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of [47] in which we replace the differential entropy used for regularization with a Choquet regular-6
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1. Introduction. Reinforcement learning (RL) is one of the most active and fast15

developing subareas in machine learning. The foundation of RL is “trial and error” –16

to strategically explore different action plans in order to find the best plan as efficiently17

and economically as possible. A key question to this inherent exploratory approach18

for RL is to seek a proper tradeoff between exploration and exploitation, for which19

one needs to first quantify the level of exploration. Because exploration is typically20

captured by randomization in the RL study, entropy has been employed to measure21

the magnitude of the randomness and hence that of the exploration – a uniform dis-22

tribution representing a completely blind search has the maximum entropy while a23

Dirac mass signifying no exploration at all has the minimum entropy. Discrete-time24

entropy-regularized (or “softmax”) RL formulation has been proposed which intro-25

duces a weighted entropy value of the exploration as a regularization term into the26

objective function ([23, 33, 54]). For continuous-time RL, [47] formulate an entropy-27

regularized, distribution-valued stochastic control problem for diffusion processes, and28

derive theoretically the Gibbs (or Boltzmann) measure as the optimal distribution for29

exploration which specializes to Gaussian when the problem is linear–quadratic (LQ).30

[18] and [48] apply the results of [47] to a Langevin diffusion for simulated anneal-31

ing and a continuous-time entropy-regularized Markowitz’s mean–variance portfolio32

selection problem, respectively. [22] analyze both quantitatively and qualitatively the33

impact of entropy regularization for mean-field games with learning in a finite time34

horizon. There have been recently many other developments along this direction of35

RL in continuous time; see [25, 26, 27, 32, 43] and the references therein.36

While the entropy is a reasonable metric to quantify the information gain of37

exploring the environment and entropy regularization can indeed explain some broadly38

used exploration distributions such as Gaussian, there are two closely related open39

questions:40

1. Distributions other than Gaussian, such as exponential or uniform, are also41

widely used for exploration in RL. What regularizer(s) can theoretically jus-42
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2 X. HAN, R. WANG, AND X. Y. ZHOU

tify the use of a given class of exploratory distributions?43

2. What are the optimal exploratory distributions for regularizers other than44

the entropy?45

In this paper, we study these two questions in the setting of continuous-time46

diffusion processes, by introducing a new class of regularizers borrowing from the47

literature of risk metrics. Risk metrics, roughly speaking, include risk measures and48

variability measures, which are two separate and active research streams in the general49

area of risk management. Value-at-risk (VaR), expected shortfall (ES) and various50

coherent or convex risk measures, introduced by [3, 11, 15], are popular examples51

of risk measures. Variance, the Gini deviation, interquantile range and deviation52

measures of [39] are instances of variability measures. There has been a rich body of53

study on risk metrics in the past two decades; see [16] and the references therein.54

We introduce what we call Choquet regularizers, which belong to the class of the55

signed Choquet integrals recently studied by [50] in the context of risk management.56

A signed Choquet integral in general gives rise to a nonlinear and non-monotone57

expectation in which the state of nature is weighted by a probability weighting or58

distortion function in calculating the expectation. It includes as special cases Yaari’s59

dual utility ([53]) and distortion risk measures ([2, 29]), which are commonly used60

monotone functionals, and appears in rank-dependent utility (RDU) theory; see [10,61

19, 37, 46] in the related literature of behavioral economic theory.62

There are several reasons to use Choquet regularizers for RL due to a number63

of theoretical and practical advantages. First, they satisfy several “good” properties64

such as quantile additivity, normalization, concavity, and consistency with convex65

order (mean-preserving spreads) that facilitate analysis as regularizers. Second, Cho-66

quet regularizers are non-monotone. In order to measure exploration, monotonicity is67

irrelevant, in contrast to assessing risk or wealth. For instance, a degenerate distribu-68

tion should be associated with no-exploration regardless of its position, in which case69

non-monotone mappings should be used. Moreover, the use of Choquet regularizers is70

closely connected to distributionally robust optimization (DRO) where a Wasserstein71

distance naturally induces a special class of Choquet regularizers, whereas DRO itself72

is an important approach for learning and for correcting the inherent flaws suffered by73

classical model-based estimation and optimization. Finally, as we will see later in the74

paper, for any given location–scale class of distributions, there exists a common Cho-75

quet regularizer such that the corresponding regularized continuous-time LQ control76

for RL has optimal distributions in that class.77

We take the same continuous-time exploratory stochastic control problem as in78

[47], except that the entropy regularizer is replaced with a Choquet regularizer. In79

the general case we derive the Hamilton–Jacobi–Bellman (HJB) equation. However,80

in sharp contrast to [47] in which the optimal control distributions are proved to be81

Gibbs measures, obtaining the class of optimal distributional policies via verification82

theorem remains a significant open question. To obtain explicit solutions, we focus83

on the LQ case. The form of the LQ-specialized HJB equation suggests that the84

problem boils down to a static optimization in which the given Choquet regularizer85

is to be maximized over distributions with given mean and variance. It turns out86

this last problem has been solved explicitly by [31]. The optimal distributions form a87

location–scale family, whose shape depends on the choices of the Choquet regularizer.88

The solutions to the static problem are then employed to solve the original LQ-89

based exploratory HJB equation explicitly and to derive the optimal samplers for90

exploration under the given Choquet regularizer. As expected, optimal distributions91

are no longer necessarily Gaussian as in [47], and are now dictated by the choice92
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of Choquet regularizers. However, the following feature of the entropy-regularized93

solutions revealed in [47] remains intact: the means of the optimal distributions are94

linear in the current state and independent of the exploration, whereas the variances95

are determined by the exploration but irrespective of the current state. Along an96

opposite line of inquiry, we are able to identify a proper Choquet regularizer in order97

to interpret a given exploratory distribution. Specifically, we derive the regularizers98

that generate some common exploration measures including ε-greedy, three-point,99

exponential, uniform and Gaussian.100

The rest of the paper is organized as follows. We introduce Choquet regularizers101

in Section 2, and present their basic properties as well as an axiomatic characterization102

based on existing results of [49, 50]. In Section 3, we formulate the continuous-time103

Choquet-regularized RL control problem and derive the HJB equation. We then104

motivate a mean–variance constrained Choquet regularizer maximization problem for105

LQ control. This problem is studied in details in Section 4, including discussions106

on some special regularizers arising from problems in finance, optimization, and risk107

management. In Section 5, we return to the exploratory LQ control problem and solve108

it completely. We also present examples linking specific exploratory distributions with109

the corresponding Choquet regularizers. In Section 6, we discuss the connections110

between the exploratory LQ problem and the classical LQ problem. Finally, Section111

7 concludes the paper.112

2. Choquet regularizers. Throughout the paper, we assume that (Ω,F ,P) is113

an atomless probability space. With a slight abuse of notation, let M denote both114

the set of (probability) distribution functions of real random variables and the set of115

Borel probability measures on R, with the obvious identity Π(x) ≡ Π((−∞, x]) for116

x ∈ R and Π ∈ M. We denote by Mp ⊂ M, p ∈ [1,∞), the set of distribution117

functions or probability measures with finite p-th moment. For a random variable118

X and a distribution Π, we write X ∼ Π if the distribution of X is Π under P, and119

X
d
= Y if two random variables X and Y have the same distribution. We denote by120

µ and σ2 the mean and variance functionals on M2, respectively; that is, µ(Π) is the121

mean of Π and σ2(Π) the variance of Π for Π ∈ M2.122

Given a function h : [0, 1] → R of bounded variation with h(0) = 0 and Π ∈ M,123

the functional Ih on M is defined as124

(2.1)

Ih(Π) ≡
∫

h ◦Π([x,∞))dx :=

∫ 0

−∞
[h ◦Π([x,∞))− h(1)] dx+

∫ ∞

0

h ◦Π([x,∞))dx,125

assuming that Equation (2.1) is well defined (which could take the value ∞). The126

function h is called a distortion function, and the functional Ih is called a signed127

Choquet integral by [50]. If h(x) ≡ x then Ih reduces to the mean functional; thus, Ih128

is a nonlinear generalization of the mean/expecation. If h is increasing and satisfies129

h(0) = 1 − h(1) = 0, then Ih is called an increasing Choquet integral, which include130

as special cases the two most important risk measures used in current banking and131

insurance regulation, VaR and ES.1132

Next, we define the Choquet regularizer, a main object of this paper. We are133

particularly interested in a subclass of signed Choquet integrals, where h satisfies the134

properties: (i) h is concave, and (ii) h(1) = h(0) = 0.135

1This functional Ih is termed differently in different fields. For example, it is known as Yaari’s
dual utility ([53]) in decision theory, distorted premium principles ([12, 52]) in insurance and distor-
tion risk measures ([2, 29]) in finance.
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Let us briefly explain the interpretations and implications of the above two condi-136

tions. Condition (i) is equivalent to several other properties, and in particular, to that137

Ih is a concave mapping and to that Ih is consistent with convex order ;2 see Theorem138

3 of [50] for this claim and several other equivalent properties. Here, concavity of Ih139

means Ih(λΠ1+(1−λ)Π2) ⩾ λIh(Π1)+(1−λ)Ih(Π2) for all Π1,Π2 ∈ M and λ ∈ [0, 1],140

and consistency with convex order means Ih(Π1) ⩽ Ih(Π2) for all Π1,Π2 ∈ M with141

Π1 ⪯cx Π2. If Π1 ⪯cx Π2, then Π2 is also called a mean-preserving spread of Π1 ([40]),142

which intuitively means that Π2 is more spread-out (and hence “more random”) than143

Π1. The above two properties do indeed suggest that Ih(Π) serves as a measure of144

randomness for Π, since both a mixture and a mean-preserving spread introduce extra145

randomness; see e.g., [1] for related discussions. Condition (ii), on the other hand, is146

equivalent to Ih(δc) = 0 ∀c ∈ R, where δc is the Dirac mass at c. That is, degenerate147

distributions do not have any randomness measured by Ih.148

Definition 2.1. Let H be the set of h : [0, 1] → R satisfying (i)-(ii). A functional149

Φ : M → (−∞,∞] is a Choquet regularizer if there exists h ∈ H such that Φ = Ih,150

that is,151

(2.2) Φ(Π) =

∫
R
h ◦Π([x,∞))dx,152

and this Φ will henceforth be denoted by Φh.153

To clarify on notation, we require h ∈ H for Φh, while there is no such require-154

ment for Ih. Moreover, we call Φh to be location invariant and scale homogeneous if155

Φh(Π
′) = λΦh(Π) where Π′ is the distribution of λX+ c for λ > 0, c ∈ R and X ∼ Π.156

We summarize some useful properties of Φh in the following lemma.157

Lemma 2.2. For h ∈ H, Φh is well defined, non-negative, and location invariant158

and scale homogeneous.159

Proof. First, a concave h with h(0) = h(1) has to be first increasing and then160

decreasing on [0, 1]. Hence h has bounded variation, and the two integrals in Equa-161

tion (2.1) are well defined. Moreover, (i) and (ii) imply h ⩾ 0, which further yields162

that both terms in Equation (2.1) are non-negative. So Φh is well defined and non-163

negative. Location invariance and scale homogeneity follow from Proposition 2 (iii)164

and (iv) of [49].165

Each property in Lemma 2.2 has a simple interpretation for a regularizer that measures166

the level of randomness, or the level of exploration in the RL context of this paper.167

(a) Well-posedness: Any distribution for exploration can be measured.3168

(b) Non-negativity: Randomness is measured in non-negative values.169

(c) Location invariance: The measurement of randomness does not depend on the170

location.171

(d) Scale homogeneity: The measurement of randomness is linear in its scale.172

For a distribution Π ∈ M, let its left-quantile for p ∈ (0, 1] be defined as, recalling
that Π(x) = Π((−∞, x]) for x ∈ R,

QΠ(p) = inf {x ∈ R : Π(x) ⩾ p} ,

2Let Π1 and Π2 be two distribution functions with finite means. Then, Π1 is smaller than Π2

in convex order, denoted by Π1 ⪯cx Π2, if E[f(Π1)] ⩽ E[f(Π2)] for all convex functions f , provided
that the two expectations exist. It is immediate that Π1 ⪯cx Π2 implies E[Π1] ⩽ E[Π2].

3This property is technically important since functional properties of Ih could be very difficult
to analyze if one faces a quantity such as ∞ − ∞. As an example, consider h(x) = x leading to Ih
being the mean functional. In this case, Ih is only well defined on some subsets of M.
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whereas its right-quantile function for p ∈ [0, 1) be defined as

Q+
Π(p) = inf {x ∈ R : Π(x) > p} .

It is useful to note that Φh admits a quantile representation as follows; see Lemma 1173

of [49].174

Lemma 2.3. For h ∈ H and Π ∈ M,175

(i) if h is right-continuous, then Φh(Π) =
∫ 1

0
Q+

Π(1− p)dh(p);176

(ii) if h is left-continuous, then Φh(Π) =
∫ 1

0
QΠ(1− p)dh(p);177

(iii) if QΠ is continuous, then Φh(Π) =
∫ 1

0
QΠ(1− p)dh(p).178

Choquet regularizers include, for instance, range, mean-median deviation, the179

Gini deviation, and inter-ES differences. Moreover, standard deviation can be writ-180

ten as the supremum of Choquet regularizers; see Examples 1, 3 and 4 of [50].181

Variance also has a related representation (Example 2.2 of [31]) given as σ2(Π) =182

suph∈H{Φh(Π)− 1
4 ||h

′||22} for any Π ∈ M, where ||h′||22 =
∫ 1

0
(h′(p))2dp if h is contin-183

uous with a.e. right-derivative h′, and ||h′||22 := ∞ if h is not continuous.184

Concave signed Choquet integrals are characterized by, e.g., [50], which is essen-185

tially a consequence of the seminal works of [41, 53]; see also Theorem 2.4 below.186

In what follows, we say that Φ = Φh is quantile additive if for all Π1,Π2 ∈ M,187

Φ(Π1 ⊕ Π2) = Φ(Π1) + Φ(Π2) where the quantile function of Π1 ⊕ Π2 is the sum of188

those of Π1 and Π2. In other words, QΠ1⊕Π2
= QΠ1

+QΠ2
. Moreover, we say that Φ189

is continuous at infinity if limM→1 Φ((Π ∧M) ∨ (1−M)) = Φ(Π), and Φ is uniform190

sup-continuity if for any ε > 0, there exists δ > 0, such that |Φ(Π1) − Φ(Π2)| < ε191

whenever ess-sup|Π1 − Π2| < δ, where ess-sup is the essential supremum defined by192

Π−1(1) .193

We give the following simple characterization for our Choquet regularizers based194

on Theorems 1 and 3 of [49].195

Theorem 2.4. A functional Φh is a Choquet regularizer in Equation (2.2) if and196

only if it satisfies all of the following properties197

(i) Φh is quantile additive;198

(ii) Φh is concave or ⪯cx-consistent;199

(iii) Φh ⩾ 0 and Φh(δc) = 0 for all c ∈ R;200

(iv) Φh is continuous at infinity and uniformly sup-continuous.201

Note that Theorems 1 and 3 of [49] are stated in terms of a risk measure defined202

on the space of real random variables, say X , while here Φh is defined on M. To203

use these results, we can define ρ : X → R by ρ(X) = Φh(Π) where X ∼ Π, which204

is automatically law-invariant.4 On the other hand, Theorem 1 in [49] requires an205

extra continuity condition to imply that h has bounded variation on [0, 1], which is206

guaranteed here by condition (iii). In fact, condition (i) is equivalent to comonotonic207

additivity of ρ.5 Continuity at infinity and uniform sup-continuity of ρ can be defined208

in paralell to those of Φh. Finally, h(1) = h(0) = 0 is equivalent to Φh(δc) = 0 for all209

c ∈ R. Theorem 2.4 hence follows directly from Theorems 1 and 3 of [49].210

Remark 2.5. If h is not constantly 0, Choquet regularizers belong to the class of211

generalized deviation measures in [21] and [39]. Moreover, Choquet regularizers can212

4Law-invariance means that ρ(X) = ρ(Y ) for X
d
= Y .

5A random vector (X1, . . . , Xn) is called comonotonic if there exists a random variable Z ∈ X
and increasing functions f1, . . . , fn on R such that Xi = fi(Z) almost surely for all i = 1, . . . , n.
Comonotoic-additivity means that ρ(X + Y ) = ρ(X) + ρ(Y ) if X and Y are comonotonic.
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be used to construct law-invariant generalized deviation measures. Indeed, combining213

characterization of generalized deviation measures in Proposition 2.2 of [21] and the214

quantile representation of signed Choquet integrals in Lemma 2.3, all law-invariant215

generalized deviation measures can be represented as a supremum of some Choquet216

regularizers of the type Equation (2.2). This includes standard deviation and mean217

absolute deviation as special cases.218

We conclude this section by comparing the Choquet regularization with the differ-219

ential entropy regularization, the latter having been used for exploration–exploitation220

balance in RL; see [22, 47, 48]. For an absolutely continuous Π, we define DE, Shan-221

non’s differential entropy, as222

(2.3) DE(Π) := −
∫
R
Π′(x) log(Π′(x))dx.223

[42] show that Equation (2.3) admits a different quantile representation224

(2.4) DE(Π) =

∫ 1

0

log(Q′
Π(p))dp.225

It is clear that DE is location invariant, but not scale homogeneous. It is not quantile226

additive either. Therefore, DE is not a Choquet regularizer.227

3. Exploratory control with Choquet regularizers. In this section, we first228

introduce an exploratory stochastic control problem for RL in continuous time and229

spaces which was originally proposed in [47], and then reformulate it with Choquet230

regularizers.231

Let F = {Ft}t⩾0 be a filtration defined on (Ω,F ,P) along with an {Ft}t⩾0-232

adapted Brownian motion W = {Wt}t⩾0, the filtered probability space satisfying233

the usual assumptions of completeness and right continuity. All stochastic processes234

introduced below are supposed to be adapted processes in this space.235

The classical stochastic control problem is to control the state dynamic described236

by a stochastic differential equation (SDE)237

(3.1) dXu
t = b (Xu

t , ut) dt+ ξ (Xu
t , ut) dWt, t > 0; Xu

0 = x ∈ R,238

where u = {ut}t⩾0 is the control process taking value in a given action space U .239

The aim of the problem is to achieve the maximum expected total discounted reward240

represented by the value function241

(3.2) V cl(x) := sup
u∈Acl(x)

Ex

[∫ ∞

0

e−ρtr (Xu
t , ut) dt

]
,242

where r is the reward function, ρ > 0 is the discount rate, and Acl(x) denotes the set243

of all admissible controls which in general may depend on x. Throughout this paper,244

for ease of notation we assume that the state and Brownian motion are scalar-valued245

processes. Moreover, we suppose that the control is also one-dimensional, which is246

however an essential assumption because the Choquet regularizer to be involved is247

defined only for distributions on R.6248

With the complete knowledge of the model parameters, the theory for solving249

the classical, model-based problem (3.1)–(3.2) has been developed and established250

6See Section 7 for a discussion about how we may extend the notion of Choquet regularizer to
multi-dimensions.

This manuscript is for review purposes only.



CHOQUET REGULARIZATION 7

thoroughly. In the RL setting, where those parameters are partly or completely251

unknown and therefore dynamic learning is needed, the agent employs exploration252

to interact with and learn the unknown environment through trial and error. The253

key idea is to model exploration by a distribution of controls Π = {Πt}t⩾0 over the254

control space U from which each “trial” is sampled. Thus, the notion of controls is255

extended to distributions. The agent executes controls for N rounds over the same256

time horizon, while at each round, a classical control is sampled from the distribution257

Π. The reward of such a policy becomes accurate enough when N is large.258

Thus, similarly to [47], we give the “exploratory” version of the state dynamic259

(3.1) motivated by repetitive learning in RL. The control process is now randomized,260

leading to a distributional or exploratory control process Π = {Πt}t⩾0, where Πt ∈261

M(U) is the probability distribution function for control at time t, with M(U) being262

the set of distribution functions on U . For a given such distributional control Π, the263

exploratory version of the state dynamics is264

(3.3) dXΠ
t = b̃

(
XΠ

t ,Πt

)
dt+ ξ̃

(
XΠ

t ,Πt

)
dWt, t > 0; XΠ

0 = x ∈ R,265

where the coefficients b̃(·, ·) and ξ̃(·, ·) are defined as266

(3.4) b̃(y,Π) =

∫
U

b(y, u)dΠ(u), y ∈ R, Π ∈ M(U),267

and268

(3.5) ξ̃(y,Π) =

√∫
U

ξ2(y, u)dΠ(u), y ∈ R, Π ∈ M(U).269

The “exploratory state process”
{
XΠ

t

}
t⩾0

describes the average of the state pro-270

cesses under (infinitely) many different classical control processes sampled from the271

exploratory control Π = {Πt}t⩾0. Further, the reward function r in (3.2) needs also272

to be modified to the exploratory reward273

(3.6) r̃(y,Π) =

∫
U

r(y, u)dΠ(u), y ∈ R, Π ∈ M(U).274

A detailed explanation of where this exploratory formulation comes from is pro-275

vided in [47, pp. 6–8]. We reiterate that the exploratory state process
{
XΠ

t

}
t⩾0

is the276

average of the sample state trajectories under infinitely many actions generated from277

the same distribution Π and is in itself not a sample state trajectory nor observable.278

The exploratory formulation above just provides a framework for theoretical analysis.279

See [26, p. 9] for more discussion on this point.280

Next, we use a Choquet regularizer Φh to measure the level of exploration, and the281

aim of the exploratory control is to achieve the maximum expected total discounted282

and regularized exploratory reward represented by the optimal value function283

V (x) = sup
Π∈A(x)

Ex

[∫ ∞

0

e−ρt
(
r̃(XΠ

t ,Π) + λΦh(Π)
)
dt

]
,(3.7)284

285

where λ > 0 is the temperature parameter representing the weight on exploration,286

A(x) is the set of admissible distributional controls (which may in general depend on287

x), and Ex represents the conditional expectation given XΠ
0 = x.288
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The precise definition of A(x) depends on the specific dynamic model under con-289

sideration and the specific problems one wants to solve, which may vary from case to290

case. We will define A(x) precisely later for the linear–quadratic (LQ) control case,291

which will be the main focus of the paper. Note that (3.7) is mathematically a so-292

called relaxed stochastic control problem; see [47, Footnote 7] for a detailed discussion293

about the connection between the exploratory formulation and relaxed control.294

Controls in A(x) are measure (distribution function)-valued stochastic adapted
processes, which are open-loop controls in the control terminology. A more important
notion in RL is the feedback (control) policy. Specifically, a deterministic mapping
Π(·; ·) is called a feedback policy if i) Π(·;x) is a distribution function for each x ∈ R;
ii) the following SDE (which is the system dynamic after the feedback law Π(·; ·) is
applied)

dXt = b̃ (Xt,Π(·;Xt)) dt+ ξ̃
(
XΠ

t ,Π(·;Xt)
)
dWt, t > 0; X0 = x ∈ R

has a unique strong solution {Xt}t⩾0; and iii) the open-loop control Π = {Πt}t⩾0 ∈295

A(x) where Πt := Π (·;Xt). In this case, the resulting open-loop control Π is said296

to be generated from the feedback policy Π(·; ·) with respect to the initial state x.297

On the other hand, for a continuous h ∈ H, we have Φh(Π) =
∫ 1

0
QΠ(1 − p)dh(p) =298 ∫

U
uh′(1−Π(u))dΠ(u).299

We present the general procedure for solving the problem (3.7), following [47].300

Applying the classical Bellman principle of optimality, we deduce that the optimal301

value function V satisfies the Hamilton-Jacobi-Bellman (HJB) equation302

(3.8)

ρv(x) = max
Π∈M(U)

(
r̃(x,Π) + λ

∫
U

uh′(1−Π(u))dΠ(u) +
1

2
ξ̃2(x,Π)v′′(x) + b̃(x,Π)v′(x)

)
,303

or equivalently,

ρv(x) = max
Π∈M(U)

∫
U

(
r(x, u) + λuh′(1−Π(u)) +

1

2
ξ2(x, u)v′′(x) + b(x, u)v′(x)

)
dΠ(u),

where v denotes the generic unknown solution of the equation. The verification the-304

orem then yields that the feedback policy Π∗ defined as305

(3.9)

Π∗(x) := argmax
Π∈M(U)

∫
U

(
r(x, u) + λuh′(1−Π(u)) +

1

2
ξ2(x, u)v′′(x) + b(x, u)v′(x)

)
dΠ(u)306

is an optimal policy if it generates an admissible open-loop control for any x.307

When the regularizer is the entropy, [47] applied the corresponding verification308

theorem to conclude that the Gibbs (or Boltzmann) measures are generally optimal309

samplers for exploration, which specialize to Gaussian in the LQ case. However, no310

general study on the entropy-regularized exploratory HJB equation was available until311

[43] established the well-posedness and regularity of its viscosity solution. With the312

current Choquet regularizers, studying (3.8) and solving the maximization problem313

in (3.9) generally remain (significant) open questions because (3.8) is very different314

from its entropy counterpart and it is unclear whether the analyses in [43, 47] carry315

over.316

In this paper, we focus on the LQ setting, in which the exploratory HJB equa-317

tion (3.8) can be explicitly solved, to study how different Choquet regularizers may318

generate the optimal policy distributions. Specifically, we consider319

(3.10) b(x, u) = Ax+Bu and ξ(x, u) = Cx+Du, x, u ∈ R,320
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where A,B,C,D ∈ R, and321

(3.11) r(x, u) = −
(
M

2
x2 +Rxu+

N

2
u2 + Px+ Lu

)
, x, u ∈ R,322

where M ⩾ 0, N > 0, and R,P, L ∈ R. Moreover, as in standard LQ theory we323

assume henceforth that U = R and thus write M = M(U) and M2 = M2(U).324

Remark 3.1. LQ control plays a vitally important role in the classical control325

literature, not only because it usually admits elegant and simple solutions, but also326

because more complex, nonlinear problems can be approximated by LQ problems.327

Indeed, one can simply apply a second-order Taylor approximation to the reward328

function and a first-order Taylor approximation to the dynamics coefficient functions329

to define an approximate LQ problem; see [6, 7, 28, 30, 44] and the reference therein330

for more details.331

Fix an initial state x ∈ R. For each open-loop control Π ∈ A(x), denote its mean332

and variance processes {µt}t⩾0 and {σ2
t }t⩾0 by µt ≡ µ(Πt) =

∫
U
udΠt(u) and σ2

t ≡333

σ2(Πt) =
∫
U
u2dΠt(u)− µ2

t . By (3.4) and (3.5), we have334

(3.12)

b̃(x,Π) = Ax+Bµ(Π), ξ̃(x,Π) =
√
C2x2 + 2CDxµ(Π) +D2[µ2(Π) + σ2(Π)].335

Thus, the state dynamic XΠ in (3.3) is given by336

(3.13) dXΠ
t = (AXΠ

t +Bµt)dt+
√

(CXΠ
t +Dµt)2 +D2σ2

t dWt, XΠ
0 = x ∈ R,337

which implies that the state process only depends on the mean process {µt}t⩾0 and338

the variance process {σ2
t }t⩾0 of the given distributional control {Πt}t⩾0. Let B be339

the Borel algebra on R. A control process Π is said to be admissible, denoted by340

Π ∈ A(x), if (i) for each t ⩾ 0, Πt ∈ M a.s.; (ii) for each A ∈ B, {Πt(A), t ⩾ 0}341

is Ft-progressively measurable; (iii) for each t ⩾ 0,E[
∫ t

0
(µ2

s + σ2
s)ds] < ∞; (iv) with342

{XΠ
t }t⩾0 solving (3.3), lim infT→∞ e−ρTE[(XΠ

T )2] = 0; (v) with {XΠ
t }t⩾0 solving343

(3.3), E[
∫∞
0

e−ρt|r̃(XΠ
t ,Πt) + λΦh(Πt)|dt] < ∞.344

In the above, condition (iii) is to ensure that for any Π ∈ A(x), both the drift345

and volatility terms of (3.3) satisfy a global Lipschitz condition and a linear growth346

condition in the state variable and, hence, the SDE (3.3) admits a unique strong solu-347

tion XΠ. Condition (iv) is used to ensure that dynamic programming and verification348

theorem are applicable, as will be evident in the sequel. Finally, the reward is finite349

under condition (v).350

By (3.6) and (3.11), we have351

(3.14) r̃(x,Π) = −M

2
x2 −Rxµ(Π)− N

2
[µ2(Π) + σ2(Π)]− Px− Lµ(Π).352

Thus, plugging (3.12) and (3.14) back into (3.8), we can derive the HJB equation for353

LQ control as354

(3.15)

ρv(x) = max
Π∈M2

{
−Rxµ(Π)− N

2

[
µ2(Π) + σ2(Π)

]
− Lµ(Π) + λΦh(Π)

+ CDxµ(Π)v′′(x) +
1

2
D2

[
µ2(Π) + σ2(Π)

]
v′′(x) +Bµ(Π)v′(x)

}
+Axv′(x)− M

2
x2 − Px+

1

2
C2x2v′′(x).

355

This manuscript is for review purposes only.
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To analyze and solve this equation, we need to study the maximization problem356

therein. Denote by φ(x,Π) the term inside the max operator above. Observe that357

φ(x,Π) depends on Π via only its mean µ(Π) and variance σ2(Π), except for the term358

Φh(Π), which motivates us to write359

max
Π∈M2

φ(x,Π) = max
m∈R,s>0

max
Π∈M2,µ(Π)=m,σ2(Π)=s2

φ(x,Π).(3.16)360
361

The inner maximization problem is in turn equivalent to362

max
Π∈M2

Φh(Π) subject to µ(Π) = m and σ2(Π) = s2.(3.17)363
364

This is a static optimization problem, which holds the key to solve the HJB365

equation (3.15) and thus to our exploratory problem with Choquet regularizers. It is366

interesting to note that when the regularizer is the entropy, the optimal solution to the367

above problem is Gaussian, which is indeed the essential reason behind the Gaussian368

exploration derived in [47]. More specifically, for LQ control any regularized payoff369

function depends only on the mean and variance processes of the distributional control,370

and the Gaussian distribution maximizes the entropy when the mean and variance371

are fixed. The natural question in our setting is what distribution with given mean372

and variance maximizes a Choque regularizer, which is exactly the problem (3.17).373

The next section is devoted to solving explicitly this maximization problem (3.17) of374

“mean–variance constrained Choquet regularizers” with a variety of specific Choquet375

regularizers.376

4. Maximizing mean–variance constrained Choquet regularizers.377

4.1. General results. For given h ∈ H, m ∈ R and s > 0, we consider the378

problem (3.17), which has been motivated by the exploratory control for RL as dis-379

cussed in the previous section. Note that since Φh is location-invariant and scalable,380

(3.17) is equivalent to the following problem381

s max
Π∈M2

Φh(Π) subject to µ(Π) = 0 and σ2(Π) = 1.382
383

In what follows, h′ represents the right-derivative of h, which exists on [0, 1) since h384

is concave on [0, 1]. It turns out that a general solution to (3.17) has been given by385

Theorem 3.1 of [31].386

Lemma 4.1. If h is continuous and not constantly zero, then a maximizer Π∗ to387

(3.17) has the following quantile function388

(4.1) QΠ∗(p) = m+ s
h′(1− p)

||h′||2
, a.e. p ∈ (0, 1),389

and the maximum value of (3.17) is Φh(Π
∗) = s||h′||2.390

In the context of RL, an interesting question arises: Given a distribution used391

for exploration, what is the regularizer that leads to that distribution? This is a392

practically important question that can provide interpretability to some widely used393

samplers for exploration in practice. Theoretically, answering this question is in some394

sense a converse of Lemma 4.1 at least in the LQ setting.395

In what follows, we denote by M2(m, s2) the set of Π ∈ M2 satisfying µ(Π) =396

m ∈ R and σ2(Π) = s2 > 0. Also, recall that given a distribution Π the location-scale397

family of Π is the set of all distributions Πa,b parameterized by a ∈ R and b > 0 such398

that Πa,b(x) = Π((x− a)/b) for all x ∈ R.399
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Proposition 4.2. Let Π ∈ M2(m, s2) be given, where m ∈ R and s > 0. Then400

Π maximizes Φh as well as Φλh for any λ > 0 over M2(m, s2) for a continuous h ∈ H401

specified by402

(4.2) h′(p) = QΠ(1− p)−m, a.e. p ∈ (0, 1).403

Moreover, for any Π̂ in the location-scale family of Π, Π̂ also maximizes Φh over404

M2(µ(Π̂), σ2(Π̂)).405

Proof. By Lemma 4.1, given a continuous h ∈ H, we have h′(p) = ||h′||2(QΠ(1−406

p)−m)/s for p ∈ (0, 1) a.e., where Π maximizes Φh over M2(m, s2). Since Φλh(Π) =407

λΦh(Π) for any λ > 0, Π that maximizes Φh also maximizes Φλh, which means that a408

positive constant multiplier in Φh does not affect problem (3.17). Hence, Π maximizes409

Φh over M2(m, s2) with h′(p) = QΠ(1 − p) − m for p ∈ (0, 1) a.e. Moreover, if Π̂410

is in the location-scale family of Π, then we have Π̂(x) = Π((x − a)/b) for some411

a ∈ R and b > 0 for all x ∈ R, which implies that h′(p) = QΠ(1 − p) − m =412

(QΠ̂(1 − p) − a)/b − m for p ∈ (0, 1) a.e. Since µ(Π̂) = a + bm, it follows that Π̂413

maximizes Φh over M2(µ(Π̂), σ2(Π̂)).414

A simple but important implication from Proposition 4.2 is that every non-degenerate415

distribution with finite first and second moments is the optimizer of some Φh in (3.17)416

over M2(m, s2) for some m ∈ R and s > 0. Therefore, any distribution used for static417

exploration can be interpreted by certain suitable Choquet regularizer Φh. Moreover,418

there is a common distortion function h, which is explicitly specified by Proposition419

4.2, for any given location-scale family, in the sense that any distribution function Π420

belonging to this location-scale family maximizes Φh over M2(µ(Π), σ2(Π)). In other421

words, a single Φh can serve as the same regularizer for a whole location-scale family422

of distributions. We remark that optimization of a general functional Ih may also be423

feasible where h is not necessarily concave (see [34] for inverse S-shaped distortion424

functions); however, this is not desirable for an exploration regularizer.425

In the following subsections, we present specific examples applying the above426

general results, involving several samplers commonly used in RL for exploration, as427

well as measures commonly used in finance and operations research for evaluating428

distribution variability.429

4.2. Some common exploratory distributions. We first present some simple430

distributions which have been widely used for exploration in the RL literature.431

Example 4.3 (Bang–bang exploration). Let Π be a Bernoulli distribution with432

Π({0}) = 1 − ε ∈ (0, 1) and Π({1}) = ε. In this case, the RL agent explores only433

two states 0 and 1, which is called a bang–bang exploration. In particular, in the434

classical two-armed bandit problem, 0 is the currently more promising arm and 1 is435

the other arm. Proposition 4.2 gives h′(p) = 1{p<ε} − ε for p ∈ (0, 1) a.e., and thus436

h(p) = p ∧ ε − εp. The corresponding regularizer Φh is given by, using the quantile437

representation in Lemma 2.3, Φh(Π) =
∫ ε

0
QΠ(1−p)dp−ε

∫ 1

0
QΠ(1−p)dp = ε(µε(Π)−438

µ(Π)), where µε(Π) is the ε-tail mean defined by µε(Π) := 1
ε

∫ ε

0
QΠ(1 − p)dp. Since439

a constant multiplier in Φh does not affect problem (3.17), a Bernoulli distribution440

with parameter ε maximizes Φh = µε − µ. Note that the tail mean corresponds to ES441

in risk management with an axiomatic foundation laid out in [51]. The difference442

between an ES and the mean, µε−µ, is an example of generalized deviation measures443

in Example 3 of [39], which has an axiomatic characterization similar to ES.444

Example 4.4 (ε-greedy exploration). Let Π be a discrete distribution satisfying445

Π({0}) = 1 − ε ∈ (0, 1) and Π({j}) = ε/(2n) for j ∈ {−n, . . . ,−1, 1, . . . , n}. In this446
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case, the RL agent explores 2n + 1 states where 0 is the currently most “exploita-447

tive” state and {−n, . . . ,−1, 1, . . . , n} represent the other states surrounding 0. From448

Proposition 4.2, we have449

(4.3) h′(p) =

n∑
i=1

(n− i+ 1)1{ (i−1)ε
2n ⩽p< iε

2n} −
2n∑

i=n+1

(i− n)1{ (i−1)ε
2n +1−ε⩽p< iε

2n+1−ε}450

for p ∈ (0, 1) a.e.; and thus h is a piece-wise linear function. An example of h451

in (4.3) is plotted in FIG. 1. Using the quantile representation in Lemma 2.3, the452

corresponding regularizer Φh is given by Φh(Π) = ε(
∑n

i=1 µ
+
ε (i,Π)−

∑2n
i=n+1 µ

−
ε (i,Π)),453

where µ+
ε (i,Π) and µ−

ε (i,Π) are defined by454

(4.4) µ+
ε (i,Π) :=

n− i+ 1

ε

∫ iε
2n

(i−1)ε
2n

QΠ(1− p)dp for i = 1, . . . , n,455

and456

(4.5) µ−
ε (i,Π) :=

i− n

ε

∫ iε
2n+(1−ε)

(i−1)ε
2n +(1−ε)

QΠ(1− p)dp for i = n+ 1, . . . , 2n.457

This example is related to the ε-greedy strategy in multi-armed bandit problem, where

Fig. 1. The plots of h (left panel) and h′ (right panel) in Example 4.4 corresponding to a
discrete distribution Π where n = 5 and ε = 0.4.

458

ε signifies the probability of exploring. To be specific, the ε-greedy exploration is to459

select the current best arm with probability 1 − ε, and the other 2n arms uniformly460

with probability ε/(2n). It is worth noting that ES is also used as a criterion in the461

multi-armed bandit problem with exploration; see [5, 9].462

Example 4.5 (Exponential exploration). Let Π be an exponential distribution463

with mean 1. It follows from Proposition 4.2 that h′(p) = − log(p) − 1 for p ∈464

(0, 1) a.e., and thus h(p) = −p log(p). The corresponding Choquet regularizer Φh465

is given by Φh(Π) = −
∫ 1

0
QΠ(1 − p)(log(p) + 1)dp =: CRE(Π) for Π ∈ M, where466

CRE(Π) := −
∫∞
0

Π([x,∞)) log(Π([x,∞)))dx, which is called the cumulative residual467

entropy (CRE) and studied by [24] and [38]. [45] argue that CRE can be viewed468

as a measure of dispersion or variability. Thus, the exponential exploration can be469

interpreted by the CRE regularizer.470

Example 4.6 (Gaussian exploration). If Π is a Gaussian distribution, then471

Proposition 4.2 gives h′(p) = z(1 − p) for p ∈ (0, 1) a.e., where z is the quantile472
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function of a standard normal distribution.7 This gives h(p) =
∫ p

0
z(1 − s)ds, which473

is plotted in FIG. 2. The corresponding regularizer Φh is given by474

(4.6) Φh(Π) =

∫ 1

0

QΠ(1− p)z(1− p)dp =

∫ 1

0

QΠ(p)z(p)dp, Π ∈ M.475

Thus, any Gaussian distribution maximizes the regularize Φh given by Φh(Π) =476 ∫ 1

0
QΠ(p)z(p)dp. This example also indicates that there are multiple regularizers (in-477

cluding the above regularizer and differential entropy) that induce Gaussian explo-478

ration.

Fig. 2. The plots of h (left panel) and h′ (right panel) in Example 4.6 corresponding to a
Gaussian distribution.

479

4.3. The inter-ES difference as a Choquet regularizer. We look at a reg-
ularizer based on ES. For Π ∈ M, ES at level p is defined as

ESp(Π) :=
1

1− p

∫ 1

p

QΠ(r)dr, p ∈ (0, 1),

and the left-ES is defined as

ES−p (Π) :=
1

p

∫ p

0

QΠ(r)dr, p ∈ (0, 1).

For α ∈ (0, 1), let480

(4.7) hα(p) := p/(1− α) ∧ 1 + (α− p)/(1− α) ∧ 0, p ∈ [0, 1].481

Define Φhα
= IERα by IERα(Π) := ESα(Π)−ES−1−α(Π), which is known as the inter-482

ES difference. Here, we assume α ∈ [1/2, 1). The inter-ES difference is a relatively483

new notion: it appears in Example 4 of [50] as a signed Choquet integral. In a recent484

work by [4], various properties are studied to underline the special role the inter-ES485

difference plays among other variability measures.486

Proposition 4.7. Suppose that α ∈ [1/2, 1). For m ∈ R and s2 > 0, the opti-487

mization problem488

max
Π∈M2

IERα(Π) subject to µ(Π) = m and σ2(Π) = s2489
490

7In statistics, the quantile of a standard normal distribution corresponding to a test statistic is
often referred to as a z-score – hence the notation z.
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is solved by a three-point distribution Π∗ with its quantile function uniquely specified491

as492

(4.8) QΠ∗(p) = m+
s√

2(1− α)

[
1{p>α} − 1{p⩽1−α}

]
, a.e. p ∈ (0, 1).493

Proof. Note that for Φh = IERα, we have h′(p) = 1
1−α1{p<1−α} − 1

1−α1{p⩾α} for494

α ∈ [1/2, 1), By (4.1), we can show that a maximizer Π∗ satisfies (4.8), which is a495

three-point distribution.496

So the inter-ES difference regularizer encourages exploration at three points. One497

of them is the mean m corresponding to the best single-point exploitation without498

exploration, while the other two spots are symmetric to m capturing the exploration499

part.500

Remark 4.8. For α ∈ [1/2, 1), if we take the function hα(p) = 1[1−α,α](p), p ∈501

[0, 1], the inter-quantile difference Φhα := IQRα is given by IQRα(Π) := Q+
Π(α) −502

QΠ(1 − α), which is a classical measure of statistical dispersion widely used in e.g.,503

box plots. Unlike the inter-ES difference, the distortion function hα for IQRα is not504

concave. However, the concave envelopes of h is give by h∗(p) = p/(1−α)∧ 1+ (α−505

p)/(1− α) ∧ 0, p ∈ [0, 1], which is exactly (4.7). According to Theorem 1 in [34], we506

have supΠ∈M2 IQRα(Π) = supΠ∈M2 IERα(Π) and the maximizer is obtained by Π∗507

which satisfies (4.8). Thus, the optimization problem is still solvable even if h is not508

concave.509

4.4. The L1-Wasserstein distance to Dirac measures as a Choquet reg-510

ularizer. Let W : M×M → R+ be a statistical distance between two distributions,511

such as a Wasserstein distance. Since an exploration is essentially to move away from512

degenerate (Dirac) distributions, a natural way to encourage exploration is to use513

W (Π, δx), where δx is the Dirac measure at x ∈ R, as a regularizer. Moreover, to re-514

move the location dependence, we modify the regularizer to be minx∈R W (Π, δx). For515

any statistical distance satisfying W (Π, Π̂) = 0 if and only if Π = Π̂, it is clear that516

minx∈R W (Π, δx) = 0 if and only if Π itself is a Dirac measure (hence deterministic).517

The use of Wasserstein distance to model distributional uncertainty in other set-518

tings naturally gives rise to a regularization term, yielding a theoretical justification519

for its use in practice; see for example [8, 14, 35] that formulate different models with520

distributional robustness based on Wasserstein distances.521

We focus on the case where W is the Wasserstein L1 distance, defined as

W1(Π, Π̂) :=

∫ 1

0

|QΠ(p)−QΠ̂(p)|dp.

In this case, W1(Π, δx) is the L1 distance between x and X ∼ Π, and it is well known522

via L1 loss minimization that the minimizers of minx∈R W1(Π, δx) are the medians of523

Π (unique if QΠ is continuous) given as argminx∈R W1(Π, δx) = [QΠ(1/2), Q
+
Π(1/2)].524

Moreover, for a median of Π, x∗ ∈ [QΠ(1/2), Q
+
Π(1/2)], we have that W1(Π, δx∗) is525

the mean-median deviation; namely526

min
x∈R

W1(Π, δx) = W1(Π, δx∗) =

∫ 1/2

0

(x∗ −QΠ(p))dp+

∫ 1

1/2

(QΠ(p)− x∗)dp527

=

∫ 1

1/2

QΠ(p)dp−
∫ 1/2

0

QΠ(p)dp.528

529
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This in turn shows that argminx∈R W1(Π, δx) belongs to the class of Choquet regu-530

larizers.531

Proposition 4.9. For m ∈ R and s2 > 0, the optimization problem

max
Π∈M2

min
x∈R

W1(Π, δx) subject to µ(Π) = m and σ2(Π) = s2,

is solved by a unique Π∗ with the quantile function specified as532

(4.9) QΠ∗(p) = m+ s1{p>1/2} − s1{p⩽1/2}, a.e. p ∈ (0, 1).533

Proof. Applying Lemma 2.3 to get minx∈R W1(Π, δx) = Φh(Π) with h′(p) = 1 for534

p < 1/2 and h′(p) = −1 for p ⩾ 1/2. Using (4.1) in Lemma 4.1 yields (4.9), which535

implies a symmetric two-point distribution.536

As Φh(Π) = minx∈R W1(Π, δx) induces a symmetric exploration around the mean,
we call it a symmetric Wasserstein regularizer with h(p) = p1{p<1/2}+(1−p)1{p⩾1/2}.
Next, let us discuss two-point asymmetric exploration. Suppose that two directions
are not symmetric, and we would like to regularize in a way to encourage more ex-
ploration in a certain direction. Take a constant α ∈ (0, 1), and choose W as an
asymmetric Wasserstein distance

Wα
1 (Π, Π̂) =

∫ 1

0

(
α(QΠ(p)−QΠ̂(p))+ + (1− α)(QΠ(p)−QΠ̂(p))−

)
dp.

The minimizers are the α-quantiles argminx∈R Wα
1 (Π, δx) = [QΠ(α), Q

+
Π(α)], and for537

x∗ ∈ [QΠ(α), QΠ(α)], we have538

min
x∈R

Wα
1 (Π, δx) = Wα

1 (Π, δx∗) =

∫ α

0

(1− α)(x∗ −QΠ(p))dp+

∫ 1

α

α(QΠ(p)− x∗)dp539

= α

∫ 1

α

QΠ(p)dp− (1− α)

∫ α

0

QΠ(p)dp.540
541

We call Φh(Π) = minx∈R Wα
1 (Π, δx) an asymmetric Wasserstein regularizer with542

h(p) = αp1{p<1−α} + (1− α)(1− p)1{p⩾1−α}.543

Proposition 4.10. For m ∈ R and s2 > 0, the optimization problem544

max
Π∈M2

min
x∈R

Wα
1 (Π, δx) subject to µ(Π) = m and σ2(Π) = s2545

546

has a unique maximizer Π∗ with the quantile function uniquely specified as547

(4.10) QΠ∗(p) = m+ s

(
α

1− α

)1/2

1{p>α}− s

(
1− α

α

)1/2

1{p⩽α}, a.e. p ∈ (0, 1).548

Proof. For Φh(Π) = minx∈R Wα
1 (Π, δx), we have h′(p) = α for p < 1 − α, and549

h′(p) = −1 + α for p ⩾ 1 − α. Using (4.1), the optimization problem has a solution550

Π∗ satisfying (4.10), which is an asymmetric two-point distribution.551

To recap, the Wasserstein L1 regularization encourages possibly asymmetric (with552

respect to the mean) two-point exploration, which is an instance of the bang-bang553

exploration in Example 4.3.554
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4.5. The Gini mean difference or maxiance as a Choquet regularizer.
By letting h(p) = p− p2, p ∈ [0, 1], we consider the regularizer Φσ := Φh given by

Φσ(Π) =

∫
R

(
Π([x,∞))−Π2([x,∞))

)
dx.

There are two ways to represent Φσ(Π) in terms of two iid copies X1 and X2 from the555

distribution Π. First, Φσ can be rewritten as Φσ(Π) = 1
2E[|X1 − X2|], which is the556

Gini mean difference (e.g., [17]; sometimes without the factor 1/2). Alternatively, Φσ557

can be represnted as Φσ(Π) = E[max{X1, X2}]− µ(Π), which is called the maxiance558

by [13]. The two representations are identical as seen from the following equality559

E[max{X1, X2}]− µ(Π) = E
[
max{X1, X2} −

1

2
(X1 +X2)

]
560

= E
[
max{X1, X2} −

1

2
(max{X1, X2}+min{X1, X2})

]
561

=
1

2
E [max{X1, X2} −min{X1, X2}] =

1

2
E[|X1 −X2|].562

563

As argued by [13], the maxiance can be seen as the dual version of the variance, due564

to the identities σ2(Π) =
∫
R(x−µ(Π))2dΠ and Φσ(Π) =

∫
R(x−µ(Π))dΠ2. Moreover,565

the maxiance can be used to approximate a local index of absolute risk aversion in566

[53]’s dual theory of choice under risk, which is similar to the role of variance in the567

classic expected utility theory.568

We now show that the maxiance regularizer Φσ leads to a uniform distribution569

for exploration.570

Proposition 4.11. For m ∈ R and s2 > 0, the optimization problem571

max
Π∈M2

Φσ(Π) subject to µ(Π) = m and σ2(Π) = s2(4.11)572
573

has a unique maximizer Π∗ = U[m−
√
3s,m+

√
3s].574

Proof. Note that for Φh = Φσ, we have h′(p) = 1− 2p. It follows from (4.1) that575

a maximizer Π∗ is a uniform distribution. By matching the moments in (4.11), we576

obtain Π∗ = U[m −
√
3s,m +

√
3s]. The uniqueness statement is guaranteed by e.g.577

Theorem 2 of [34].578

Proposition 4.11 provides a foundation for a uniformly distributed exploration579

strategy on R. Note that this is different from the result of uniform distributions580

maximizing entropy on a fixed, given bounded region: here in our setting the region581

is not fixed, since we allow Π to be chosen from arbitrary distributions on R, and582

thus the bounded region [m −
√
3s,m +

√
3s] is endogenously derived rather than583

exogenously given.584

Remark 4.12. The inequality σ(Π) ⩾
√
3Φσ(Π) for all Π ∈ M2 is known as585

Glasser’s inequality ([20]). For the uniform distribution Π∗ in Proposition 4.11 with586

σ(Π∗) = s, we have Φσ(Π
∗) =

√
3s/3 by Lemma 4.1. Thus, Π∗ attains the sharp587

bound of Glasser’s inequality, which holds naturally since Π∗ maximizes Φσ for a588

fixed σ2.589

5. Solving the exploratory stochastic LQ control problem. We are now590

ready to solve the exploratory stochastic LQ control problem presented in Section 3.591
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Let592

(5.1) W (x,Π) = Ex

[∫ ∞

0

e−ρt
(
r̃(XΠ

t ,Πt) + λΦh(Πt)
)
dt

]
, x ∈ R, Π ∈ A(x).593

We have the following result based on Lemma 4.1.594

Proposition 5.1. Let a continuous h ∈ H be given. For any Π = {Πt}t⩾0 ∈595

A(x) with mean process {µt}t⩾0 and variance process {σ2
t }t⩾0, there exists Π∗ =596

{Π∗
t }t⩾0 ∈ A(x) given by597

(5.2) QΠ∗
t
(p) = µt + σt

h′(1− p)

||h′||2
, a.e. p ∈ (0, 1), t ⩾ 0,598

which has the same mean and variance processes satisfying W (x,Π∗) ⩾ W (x,Π).599

Proof. It follows from (3.13) and (3.14) that the term Ex

[∫∞
0

e−ρtr̃(XΠ
t ,Πt)dt

]
600

in (5.1) only depends on the mean process {µt}t⩾0 and variance process {σ2
t }t⩾0601

of {Πt}t⩾0. Thus, for any fixed t ⩾ 0, choose Π∗
t with mean µt and variance σ2

t602

that maximizes Φh(Π). From Lemma 4.1, it follows that Π∗
t satisfies (5.2) and the603

maximum value is Φh(Πt) = σt||h′||2. Clearly, the strategy Π∗ = {Π∗
t }t⩾0 ∈ A(x) is604

the desired one.605

Proposition 5.1 indicates that the control problem (3.7) in the LQ setting is606

maximized within a location–scale family of distributions, which is determined only607

by h.608

We go back to the HJB equation (3.15). It follows from (3.16)–(3.17) along with609

Lemma 4.1 that (3.15) is equivalent to610

(5.3)

ρv(x) = max
µ∈R,σ>0

[
−Rxµ− N

2

(
µ2 + σ2

)
− Lµ+ λσ ∥h′∥2 + CDxµv′′(x)

+
1

2
D2

(
µ2 + σ2

)
v′′(x) +Bµv′(x)

]
+Axv′(x)− M

2
x2 − Px+

1

2
C2x2v′′(x).

611

By the first-order conditions, we get the maximizers µ∗(x) = CDxv′′(x)+Bv′(x)−Rx−L
N−D2v′′(x)612

and (σ∗(x))2 =
λ2∥h′∥2

2

(N−D2v′′(x))2 of the max operator in (5.3), which in turn leads to the613

optimal distributional policy Π∗(·;x) prescribed by Lemma 4.1.614

Bringing the above expressions of µ∗(x) and σ∗(x) back into (5.3), we can further615

write the HJB equation as616

(5.4)
ρv(x) =

[CDxv′′(x) +Bv′(x)−Rx− L]2 + λ2 ∥h′∥22
2[N −D2v′′(x)]

+
1

2

[
C2v′′(x)−M

]
x2 + [Av′(x)− P ]x.

617

We now solve this equation explicitly. Denote ∆ = [ρ− (2A+C2)]N +2(B+CD)R−618

D2M. Under the assumptions that ρ > 2A + C2 and MN > R2, a smooth solution619

to (5.4) is given by v(x) = 1
2k2x

2 + k1x+ k0, where
8620

(5.5) k2 =
∆−

√
∆2 − 4[(B + CD)2 + (ρ− (2A+ C2))D2](R2 −MN)

2[(B + CD)2 +D2(ρ− (2A+ C2))]
,621

8Values of k2, k1 and k0 are obtained by solving the system of equations ρk2 =
(k2(B+CD)−R)2

N−k2D2 +

k2
(
2A+ C2

)
−M, ρk1 =

(k1B−L)(k2(B+CD)−R)

N−k2D2 + k1A− P , and ρk0 =
(k1B−L)2+λ2∥h′∥22

2(N−k2D2)
.
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622

(5.6) k1 =
P
(
N − k2D

2
)
− LR

k2B(B + CD) + (A− ρ) (N − k2D2)−BR
,623

and624

(5.7) k0 =
(k1B − L)2 + λ2∥h′∥22

2ρ(N −D2k2)
.625

We can verify easily that k2 < 0. Hence, v is concave, a property that is essential626

for v to be actually the value function. Next, we state the main result of this section,627

whose proof follows essentially the same lines of that of Theorem 4 in [47], thanks to628

the analysis above and the results obtained. We omit the details here.629

Theorem 5.2. Consider the LQ control specified by (3.10)–(3.11), where we as-630

sume M ⩾ 0, N > 0, MN > R2 and ρ > 2A + C2 + max
(

D2R2−2NR(B+CD)
N , 0

)
.9631

Then the value function in (3.7) is given by V (x) = 1
2k2x

2 + k1x+ k0 for each x ∈ R,632

where k2, k1 and k0 are as in (5.5)-(5.7), respectively. The optimal feedback policy633

has the distribution function Π∗(·;x) whose quantile function is634

(5.8)

QΠ∗(·;x)(p) =
(k2(B + CD)−R)x+ k1B − L

N − k2D2
+
λh′(1− p)

N − k2D2
, a.e. p ∈ (0, 1), x ∈ R,635

with the mean and variance given by636

(5.9)

µ∗(x) =
(k2(B + CD)−R)x+ k1B − L

N − k2D2
and (σ∗(x))2 =

λ2 ∥h′∥22
(N − k2D2)2

, x ∈ R.637

Finally, the associated optimal state process {X∗
t }t⩾0 with X∗

0 = x under Π∗(·; ·) is638

the unique solution of the SDE639

dX∗
t =

[(
A+

B (k2(B + CD)−R)

N − k2D2

)
X∗

t +
B (k1B − L)

N − k2D2

]
dt640

+

√[(
C +

D (k2(B + CD)−R)

N − k2D2

)
X∗

t +
D (k1B − L)

N − k2D2

]2
+

D2λ2 ∥h′∥22
(N − k2D2)2

dWt.641

642

Some remarks are in order. First of all, (5.8) implies that for any Choquet regu-643

larizer, the optimal exploratory distribution in the regularized LQ problem is uniquely644

determined by h′. Note that h′(x) is the “probability weight” put on x when calcu-645

lating the (nonlinear) Choquet expectation; see e.g. [19, 37]. Second, we can see from646

(5.9) that the mean of the optimal distribution does not depend on the exploration647

represented by h and λ, and only the variance does. In particular, the mean is exactly648

the same as the one in [47] when the differential entropy is used as a regularizer, which649

is also identical to the optimal control of the classical, non-exploratory LQ problem.650

Third, the mean of the exploration distributions is a linear function of the state, while651

its variance is independent of the state.652

These observations are intuitive in the context of RL. Different h’s correspond653

to different Choquet regularizers; hence they will certainly affect the way and the654

9The constraint on ρ is used not only to ensure k2 < 0 but also to show
lim infT→∞ e−ρTE[(XΠ

T )2] = 0; see the proof of Theorem 4 in [47] for more details.
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level of exploration. Also, the more weight put on the level of exploration, the more655

spreaded out the exploration becomes around the current position. Furthermore, the656

second and third observations above show a perfect separation between exploitation657

and exploration, as the former is captured by the mean and the latter by the variance658

of the optimal exploration distributions. This property is also consistent with the LQ659

case studied in [47, 48] even though a different type of regularizer is applied therein.660

Next, we investigate optimal exploration samplers under the LQ framework for
some concrete choices of h studied in Section 4. For convenience, we denote

σ̃∗(x) :=
σ∗(x)

∥h′∥2
≡ λ

N − k2D2
.

Theorem 5.2 yields that the mean of the optimal distribution is independent of h;661

so we will specify only its quantile function and variance for each h discussed below.662

Recall that the expressions of µ∗(x) and (σ∗(x))2 for a general h are given by (5.9).663

(i) Let h(p) = (p∧ ε− εp), leading to Φh(Π) = ε(µε(Π)−µ(Π)); see Example 4.3.
The optimal policy is ε-greedy, given as

Π∗ ({µ∗(x) + (1− ε)σ̃∗(x)}) ≡ Π∗
({

(k2(B + CD)−R)x+ k1B − L+ (1− ε)λ

N − k2D2

})
= ε,

and

Π∗ ({µ∗(x)− εσ̃∗(x)}) ≡ Π∗
({

(k2(B + CD)−R)x+ k1B − L− ελ

N − k2D2

})
= 1− ε.

At each state x, the control policy takes a more “promising” action at µ∗(x)− εσ̃∗(x)664

with a large probability 1−ε, and tries an alternative action µ∗(x)+(1−ε)σ̃∗(x) with665

probability ε.10 Since ∥h′∥22 = ε(1− ε), the variance of Π∗ is (σ∗(x))2 = ε(1−ε)λ2

(N−k2D2)2 .666

(ii) Let h(p) be specified by the discrete exploration in (4.3), leading to Φh(Π) =

ε(
∑n

i=1 µ
+
ε (i,Π)−

∑2n
i=n+1 µ

−
ε (i,Π)), where µ+

ε (i,Π) and µ−
ε (i,Π) are defined by (4.4)

and (4.5); see Example 4.4. The optimal policy is a (2n+ 1)-point distribution given
as

Π∗ ({µ∗(x) + jσ̃∗(x)}) ≡ Π∗
({

(k2(B + CD)−R)x+ k1B − L+ jλ

N − k2D2

})
=

ε

2n
,

for j ∈ {−n, . . . ,−1, 1, . . . , n}, and

Π∗ ({µ∗(x)}) ≡ Π∗
({

(k2(B + CD)−R)x+ k1B − L

N − k2D2

})
= 1− ε.

Similarly, at each state x, the control policy takes a more “exploitative” action at µ∗(x)667

with a large probability 1− ε, and tries 2n alternative actions µ∗(x) + jσ̃∗(x) for j ∈668

{−n, . . . ,−1, 1, . . . , n}, each with probability ε/(2n). Since ∥h′∥22 = ε(n+1)(2n+1)/6,669

the variance of Π∗ is given by (σ∗(x))2 = ε(n+1)(2n+1)λ2

6(N−k2D2)2 .670

10Precisely speaking, the policy presented here is not exactly the ε-greedy strategy in the classical
two-arm bandit problem because the two “arms” in our setting depend on the current state x and
hence are dynamically changing over time. However, at any point of time one needs to explore only
two action points.
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(iii) Let h(p) = −p log(p), leading to Φh(Π) =
∫∞
0

Π([x,∞)) log(Π([x,∞)))dx;
see Example 4.5. The optimal policy is a shifted-exponential distribution given as

Π∗(u;x) = 1− exp

{
[(k2(B + CD)−R)x+ k1B − L]

λ
− 1

}
exp

{
− (N −D2k2)u

λ

}
.

Since ∥h′∥22 = 1, the variance of Π∗ is given by (σ∗(x))2 = λ2

(N−k2D2)2 .671

(iv) Let h(p) =
∫ p

0
z(1 − s)ds where z is the standard normal quantile function.

We have Φh(Π) =
∫ 1

0
QΠ(p)z(p)dp; see Example 4.6. The optimal policy is a normal

distribution given by

Π∗(·;x) = N

(
(k2(B + CD)−R)x+ k1B − L

N − k2D2
,

λ2

(N − k2D2)2

)
,

owing to the fact that ∥h′∥22 = 1. Recall that the optimal distribution is also Gaussian672

in [47] using the entropy regularizer. This is an example of different regularizers673

leading to the same class of exploration samplers. On the other hand, examining more674

closely the Gaussian policy derived above and the one in [47, eq. (40)], we observe675

that the means of the two are identical but the variance of the former is the square of676

that of the latter. The reason of the discrepency in variance is because the maximized677

mean–variance constrained Choquet regularizer Φh(Π) is always linear in the given678

standard deviation σ whereas the corresponding maximized entropy regularizer DE(Π)679

is logorithmic in σ.680

(v) Let h(p) = p/(1 − α) ∧ 1 + (α − p)/(1 − α) ∧ 0 with α ∈ [1/2, 1). Then
Φh(Π) = ESα(Π) − ES−1−α(Π); see Section 4.3. The optimal policy is a three-point
distribution given as

Π∗
({

(1− α)[(k2(B + CD)−R)x+ k1B − L] + λ

(1− α)(N − k2D2)

})
= 1− α,

Π∗
({

(k2(B + CD)−R)x+ k1B − L

N − k2D2

})
= 2α− 1,

and

Π∗
({

(1− α)[(k2(B + CD)−R)x+ k1B − L]− λ

(1− α)(N − k2D2)

})
= 1− α.

Since ∥h′∥22 = 2a/(1−α)2, the variance of Π∗ is given by (σ∗(x))2 = 2αλ2

(1−α)2(N−k2D2)2 .681

(vi) Let h(p) = αp1{p<1−α} + (1 − α)(1 − p)1{p⩾1−α} with α ∈ (0, 1). Then
Φh(Π) = minx∈R W1(Π, δx); see Section 4.4. The optimal feedback policy is an asym-
metric two-point distribution given as

Π∗
({

(k2(B + CD)−R)x+ k1B − L+ αλ

N − k2D2

})
= 1− α,

and

Π∗
({

(k2(B + CD)−R)x+ k1B − L− (1− α)λ

N − k2D2

})
= α.

Since ∥h′∥22 = α(1− α), the variance of Π∗ is given by (σ∗(x))2 = α(1−α)λ2

(N−k2D2)2 .682

(vii) Let h(p) = p − p2. Then Φh(Π) = E[|X1 − X2|]/2; see Section 4.5. The
optimal policy Π∗(·;x) is a uniform distribution given as

U

[
(k2(B + CD)−R)x+ k1B − L− λ

N − k2D2
,
(k2(B + CD)−R)x+ k1B − L+ λ

N − k2D2

]
.
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Since ∥h′∥22 = 1/3, the variance of Π∗ is given by (σ∗(x))2 = λ2

3(N−k2D2)2 .683

Note here the uniform distribution is on a state-dependent bounded region cen-684

tering around the mean µ∗(x), rather than on a pre-specified bounded region.685

6. Relationship between classical and exploratory problems. In this sec-686

tion, similarly to the discussions in [47, 48], we study the relationship between the687

classical (unregularized and non-exploratory) and exploratory stochastic LQ prob-688

lems. Since most results are parallel , we will make the exposition brief.689

Recall the classical LQ problem (3.2) where the reward function is given by (3.11).690

The explicit forms of optimal control and value function, denoted respectively by691

u∗ and V cl, were given by Theorem 9-(b) of [47]. We now provide the solvability692

equivalence between the problems (3.2) and (3.7).693

Theorem 6.1. The following two statements (a) and (b) are equivalent.694

(a) The function V (x) = 1
2α2x

2+α1x+α0+
λ2∥h′∥2

2

2ρ(N−α2D2) , x ∈ R, with α0, α1 ∈ R695

and α2 < 0, is the value function of the exploratory problem (3.7) and the696

corresponding optimal feedback policy has the distribution function Π∗(·;x)697

whose quantile function is QΠ∗(·;x)(p) = (α2(B+CD)−R)x+α1B−L
N−α2D2 + λh′(1−p)

N−α2D2698

with the mean and variance given by µ∗(x) = (α2(B+CD)−R)x+α1B−L
α2D2 and699

(σ∗(x))2 =
λ2∥h′∥2

2

(N−α2D2)2 .700

(b) The function w(x) = 1
2α2x

2+α1x+α0, x ∈ R, with α0, α1 ∈ R and α2 < 0, is701

the value function of the classical problem (3.2) and the corresponding optimal702

feedback control is u∗(x) = (α2(B+CD)−R)x+α1B−L
N−α2D2 .703

Proof. We rewrite the exploratory dynamics of X∗ under Π∗ as704

(6.1)

dX∗
t =

(
AX∗

t +B
(α2(B + CD)−R)X∗

t + α1B − L

N − α2D2

)
dt

+

√(
CX∗

t +D
(α2(B + CD)−R)X∗

t + α1B − L

N − α2D2

)2

+
D2λ2 ∥h′∥22
(N − α2D2)2

dWt

≡ (A1X
∗
t +A2) dt+

√
(B1X∗

t +B2)
2 + C1dWt,

705

where A1 := A + B(α2(B+CD)−R)
N−α2D2 , A2 := B(α1B−L)

N−α2D2 , B1 := C + D(α2(B+CD)−R)
N−α2D2 ,706

B2 := D(α1B−L)
N−α2D2 and C1 :=

D2λ2∥h′∥2

2

(N−α2D2)2 . This has exactly the same form as that707

appearing in the proof of Theorem 9 in Appendix C of [47], except that the values of708

C1 are different.11 Thus, the rest of the proof is the same as in [47].709

Note that, although the value function V of the exploratory problem (3.7) has710

been explicitly given by Theorem 5.2, the above theorem focuses on the equivalence711

of solvability of the two problems without having to know the explicit expression of712

the value function of either problem. Hence we use generic letters (α0, α1, α2) instead713

of (k0, k1, k2) to express the value functions.714

The following result shows that the Choquet-regularized LQ problem converges715

to its classical counterpart if the exploration weight λ goes to zero.716

Proposition 6.2. Assume that statement (a) (or equivalently, (b)) of Theorem717

6.1 holds. Then, for each x ∈ R, limλ→0 Π
∗(·;x) = δu∗(x)(·) weakly. Moreover, for718

11There is a typo in the title of Appendix C of [47]: it should be the proof of Theorem 9, instead
of Theorem 7.

This manuscript is for review purposes only.



22 X. HAN, R. WANG, AND X. Y. ZHOU

each x ∈ R, limλ→0

∣∣V (x)− V cl(x)
∣∣ = 0.719

Proof. Noting that limλ→0
λ2∥h′∥2

2

2ρ(N−α2D2) = 0, the proof is the same as that of720

Theorem 11 in [47].721

Finally, we examine the “cost of exploration” – the loss in the original (i.e., non-722

regularized) objective due to exploration, which was originally defined and derived723

in [47] for problems with entropy regularization. The notion can be extended readily724

to the current Choquet setting, namely, it is the difference between the two optimal725

value functions, adjusting for the additional contribution coming from the Choquet726

regularizer of the optimal exploratory strategy:727

(6.2) Cu∗,Π∗
(x) := V cl(x)−

(
V (x)− λEx

[∫ ∞

0

e−ρt

(∫
U

uh′(1−Π∗
t (u))dΠ

∗
t (u)

)
dt

])
,728

for x ∈ R.729

Theorem 6.3. Assume that statement (a) (or equivalently, (b)) of Theorem 6.1730

holds. Then, the exploration cost for the stochastic LQ problem is731

(6.3) Cu∗,Π∗
(x) =

λ2∥h′∥22
2ρ(N − α2D2)

, for x ∈ R.732

Proof. Let {Π∗
t }{t⩾0} be the open-loop control generated by the feedback control733

Π∗(·;x) given in statement (a) with respect to the initial state x whose quantile734

function isQΠ∗(·;x)(p) =
(α2(B+CD)−R)x+α1B−L

N−α2D2 + λh′(1−p)
N−α2D2 with the mean and variance735

given by µ∗(x) = (α2(B+CD)−R)x+α1B−L
N−α2D2 and (σ∗(x))2 =

λ2∥h′∥2

2

(N−α2D2)2 . By Lemma 4.1,736

it is straightforward to calculte
∫
U
uh′(1 − Π∗

t (u))dΠ
∗
t (u) =

λ||h′||22
N−α2D2 . The desired737

result now follows immediately from the definition (6.2) and the expressions of V (·)738

in (a) and V cl(·) in (b).739

The costs of exploration derived in [47, 48] for the entropy setting depend on740

only the temperature parameter and the discounting rate or time horizon which are741

chosen by the agents, but not on the state dynamics or the reward coefficients which742

the agents generally do not know about. In contrast, the derived exploration cost743

(6.3) for the Choquet setting does depend on the unknown model parameters in a744

complicated way (mainly through α2), which seems to be a disadvantage from the745

learning perspective. However, a bit of reflection reveals that it is more important to746

know what impact the cost than to know the precise value of the cost. For example,747

(6.3) suggests a way to strategically select the regularizers: other things being equal,748

to reduce the exploration cost one should choose regularizers with smaller values749

of ∥h′∥2. Moreover, Cu∗,Π∗
(x) ⩽ λ2∥h′∥2

2

2ρN noting α2 < 0; so the cost is bounded750

above by a constant that is inversely proportional to the unknown parameter N , the751

control weight in the reward function. As a result, when executing controls becomes752

increasingly costly, the exploration cost diminishes because the agent is less motivated753

to do exploration. Furthermore, Cu∗,Π∗
(x) = λ∥h′∥2

2ρ σ∗(x), meaning that the cost is754

proportional to the standardized deviation of the exploratory control, a feature that is755

not presented in the entropy setting [47]. Finally, the exploration cost (6.3) depends756

on λ and ρ in a rather intuitive way: it increases as λ increases, due to more emphasis757

placed on exploration, or as ρ decreases, indicating an effectively longer horizon for758

exploration.759
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7. Conclusion. This paper develops a framework for continuous-time RL that760

can generate or indeed interpret/explain many broadly practiced distributions for761

exploration. The main contributions are conceptual/theoretical rather than algorith-762

mic: Theorem 5.2 does not lead directly to an algorithm to compute optimal policies,763

because the expression (5.8) involves the model parameters which are unknown in the764

RL context. That said, our results do provide important guidance for devising RL765

algorithms. First, Theorem 5.2 may imply a provable policy improvement theorem766

and hence result in a q-learning theory analogous to that in the entropy-regularized767

setting recently established by [27]. Second, the explicit form (5.8) can suggest special768

structure of function approximators for learning optimal distributions, thereby greatly769

reduce the number of parameters needed for function approximation and improve the770

efficiency of the resulting learning algorithms. Finally, the availability of a large class771

of Choquet regularizers makes it possible to compare and choose specific regularizers772

to achieve certain objectives specific to each learning problem.773

Another conceptual contribution of the paper is that it establishes a link between774

risk metrics and RL. This paper is the first to do so, and the attempt is by no means775

comprehensive. The rich literature on decision theory and risk metrics is expected to776

further bring in new insights and directions into the RL study, not only related to777

regularization, but also in terms of motivating new objective functions and axiomatic778

approaches for learning.779

The theory developed in this paper opens up several research directions. Here we780

comment on some. One is to develop the corresponding q-learning theory mentioned781

earlier. Another is to find the “best Choquet regularizer” in terms of efficiency of782

the resulting RL algorithms. Yet another problem is in financial application: to for-783

mulate a continuous-time mean–variance portfolio selection problem with a Choquet784

regularizer and compare the performance with its entropy counterpart solved in [48].785

Last but not least, the Choquet regularizers proposed in this paper are defined
for distributions on R, while many RL applications involve multi-dimensional action
spaces. Because Choquet regularizers are characterized by quantile additivity as in
Theorem 2.4 while quantile functions are not well defined for distributions on Rd

with d > 1, it is very challenging to study Choquet regularizers in high dimensions.
To overcome the difficulty, the first possible attempt is to minic (2.2) by defining, for

distributions Π on Rd, the functional Φjoint
h (Π) =

∫
Rd h◦Π([x,∞))dx. This formulation

requires some further conditions on h ∈ H to guarantee desirable properties, and it
is unclear whether we can derive the corresponding optimizers in a form similar to
Proposition 4.2. Another possible idea is to use

Φsum
h (Π) =

d∑
i=1

∫
R
h ◦Πi([x,∞))dx or Φprod

h (Π) =

d∏
i=1

∫
R
h ◦Πi([x,∞))dx,

where Πi is the i-th marginal distribution of Π. This formulation relies only on the786

marginal distributions of Π, allowing us to utilize the existing results for Choquet787

regularizers on R. Either formulation mentioned above requires a thorough analysis788

in a future study.789
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