15
16

40

42

CHOQUET REGULARIZATION FOR CONTINUOUS-TIME
REINFORCEMENT LEARNING

XIA HAN*, RUODU WANGT, AND XUN YU ZHOU*

Abstract. We propose Choquet reqularizers to measure and manage the level of exploration for
reinforcement learning (RL), and reformulate the continuous-time entropy-regularized RL problem
of [47] in which we replace the differential entropy used for regularization with a Choquet regular-
izer. We derive the Hamilton—Jacobi-Bellman equation of the problem, and solve it explicitly in
the linear—quadratic (LQ) case via maximizing statically a mean—variance constrained Choquet reg-
ularizer. Under the LQ setting, we derive explicit optimal distributions for several specific Choquet
regularizers, and conversely identify the Choquet regularizers that generate a number of broadly used
exploratory samplers such as e-greedy, exponential, uniform and Gaussian.

Key words. Reinforcement learning, Choquet integrals, continuous time, exploration, regular-
izers, quantile, HJB equations, linear—quadratic control
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1. Introduction. Reinforcement learning (RL) is one of the most active and fast
developing subareas in machine learning. The foundation of RL is “trial and error” —
to strategically explore different action plans in order to find the best plan as efficiently
and economically as possible. A key question to this inherent exploratory approach
for RL is to seek a proper tradeoff between exploration and exploitation, for which
one needs to first quantify the level of exploration. Because exploration is typically
captured by randomization in the RL study, entropy has been employed to measure
the magnitude of the randomness and hence that of the exploration — a uniform dis-
tribution representing a completely blind search has the maximum entropy while a
Dirac mass signifying no exploration at all has the minimum entropy. Discrete-time
entropy-regularized (or “softmax”) RL formulation has been proposed which intro-
duces a weighted entropy value of the exploration as a regularization term into the
objective function ([23, 33, 54]). For continuous-time RL, [47] formulate an entropy-
regularized, distribution-valued stochastic control problem for diffusion processes, and
derive theoretically the Gibbs (or Boltzmann) measure as the optimal distribution for
exploration which specializes to Gaussian when the problem is linear—quadratic (LQ).
[18] and [48] apply the results of [47] to a Langevin diffusion for simulated anneal-
ing and a continuous-time entropy-regularized Markowitz’s mean—variance portfolio
selection problem, respectively. [22] analyze both quantitatively and qualitatively the
impact of entropy regularization for mean-field games with learning in a finite time
horizon. There have been recently many other developments along this direction of
RL in continuous time; see [25, 26, 27, 32, 43] and the references therein.

While the entropy is a reasonable metric to quantify the information gain of
exploring the environment and entropy regularization can indeed explain some broadly
used exploration distributions such as Gaussian, there are two closely related open
questions:

1. Distributions other than Gaussian, such as exponential or uniform, are also
widely used for exploration in RL. What regularizer(s) can theoretically jus-
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2 X. HAN, R. WANG, AND X. Y. ZHOU

tify the use of a given class of exploratory distributions?
2. What are the optimal exploratory distributions for regularizers other than
the entropy?

In this paper, we study these two questions in the setting of continuous-time
diffusion processes, by introducing a new class of regularizers borrowing from the
literature of risk metrics. Risk metrics, roughly speaking, include risk measures and
variability measures, which are two separate and active research streams in the general
area of risk management. Value-at-risk (VaR), expected shortfall (ES) and various
coherent or convex risk measures, introduced by [3, 11, 15], are popular examples
of risk measures. Variance, the Gini deviation, interquantile range and deviation
measures of [39] are instances of variability measures. There has been a rich body of
study on risk metrics in the past two decades; see [16] and the references therein.

We introduce what we call Choquet reqularizers, which belong to the class of the
signed Choquet integrals recently studied by [50] in the context of risk management.
A signed Choquet integral in general gives rise to a nonlinear and non-monotone
expectation in which the state of nature is weighted by a probability weighting or
distortion function in calculating the expectation. It includes as special cases Yaari’s
dual utility ([53]) and distortion risk measures (]2, 29]), which are commonly used
monotone functionals, and appears in rank-dependent utility (RDU) theory; see [10,
19, 37, 46] in the related literature of behavioral economic theory.

There are several reasons to use Choquet regularizers for RL due to a number
of theoretical and practical advantages. First, they satisfy several “good” properties
such as quantile additivity, normalization, concavity, and consistency with convex
order (mean-preserving spreads) that facilitate analysis as regularizers. Second, Cho-
quet regularizers are non-monotone. In order to measure exploration, monotonicity is
irrelevant, in contrast to assessing risk or wealth. For instance, a degenerate distribu-
tion should be associated with no-exploration regardless of its position, in which case
non-monotone mappings should be used. Moreover, the use of Choquet regularizers is
closely connected to distributionally robust optimization (DRO) where a Wasserstein
distance naturally induces a special class of Choquet regularizers, whereas DRO itself
is an important approach for learning and for correcting the inherent flaws suffered by
classical model-based estimation and optimization. Finally, as we will see later in the
paper, for any given location—scale class of distributions, there exists a common Cho-
quet regularizer such that the corresponding regularized continuous-time LQ control
for RL has optimal distributions in that class.

We take the same continuous-time exploratory stochastic control problem as in
[47], except that the entropy regularizer is replaced with a Choquet regularizer. In
the general case we derive the Hamilton-Jacobi-Bellman (HJB) equation. However,
in sharp contrast to [47] in which the optimal control distributions are proved to be
Gibbs measures, obtaining the class of optimal distributional policies via verification
theorem remains a significant open question. To obtain explicit solutions, we focus
on the LQ case. The form of the LQ-specialized HJB equation suggests that the
problem boils down to a static optimization in which the given Choquet regularizer
is to be maximized over distributions with given mean and variance. It turns out
this last problem has been solved explicitly by [31]. The optimal distributions form a
location—scale family, whose shape depends on the choices of the Choquet regularizer.
The solutions to the static problem are then employed to solve the original LQ-
based exploratory HJB equation explicitly and to derive the optimal samplers for
exploration under the given Choquet regularizer. As expected, optimal distributions
are no longer necessarily Gaussian as in [47], and are now dictated by the choice
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CHOQUET REGULARIZATION 3

of Choquet regularizers. However, the following feature of the entropy-regularized
solutions revealed in [47] remains intact: the means of the optimal distributions are
linear in the current state and independent of the exploration, whereas the variances
are determined by the exploration but irrespective of the current state. Along an
opposite line of inquiry, we are able to identify a proper Choquet regularizer in order
to interpret a given exploratory distribution. Specifically, we derive the regularizers
that generate some common exploration measures including e-greedy, three-point,
exponential, uniform and Gaussian.

The rest of the paper is organized as follows. We introduce Choquet regularizers
in Section 2, and present their basic properties as well as an axiomatic characterization
based on existing results of [49, 50]. In Section 3, we formulate the continuous-time
Choquet-regularized RL control problem and derive the HJB equation. We then
motivate a mean—variance constrained Choquet regularizer maximization problem for
LQ control. This problem is studied in details in Section 4, including discussions
on some special regularizers arising from problems in finance, optimization, and risk
management. In Section 5, we return to the exploratory LQ control problem and solve
it completely. We also present examples linking specific exploratory distributions with
the corresponding Choquet regularizers. In Section 6, we discuss the connections
between the exploratory LQ problem and the classical LQ problem. Finally, Section
7 concludes the paper.

2. Choquet regularizers. Throughout the paper, we assume that (Q,F,P) is
an atomless probability space. With a slight abuse of notation, let M denote both
the set of (probability) distribution functions of real random variables and the set of
Borel probability measures on R, with the obvious identity I(z) = II((—o0, z]) for
xz € Rand IT € M. We denote by MP C M, p € [1,00), the set of distribution
functions or probability measures with finite p-th moment. For a random variable
X and a distribution II, we write X ~ II if the distribution of X is II under P, and
X 2V if two random variables X and Y have the same distribution. We denote by
p and o2 the mean and variance functionals on M?2, respectively; that is, p(IT) is the
mean of IT and o2(IT) the variance of II for IT € M?2.

Given a function & : [0,1] — R of bounded variation with A(0) = 0 and IT € M,

the functional I, on M is defined as
(2.1)

(M) = [ hoti(ie,oo)de = [

— 00

0 o)
[hoTI([z,0)) — h(1)] dx—i—/ h o II([x, 00))dxz,
0

assuming that Equation (2.1) is well defined (which could take the value co). The
function h is called a distortion function, and the functional I is called a signed
Choquet integral by [50]. If h(xz) = x then Ij, reduces to the mean functional; thus, Ij,
is a nonlinear generalization of the mean/expecation. If h is increasing and satisfies
h(0) =1 — h(1) = 0, then I, is called an increasing Choquet integral, which include
as special cases the two most important risk measures used in current banking and
insurance regulation, VaR and ES.!

Next, we define the Choquet reqularizer, a main object of this paper. We are
particularly interested in a subclass of signed Choquet integrals, where h satisfies the
properties: (i) h is concave, and (ii) k(1) = h(0) = 0.

IThis functional I, is termed differently in different fields. For example, it is known as Yaari’s
dual utility ([53]) in decision theory, distorted premium principles ([12, 52]) in insurance and distor-
tion risk measures ([2, 29]) in finance.
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4 X. HAN, R. WANG, AND X. Y. ZHOU

Let us briefly explain the interpretations and implications of the above two condi-
tions. Condition (i) is equivalent to several other properties, and in particular, to that
I, is a concave mapping and to that I, is consistent with convex order;? see Theorem
3 of [50] for this claim and several other equivalent properties. Here, concavity of Iy
means I, (A\IT; +(1—M)12) > A, (1) +(1—X) I, (I1) for all T, 1Ty € M and X € [0, 1],
and consistency with convex order means I, (I11) < I (Ilp) for all II;, I, € M with
IT; <cx . If TT; <cx o, then Il is also called a mean-preserving spread of I1; ([40]),
which intuitively means that II5 is more spread-out (and hence “more random”) than
IT;. The above two properties do indeed suggest that Ij,(II) serves as a measure of
randomness for II, since both a mixture and a mean-preserving spread introduce extra
randomness; see e.g., [1] for related discussions. Condition (ii), on the other hand, is
equivalent to Ij,(d.) = 0 Ve € R, where . is the Dirac mass at ¢. That is, degenerate
distributions do not have any randomness measured by Ij,.

DEFINITION 2.1. Let H be the set of h : [0,1] — R satisfying (i)-(ii). A functional
®: M — (—o0,0] is a Choquet regularizer if there exists h € H such that ® = I,
that is,

(2.2) B(I1) = /Rh o II([z, 00))dz,

and this ® will henceforth be denoted by ®p,.

To clarify on notation, we require h € H for @, while there is no such require-
ment for I,. Moreover, we call ®; to be location invariant and scale homogeneous if
@y, (II') = A®,(IT) where IT' is the distribution of AX +¢ for A > 0, ¢c € R and X ~ II.

We summarize some useful properties of @, in the following lemma.

LEMMA 2.2. For h € H, @} is well defined, non-negative, and location invariant
and scale homogeneous.

Proof. First, a concave h with h(0) = h(1) has to be first increasing and then
decreasing on [0,1]. Hence h has bounded variation, and the two integrals in Equa-
tion (2.1) are well defined. Moreover, (i) and (ii) imply h > 0, which further yields
that both terms in Equation (2.1) are non-negative. So @, is well defined and non-
negative. Location invariance and scale homogeneity follow from Proposition 2 (iii)
and (iv) of [49)]. 0
Each property in Lemma 2.2 has a simple interpretation for a regularizer that measures
the level of randomness, or the level of exploration in the RL context of this paper.

(a) Well-posedness: Any distribution for exploration can be measured.?

(b) Non-negativity: Randomness is measured in non-negative values.

(¢) Location invariance: The measurement of randomness does not depend on the
location.

(d) Scale homogeneity: The measurement of randomness is linear in its scale.

For a distribution IT € M, let its left-quantile for p € (0, 1] be defined as, recalling
that II(x) = II((—o0, z]) for x € R,

Qu(p) =inf {z e R: II(z) > p},

2Let II; and IIs be two distribution functions with finite means. Then, II; is smaller than ITy
in convex order, denoted by I} <cx Ilg, if E[f(I1)] < E[f(II2)] for all convex functions f, provided
that the two expectations exist. It is immediate that II; <cx II2 implies E[II;] < E[II3].

3This property is technically important since functional properties of I, could be very difficult
to analyze if one faces a quantity such as co — co. As an example, consider h(z) = = leading to I,
being the mean functional. In this case, I}, is only well defined on some subsets of M.
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CHOQUET REGULARIZATION 5

whereas its right-quantile function for p € [0,1) be defined as
Qfi(p) = inf {z € R: II(z) > p}.

It is useful to note that ®; admits a quantile representation as follows; see Lemma, 1
of [49].

LEMMA 2.3. Forhe€ H and 11 € M,

(i) if h is right-continuous, then ®,(I1) = fol Qi (1 —p)dh(p);

(ii) if h is left-continuous, then @5, (I1) = fol Qu(l —p)dh(p);

(iii) if Qu is continuous, then @y (II) = fol Qu(l —p)dh(p).

Choquet regularizers include, for instance, range, mean-median deviation, the
Gini deviation, and inter-ES differences. Moreover, standard deviation can be writ-
ten as the supremum of Choquet regularizers; see Examples 1, 3 and 4 of [50].
Variance also has a related representation (Example 2.2 of [31]) given as o?(I) =
supp, e {®n (1) — 1||1/]|3} for any IT € M, where ||1/[|3 = fol(h’(p))de if h is contin-
uous with a.e. right-derivative ', and ||h/||3 := oo if h is not continuous.

Concave signed Choquet integrals are characterized by, e.g., [50], which is essen-
tially a consequence of the seminal works of [41, 53]; see also Theorem 2.4 below.
In what follows, we say that ® = @, is quantile additive if for all 11,1l € M,
O(I1; @ Iy) = ®(11;) + P(IIz) where the quantile function of II; @ Iy is the sum of
those of II; and Ily. In other words, Qm,qmn, = @, + @mn,. Moreover, we say that ®
is continuous at infinity if imp 1 ®((IIA M)V (1 — M)) = ®(II), and @ is uniform
sup-continuity if for any € > 0, there exists 6 > 0, such that |[®(II;) — &(Il)| < ¢
whenever ess-sup|ll; — Is| < §, where ess-sup is the essential supremum defined by
m1(1) .

We give the following simple characterization for our Choquet regularizers based
on Theorems 1 and 3 of [49].

THEOREM 2.4. A functional ®, is a Choquet regqularizer in Equation (2.2) if and
only if it satisfies all of the following properties
(i) @, is quantile additive;
(i) @y is concave or Scx-consistent;
(iii) ®p >0 and ®,(6.) =0 for all c € R;
(iv) @y, is continuous at infinity and uniformly sup-continuous.

Note that Theorems 1 and 3 of [49] are stated in terms of a risk measure defined
on the space of real random variables, say X', while here ®;, is defined on M. To
use these results, we can define p : X — R by p(X) = ®,,(II) where X ~ II, which
is automatically law-invariant.* On the other hand, Theorem 1 in [49] requires an
extra continuity condition to imply that h has bounded variation on [0, 1], which is
guaranteed here by condition (iii). In fact, condition (i) is equivalent to comonotonic
additivity of p.> Continuity at infinity and uniform sup-continuity of p can be defined
in paralell to those of ®;. Finally, h(1) = h(0) = 0 is equivalent to ®,(d.) = 0 for all
¢ € R. Theorem 2.4 hence follows directly from Theorems 1 and 3 of [49].

Remark 2.5. If h is not constantly 0, Choquet regularizers belong to the class of
generalized deviation measures in [21] and [39]. Moreover, Choquet regularizers can

4Law-invariance means that p(X) = p(Y) for X dy.

5A random vector (X1,...,Xy) is called comonotonic if there exists a random variable Z € X
and increasing functions fi,..., fn on R such that X; = f;(Z) almost surely for all ¢ = 1,...,n.
Comonotoic-additivity means that p(X +Y) = p(X) + p(Y) if X and Y are comonotonic.
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6 X. HAN, R. WANG, AND X. Y. ZHOU

be used to construct law-invariant generalized deviation measures. Indeed, combining
characterization of generalized deviation measures in Proposition 2.2 of [21] and the
quantile representation of signed Choquet integrals in Lemma 2.3, all law-invariant
generalized deviation measures can be represented as a supremum of some Choquet
regularizers of the type Equation (2.2). This includes standard deviation and mean
absolute deviation as special cases.

We conclude this section by comparing the Choquet regularization with the differ-
ential entropy regularization, the latter having been used for exploration—exploitation
balance in RL; see [22, 47, 48]. For an absolutely continuous II, we define DE, Shan-
non’s differential entropy, as

(2.3) DE(II) := f/RH'(:E) log(IT'(z))dz.

[42] show that Equation (2.3) admits a different quantile representation

(2.4) DE(TI) = / log(Q}1(p))dp.

It is clear that DE is location invariant, but not scale homogeneous. It is not quantile
additive either. Therefore, DE is not a Choquet regularizer.

3. Exploratory control with Choquet regularizers. In this section, we first
introduce an exploratory stochastic control problem for RL in continuous time and
spaces which was originally proposed in [47], and then reformulate it with Choquet
regularizers.

Let F = {F;},5, be a filtration defined on (Q,F,P) along with an {F;},-
adapted Brownian motion W = {Wt}t>0, the filtered probability space satisfying
the usual assumptions of completeness and right continuity. All stochastic processes
introduced below are supposed to be adapted processes in this space.

The classical stochastic control problem is to control the state dynamic described
by a stochastic differential equation (SDE)

(3.1) AXY = b (X" ug) dt + & (XP u) AWy, t>0; X@ =z €R,

where © = {ut}@o is the control process taking value in a given action space U.
The aim of the problem is to achieve the maximum expected total discounted reward
represented by the value function

(o)
(3.2) Vel(z):= sup E, [/ e Plr (X1, ug) dt|
u€ Al (z) 0

where 7 is the reward function, p > 0 is the discount rate, and A (z) denotes the set
of all admissible controls which in general may depend on x. Throughout this paper,
for ease of notation we assume that the state and Brownian motion are scalar-valued
processes. Moreover, we suppose that the control is also one-dimensional, which is
however an essential assumption because the Choquet regularizer to be involved is
defined only for distributions on R.6

With the complete knowledge of the model parameters, the theory for solving
the classical, model-based problem (3.1)-(3.2) has been developed and established

6See Section 7 for a discussion about how we may extend the notion of Choquet regularizer to
multi-dimensions.
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thoroughly. In the RL setting, where those parameters are partly or completely
unknown and therefore dynamic learning is needed, the agent employs exploration
to interact with and learn the unknown environment through trial and error. The
key idea is to model exploration by a distribution of controls IT = {Ht}t>0 over the
control space U from which each “trial” is sampled. Thus, the notion of controls is
extended to distributions. The agent executes controls for N rounds over the same
time horizon, while at each round, a classical control is sampled from the distribution
II. The reward of such a policy becomes accurate enough when N is large.

Thus, similarly to [47], we give the “exploratory” version of the state dynamic
(3.1) motivated by repetitive learning in RL. The control process is now randomized,
leading to a distributional or exploratory control process Il = {Ht}t>0, where II; €
M(U) is the probability distribution function for control at time ¢, with M(U) being
the set of distribution functions on U. For a given such distributional control II, the
exploratory version of the state dynamics is

(3.3) X =b (XN IL) At + € (XL IL) AWy, t>0; X' == € R,

where the coefficients b(-,-) and £(-,-) are defined as

(3.4) by, TT) = /U by, u)dIl(u), ycR, T M(U),
and
(3.5) E(y, ) = \//U 2(y,u)dll(u), ye€R, e M(U).

The “exploratory state process” {th} >0 describes the average of the state pro-
cesses under (infinitely) many different classical control processes sampled from the
exploratory control II = {II;},-,. Further, the reward function r in (3.2) needs also
to be modified to the exploratory reward

(3.6) 7y, 1) = /Ur(y,u)dH(u), yeR, T e M(U).

A detailed explanation of where this exploratory formulation comes from is pro-
vided in [47, pp. 6-8]. We reiterate that the exploratory state process {th} +>0 1s the
average of the sample state trajectories under infinitely many actions generat/ed from
the same distribution IT and is in itself not a sample state trajectory nor observable.
The exploratory formulation above just provides a framework for theoretical analysis.
See [26, p. 9] for more discussion on this point.

Next, we use a Choquet regularizer ®; to measure the level of exploration, and the
aim of the exploratory control is to achieve the maximum expected total discounted
and regularized exploratory reward represented by the optimal value function

(3.7 Viz)= sup E, [/00 e Pt (F(X1 D) + MA@y, (D)) dt | ,
e A(x) 0

where A > 0 is the temperature parameter representing the weight on exploration,
A(x) is the set of admissible distributional controls (which may in general depend on
r), and E, represents the conditional expectation given X{! = z.
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The precise definition of A(z) depends on the specific dynamic model under con-
sideration and the specific problems one wants to solve, which may vary from case to
case. We will define A(x) precisely later for the linear—quadratic (LQ) control case,
which will be the main focus of the paper. Note that (3.7) is mathematically a so-
called relaxed stochastic control problem; see [47, Footnote 7] for a detailed discussion
about the connection between the exploratory formulation and relaxed control.

Controls in A(x) are measure (distribution function)-valued stochastic adapted
processes, which are open-loop controls in the control terminology. A more important
notion in RL is the feedback (control) policy. Specifically, a deterministic mapping
II(-;-) is called a feedback policy if i) TI(+; x) is a distribution function for each = € R;
ii) the following SDE (which is the system dynamic after the feedback law TI(-;-) is
applied)

dX, = b (X, (5 X)) dt + € (XL I (5 X)) AWy, ¢t>0; Xg=z€R

has a unique strong solution {X;},-,; and iii) the open-loop control IT = {IL;},-, €
A(z) where II; := II(-; X;). In this case, the resulting open-loop control II is said
to be generated from the feedback policy II(+;-) with respect to the initial state x.
On the other hand, for a continuous h € H, we have &, (II) = fol Qu(l — p)dh(p) =
Jiy uh/(1 — TI(w))dIL(u).

We present the general procedure for solving the problem (3.7), following [47].
Applying the classical Bellman principle of optimality, we deduce that the optimal
value function V satisfies the Hamilton-Jacobi-Bellman (HJB) equation
(3.8)

pv(zx) = Hén/\%(U) (f(m, IT) + )\/U uh'(1 — TI(w))dIT(u) + %52(:5,1_[)11"(:10) + b(z, H)v'(m)) ,

or equivalently,

pote) = e [ () 4 Al (0= TH0) + 360 () + ) () ) TG

where v denotes the generic unknown solution of the equation. The verification the-
orem then yields that the feedback policy II* defined as
(3.9)
IT* (z) := arg max/ (r(az, u) + Auh' (1 — TI(w)) + l52(31:, u)v” (z) + b(z, u)v'(m)) dIT(u)
nem) Ju 2
is an optimal policy if it generates an admissible open-loop control for any zx.

When the regularizer is the entropy, [47] applied the corresponding verification
theorem to conclude that the Gibbs (or Boltzmann) measures are generally optimal
samplers for exploration, which specialize to Gaussian in the LQ case. However, no
general study on the entropy-regularized exploratory HJB equation was available until
[43] established the well-posedness and regularity of its viscosity solution. With the
current Choquet regularizers, studying (3.8) and solving the maximization problem
in (3.9) generally remain (significant) open questions because (3.8) is very different
from its entropy counterpart and it is unclear whether the analyses in [43, 47] carry
over.

In this paper, we focus on the LQ setting, in which the exploratory HJB equa-
tion (3.8) can be explicitly solved, to study how different Choquet regularizers may
generate the optimal policy distributions. Specifically, we consider

(3.10) b(x,u) = Ar+ Bu and {(z,u) =Cx+ Du, z,u€R,
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CHOQUET REGULARIZATION 9

where A, B,C, D € R, and
M N
(3.11) r(z,u) = — (21‘2 + Rzu + 5”2 + Pz + Lu) , T,u€eR,

where M > 0, N > 0, and R, P,L € R. Moreover, as in standard LQ theory we
assume henceforth that U = R and thus write M = M(U) and M? = M2(U).

Remark 3.1. LQ control plays a vitally important role in the classical control
literature, not only because it usually admits elegant and simple solutions, but also
because more complex, nonlinear problems can be approximated by LQ problems.
Indeed, one can simply apply a second-order Taylor approximation to the reward
function and a first-order Taylor approximation to the dynamics coeflicient functions
to define an approximate LQ problem; see [6, 7, 28, 30, 44] and the reference therein
for more details.

Fix an initial state € R. For each open-loop control IT € A(x), denote its mean
and variance processes {/u}¢>0 and {07 }10 by pe = p(Ily) = [;; udlly(u) and of =
o?(I;) = [, u?dI(u) — pf. By (3.4) and (3.5), we have
(3.12)

b(z, 1) = Az + Bu(ll),  &(z, 1) = /C%22 + 2CDzu(IT) + D2[p2(M) + o2(IT)].

Thus, the state dynamic X in (3.3) is given by

(3.13)  dX}' = (AX!" + Bpy)dt + \/(ny + Duy)? + D262 dW;, XI'=z€R,

which implies that the state process only depends on the mean process {u¢}i>0 and
the variance process {07 };>0 of the given distributional control {Il;};>0. Let B be
the Borel algebra on R. A control process II is said to be admissible, denoted by
IT € A(x), if (i) for each t > 0, II; € M a.s.; (ii) for each A € B, {II;(A),t > 0}
is Fi-progressively measurable; (iii) for each t > O,E[fot(,u? + 02)ds] < oo; (iv) with
{X} >0 solving (3.3), liminfr_ . e PTE[(XT)?] = 0; (v) with {X/T};>0 solving
(3.3), E[[;” e PHF(X{ L) + Ay, ()| dt] < oc.

In the above, condition (iii) is to ensure that for any IT € A(x), both the drift
and volatility terms of (3.3) satisfy a global Lipschitz condition and a linear growth
condition in the state variable and, hence, the SDE (3.3) admits a unique strong solu-
tion X' Condition (iv) is used to ensure that dynamic programming and verification
theorem are applicable, as will be evident in the sequel. Finally, the reward is finite
under condition (v).

By (3.6) and (3.11), we have

(3.14) F(a, ) = —%ﬁ — Rap(T1) — g[;ﬁ(n) + o*(I)] — Pz — Lu(T).

Thus, plugging (3.12) and (3.14) back into (3.8), we can derive the HJB equation for
LQ control as

po(a) = s { = Ren(ID) = 5 [42(I0) + 0*(ID)] = Lu(IT) + A®, (1T
(3.15) + CDzp(I)v" (x) + %DQ [1?(I) + o*(1)] v (z) + Bu(H)v’(w)}

M 1
+ Axv'(x) — 7332 — Px + §CQ$21}H($).

This manuscript is for review purposes only.
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To analyze and solve this equation, we need to study the maximization problem
therein. Denote by ¢(z,II) the term inside the max operator above. Observe that
¢(z, 1) depends on II via only its mean u(II) and variance o%(II), except for the term
4, (IT), which motivates us to write

1 ) = ).
(3.16) max, (z,10) B o(x, II)

The inner maximization problem is in turn equivalent to

(3.17) max, @, () subject to u(IT) = m and o?(IT) = s2.

This is a static optimization problem, which holds the key to solve the HJB
equation (3.15) and thus to our exploratory problem with Choquet regularizers. It is
interesting to note that when the regularizer is the entropy, the optimal solution to the
above problem is Gaussian, which is indeed the essential reason behind the Gaussian
exploration derived in [47]. More specifically, for LQ control any regularized payoff
function depends only on the mean and variance processes of the distributional control,
and the Gaussian distribution maximizes the entropy when the mean and variance
are fixed. The natural question in our setting is what distribution with given mean
and variance maximizes a Choque regularizer, which is exactly the problem (3.17).
The next section is devoted to solving explicitly this maximization problem (3.17) of
“mean—variance constrained Choquet regularizers” with a variety of specific Choquet
regularizers.

4. Maximizing mean—variance constrained Choquet regularizers.

4.1. General results. For given h € H, m € R and s > 0, we consider the
problem (3.17), which has been motivated by the exploratory control for RL as dis-
cussed in the previous section. Note that since ®;, is location-invariant and scalable,
(3.17) is equivalent to the following problem

s max ®,(II)  subject to u(IT) = 0 and o?(II) = 1.
Tem?
In what follows, A’ represents the right-derivative of h, which exists on [0,1) since h

is concave on [0,1]. It turns out that a general solution to (3.17) has been given by
Theorem 3.1 of [31].

LEMMA 4.1. If h is continuous and not constantly zero, then a maximizer II* to
(3.17) has the following quantile function
W (1—p)

(4.1) Qu-(p) =m+ s———>, a.e. p€(0,1),
[1A/]2

and the mazimum value of (3.17) is @ (IT*) = s||A/||2.

In the context of RL, an interesting question arises: Given a distribution used
for exploration, what is the regularizer that leads to that distribution? This is a
practically important question that can provide interpretability to some widely used
samplers for exploration in practice. Theoretically, answering this question is in some
sense a converse of Lemma 4.1 at least in the LQ setting.

In what follows, we denote by M?2(m, s?) the set of II € M? satisfying u(I1) =
m € R and o?(II) = s? > 0. Also, recall that given a distribution II the location-scale
family of 11 is the set of all distributions II, ; parameterized by a € R and b > 0 such
that II, p(z) = II((x — a)/b) for all z € R.

This manuscript is for review purposes only.
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PROPOSITION 4.2. Let IT € M?(m, s?) be given, where m € R and s > 0. Then
II mazimizes ®;, as well as ®xp, for any A > 0 over M?(m, s2) for a continuous h € H
specified by

(4.2) h'(p) =Qu(l —p)—m, a.e pe(0,1).
Moreover, for any I in the location-scale family of 11, I also mazimizes ®), over
M2 (p(11), 0*(I1)).

Proof. By Lemma 4.1, given a continuous h € H, we have h/(p) = ||W/|]2(Qu(1 —
p) —m)/s for p € (0,1) a.e., where Il maximizes ®;, over M?(m, s2). Since @, (II) =
AD;, (IT) for any A > 0, IT that maximizes @}, also maximizes ®y;,, which means that a
positive constant multiplier in ®;, does not affect problem (3.17). Hence, IT maximizes
®;, over M2(m,s%) with &' (p) = Qu(1 — p) — m for p € (0,1) a.e. Moreover, if II
is in the location-scale family of II, then we have II(z) = II((z — a)/b) for some
a € R and b > 0 for all z € R, which implies that h'(p) = Qu(l — p) —m =
(Qu(1 —p) —a)/b—m for p € (0,1) a.e. Since u(IT) = a + bm, it follows that IT
maximizes ®;, over M2(u(I1), o2(II)). O
A simple but important implication from Proposition 4.2 is that every non-degenerate
distribution with finite first and second moments is the optimizer of some ®p, in (3.17)
over M?(m, s?) for some m € R and s > 0. Therefore, any distribution used for static
exploration can be interpreted by certain suitable Choquet regularizer ®;,. Moreover,
there is a common distortion function h, which is explicitly specified by Proposition
4.2, for any given location-scale family, in the sense that any distribution function II
belonging to this location-scale family maximizes ®;, over M?(u(I1), 02(I1)). In other
words, a single ®;, can serve as the same regularizer for a whole location-scale family
of distributions. We remark that optimization of a general functional I, may also be
feasible where h is not necessarily concave (see [34] for inverse S-shaped distortion
functions); however, this is not desirable for an exploration regularizer.

In the following subsections, we present specific examples applying the above
general results, involving several samplers commonly used in RL for exploration, as
well as measures commonly used in finance and operations research for evaluating
distribution variability.

4.2. Some common exploratory distributions. We first present some simple
distributions which have been widely used for exploration in the RL literature.

ExAMPLE 4.3 (Bang—bang exploration). Let II be a Bernoulli distribution with
II({0}) = 1—¢ € (0,1) and II({1}) = e. In this case, the RL agent explores only
two states 0 and 1, which s called a bang-bang exploration. In particular, in the
classical two-armed bandit problem, 0 is the currently more promising arm and 1 is
the other arm. Proposition 4.2 gives h'(p) = 1{,<cy —€ for p € (0,1) a.e., and thus
h(p) = p ANe —ep. The corresponding reqularizer ®y, is given by, using the quantile
representation in Lemma 2.8, ®p,(I1) = fos Qu(l—p)dp—e fol Qu(1—p)dp = e(u. (1) —
(1)), where pe () is the e-tail mean defined by p.(I1) := 1 [ Qu(1 — p)dp. Since
a constant multiplier in @y, does not affect problem (3.17), a Bernoulli distribution
with parameter € mazimizes @y, = pe — p. Note that the tail mean corresponds to ES
in risk management with an axiomatic foundation laid out in [51]. The difference
between an ES and the mean, p. — p, is an example of generalized deviation measures
in Example 3 of [39], which has an aziomatic characterization similar to ES.

EXAMPLE 4.4 (e-greedy exploration). Let IT be a discrete distribution satisfying
II({0}) =1 —¢ € (0,1) and II({j}) = ¢/(2n) for j € {—n,...,—1,1,...,n}. In this
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case, the RL agent explores 2n + 1 states where 0 is the currently most “exploita-
tive” state and {—n,...,—1,1,... ,n} represent the other states surrounding 0. From
Proposition 4.2, we have

n 2n
(4.3) W(p) = Z(n it l)ﬂ{%gmg—;} - Z (i~ n)ﬂ{%ﬂ—sgm;—fbﬂ—s}
i=1 i=n+1

for p € (0,1) a.e.; and thus h is a piece-wise linear function. An example of h
n (4.3) is plotted in FIG. 1. Using the quantile representation in Lemma 2.3, the
corresponding regularizer @y, is given by ®p, (1) = (Y1, pd (¢,1I)— ZZ g1 Mz (4, 10)),
where pt (1,11) and pZ (i,11) are defined by

. n—i+1 [ .
(44) :LL:(Z?H) = [i—l)e QH(l _p)dp fO’f‘ i=1,...,m,
G-le

g

and

i—n [2td-E)
(4.5) po (4,10) := / Qu(l—p)dp for i=n+1,...,2n.
IS (1 1)5 +(1—¢)

This example is related to the e-greedy strategy in multi-armed bandit problem, where

h(p) 1 (p)
5 =
0.6} 4l
i 3L —
i Vil 2r -
04}t i
' i 1f = »
o - 0
RN R L 02 04 06 08 1
02h/1 11 N ol _
T | —3r -
0 02 04 06 08 1

Fic. 1. The plots of h (left panel) and h' (right panel) in Example 4.4 corresponding to a
discrete distribution II where n =5 and € = 0.4.

€ signifies the probability of exploring. To be specific, the e-greedy exploration is to
select the current best arm with probability 1 — e, and the other 2n arms uniformly
with probability £/(2n). It is worth noting that ES is also used as a criterion in the
multi-armed bandit problem with exploration; see [5, 9].

ExaMPLE 4.5 (Exponential exploration). Let II be an exponential distribution
with mean 1. 1t follows from Proposition 4.2 that h'(p) = —log(p) — 1 for p €
(0,1) a.e., and thus h(p) = —plog(p). The corresponding Choquet regularizer @y,
is given by (1) = ffol Qu(l — p)(log(p) + 1)dp =: CRE(II) for I € M, where
CRE(II) := — fo ) log(II([x, 00)))dx, which is called the cumulative residual
entropy (CRE) and studzed by [24] and [38]. [45] argue that CRE can be viewed
as a measure of dispersion or variability. Thus, the exponential exploration can be
interpreted by the CRE regularizer.

EXAMPLE 4.6 (Gaussian exploration). If II is a Gaussian distribution, then
Proposition 4.2 gives h'(p) = z(1 — p) for p € (0,1) a.e., where z is the quantile
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function of a standard normal distribution.” This gives h(p fo (1 — s)ds, which
is plotted in FIG. 2. The corresponding reqularizer ®yp, is gzven by

(4.6) /inf 2(1—p)dp = /QH p)dp, T e M.

Thus, any Gaussian distribution maximizes the reqularize ®p, given by @y (II) =

fo Qu(p)z(p)dp. This example also indicates that there are multiple regqularizers (in-
cluding the above regularizer and differential entropy) that induce Gaussian explo-
ration.

h(p) ' (p)
0.4} 4
0.3+ 21

p
0.2} 0 02
0.1} —2r
1 1 1 1 p _4 I
0 02 04 06 08 1

Fic. 2. The plots of h (left panel) and h' (right panel) in Ezample 4.6 corresponding to a
Gaussian distribution.

4.3. The inter-ES difference as a Choquet regularizer. We look at a reg-
ularizer based on ES. For I € M, ES at level p is defined as

1 1
ES,(1) = 1 [ Quindr, pe (0.1),
-/,
and the left-ES is defined as

= ;/Oan(r)dr, p € (0,1).
For a € (0,1), let
(4.7) ha(p) :=p/(1—a)A1+(a—p)/(1—a)A0, pe€[0,1].

Define @5, = IER,, by IER,(II) := ES, (IT) — ES;__, (II), which is known as the inter-
ES difference. Here, we assume « € [1/2,1). The inter-ES difference is a relatively
new notion: it appears in Example 4 of [50] as a signed Choquet integral. In a recent
work by [4], various properties are studied to underline the special role the inter-ES
difference plays among other variability measures.

PROPOSITION 4.7. Suppose that o € [1/2,1). For m € R and s> > 0, the opti-
mization problem

max IER,(IT)  subject to u(I1) = m and o*(1) = s>
TeM?

"In statistics, the quantile of a standard normal distribution corresponding to a test statistic is
often referred to as a z-score — hence the notation z.
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is solved by a three-point distribution I1I* with its quantile function uniquely specified
as

S
(4'8) Q- (p) =m+ []l{p>o¢} - ]l{pgl—a}} , a.e.peE (Oa 1)'
2(1 — )

Proof. Note that for &, = IER,,, we have h'(p) = ﬁﬂ{pa—a} — ﬁﬂ{p%x} for

a € [1/2,1), By (4.1), we can show that a maximizer IT* satisfies (4.8), which is a
three-point distribution. ]

So the inter-ES difference regularizer encourages exploration at three points. One
of them is the mean m corresponding to the best single-point exploitation without
exploration, while the other two spots are symmetric to m capturing the exploration
part.

Remark 4.8. For a € [1/2,1), if we take the function ho(p) = 1j1_a,q(P), P €
[0,1], the inter-quantile difference @, := IQR, is given by IQR(II) := Qfj(a) —
Qn(l — «), which is a classical measure of statistical dispersion widely used in e.g.,
box plots. Unlike the inter-ES difference, the distortion function h, for IQR,, is not
concave. However, the concave envelopes of h is give by h*(p) = p/(1 —a) A1+ (o —
p)/(1 —a) A0, p € [0,1], which is exactly (4.7). According to Theorem 1 in [34], we
have suppec gz IQRA(II) = suppe g2 IERG(IT) and the maximizer is obtained by IT*
which satisfies (4.8). Thus, the optimization problem is still solvable even if & is not
concave.

4.4. The L'-Wasserstein distance to Dirac measures as a Choquet reg-
ularizer. Let W : M x M — R, be a statistical distance between two distributions,
such as a Wasserstein distance. Since an exploration is essentially to move away from
degenerate (Dirac) distributions, a natural way to encourage exploration is to use
W(IL, 0, ), where ¢, is the Dirac measure at « € R, as a regularizer. Moreover, to re-
move the location dependence, we modify the regularizer to be min,eg W(II, d,). For
any statistical distance satisfying W (11, fI) = 0 if and only if IT = 11, it is clear that
mingeg W(II, 6,) = 0 if and only if IT itself is a Dirac measure (hence deterministic).

The use of Wasserstein distance to model distributional uncertainty in other set-
tings naturally gives rise to a regularization term, yielding a theoretical justification
for its use in practice; see for example [8, 14, 35] that formulate different models with
distributional robustness based on Wasserstein distances.

We focus on the case where W is the Wasserstein L! distance, defined as

WA (IL, 1) = / 1Qn(p) — Qu(p)ldp.

In this case, Wy (I, d,) is the L' distance between z and X ~ II, and it is well known
via L' loss minimization that the minimizers of min,ecr Wi (11, d,) are the medians of
II (unique if Qr is continuous) given as arg min, ., Wi (IL, ;) = [Qn(1/2), Qf;(1/2)].
Moreover, for a median of II, z* € [Qn(1/2), Q;(1/2)], we have that Wy (II,d,) is
the mean-median deviation; namely

1/2 1
min Wy (1L, &) = Wi(Il, ;- ) = /0 (" = Qu(p))dp + /1/2(Qn(p) —a7)dp
1

1/2
— [ Quip)dp - / Qu(p)dp.
/2 0

1
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30 This in turn shows that argmin p W1 (IL, §,) belongs to the class of Choquet regu-
31 larizers.

[ I}

PROPOSITION 4.9. For m € R and s? > 0, the optimization problem

i I j ) = () = s?
Hnelil\igggﬁwl( ,0z)  subject to u(Il) = m and o (1) = 5=,

532 is solved by a unique IT* with the quantile function specified as

533 (4.9) Qu-(p) =m + slys1/2)y — slyp<iyzy, ae.p€(0,1).

534 Proof. Applying Lemma 2.3 to get mingeg W1 (11, 6,) = @5 (1) with h'(p) = 1 for
535 p < 1/2 and h'(p) = —1 for p > 1/2. Using (4.1) in Lemma 4.1 yields (4.9), which
536 implies a symmetric two-point distribution. ]

As @, (1) = minger Wi (11, 6,) induces a symmetric exploration around the mean,
we call it a symmetric Wasserstein regularizer with h(p) = pl <123 +(1—=p)L{p>1/2}-
Next, let us discuss two-point asymmetric exploration. Suppose that two directions
are not symmetric, and we would like to regularize in a way to encourage more ex-
ploration in a certain direction. Take a constant o € (0,1), and choose W as an
asymmetric Wasserstein distance

Wi (ILTL) = /O ((Qu(p) — Qn(p))+ + (1 — @) (Qu(p) — Qn(p))-)dp.

537 The minimizers are the a-quantiles arg min, ., W(I1, 6,) = [Qu(a), Qf ()], and for
538 z* € [Qn(a), Qu(«a)], we have

« 1
539 min W{(IL, 6,) = WL, 6, ) = / (1-a)(z* - Qn(p))dp—l—/ a(Qu(p) — «*)dp

zeR

0 o
1 «

540 —a [ Quipp-(1-a) [ Quip)p
541 o 0
542 We call @,(I) = mingeg W{(II, ;) an asymmetric Wasserstein regularizer with
543 h(p) = aplipci-a) + (1 =) (1 = p)L{pzi1-a)-
544 PROPOSITION 4.10. For m € R and s®> > 0, the optimization problem
2}(3) max, anell% WP(IL6,)  subject to u(IT) = m and o?(IT) = s

547 has a unique maximizer IT* with the quantile function uniquely specified as

1/2 1/2
@ -«

548 (4.10) Qu+(p) =m+s <1—O¢> Tipsay—s ( o ) lfp<ay, a.e.pe(0,1).
549 Proof. For ®;,(I1) = min,egr Wi (I, §,), we have h'(p) = a for p < 1 — , and
550 h'(p) = =1+« for p > 1 — a. Using (4.1), the optimization problem has a solution
551 IT* satisfying (4.10), which is an asymmetric two-point distribution. O
552 To recap, the Wasserstein L! regularization encourages possibly asymmetric (with
553  respect to the mean) two-point exploration, which is an instance of the bang-bang
554

exploration in Example 4.3.

This manuscript is for review purposes only.



o Ot Ot Ot Ot

561

562
563

Y D O O
I3 o R

oS

o Oov Ot Ot Ot Ot Ot

=

[@
=

[
=~ I

B

at
=
ot —

N = =
o C

v Ot Ot Ot

=

o Ot Ot
[0.¢]

16 X. HAN, R. WANG, AND X. Y. ZHOU

4.5. The Gini mean difference or maxiance as a Choquet regularizer.
By letting h(p) = p — p?, p € [0, 1], we consider the regularizer ®, := ®; given by

@U(H):/R<H([x,oo))—l_[2([x,oo))>dx.

There are two ways to represent @, (II) in terms of two iid copies X7 and X from the
distribution II. First, ®, can be rewritten as ®,(II) = E[|X; — Xz, which is the
Gini mean difference (e.g., [17]; sometimes without the factor 1/2). Alternatively, @,
can be represnted as O, (II) = E[max{X;, X2}] — p(II), which is called the maziance
by [13]. The two representations are identical as seen from the following equality

]E[max{Xl,Xg}] - ‘LL(H) =K [max{Xl,Xg} — %(Xl + Xz)
=K |:HlaX{X1,X2} — % (max{Xl,Xg} + min{Xl,Xg})
= %E[maX{Xl,XQ} — min{Xl,Xg}] = %]EHXl — X2|]

As argued by [13], the maxiance can be seen as the dual version of the variance, due
to the identities o%(II) = [;(« — p(11))?dII and ®,(IT) = [, (x — p(IT))dII%. Moreover,
the maxiance can be used to approximate a local index of absolute risk aversion in
[563]’s dual theory of choice under risk, which is similar to the role of variance in the
classic expected utility theory.

We now show that the maxiance regularizer ®, leads to a uniform distribution
for exploration.

PROPOSITION 4.11. For m € R and s > 0, the optimization problem

(4.11) max ®,(I1)  subject to u(Il) = m and o*(II) = s>
Hem?

has a unique mazimizer 1I* = Ulm — V3s,m + \/gs]

Proof. Note that for ®;, = ®,, we have h'(p) =1 — 2p. It follows from (4.1) that
a maximizer IT* is a uniform distribution. By matching the moments in (4.11), we
obtain IT* = U[m — v/3s,m + v/3s]. The uniqueness statement is guaranteed by e.g.
Theorem 2 of [34]. O

Proposition 4.11 provides a foundation for a uniformly distributed exploration
strategy on R. Note that this is different from the result of uniform distributions
maximizing entropy on a fixed, given bounded region: here in our setting the region
is not fixed, since we allow II to be chosen from arbitrary distributions on R, and
thus the bounded region [m — \/gs,m + \/gs] is endogenously derived rather than
exogenously given.

Remark 4.12. The inequality o(II) > v/3®,(II) for all II € M? is known as
Glasser’s inequality ([20]). For the uniform distribution IT* in Proposition 4.11 with
o(IT*) = s, we have ®,(IT*) = v/35/3 by Lemma 4.1. Thus, IT* attains the sharp
bound of Glasser’s inequality, which holds naturally since II* maximizes ®, for a
fixed o2.

5. Solving the exploratory stochastic LQ control problem. We are now
ready to solve the exploratory stochastic LQ control problem presented in Section 3.
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Let
(6.1)  W(z,lI) =E, {/OO e P (F(X[ L) + AR, (L)) dt |, = € R, TI € A(x).
0

We have the following result based on Lemma 4.1.

PROPOSITION 5.1. Let a continuous h € H be given. For any I1 = {II;};>0 €
A(z) with mean process {ut}i>0 and variance process {o?}i>0, there exists II* =
{IIF }i>0 € A(z) given by

h'(1—p)

5.2 * = _|_0' _
( ) Qnt (p) Kt t ||h,||2

a.e.p€ (0,1), t>0,

which has the same mean and variance processes satisfying W (x, II*) > W (x,II).

Proof. 1t follows from (3.13) and (3.14) that the term E, [, e '# (X}, I1;)d¢]
in (5.1) only depends on the mean process {yut}+>0 and variance process {o7}¢>0
of {Il;}4>0. Thus, for any fixed ¢ > 0, choose I} with mean p; and variance o3
that maximizes ®p (II). From Lemma 4.1, it follows that II} satisfies (5.2) and the
maximum value is @5, (II;) = o¢||h/||2. Clearly, the strategy II* = {II} };>0 € A(x) is
the desired one. 0

Proposition 5.1 indicates that the control problem (3.7) in the LQ setting is
maximized within a location—scale family of distributions, which is determined only
by h.

We go back to the HIJB equation (3.15). It follows from (3.16)—(3.17) along with
Lemma 4.1 that (3.15) is equivalent to
(5.3)

— N 2 2 / /"
pv(z) = Dax {7RIL‘,U,* 5 (0> +0%) = Lp+ Ao ||B ||, + CDzpv” (x)

+ %D2 (1 +0%) v (z) + B,uv’(ac)} + Axv'(z) — %xQ — Pz + %szzv"(x).

CDzxv" (z)+Bv' (z)—Rx—L

By the first-order conditions, we get the maximizers p*(z) = N=DZ0(z)

%A

112
and (0*(2))? = W of the max operator in (5.3), which in turn leads to the

optimal distributional policy IT*(+; ) prescribed by Lemma 4.1.
Bringing the above expressions of u*(x) and o*(x) back into (5.3), we can further
write the HJB equation as
@) [CDav” (x) + BV (x) — R — L] + X2 |I|3
pv(x) =
(54) 2[N - DQ'UH((E)]

+ % [CQ’UN(Z‘) - M| z? + [AV' () — Pla.

We now solve this equation explicitly. Denote A = [p— (24 +C?)|N +2(B+CD)R—
D2M. Under the assumptions that p > 24 + C? and MN > R2, a smooth solution
to (5.4) is given by v(z) = Lkox? + ki + ko, where®

_A- VA2 —4[(B+CD)2 + (p— (2A + C?))D2](R2 — MN)

(5.5) k2 2[(B + CD)? + D?(p — (24 + C?))] 7

2
8Values of kg, k1 and kg are obtained by solving the system of equations pks = %

k1 B—L)(ko(B+CD)—R k1B—L)2+4+22||n|2
ko (2A+C?) = M, phy = BLE=LEBLODIZID 4 oy 4 — P, and pho = BB 0D

+
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(5.6) b P (N - I<:2D2) — LR
' '" kB(B+CD) + (A—p) (N — ksD?) — BR’
and
k1B — L)% + X2||1/||3
. b = (B = L) + X[
2p(N — D?ks)
We can verify easily that ko < 0. Hence, v is concave, a property that is essential

for v to be actually the value function. Next, we state the main result of this section,
whose proof follows essentially the same lines of that of Theorem 4 in [47], thanks to
the analysis above and the results obtained. We omit the details here.

THEOREM 5.2. Consider the LQ control specified by (3.10)—(3.11), where we as-
sume M >0, N >0, MN > R? and p > 2A + C? + max (D2R2_2N§(B+CD),O).9
Then the value function in (3.7) is given by V(x) = $kea?® + kix + ko for each z € R,
where ko, k1 and ko are as in (5.5)-(5.7), respectively. The optimal feedback policy
has the distribution function IT*(-; x) whose quantile function is

(5.8)
N (kQ(B+CD)—R)$+le—L )\h/(l—p)
Qi+ () (p) = N —kuD? +N_k2D2, a.e.pe(0,1), z€R,
with the mean and variance given by
(5.9)
..« (k2(B+CD)~R)z+kB-L eoe NN
w*(z) = N kyD? and (oc*(z)) = (N kD z e R.

Finally, the associated optimal state process {X; },5, with X§ = x under II*(+;-) is
the unique solution of the SDE

B(ks(B+CD)=R)\ .. B(kB-1L)
{<A+ N — kyD? X+t N | ¥

D (ks(B +CD) — R) D(khB—-L)]*> D22 |3
X; .
JF\/KC+ N — kyD? TN e | (N—kQDQ)det

dX; =

Some remarks are in order. First of all, (5.8) implies that for any Choquet regu-
larizer, the optimal exploratory distribution in the regularized LQ problem is uniquely
determined by h'. Note that h'(z) is the “probability weight” put on x when calcu-
lating the (nonlinear) Choquet expectation; see e.g. [19, 37]. Second, we can see from
(5.9) that the mean of the optimal distribution does not depend on the exploration
represented by h and A, and only the variance does. In particular, the mean is exactly
the same as the one in [47] when the differential entropy is used as a regularizer, which
is also identical to the optimal control of the classical, non-exploratory LQ problem.
Third, the mean of the exploration distributions is a linear function of the state, while
its variance is independent of the state.

These observations are intuitive in the context of RL. Different h’s correspond
to different Choquet regularizers; hence they will certainly affect the way and the

9The constraint on p is used not only to ensure k2 < O but also to show

liminfr_, o e " PTE[(XH)2] = 0; see the proof of Theorem 4 in [47] for more details.
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level of exploration. Also, the more weight put on the level of exploration, the more
spreaded out the exploration becomes around the current position. Furthermore, the
second and third observations above show a perfect separation between exploitation
and exploration, as the former is captured by the mean and the latter by the variance
of the optimal exploration distributions. This property is also consistent with the LQ
case studied in [47, 48] even though a different type of regularizer is applied therein.

Next, we investigate optimal exploration samplers under the LQ framework for
some concrete choices of h studied in Section 4. For convenience, we denote

iy () _ A
@)=L = NS mDe

Theorem 5.2 yields that the mean of the optimal distribution is independent of h;
so we will specify only its quantile function and variance for each h discussed below.
Recall that the expressions of p*(x) and (0*(x))? for a general h are given by (5.9).

(i) Let h(p) = (p Ae —ep), leading to @, (1) = e(ue (I1) — p(I1)); see Example 4.3.
The optimal policy is e-greedy, given as

- ({ (ks(B + CD) — ff)f;%f —L+(1-e)A })

I ({p* () + (1 —e)o™(x)}) =
=g,

and

I ({ («) — 6" (2)}) =

o ([Ue(B+CD) ~Rjg+kiB—L—aA\\ _,
N — kyD? e

At each state z, the control policy takes a more “promising” action at p*(x) — ec*(z)
with a large probability 1 —e, and tries an alternative action p*(z)+ (1 —¢)5*(z) with
probability .10 Since ||h'[|3 = &(1 — ¢), the variance of II* is (o*(x))? = %.
(ii) Let h(p) be specified by the discrete exploration in (4.3), leading to ®,(II) =
e(X0, pd (4,10 =307 uz (i,10)), where pf (i, IT) and gz (4, IT) are defined by (4.4)
and (4.5); see Example 4.4. The optimal policy is a (2n + 1)-point distribution given

forje€{-n,...,—1,1,...,n}, and

R ((CUEISIES RS ERAL HR

Similarly, at each state x, the control policy takes a more “exploitative” action at p*(x)
with a large probability 1 — ¢, and tries 2n alternative actions u*(z) 4+ jo*(z) for j €
{-n,...,—1,1,...,n}, each with probability €/(2n). Since ||I/||3 = e(n+1)(2n+1)/6,

the variance of I1* is given by (0*(z))? = %

10Precisely speaking, the policy presented here is not exactly the e-greedy strategy in the classical

two-arm bandit problem because the two “arms” in our setting depend on the current state = and
hence are dynamically changing over time. However, at any point of time one needs to explore only
two action points.
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(iii) Let h(p) = —plog(p), leading to ®, (M) = [;*II ) log(T1([x, 00)))da;
see Example 4.5. The optimal policy is a shifted- exponentlal dlstrlbutlon given as

Twa) = 1 exp{[(kg(BJrCD) f)\R)z+lefL] - 1}@@{@}

Since ||A’||3 = 1, the variance of IT* is given by (0*(z))? = m

(iv) Let h fo z(1 — s)ds where z is the standard normal quantile function.
We have @, (1T fO Qu(p)z(p)dp; see Example 4.6. The optimal policy is a normal
distribution glven by
ko(B D) - k1B —L A2
N — ko D2 (N — koD2)?

owing to the fact that |A’||3 = 1. Recall that the optimal distribution is also Gaussian
in [47] using the entropy regularizer. This is an example of different regularizers
leading to the same class of exploration samplers. On the other hand, examining more
closely the Gaussian policy derived above and the one in [47, eq. (40)], we observe
that the means of the two are identical but the variance of the former is the square of
that of the latter. The reason of the discrepency in variance is because the maximized
mean—variance constrained Choquet regularizer ®,(II) is always linear in the given
standard deviation o whereas the corresponding maximized entropy regularizer DE(IT)
is logorithmic in o.

(v) Let h(p) = p/Q1 —a) A1+ (o —p)/(1 —a) A0 with @ € [1/2,1). Then
Oy (IT) = ES,(II) — ES]_,(IT); see Section 4.3. The optimal policy is a three-point
distribution given as

- < { (1- a)[(kz(f(flt il)?()JV—_RZ;;ﬁB — 0+ }) —1-a,

([ (k2(B+CD)=Rjz+kB-L\ _,
11 ({ N D2 =20 —1,

and

o ({ (1 -a)[(ke(B+CD)—- R)x+kB—-L]— /\}) _q_
(1— a)(N — ksD?) -
Since ||h'[|3 = 2a/(1 — «)?, the variance of II* is given by (¢*(x))? = %.
(vi) Let h(p) = aplipci—ay + (1 — a)(1 = p)I{p>1-a) with a € (0,1). Then
&), (II) = min,eg Wi(I1, 6,,); see Section 4.4. The optimal feedback policy is an asym-
metric two-point distribution given as

o[ (k2(B+CD) =Rz +kiB—-L+al) _ .
II ({ N kD2 =1-q,

and

(b t-seta) .

Since ||A']|2 = a(1 — «), the variance of IT* is given by (¢*(z))? = %.
(vii) Let h(p) = p — p*>. Then ®,(II) = E[|X; — X»|]/2; see Section 4.5. The

optimal policy IT*(+; x) is a uniform distribution given as

|:(k2(B+CD) R)x+ k1B —L — )\ (k2(B+CD) — R)x + k1B — L+/\}

N — ko D? N — ko D?
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Since ||A’||3 = 1/3, the variance of II* is given by (o*(x))? = W.
Note here the uniform distribution is on a state-dependent bounded region cen-
tering around the mean p*(z), rather than on a pre-specified bounded region.

6. Relationship between classical and exploratory problems. In this sec-
tion, similarly to the discussions in [47, 48], we study the relationship between the
classical (unregularized and non-exploratory) and exploratory stochastic LQ prob-
lems. Since most results are parallel , we will make the exposition brief.

Recall the classical LQ problem (3.2) where the reward function is given by (3.11).
The explicit forms of optimal control and value function, denoted respectively by
u* and V¢ were given by Theorem 9-(b) of [47]. We now provide the solvability
equivalence between the problems (3.2) and (3.7).

THEOREM 6.1. The following two statements (a) and (b) are equivalent.

2 72

(a) The function V(x) = %ang +a1x+ap+ 7%()}\][};%)2) ,x € R, with ag, a7 € R
and as < 0, is the value function of the exploratory problem (3.7) and the
corresponding optimal feedback policy has the distribution function II*(-;x)
(a2(B4+CD)—R)z+a1B—L + AR/ (1—p)
N—a2D2 N—OLQDQ
(a2(B4+CD)—R)x+a1B—L

a2D2

whose quantile function is Qu-(..x)(p) =

with the mean and variance given by p*(x) =
. 22w 2
(0*(2))? = ﬁ'
b) The function w(z) = Lasx? +a1x+ag, z € R, with ag, a1 € R and as < 0, is
2

the value function of the classical problem (3.2) and the corresponding optimal
(a2(B+CD)—R)xz+o1B—L
N*OLQD2 :

feedback control is u*(x) =

Proof. We rewrite the exploratory dynamics of X* under IT* as

AxX = (Axg‘ +B(a2(B+CD) - R) X{ +alB—L>dt

]\/v—OégD2
* 2 232 |[h/]]2
(6.1) N (a2(B+CD)—R) X +a1B—L D2\ Hh”2
+ CXy+D N = asD? +(N_a2D2)2th

= (A1 X7 + Ao)dt 4+ \/(BiX7 + Ba)’ + CrdWs,

where A; = A+ %fgg—mﬂqz = BlaBl) B = O 4 DlealBrOD)"R)
_ D2X%||n

By = DJ\(,?TBQD%) and C; := %. This has exactly the same form as that

appearing in the proof of Theorem 9 in Appendix C of [47], except that the values of

C) are different.’! Thus, the rest of the proof is the same as in [47]. a0

Note that, although the value function V' of the exploratory problem (3.7) has
been explicitly given by Theorem 5.2, the above theorem focuses on the equivalence
of solvability of the two problems without having to know the explicit expression of
the value function of either problem. Hence we use generic letters (ag, o, a2) instead
of (ko, k1, k2) to express the value functions.

The following result shows that the Choquet-regularized LQ problem converges
to its classical counterpart if the exploration weight A goes to zero.

PROPOSITION 6.2. Assume that statement (a) (or equivalently, (b)) of Theorem
6.1 holds. Then, for each x € R, limy o II*(-;2) = dy«(4)(-) weakly. Moreover, for

U There is a typo in the title of Appendix C of [47]: it should be the proof of Theorem 9, instead

of Theorem 7.
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each x € R, limy_,o |V (2) — V(z)| = 0.

2
Proof. Noting that limy_,q % = 0, the proof is the same as that of

Theorem 11 in [47]. O

Finally, we examine the “cost of exploration” — the loss in the original (i.e., non-
regularized) objective due to exploration, which was originally defined and derived
in [47] for problems with entropy regularization. The notion can be extended readily
to the current Choquet setting, namely, it is the difference between the two optimal
value functions, adjusting for the additional contribution coming from the Choquet
regularizer of the optimal exploratory strategy:

62) ¢ (2) = VI(z) - (V(m) —AE, VOOO et (/U uh' (1 — 11 (u))dIT} (u)) dtD ,

for x € R.

THEOREM 6.3. Assume that statement (a) (or equivalently, (b)) of Theorem 6.1
holds. Then, the exploration cost for the stochastic LQ problem is

A?|[n 13

©3) ) = N a0

, forx € R.

Proof. Let {Il} } 4>0y be the open-loop control generated by the feedback control

IT*(:;x) given in statement (a) with respect to the initial state z whose quantile
o(p) = (ag(B+CD)=Rjatay B=L L \W/(1=p)

N—a,D? + a2 with the mean and variance

function is Q- (.,

. «@ T+ * A% ||
given by p*(z) = ( 2<B+C£)af[))2+ 1B2L and (0% (z))% = e !{2['12)2 By Lemma 4.1,
it is straightforward to calculte [, uh'(1 — II} (u))dII} (u) = #ZHD"‘Q The desired
result now follows immediately from the definition (6.2) and the expressions of V()
n (a) and V<(.) in (b). 0

The costs of exploration derived in [47, 48] for the entropy setting depend on
only the temperature parameter and the discounting rate or time horizon which are
chosen by the agents, but not on the state dynamics or the reward coefficients which
the agents generally do not know about. In contrast, the derived exploration cost
(6.3) for the Choquet setting does depend on the unknown model parameters in a
complicated way (mainly through «s), which seems to be a disadvantage from the
learning perspective. However, a bit of reflection reveals that it is more important to
know what impact the cost than to know the precise value of the cost. For example,
(6.3) suggests a way to strategically select the regularizers: other things being equal,
to reduce the exploration cost one should choose regularizers with smaller values
of ||h/||z. Moreover, C*" " (z) < % noting ae < 0; so the cost is bounded
above by a constant that is inversely proportional to the unknown parameter N, the
control weight in the reward function. As a result, when executing controls becomes
increasingly costly, the exploration cost diminishes because the agent is less motivated
to do exploration. Furthermore, C* "' (z) = %/”20*(:5), meaning that the cost is
proportional to the standardized deviation of the exploratory control, a feature that is
not presented in the entropy setting [47]. Finally, the exploration cost (6.3) depends
on A and p in a rather intuitive way: it increases as \ increases, due to more emphasis
placed on exploration, or as p decreases, indicating an effectively longer horizon for
exploration.
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7. Conclusion. This paper develops a framework for continuous-time RL that
can generate or indeed interpret/explain many broadly practiced distributions for
exploration. The main contributions are conceptual/theoretical rather than algorith-
mic: Theorem 5.2 does not lead directly to an algorithm to compute optimal policies,
because the expression (5.8) involves the model parameters which are unknown in the
RL context. That said, our results do provide important guidance for devising RL
algorithms. First, Theorem 5.2 may imply a provable policy improvement theorem
and hence result in a g-learning theory analogous to that in the entropy-regularized
setting recently established by [27]. Second, the explicit form (5.8) can suggest special
structure of function approximators for learning optimal distributions, thereby greatly
reduce the number of parameters needed for function approximation and improve the
efficiency of the resulting learning algorithms. Finally, the availability of a large class
of Choquet regularizers makes it possible to compare and choose specific regularizers
to achieve certain objectives specific to each learning problem.

Another conceptual contribution of the paper is that it establishes a link between
risk metrics and RL. This paper is the first to do so, and the attempt is by no means
comprehensive. The rich literature on decision theory and risk metrics is expected to
further bring in new insights and directions into the RL study, not only related to
regularization, but also in terms of motivating new objective functions and axiomatic
approaches for learning.

The theory developed in this paper opens up several research directions. Here we
comment on some. One is to develop the corresponding g-learning theory mentioned
earlier. Another is to find the “best Choquet regularizer” in terms of efficiency of
the resulting RL algorithms. Yet another problem is in financial application: to for-
mulate a continuous-time mean—variance portfolio selection problem with a Choquet
regularizer and compare the performance with its entropy counterpart solved in [48].

Last but not least, the Choquet regularizers proposed in this paper are defined
for distributions on R, while many RL applications involve multi-dimensional action
spaces. Because Choquet regularizers are characterized by quantile additivity as in
Theorem 2.4 while quantile functions are not well defined for distributions on R¢
with d > 1, it is very challenging to study Choquet regularizers in high dimensions.
To overcome the difficulty, the first possible attempt is to minic (2.2) by defining, for
distributions IT on R?, the functional ®}°"™ (II) = [, hoIl([x, 00))dx. This formulation
requires some further conditions on h € H to guarantee desirable properties, and it
is unclear whether we can derive the corresponding optimizers in a form similar to
Proposition 4.2. Another possible idea is to use

d d
P (1) = Z/Rhoﬂi([x,oo))dx or q)zmd(ﬂ) = H/Rhoﬂi([m,oo))dx,

where IT; is the -th marginal distribution of II. This formulation relies only on the
marginal distributions of II, allowing us to utilize the existing results for Choquet
regularizers on R. Either formulation mentioned above requires a thorough analysis
in a future study.
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