excess return of the risky
asset R follows a skew-normal distribution with mean µ = 6.5%,
standard deviation σ = 17.6% and skewness of −0.6, based on his-
torical data of excess returns for the U.S. stock market (1962–2016).
The solid line shows the optimal allocation when the skewness is
−0.6 as in the historical data, while the dotted line shows the op-
timal allocation when skewness is 0 for comparison sake.

deviation σ = 17.6% and skewness of −0.6. We calibrate a skew-normal distribution
with these parameter values and then calculate the optimal dollar amount invested
in the risky asset for an investor with exponential utility function with β = 1 and
the Goldstein-Einhorn probability weighting function with parameters δ = 1 and
varying γ. Figure 6 shows the optimal allocation to the U.S. stock market as a
function of (1 − γ). We observe as before that more inverse S-shaped probability
weighting (1− γ) leads to a lower stock allocation, and even a zero weight in more
extreme cases. In line with the previous results of [24], we see that high levels of
inverse S-shaped weighting may explain the non-participation of general households
in the stock market.

However, investors who overweight the tails of the distribution may still be
tempted to invest in an individual stock with positive skewness that offers them
a small chance to become rich. Indeed, many individual investors try hard to find
an exchange-listed company that will become ‘the next Apple’ or ‘the next Google’.
As an example, we consider the historical stock return distribution of Apple, which
has been listed since 1980. In the period 1980 to 2016, the average annual excess
return of Apple’s stock was µ = 29.5%, with standard deviation σ = 70.5% and
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Figure 7. Optimal dollar amount θ∗ invested in Apple as a func-
tion of the degree of inverse S-shape of the probability weighting
function. The utility function is the exponential one in (10) with
β = 1. The probability weighting function is given by (9), so 1− γ
represents the degree of inverse S-shape of the weighting function.
We set δ = 1. The excess return of the risky asset R follows a
skew-normal distribution with mean µ = 29.5%, standard devia-
tion σ = 70.5% and skewness of 0.9, based on historical data of
excess returns for the stock of the company Apple (1980–2016).
The solid line shows the optimal allocation when the skewness is
0.9 as in the historical data, while the dotted line shows the optimal
allocation when skewness is 0 for comparison sake.

skewness of 0.9. Clearly, Apple’s stock offered both a very high average return and
high positive skewness. Figure 7 shows the optimal allocation to Apple as a func-
tion of (1− γ), when we calibrate a skew-normal distribution with these parameter
values (µ = 29.5%, σ = 70.5%, skewness = 0.9). Consistent with the finding in
Section 5.1.1, investors with a more inverse S-shaped probability weighting func-
tions (higher 1−γ) have a lower demand for Apple stocks. Although investors with
a more inverse S-shaped probability weighting functions appreciate a stock offering
positive skewness such as Apple, they also overweight losses in the left tail and
underweight the middle region of the return distribution more, and these latter two
effects dominate.

How can we reconcile the previous finding that investors with a more inverse S-
shaped probability weighting functions have a lower demand for Apple stocks with
the often mentioned intuition that more inverse S-shaped probability weighting is
associated with a higher demand for individual stocks offering a positively skewed
return distribution? For example, [24] finds that RDU investors with stronger
inverse S-shaped probability weighting tend to invest a higher portfolio weight in a
single, randomly selected, individual U.S. stock, contrary to our results for Apple.
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In the same spirit of the discussion related to Figure 3, Polovnichenko’s results are
probably driven by the fact that a randomly selected individual stock has a lower
average annual return than Apple, while also having a return distribution with much
stronger positive skewness.

[4] estimates the return distribution when an investor randomly samples one
individual stock from the universe of all U.S. listed stocks, and holds it for one
year, similar to [24]. The average excess return to such a strategy is µ = 11.3%,
with σ = 82.0% and skewness of 19.9. The distribution has an extremely long right
tail, reflecting that a few selected stocks perform extremely well. Figure 8 shows the
optimal stock allocation as a function of (1− γ), when we calibrate a skew-normal
distribution with these parameter values (µ = 11.3%, σ = 82.0%), while setting
skewness at highest feasible value of 0.99 for a skew-normal distribution. Indeed,
now investors with a more inverse S-shaped probability weighting functions (higher
1 − γ) demand more stock. A similar result is shown in [24], but here we add
the insight that such a positive relation only occurs because a randomly sampled
company stock offers a return distribution with extremely high positive skewness
and a relatively poor expected return per unit of standard deviation (Sharpe ratio).

Finally, we would like to illustrate that inverse S-shaped probability weighting
can lead investors to invest in stocks that have negative expected excess returns,
as long as the return distribution is positively skewed. As explained earlier, more
inverse S-shaped weighting not only puts more weight on extremes in the tails, but
also diminishes the weights assigned to the middle region of the return distribution.
This makes the investor less sensitive to the expected return offered by the stock,
and in some cases willing to accept negative expected returns in exchange for some
exposure to positive skewness.

As an example we take the portfolio of the so-called ‘lottery stocks’ described
in [20]. [20] defines a lottery stock as a stock with relatively high volatility, high
skewness and low price. He constructs a well-diversified portfolio of U.S. lottery
stocks using data from 1991 to 1996. This portfolio has a negative expected excess
return of µ = −0.3%, a volatility of σ = 27.5% and skewness of 0.33. The solid line
in Figure 9 shows the allocation to Kumar’s lottery stock portfolio as a function of
(1− γ). It is seen that for 1− γ > 0.1 investors are willing to allocate some money
to this portfolio with negative excess return, because it offers a moderate amount
of positive skewness that they prefer.

To further illustrate the effect of changes in the expected return, in Figure 9
we also show the demand for the lottery stock portfolio when µ is −1% (dashed
line), 1% (dashed-dotted line) and 3% (dotted line). We observe that investors with
more inverse S-shaped weighting functions are increasingly less sensitive to the mean
return, in stark contrast to expected utility maximizers. This illustrates why lottery-
type stocks can have such low or even negative average returns in the market, as
the mean return is a secondary concern for investors who strongly overweight the
tails of the distribution. A large number of empirical studies show evidence that
securities with positive skewness or a high probability of extreme positive outcomes
have low subsequent average returns: see, for example, [20], [6], [2], [10], [7] and
[11]. We refer to [3] for an equilibrium model of stock pricing in the presence of
investors with inverse S-shaped probability weighting functions that can explain
the overpricing of stocks with positive skewness, especially when short-selling by
rational agents is limited or risky.
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Figure 8. Optimal dollar amount θ∗ invested in one randomly
selected U.S. stock as a function of the degree of inverse S-shape
of the probability weighting function. The utility function is the
exponential one in (10) with β = 1. The probability weighting
function is given by (9), so 1 − γ represents the degree of inverse
S-shape of the weighting function. We set δ = 1. The excess
return of the risky asset R follows a skew-normal distribution with
mean µ = 11.3%, standard deviation σ = 82.0% and skewness of
0.99 (the highest feasible value), based on the annual excess return
distribution when one U.S. listed stock is picked randomly and held
for one year, from [4]. The solid line shows the optimal allocation
when the skewness is 0.99 as in the historical data, while the dotted
line shows the optimal allocation when skewness is 0 for comparison
sake.

6. Conclusions. In this paper we analyzed how changes in inverse S-shaped proba-
bility weighting influence optimal portfolio choice, an open question in the literature.
For this purpose we studied a general one-period portfolio choice problem with one
risky asset (e.g., a stock) and one riskless asset, when the investor’s preferences are
modelled by rank-dependent utility. We first derived two sufficient conditions for
the existence of an optimal solution of the investment problem. We then general-
ized an existing result of [9] to non-continuous return distributions, showing that
an investor with a more risk averse RDU preference relation will always invest less
in the risky asset.

We introduced and defined the notion of a more inverse S-shaped probability
weighting function, using a concave-convex transformation function, to study the
impact of overweighting the probability of unlikely and extreme events on portfolio
choice. In the special case when the risky asset return follows a skewed Bernoulli
distribution, we proved analytically that the impact of a more inverse S-shaped
weighting function on the stock allocation depends on the skewness parameter of
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Figure 9. Optimal dollar amount θ∗ invested in a portfolio of
U.S. lottery stocks as a function of the degree of inverse S-shape
of the probability weighting function. The utility function is the
exponential one in (10) with β = 1. The probability weighting
function is given by (9), so 1 − γ represents the degree of inverse
S-shape of the weighting function. We set δ = 1. The excess return
of the risky asset R follows a skew-normal distribution with mean
µ = −0.3%, standard deviation σ = 27.5% and skewness of 0.33,
based on a portfolio of U.S. lottery stocks described in [20]. The
solid line shows the optimal allocation when the mean excess return
is µ = −0.3 as estimated by [20]. The other lines show the portfolio
allocation for other levels of expected return: µ = −1% (dashed
line), µ = 1% (dashed-dotted line) and µ = 3% (dotted line), while
keeping σ and skewness constant.

the distribution. For general return distributions the effect of more inverse S-shaped
weighting on the risky asset allocation is more complex, depending on the interplay
between the weights given to the tails and the middle region of the return distribu-
tion, as well as the curvature of the utility function.

We illustrated these effects numerically using simulations of a skew-normal re-
turn distribution. The main finding is that an increase in inverse S-shaped weighting
typically leads to a lower allocation to the risky asset, regardless of whether the
return distribution is skewed left or right, as long as the asset offers a non-negligible
positive risk premium. For the historical return distribution of the U.S. stock mar-
ket, which is skewed to the left, a more inverse S-shaped weighting function leads
to a lower optimal allocation. Even for an individual stock like Apple with a re-
turn distribution that is strongly skewed to the right, we found that more inverse
S-shaped weighting leads to a lower optimal weight. Only for stocks offering poor
expected returns (e.g., negative), or very extreme positive skewness, we found that
an increase in inverse S-shaped weighting can lead to larger portfolio allocations.
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The implications of our results are that investors with more inverse S-shaped
probability weighting are less likely to invest in well-diversified stock market funds
that offer a reasonable risk-return trade-off, and more likely to buy stocks with
lottery-like features that offer poor risk-adjusted returns [20]. These results can
be used to set testable hypotheses for the empirical household finance literature,
where datasets with measurements of inverse S-shaped probability weighting in the
general population are available; see e.g., [5] and [13].

For future research an extension of our work to multiple risky assets is of interest,
to study the effect of inverse S-shaped weighting on portfolio diversification. An
extension to risky assets with non-linear payoff functions, such as derivatives and
structured products, is relevant as well.

Appendix A. Concave transformation. A function φ(·) : R → R ∪ {−∞}
is a concave transformation of (or more concave than) another one ψ(·) : R →
R ∪ {−∞} if there exists a concave function h(·) : R ∪ {−∞} → R ∪ {−∞} such
that h(−∞) = h(−∞) and φ(·) = h(ψ(·)). A function φ(·) : R → R ∪ {+∞} is a
convex transformation of (or more convex than) another one ψ(·) : R→ R ∪ {+∞}
if −φ(·) is more concave than −ψ(·).

The following theorem provides a full charaterization of concave transformation,
which, in contrast to the literature, does not necessarily rely on the assumption of
twice differentiable functions.

Theorem A.1. (i) If φ(·) is a concave transformation of ψ(·), then the domain
of φ(·) is contained in the domain of ψ(·).

(ii) Suppose ψ(·) is strictly increasing and continuous in its domain. Then, φ(·) is
a concave transformation of ψ(·) if and only if the domain of φ(·) is connected
and contained in the domain of ψ(·) and

φ(x3)− φ(x2)

ψ(x3)− ψ(x2)
≤ φ(x2)− φ(x1)

ψ(x2)− ψ(x1)

for any x1 < x2 < x3 in the domain of φ(·).
(iii) Suppose both φ(·) and ψ(·) are strictly increasing and continuous in their

domains. Then, φ(·) is a concave transformation of ψ(·) if and only if the
domain of φ(·) is contained in the domain of ψ(·) and

φ(x3)− φ(x2)

φ(x2)− φ(x1)
≤ ψ(x3)− ψ(x2)

ψ(x2)− ψ(x1)

for any x1 < x2 < x3 in the domain of φ(·).
(iv) Suppose that ψ(·) is strictly increasing in its domain and that both φ(·) and

ψ(·) are absolutely continuous in their domains. Then, φ(·) is a concave trans-
formation of ψ(·) if and only if the domain of φ(·) is connected and contained
in the domain of ψ(·) and

φ′(x)

ψ′(x)

is decreasing in the interior of the domain of φ(·).
(v) Suppose both φ(·) and ψ(·) are strictly increasing and absolutely continuous in

their domains. In addition, φ′(·) and ψ′(·) are absolutely continuous. Then,
φ(·) is a concave transformation of ψ(·) if and only if the domain of φ(·) is
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contained in the domain of ψ(·) and

−φ
′′(x)

φ′(x)
≥ −ψ

′′(x)

ψ′(x)

for almost everywhere x in the interior of the domain of φ(·).

Proof. (i) For any x ∈ R such that φ(x) > −∞, we have h(ψ(x)) = φ(x) > −∞.
Because h(−∞) = −∞, we must have ψ(x) > −∞.

(ii) We first prove the necessity. Suppose φ(·) is a concave transformation of
ψ(·), i.e., there exists a concave function h(·) such that h(−∞) = −∞ and
φ(x) = h(ψ(x)), x ∈ R. We have concluded that the domain of φ(·) must be
contained in the domain of ψ(·). In addition, for any x < y in the domain of
φ(·) and any α ∈ (0, 1), we have, from the concavity of h(·), that

φ(αx+ (1− α)y) = h(ψ(αx+ (1− α)y))

= h

(
ψ(y)− ψ(αx+ (1− α)y)

ψ(y)− ψ(x)
ψ(x) +

ψ(αx+ (1− α)y)− ψ(x)

ψ(y)− ψ(x)
ψ(y)

)
≥ ψ(y)− ψ(αx+ (1− α)y)

ψ(y)− ψ(x)
h(ψ(x)) +

ψ(αx+ (1− α)y)− ψ(x)

ψ(y)− ψ(x)
h(ψ(y))

=
ψ(y)− ψ(αx+ (1− α)y)

ψ(y)− ψ(x)
φ(x) +

ψ(αx+ (1− α)y)− ψ(x)

ψ(y)− ψ(x)
φ(y)

> −∞.

Therefore, the domain of φ(·) is connected. On the other hand, for any x1 <
x2 < x3 in the domain of φ(·), we have ψ(x1) < ψ(x2) < ψ(x3). In addition,
φ(xi) = h(ψ(xi)), i = 1, 2, 3 and thus ψ(xi), i = 1, 2, 3 are in the domain of
h(·). Then, by the concavity of h(·), we have

h(ψ(x3))− h(ψ(x2))

ψ(x3)− ψ(x2)
≤ h(ψ(x2))− h(ψ(x1))

ψ(x2)− ψ(x1)
.

Thus, we have

φ(x3)− φ(x2)

ψ(x3)− ψ(x2)
≤ φ(x2)− φ(x1)

ψ(x2)− ψ(x1)
.

Next, we show the sufficiency. Suppose the domain of φ(·) is connected
and contained in the domain of ψ(·) and the above condition holds. Define
h(y) := φ(ψ−1(y)) if ψ−1(y) is in the domain of φ(·) and define h(y) = −∞
otherwise. Then, by definition, h(−∞) = −∞. Moreover, for any x in the
domain of φ(·), we have

h(ψ(x)) = φ(ψ−1(ψ(x))) = φ(x).

For any x not in the domain of φ(·), by definition we have h(ψ(x)) = −∞ =
φ(x). Thus, we only need show that h(·) is concave.

Consider any y1 < y2 < y3 ∈ R. We only need show that

h(y2) ≥ y3 − y2
y3 − y1

h(y1) +
y2 − y1
y3 − y1

h(y3).

We only need consider the case in which h(y1) > −∞ and h(y3) > −∞. In this
case, we must have that y1, y3 are in the range of ψ(·) and that ψ−1(y1) and
ψ−1(y3) are in the domain of φ(·). As a result, ψ−1(y2) is also in the domain
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of φ(·) because this domain is connected and ψ(·) is strictly increasing. Thus,
we immediately have

φ(ψ−1(y3))− φ(ψ−1(y2))

ψ(ψ−1(y3))− ψ(ψ−1(y2))
≤ φ(ψ−1(y2))− φ(ψ−1(y1))

ψ(ψ−1(y2))− ψ(ψ−1(y1))
,

i.e.,

h(y3)− h(y2)

y3 − y2
≤ h(y2)− h(y1)

y2 − y1
.

This completes the proof.
(iii) This is a direct consequence of assertion (ii).
(iv) We first consider the necessity. Notice that φ(·) and ψ(·) are almost every-

where differentiable in the domain of φ(·). Recalling assertion (ii), we have,
for any x1 < x2 in the interior of the domain of φ(·) such that φ(·) and ψ(·)
are differentiable at these two points, that

φ(x2 + δ)− φ(x2)

ψ(x2 + δ)− ψ(x2)
≤ φ(x1 + δ)− φ(x1)

ψ(x1 + δ)− ψ(x1)

for sufficiently small δ > 0. Sending δ to zero, we immediately conclude that

φ′(x2)

ψ′(x2)
≤ φ′(x1)

ψ′(x1)
.

Next, we prove the sufficiency. Define h(y) := φ(ψ−1(y)) for any y in the
range of ψ(·) such that ψ−1(y) is in the domain of φ(·) and define h(y) = −∞
otherwise. Similar to the argument in the proof of assertion (ii), we can show
that h(−∞) = −∞ and φ(·) = h(ψ(·)). Because ψ(·) is strictly increasing and
absolutely continuous, according to Lemma A.2, ψ−1(·) is absolutely continu-
ous and its derivative is equal to 1/ψ′(ψ−1(y)). Because φ(·) is also absolutely
continuous and ψ−1(·) is increasing, we conclude from Lemma A.3 that h(·)
is absolutely continuous in its domain and

h′(y) =
φ′(ψ−1(y))

ψ′(ψ−1(y))
.

Because φ′(x)
ψ′(x) is decreasing, so is h′(·). As a consequence, h(·) is a concave

function, so φ(·) is more concave than ψ(·).
(v) From Lemma A.3, we conclude that log φ′(x) and logψ′(·) are absolutely

continuous and their derivatives are equal to φ′′(x)
φ′(x) and ψ′′(x)

ψ′(x) , respectively.

As a result,

d

dx
log

[
φ′(x)

ψ′(x)

]
=
φ′′(x)

φ′(x)
− ψ′′(x)

ψ′(x)

for almost everywhere x in the domain of φ(·). Consequently, φ
′(x)
ψ′(x) is decreas-

ing if and only if −φ
′′(x)
φ′(x) ≥ −

ψ′′(x)
ψ′(x) for almost everywhere x in the domain of

φ(·).

Lemma A.2. Suppose f(·) is a strictly increasing and absolutely continuous func-
tion in its domain. Then, f ′(·) is strictly positive almost everywhere and f−1(·) is
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absolutely continuous. In addition,

d

dy
f−1(y) =

1

f ′(f−1(y))
.

Proof. It is straightforward to see that f ′(·) is strictly positive almost everywhere.
Then, by the classical result due to M.A. Zarecki (see p. 271 of [23]), f−1(·) is
absolutely continuous. Now, consider any y1 < y2 in the domain of f−1. We have∫ y2

y1

1

f ′(f−1(y))
dy =

∫ f−1(y2)

f−1(y1)

1

f ′(z)
f ′(z)dz = f−1(y2)− f−1(y1).

This completes the proof.

Lemma A.3. Let g(·) be an absolutely continuous function and f(·) be a function
whose domain contains the range of g(·). Then, f(g(·)) is absolutely continuous and
its derivative is f ′(g(x))g′(x) if one of the following two conditions is satisfied:

(i) f(·) is locally Lipschitz continuous and differentiable.
(ii) f(·) is absolutely continuous and g(·) is increasing.

Proof. (i) Because f(·) is locally Lipschitz and g(·) is absolutely continuous,
f(g(·)) has bounded variation. According to a result by G.M. Fichtenholz
(see Theorem IX.5 on p. 252 of [23]), f(g(·)) is absolutely continuous. Be-
cause g(·) is absolutely continuous, it is differentiable almost everywhere. Fix
any x at which g(·) is differentiable. If g(·) is constant in a neighbourhood of
x, then we have

d

dx
f(g(x)) = lim

δ→0

f(g(x+ δ))− f(g(x))

δ
= 0 = f ′(g(x))g′(x).

Otherwise, there exists a sequence of xn approaching x such that g(xn) 6= g(x).
In this case, we have

d

dx
f(g(x)) = lim

n→+∞

f(g(xn))− f(g(x))

xn − x

= lim
n→+∞

f(g(xn))− f(g(x))

g(xn)− g(x)

g(xn)− g(x)

xn − x
= f ′(g(x))g′(x).

This completes the proof.
(ii) Fix any x1 < x2 in the domain of g(·). We want to prove that∫ x2

x1

f ′(g(x))g′(x)dx = f(g(x2))− f(g(x1)).

If g(x1) = g(x2), then g′(x) = 0, x ∈ (x1, x2), so the above equality holds. If
g(x1) < g(x2), define x̃1 := sup{x ≥ x1 : g(x) = g(x1)} and x̃2 := inf{x ≤ x2 :
g(x) = g(x2)}. Obviously, we have g′(x) = 0, x ∈ (x1, x̃1) ∪ (x̃2, x2) and x ∈
(x̃1, x̃2) if and only if g(x) ∈ (g(x̃1), g(x̃2)). Denote by f ′+(x) := max(f ′(x), 0)
and f ′−(x) := max(−f ′(x), 0). We have∫ x2

x1

f ′+(g(x))g′(x)dx =

∫ x̃2

x̃1

f ′+(g(x))g′(x)dx

=

∫
f ′+(g(x))1(x̃1,x̃2)(x)g′(x)dx
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=

∫
f ′+(g(x))1(g(x̃1),g(x̃2))(g(x))g′(x)dx =

∫
f ′+(y)1(g(x̃1),g(x̃2))(y)dy

=

∫ g(x̃2)

g(x̃1)

f ′+(y)dy =

∫ g(x2)

g(x1)

f ′+(y)dy,

where the fourth equality is the result of change-of-variable and the last in-
equality comes from the definition of x̃1 and x̃2. Similarly, we have∫ x2

x1

f ′−(g(x))g′(x)dx =

∫ g(x2)

g(x1)

f ′−(y)dy.

Because f(·) is absolutely continuous, f ′(·) is integrable and, consequently,
we have∫ x2

x1

f ′(g(x))g′(x)dx =

∫ x2

x1

f ′+(g(x))g′(x)dx−
∫ x2

x1

f ′−(g(x))g′(x)dx

=

∫ g(x2)

g(x1)

f ′+(y)dy −
∫ g(x2)

g(x1)

f ′−(y)dy

=

∫ g(x2)

g(x1)

f ′(y)dy

= f(g(x2))− f(g(x1)).

This completes the proof.

Appendix B. Power utility. As alternative for the exponential utility function,
in this Appendix we assume a power utility function, i.e.,

u(x) =
(
x1−β

′
− 1
)
/(1− β′), x > 0 (12)

for some β′ > 0, where u(x) := log(x) when β′ = 1. We still use the probability
weighting function (9). On the other hand, we assume that ln(1 + R) follows a
skew-normal distribution with location parameter ξ′, scale parameter ω′, and shape
parameter α′. As power utility is only defined for strictly positive wealth (x > 0),
the log-transformation ln(1 + R) ensures that the risky asset price stays positive.
Moreover, we impose the additional constraint that the investor cannot invest more
than 100% of her initial wealth in the risky asset, to avoid negative wealth when
more than 100% is allocated to the risky asset and the return is close to −1.

As before, we fix the mean µ = 6% and σ = 20% for the distribution of R and
set three values, −0.5, 0, and 0.5, for the skewness; see Figure 11 for the probability
density function of R. We set the initial wealth x0 = 1 so that θ∗ represents the
optimal percentage allocation to the risky asset. We set β′ = 1 and δ = 1 and
plot θ∗ with respect to 1 − γ that represents the degree of inverse S-shape of the
probability weighting function. Figure 10 shows that the optimal stock weight is
decreasing as the investor’s weighting becomes more inverse S-shaped, similar to in
the case when the utility function is exponential and the excess return of the risky
asset follows a skew-normal distribution.
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