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Abstract

We propose a rank-dependent portfolio choice model in continuous time that captures the

role in decision making of three emotions: hope, fear and aspirations. Hope and fear are

modeled through a reversed S-shaped probability weighting function and aspirations through

a probabilistic constraint. By employing the recently developed approach of quantile formula-

tion, we solve the portfolio choice problem both thoroughly and analytically. These solutions

motivate us to introduce a fear index, a hope index and a lottery-likeness index to quantify

the impacts of three emotions, respectively, on investment behavior. We find that a suffi-

ciently high level of fear endogenously necessitates portfolio insurance. On the other hand,

hope is reflected in the agent’s perspective on good states of the world: a higher level of hope

causes the agent to include more scenarios under the notion of good states and leads to greater

payoffs in sufficiently good states. Finally, an exceedingly high level of aspirations results in

the construction of a lottery-type payoff, indicating that the agent needs to enter into a pure

gamble in order to achieve his goal. We also conduct numerical experiments to demonstrate

our findings.
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1 Introduction

The failure of the classical expected utility theory (EUT) to describe many observed human

behaviors has motivated economists to develop alternative models of choice. In the past few

decades, a substantial amount of research has been conducted on this subject in two directions.

In the first direction, economists have attempted to change or relax some of the axioms in EUT,

hoping to find satisfactory models of choice. Examples of this approach include Yaari’s dual

theory of choice (Yaari, 1987) and Quiggin’s rank-dependent utility (Quiggin, 1982; Schmeidler,

1989). In the second direction, which is inspired by behavioral psychology, researchers seek to

model the processes that lead to choice. The most celebrated accomplishment along this line is

Kahneman and Tversky’s cumulative prospect theory (Kahneman and Tversky, 1979; Tversky and

Kahneman, 1992). Another notable project is Lopes’ security, potential and aspiration theory (or

the SP/A theory; Lopes, 1987).

Inspired by these models, we propose and formulate in this paper a new model of choice that

considers three emotions relevant to decision making: hope, fear and aspirations—while examining

a continuous-time financial portfolio choice problem in which an agent, whose preferences are

represented by this model of choice, chooses the portfolio that will optimize his payoff at a given

terminal time. Although seemingly contradictory psychological states, hope and fear are typically

present simultaneously in the same individual. The former is an optimistic anticipation of good

situations and the latter is a pessimistic foreboding of bad situations. Aspirations, by contrast,

are responsive to the exigencies and opportunities of each decision nexus. We therefore employ

a reversed S-shaped probability weighting (or distortion) function to model hope and fear, and a

probabilistic constraint to model aspirations. Notably, our model derives fundamental components

from both rank-dependent utility theory and SP/A theory. Its connection with these two theories

and the motivations behind our model are discussed in detail in Section 2.

In addition to the introduction of a new portfolio choice model, another contribution of this

paper is to solve the portfolio choice problem analytically and explicitly. A probability weighting

function is a nonlinear transformation applied to the underlying probability measure when risky

choices are evaluated. The presence of such a weighting function ruins both the time-consistency

that underlies the dynamic programming principle and the concavity of the preference functional

that is essential for any optimization problem. For this reason, the classical approaches that have

been developed to address expected utility maximization fail to solve the portfolio choice problem

introduced in this paper.

A new approach, known as quantile formulation, has recently been developed to overcome

the difficulty associated with probability weighting functions; see e.g., Carlier and Dana (2006),

Jin and Zhou (2008), and He and Zhou (2011b). This approach involves changing the decision

variable from the random variable of the future payoff to the quantile function of the payoff.

This change of variable, in general, recovers the concavity of the underlying preference measure,

and thus one can employ either calculus of variations or a pointwise maximization/minimization
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approach to solve the optimization problem.

In the context of the model presented in this paper, there is an additional probabilistic con-

straint representing the aspect of aspirations, which can be reformulated naturally in terms of

the quantile function. This constraint introduces considerable technical complications, but we

are able to derive the optimal solution explicitly after a careful and involved analysis. The main

contribution of this paper, however, is the introduction of the three indices—a fear index, a hope

index and a lottery-likeness index—that quantify hope, fear and aspirations, as well as a com-

parative statics analysis that studies the impacts of these emotions on investing behavior. These

indices are put forth naturally in the process of solving the underlying portfolio choice problem.

The fear index is a quantity that, when sufficiently large, necessitates portfolio insurance in the

optimal portfolio. This index is defined in terms of the curvatures (the second- and first-order

derivatives) of the probability weighting function w(p) near p = 1; thus, it is related to the ex-

aggeration of small probabilities of extremely bad outcomes or, indeed, to the emotion of fear.

On the other hand, the hope index is defined through the first-order derivative of w(p) when p

is close to zero, which is relevant to the exaggeration of small probabilities of extremely good

outcomes or, in psycho-behavioral terms, to the emotion of hope. We find that a higher level of

hope makes the agent include more scenarios under the notion of good states. In addition, in

choosing optimal portfolios, an agent with a higher level of hope sets his payoff greater in each of

the sufficiently good states than another agent with a lower level of hope. Finally, a sufficiently

high level of aspirations forces the agent to construct a lottery-type payoff that has a discontinuity

with respect to market conditions. More precisely, under good market conditions, characterized

as the realization of a set of good states, the agent’s payoff is exceedingly high, but when market

conditions are not good, the agent’s payoff is much lower. Because the payoff resulting from a

high level of aspirations thus resembles that of a lottery ticket, we introduce a “lottery-likeness

index” to capture its essential characteristic.

Decision making behavior can be characterized as risk-averse or risk-seeking. In the model

presented in this paper, both fear and a concave utility function lead to risk-averse behavior.

Fear, as pointed out earlier, is an overweight on the left tail of a payoff distribution. The concave

utility function, by contrast, captures the aversion of the agent to a mean-preserving spread. In

the portfolio choice model presented here, these two elements play qualitatively distinct roles

in deciding investing behavior. The presence of a certain level of fear determines whether one

needs portfolio insurance. The level of insurance needed, however, is unaffected by the level of

fear; rather, it is dependent on, among other factors, the utility function that one employs. On

the other hand, both hope and aspirations lead to risk-seeking behavior in decision making, yet

these elements have qualitatively different impacts on investing behavior in the portfolio selection

model. A higher level of hope causes the agent to include more scenarios among “good” states

of the world, implying that he will need to take more leverage in order to reap the payoffs from

these states. However, hope and aspirations are qualitatively different, and the agent constructs
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a lottery-type payoff only when he has an exceedingly high level of aspirations, thus causing him

to gamble outright.

After completing a draft of this paper, we came across Carlier and Dana (2011), in which the

authors examine a rank-dependent utility maximization problem. Although this work and the

present paper share certain features, there are key differences in motivation, scope and implica-

tions. First, Carlier and Dana set out to produce a normative description of a choice model, so

their paper considers the rank-dependent utility maximization without the probabilistic constraint

that is used to model aspirations in the present paper. By contrast, our goal is to investigate and

capture the decision-making role of the three emotions—hope, fear and aspirations—by solving a

portfolio choice problem. Second, Carlier and Dana focus on obtaining some of the necessary and

sufficient conditions for an optimal solution, whereas we are able to derive solutions explicitly.

This, in turn, facilitates further analysis, such as comparative statics and numerical implementa-

tion. Finally, we introduce a quantitative index for each of the emotions considered in the paper,

and we discuss the impact that each can have on trading behavior.

The paper is organized as follows. In Section 2 we review the SP/A theory and the rank-

dependent utility theory, from which we derive key elements of our model. In Section 3 we pose

our portfolio choice problem in continuous time and present its quantile formulation. Section 4

is devoted to studying the feasibility and well-posedness of the problem. The study of feasibility

examines whether the investor’s aspirations are too high, relative to his initial capital, for him

to achieve. The study of well-posedness, on the other hand, investigates whether the investor

would take infinite leverage on risky assets. In Section 5 we solve the portfolio choice problem

thoroughly. Along the way, we introduce our indices for hope, fear and aspirations and study

the effects of these emotions on investing behavior. In Section 6 we provide an example in which

we specify a particular probability weighting function and a power utility function and employ

historical U.S. equity and bond data to obtain some numerical results on the optimal solution to

the portfolio choice problem. These numerical results confirm the theoretical results obtained in

Section 5. Moreover, using this example we compare our model with the EUT portfolio selection

model. Finally, Section 7 concludes the paper and the proof of the main theorem is provided in

the Appendix.

2 SP/A Theory and Rank-Dependent Utility Theory

In this section, we explain the motivation for our choice of a reversed S-shaped probability

weighting function to model hope and fear and of a probabilistic constraint to model aspirations.

Let us start from the SP/A theory, which inspired our model.

SP/A theory is a two-factor theory developed by Lopes (1987). It uses both a dispositional

factor and a situational factor to explain risky preferences and choices. The dispositional factor

describes the natural motives that dictate individuals’ risk attitudes. In this regard, risk-aversion
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appears to be motivated by a desire for security, whereas risk-loving is rationalized by a desire

to achieve or maximize potential. Individuals are found to seek both security and potential when

facing risky choices. The situational factor, by contrast, reflects specific needs or opportunities

that the individual faces when making choices.

In the decision model proposed by Lopes (1987), the dispositional factor enters into the indi-

vidual’s objective function. A nonnegative prospect (random payoff) X is evaluated as

V (X) :=

∫ +∞

0
xd[−w(1 − FX(x))] (1)

where FX(·) is the cumulative distribution function (CDF) of X. The nonlinear transformation

w(·), in Lopes’ terms, is called the decumulative weighting function, and the integral is in the

Lebesgue-Stieltjes sense.1 In the SP/A theory, w(·) takes the following form:

w(z) := νzqs+1 + (1− ν)[1− (1− z)qp+1], (2)

where 0 ≤ ν ≤ 1 and qs, qp ≥ 0. Clearly, zqs+1 and 1 − (1 − z)qp+1 are convex and concave

functions, respectively; therefore, according to Yaari’s theory, they imply risk-aversion and risk-

loving, respectively.2 The decumulative weighting function w is a mixture of a convex function

and a concave function; thus, it seems to represent the individual’s (somewhat conflicting) desire

for both security and potential. In Lopes’ words, individuals stand “between hope and fear.” It is

worth mentioning that (1) is a natural extension of the definition in Lopes and Oden (1999) that

applies to purely discrete prospects.

The situational factor, on the other hand, is modeled by the probabilistic constraint

P (X ≥ A) ≥ α (3)

where A is the aspiration level and 0 ≤ α ≤ 1 is the confidence level. See for instance Lopes and

Oden (1999). The pair (A,α) represents individuals’ aspirations responding to specific circum-

stances and opportunities. For instance, if an individual has a loan of amount A which will be

due soon, he may be forced to set the loan amount to be the aspiration level. On the other hand,

if an individual is prohibited from taking excess risk, then he may set up a low aspiration level

with a high confidence level to achieve it.3

While it is quite reasonable to model aspirations (the situational factor) via a probabilistic

constraint, it is not convincing to us that the dispositional factor should be modeled as (1) with

the weighting function w(·) specified as (2). It is, in our view, neither justifiable nor adequate

1If we define w̃(z) := 1− w(1− z), the dual of w, then (1) can be written as
∫ +∞

0
xdw̃(FX(x)) which has been

used by some authors. Here, we follow the convention in Tversky and Kahneman (1992) to use w instead of w̃.
2See Theorem 2, Yaari (1987).
3Indeed, (3) can also be interpreted as a type of VaR constraint. Such a constraint is popular in the practice of

risk management.
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to explain the complex psychological interlacement of hope and fear as a mere simple convex

combination of two completely opposite attitudes toward risk. Rather, it is more appropriate to

attempt to capture simultaneously hope as the optimism over extremely satisfactory situations

and fear as the pessimism over very poor situations. On the other hand, the use of a linear utility

in (1) is also debatable. Linear utility functions are not favored in the risky choice literature.

Moreover, we will show later that the preference functional (1) leads to an ill-posed portfolio

choice model in the continuous-time setting, mainly due to the linearity of the utility function.

Thus, it is desirable to seek a more suitable preference representation to describe the dispo-

sitional factor. We turn therefore to the rank-dependent utlity (RDU). RDU was introduced by

Quiggin (1982) and further developed by Schmeidler (1989). It can explain many paradoxes that

EUT has failed to capture, and, at the same time, it provides mathematical tractability. As stated

in Starmer (2000), “the rank-dependent model is likely to become more widely used,” because it

captures many robust empirical phenomena “in a model which is quite amenable to application

within the framework of conventional economic analysis.”

In RDU, a prospect X is evaluated as

V (X) :=

∫ +∞

0
u(x)d[−w(1 − FX(x))] (4)

where w(·) is called a probability weighting/distortion function. Mathematically, the RDU prefer-

ence measure (4) generalizes the SP/A counterpart (1) by involving a nonlinear utility function

u(·). However, the two measures have distinct economic interpretations. The SP/A preference

measure (1) can be regarded as a mixture of two preference measures in Yaari’s dual theory.

As we argued earlier, hope and fear are not suitably modeled by this mixture. On the other

hand, a rank-dependent utility preference measure, as we will see later, can provide a meaningful

characterization of hope and fear.

Abundant work has been done to elicit the utility function and weighting function from ex-

perimental data, both using a parameter-based method (Tversky and Fox, 1995; Tversky and

Kahneman, 1992) and using a parameter-free method (Abdellaoui, 2000). The typical resulting

weighting function is reversed S-shaped, showing that small probabilities of both very good and

very bad events are overweighed. Meanwhile, the typical utility function is concave, reflecting the

fact that people are less favorable disposed toward a risky gamble than to its mean payoff when

only intermediate probabilities are involved.

Although RDU is established in a normative way, i.e., via axiomatization, it shows deep

psychological intuition. Because the typical weighting function is reversed S-shaped, its high end

exhibits convexity, indicating that the individual pays too much attention to the worst outcomes4

and hence shows pessimism or fear. At the same time, the weighting function is concave at the

4Assuming w(·) is differentiable, it follows from (4) that V (X) =
∫ +∞

0
w′(1−FX(x))u(x)dFX(x), assuming that

FX(·) is continuous. Hence, w′(·) serves as a weight on the utility of the outcome. Clearly the high end of the
weighting function corresponds to the low end of the outcome.
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low end, reflecting the fact that the individual also pays too much attention to the best outcomes

and shows optimism or hope. Therefore, RDU—in particular, the reversed S-shaped weighting

function—does indeed capture both fear and hope simultaneously.

The following three families of parameterized weighting functions are popular in the literature:

the Tversky and Kahneman (1992) weighting function

w(p) =
pγ

(pγ + (1− p)γ)1/γ
(5)

with 0 < γ < 1; the Tversky and Fox (1995) weighting function

w(p) =
δpγ

δpγ + (1− p)γ
(6)

with δ > 0, 0 < γ < 1; and the Prelec (1998) weighting function

w(p) = e−δ(− ln p)γ (7)

with δ > 0, 0 < γ < 1. All of these weighting functions are reversed S-shaped.5 Estimates

of the parameters are available in many papers, such as Abdellaoui (2000), Wu and Gonzalez

(1996), Tversky and Kahneman (1992), Camerer and Ho (1994), Bleichrodt and Pinto (2000),

and Abdellaoui, Bleichrodt, and Paraschiv (2007).

Inspired by Jin and Zhou (2008) and Wang (2000), we will consider in this paper another class

of weighting functions. Parameterized by (a, b, z̄), this class of weighting functions is defined as

follows:

w(z) =







ke(a+b)Φ
−1(z̄)+ a2

2 Φ
(

Φ−1(z) + a
)

, z ≤ z̄,

A+ ke
b2

2 Φ
(

Φ−1(z)− b
)

, z ≥ z̄,
(8)

where Φ(·) is the CDF of a standard normal random variable, a, b ≥ 0, and k and A are given as

k =
1

e
b2

2 Φ (−Φ−1(z̄) + b) + e(a+b)Φ
−1(z̄)+ a2

2 Φ (Φ−1(z̄) + a)
> 0, A = 1− ke

b2

2 ,

respectively. Essentially, the weighting function (8) is obtained by pasting together smoothly the

two one-parameter weighting functions in Wang (2000).6 On the other hand, in contrast to Jin

and Zhou (2008), where the values of a and b are restricted in a particular range in order to fulfill

5The values of the parameters in (5) and (6) must be restricted to certain ranges to make the resulting weighting
functions increasing. For instance, Ingersoll (2008) shows that for the Tversky–Kahneman weighting function (5)
to be increasing, γ must be larger than 0.28. Luckily, all the estimates of those parameters in the literature lead to
increasing weighting functions.

6Wang (2000) considers the probability weighting function w(z) := Φ(Φ−1(z) + α), parameterized by α. It is
straightforward to verify that this function is concave if α ≥ 0 and convex if α ≤ 0.
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Figure 1: Graph of Kahneman-Tversky weighting function (5), Tversky-Fox weighting function
(6), Prelec weighting function (7), Jin-Zhou weighting function (8), and the identity function.

a monotonicity condition therein, we allow a and b to take any nonnegative values because that

monotonicity condition is not needed in the present paper.

It is straightforward to compute that

w′(z) =







ke(a+b)Φ
−1(z̄)−aΦ−1(z), z ≤ z̄,

kebΦ
−1(z), z ≥ z̄.

Therefore, w′(·) is decreasing on (0, z̄) and increasing on (z̄, 1), and consequently w(·) is reversed
S-shaped. In addition, z̄ is the inflection point of w(·).

Figure 1 depicts the various weighting functions (5)-(8). We use the parameter values esti-

mated in Tversky and Kahneman (1992), Abdellaoui (2000), and Wu and Gonzalez (1996) for the

first three weighting functions, i.e., γ = 0.69 for (5), δ = 0.65, γ = 0.6 for (6) and γ = 0.74 for

(7). For the Jin-Zhou weighting function (8), we choose the parameter values so that the result-

ing weighting function is graphically close to the other three weighting functions.7 The specific

parameter values are provided in Section 6.

It should be noted that the decumulative weighting function (2) used in the SP/A theory is not,

in general, reversed S-shaped. It can generate a reversed S-shaped function with certain parameter

values, e.g., ν = 0.3, qs = 2 and qp = 6. However, there is an essential difference between (2) and

the classical weighting functions such as (5)-(8). Extremely small probabilities, say 10−5 and 10−6,

are often indistinguishable to most people; hence, it is reasonable for a weighting function to have

infinite sensitivity at both zero and one, like the ones in (5)-(8). However, for the decumulative

7Unlike the other three weighting functions (5)-(7), the Jin-Zhou weighting function (8) has not been calibrated
to real data. The main reason we use this weighting function here is because it allows for separate investigation of
the effects of hope and fear on asset allocation; see Section 6.
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weighting function w(·) in (2), w′(0) = (1− ν)(qp + 1) <∞ and w′(1) = ν(qs + 1) <∞.

In the rest of this paper, we will formulate and solve our hope, fear and aspiration (HF/A)

model, a new portfolio selection model in continuous time. In this model, the objective function

is of the form (4), which is taken from RDU with a reversed S-shaped probability weighting

function used to capture both hope and fear, whereas a probabilistic constraint of type (3) taken

from SP/A theory is used to represent aspirations.8

3 Formulation of HF/A Portfolio Choice Model

Let T > 0 be the given future time and (Ω,F , (Ft)0≤t≤T , P ) be a filtered probability space on

which is defined a standardFt-adapted n-dimensional Brownian motionW (t) ≡ (W 1(t), · · · ,W n(t))⊤

with W (0) = 0. It is assumed that Ft = σ{W (s) : 0 ≤ s ≤ t}, augmented by all the P -null sets.

Here and henceforth, A⊤ denotes the transpose of a matrix A, and a∨ b := max(a, b) for a, b ∈ R.

We define a continuous-time financial market following Karatzas and Shreve (1998). In this

market there are m + 1 assets being traded continuously. One of the assets is a risk-free bank

account whose price process follows

S0(t) = e
∫ t

0
r(u)du, 0 ≤ t ≤ T, (9)

where the interest rate r(·) is a progressively measurable process with

∫ T

0
|r(t)|dt <∞, P − a.s..

The other m assets are risky stocks whose price processes Si(t), i = 1, · · · ,m satisfy the following

stochastic differential equation (SDE):

dSi(t) = Si(t)



µi(t)dt+
n
∑

j=1

σij(t)dW
j(t)



 , t ∈ [0, T ]; Si(0) = si > 0, (10)

where µi(·) and σij(·), named as appreciation rate and volatility rate, respectively, are Ft-

8One may wonder why we do not apply the same probability weighting on the aspiration constraint. To answer
this question, let us reiterate the different roles of hope, fear and aspirations in affecting decision making. Hope
and fear are two general psychological states that affect the individual’s preference over prospects. The probability
weighting function is merely a model of the two states. The individual’s belief of the prospect X is still represented
by the CDF FX(·), rather than by 1 − w(1 − FX(·)). On the other hand, aspirations are responsive to exigencies
of each decision nexus and are unrelated to the inherent emotions of hope and fear. Thus, in the probabilistic
constraint (3) that models aspirations, we should not apply any probability weighting function on P (X ≥ A). That
said, applying the probability weighting in (3) would not mathematically change the model since the new constraint
would be equivalent to (3) with a revised value of α.
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progressively measurable stochastic processes with

∫ T

0





m
∑

i=1

|µi(t)|+
m
∑

i=1

n
∑

j=1

|σij(t)|2


 dt < +∞, P − a.s..

Set the excess rate of return process

B(t) := (µ1(t)− r(t), · · · , µm(t)− r(t))⊤,

and define the volatility matrix process σ(t) := (σij(t))m×n. The following basic assumption is

imposed on the market parameters throughout this paper:

Assumption 1 There exists an Ft-progressively measurable, Rn-valued process θ0(·), the so-called
market price of risk, with Ee

1
2

∫ T
0 |θ0(t)|2dt < +∞ such that

σ(t)θ0(t) = B(t), P − a.s., a.e. t ∈ [0, T ].

Assumption 1 is only slightly stronger than the standard no-arbitrage assumption, and the

gap between the two assumptions is due to the additional Novikov condition; see Karatzas and

Shreve (1998) for details.

Consider an agent, with an initial endowment x > 0 and an investment horizon [0, T ], whose

total wealth at time t ≥ 0 is denoted by X(t). Assume that the trading of shares takes place

continuously in a self-financing fashion and that there are no transaction costs. Then, the wealth

process satisfies (see e.g., Karatzas and Shreve, 1998)

dX(t) = r(t)X(t)dt+ π(t)⊤ [B(t)dt+ σ(t)dW (t)] , t ∈ [0, T ]; X(0) = x,

where πi(t), i = 1, 2 · · · ,m, denotes the total market value of the agent’s wealth in the i-th

asset at time t. The process π(·) ≡ (π1(·), · · · , πm(·))⊤ is called a portfolio if it is Ft-progressively
measurable with

∫ T

0
|σ(t)⊤π(t)|2dt < +∞, a.s.,

and it is tame (i.e., the corresponding discounted wealth process X(t)/S0(t) is almost surely

bounded from below—although the bound may depend on π(·)). It is standard in the continuous-

time portfolio choice literature that a portfolio is required to be tame so as, among other things,

to exclude the notorious doubling strategy.

We now formulate the portfolio choice model featuring hope, fear and aspirations in this

financial market. At time 0, given an initial wealth x0, the agent seeks the optimal trading

strategy such that the terminal wealth/payoff satisfies the probabilistic constraint that represents
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aspirations and the preference value of the payoff modeled as in RDU that captures hope and fear

is maximized. Therefore, the agent faces the following HF/A portfolio choice problem:

Max
π

∫∞
0 u(x)d

[

−w(1− FX(T )(x))
]

subject to dX(t) = r(t)X(t)dt + π(t)⊤ [B(t)dt+ σ(t)dW (t)] , t ∈ [0, T ]; X(0) = x0,

P (X(T ) ≥ A) ≥ α, X(t) ≥ 0, ∀t ∈ [0, T ],

(11)

where FX(T )(·) is the CDF of X(T ) viewed at time 0.

When w(·) is the identity function and the aspiration constraint P (X(T ) ≥ A) is absent,

problem (11) becomes a classical portfolio choice problem under EUT, which has been mainly

solved by dynamic programming approach in literature. In this approach, a class of problems

under the same preference measure at different future times and states (t, x) are considered.

Time consistency, which stipulates that the optimal strategy planned today must also be optimal

in the future, provides a link among these problems. This leads to the dynamic programming

principle, and to HJB equations in Markovian settings, from which we can solve all the problems

and, in particular, the one at time 0. With probability weighting, however, our problem (11) is

inherently time inconsistent (i.e., the class of problems in the future using the same objective

function as in (11) are time inconsistent), for which reason dynamic programming fails.9

In literature, there are two ways to address the time-inconsistency. One is to consider a

so-called equilibrium strategies in lieu of optimal ones, in the context of all the agent’s incarna-

tions at different times playing games among themselves; see for instance Ekeland and Lazrak

(2006), Björk, Murgoci, and Zhou (2011) and the references therein. The other is to consider

pre-committed optimal strategies, namely, the agent solves the underlying dynamic optimization

problem at time 0 for an optimal strategy and commits himself to follow this strategy in the fu-

ture. Due to the time-inconsistency of our problem, a pre-committed strategy will not in general

solve the portfolio choice problem under the same objective function at a future time. However,

pre-committed strategies are still important, since they are frequently applied in practice, some-

times with the help of certain commitment devices. For instance, Barberis (2012) finds that the

pre-committed strategy of a casino gambler is a stop-loss one (when the model parameters are

in reasonable ranges). Many gamblers indeed follow this strategy by using some commitment

devices, such as leaving ATM cards at home or bringing a little money to the casino; see Barberis

(2012) for a full discussion.

In this paper, we will study the pre-committed strategies, and will apply the martingale

approach to derive them. In this approach, we first determine the optimal terminal payoff and

then replicate it using some feasible portfolio. For this purpose we assume

Assumption 2 The market price of risk is unique, i.e., the market is complete.

9 Ekeland and Pirvu (2008) employ dynamic programming to solve an optimal investment-consumption problem
with hyperbolic discounting at a fixed time by constructing a class of future problems having different objectives
as in the original problem. For our problem (11), it seems impossible to do a similar construction.
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With the complete market assumption, we could define the pricing kernel

ρ := exp

{

−
∫ T

0

[

r(s) +
1

2
|θ0(s)|2

]

ds−
∫ T

0
θ0(s)

⊤dW (s)

}

, (12)

where θ0 is the unique market price of risk. Then, the HF/A portfolio choice problem can be

reformulated as the following optimization problem:

Max
X

∫∞
0 u(x)d [−w(1− FX(x))]

subject to P (X ≥ A) ≥ α,

E[ρX] ≤ x0, X ≥ 0, X is FT measurable,

(13)

where X represents the terminal payoff of certain portfolio.

The objective function in (13) is not concave due to the presence of the weighting function,

so the convex dual method that is employed to solve portfolio selection problems under EUT

cannot be applied. Here, we employ a new method—the quantile formulation—to cope with this

difficulty. To use this method, we need to impose the following technical assumption throughout

this paper:

Assumption 3 ρ admits no atom and Eρ <∞.

If (r(·), µ(·), σ(·)) is deterministic and
∫ T
0 |θ0(t)|2ds > 0, then ρ is a lognormal random variable,

which satisfies Assumption 3.

For a full account of the theory of quantile formulation, see He and Zhou (2011b). In this

theory, roughly speaking, we deal with a generic portfolio choice model satisfying two basic as-

sumptions: law-invariance and “the more the better.” Law-invariance means that the preference

measure and all of the constraints other than the budget constraint depend only on the probabil-

ity distribution of the terminal payoff. “The more the better” means that if the agent has more

initial budget, he can achieve higher objective value (see Assumption 2.3 in He and Zhou (2011b)

for a precise statement). This assumption is very natural for a sensible economic model. With

these two assumptions, He and Zhou (2011b) demonstrated that the portfolio choice problem

is equivalent to an optimization problem, i.e., the so-called quantile formulation, in which the

optimal quantile function of the terminal payoff is to be found. The advantage of this formulation

is that concavity is restored and hence traditional optimization techniques become applicable.

Furthermore, there is a simple connection between the optimal solutions to the portfolio choice

problem and its quantile formulation. If X∗ is the optimal terminal payoff to the portfolio choice

problem, then its quantile function is optimal to the quantile formulation. On the other hand,

once the optimal quantile function G∗(·) is found, the optimal terminal payoff can be recovered

by X∗ := G∗(Zρ) where Zρ := 1− Fρ(ρ) is a particular uniformly distributed random variable.10

10A general result derived from the quantile formulation is that the optimal payoff must be anti-comonotonic
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One can easily verify that the HF/A portfolio choice model (13) satisfies the aforementioned

two basic assumptions, and hence it has the following quantile formulation:11

Max
G(·)

U(G(·)) =
∫ 1
0 u(G(z))w

′(1− z)dz

subject to
∫ 1
0 F

−1
ρ (1− z)G(z)dz ≤ x0.

G(·) ∈ G, G((1 − α)+) ≥ A, G(0+) ≥ 0,

(14)

where G is the set of all lower-bounded quantile functions, i.e.,

G = {G(·) : (0, 1) → R, nondecreasing, left continuous, and G(0+) > −∞} . (15)

Assumption 1–3 will be in force in the reminder of this paper so that we could use quantile

formulation to solve the HF/A portfolio choice problem.12 In the remainder of this paper, we also

assume throughout that 0 < α < 1 and A ≥ 0,13 as well as the following technical assumption on

the weighting function w(·), which is satisfied by all the functions in (5)-(8):

Assumption 4 w(·) : [0, 1] → [0, 1] is continuous and strictly increasing with w(0) = 0, w(1) = 1.

Furthermore, w(·) is continuously differentiable on (0, 1).

4 Feasibility and Well-posedness

An optimization problem is feasible if it admits at least one solution satisfying all the con-

straints. Feasibility is relevant only to the constraints, not the objective. For our model (13) the

aspiration constraint P (X ≥ A) ≥ α gives rise to the feasibility issue that we should deal with

first. It turns out that the feasibility issue can be addressed via a goal reaching problem, which

has been solved in the literature.

Proposition 1 Problem (13) is feasible if and only if x0 ≥ AE
[

ρ1{ρ≤F−1
ρ (α)}

]

. Furthermore, if

x0 = AE
[

ρ1{ρ≤F−1
ρ (α)}

]

, then there is only one feasible solution, given as X = A1{ρ≤F−1
ρ (α)}.

with respect to the pricing kernel ρ. This property heavily relies on Assumption 3. Examples of violation of this
property when Assumption 3 does not hold can be found in Ingersoll (2011).

11For a derivation one may follow the same procedure as described in Section 2 of He and Zhou (2011b).
12In the case of an incomplete market and/or in the presence of constraints on portfolios, quantile formulation

does not work in general. However, when the investment opportunity set—r(·), b(·) and σ(·)—is deterministic, the
quantile formulation still works even with conic constraints imposed on portfolios. In this case, one needs to replace
ρ in the quantile formulation (14) with the minimal pricing kernel. See He and Zhou (2011b, Section 4) for details.

13If α = 0, then the aspiration constraint is not in force. Therefore, the case in which α = 0 can be covered
by setting A = 0. If α = 1, then the aspiration constraint becomes a uniformly lower bound on X, in which case
we could shift the terminal payoff X by A and turn the portfolio choice model to a model without the aspiration
constraint.
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Proof Consider the following goal-reaching problem

Max
X

P (X ≥ A)

subject to E [ρX] ≤ x0.

X ≥ 0, X ∈ FT .

Problem (13) is feasible if and only if the optimal value of the above goal-reaching problem is

larger than α. From He and Zhou (2011b), Theorem 1, we conclude that if x0 ≥ AE [ρ], then the

optimal value is 1. When x0 < AE [ρ], the optimal value is Fρ(c
∗) where c∗ is the value such that

AE
[

ρ1{ρ≤c∗}
]

= x0. Therefore, problem (13) is feasible if and only if x0 ≥ AE [ρ], or x0 < AE [ρ]

and Fρ(c
∗) ≥ α, AE

[

ρ1{ρ≤c∗}
]

= x0 for some c∗ ∈ R+. Equivalently, (13) is feasible if and only if

x0 ≥ AE
[

ρ1{ρ≤F−1
ρ (α)}

]

. In particular, if x0 = AE
[

ρ1{ρ≤F−1
ρ (α)}

]

, the goal-reaching problem has

a unique optimal solution A1{ρ≤F−1
ρ (α)} and the optimal value is α. As a result, the only feasible

solution to (13) is X = A1{ρ≤F−1
ρ (α)}.

Proposition 1 shows that, with exogenously given aspiration level and confidence level, the

agent must be sufficiently endowed in order for the level of aspirations to be at least feasible. Put

differently, the aspiration level relative to the initial wealth cannot be set too high in the HF/A

model. Generally speaking, the triplet (x0, A, α) must be internally consistent so as to make the

model minimally meaningful. In the remainder of this paper, to exclude the infeasibility and the

trivial case, we assume that x0 > AE
[

ρ1{ρ≤F−1
ρ (α)}

]

.

The next issue is the well-posedness of the portfolio choice problem. An optimization problem

is considered well-posed if its optimal value is finite; otherwise, it is ill-posed. In an ill-posed

model, optimality is achieved at the extremal points or boundary of the feasible domain. If

the portfolio choice problem is ill-posed, the agent is willing to take as much leverage as possible,

leading to excessive risk-taking behavior. For detailed discussions on the ill-posedness issue arising

in portfolio choice problems and its economic interpretations, see Jin and Zhou (2008) and He

and Zhou (2011a).

We have argued that preference measure (1) proposed in Lopes’ SP/A does not capture hope

and fear well. Here, we will show that, furthermore, the SP/A theory indeed leads to an ill-posed

portfolio choice problem in the continuous-time setting.

Theorem 1 Let x0 > AE
[

ρ1{ρ≤F−1
ρ (α)}

]

. Assume u(x) ≡ x and essinf ρ = 0. If lim infz↓0 w′(z) >

0, then (13) is ill-posed. In particular, if w(·) is given by (2) with ν < 1, then (13) is ill-posed.
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Proof Let v(x0) be the optimal value of the problem (13) or (14). Let G̃ := {G(·) | G(z) =

(A+ G̃(1− 1−z
α ))1{1−α<z<1}, G̃(·) ∈ G, G̃(0+) ≥ 0} ⊂ G and consider the following problem:

Max
G(·)

∫ 1
0 G(z)w

′(1− z)dz

Subject to G(·) ∈ G̃,
∫ 1
0 F

−1
ρ (1− z)G(z)dz ≤ x0.

This problem has a smaller optimal value than (13) because of the smaller feasible set. Rewrite

the above problem as

Max
G̃(·)

Aw(α) + α
∫ 1
0 G̃(z)w

′(α(1 − z))dz

Subject to G̃(·) ∈ G, G̃(0+) ≥ 0,

α
∫ 1
0 F

−1
ρ (α(1 − z))G̃(z)dz ≤ x0 −AE

[

ρ1{ρ≤F−1
ρ (α)}

]

.

This problem is identical to Yaari’s dual model as given in He and Zhou (2011b). Recalling He

and Zhou (2011b), Theorem 3.4, and the fact that lim infz↓0
w′(αz)

F−1
ρ (αz)

= lim infz↓0
w′(z)

F−1
ρ (z)

= +∞,

we conclude that the above problem is ill-posed.

Theorem 1 suggests that as long as the agent has hope for extremely satisfactory situations

(i.e., ν < 1) while the utility function is linear, he will take as high leverage as possible, leading

to an ill-posed problem. The fear of possible catastrophic situations is insufficient to prevent him

from taking excessive risky exposures. Therefore, the preference measure (1) in Lopes’ SP/A

theory is not suitable for portfolio choice problems in the continuous-time setting.14

This finding further enhances the argument for taking the RDU preference instead of the

SP/A one as the model for hope and fear. In the remainder of this paper, we impose the following

diminishing marginality on the utility function being used:

Assumption 5 u(·) : R+ → R+ is strictly increasing and differentiable. Furthermore, u′(·) is

strictly decreasing and satisfies the Inada condition, i.e., u′(0+) = +∞ and u′(+∞) = 0.

5 Solutions in the HF/A Model

In this section we develop the procedure in finding solutions to problem (13) by attacking its

quantile formulation (14). Along the way we will introduce, rather naturally, various indices for

quantifying the level of hope, fear and aspirations and study their impacts on trading behavior.

14In a single-period complete market with finite states of the world, the portfolio choice problem under SP/A
theory may be well-posed; see Shefrin and Statman (2000).
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5.1 Optimal Solution under a Monotonicity Condition

Following the general solution scheme in He and Zhou (2011b), we start with applying the

Lagrange dual method to (14). For any Lagrange multiplier λ > 0, we consider the following

problem:

Max
G(·)

Uλ(G(·)) =
∫ 1
0

[

u(G(z))w′(1− z)− λG(z)F−1
ρ (1− z)

]

dz

subject to G(·) ∈ G, G((1 − α)+) ≥ A, G(0+) ≥ 0.
(16)

To simplify the notation, let us denote

f(x, z) := u(x)w′(1− z)− λxF−1
ρ (1− z), 0 < z < 1. (17)

Then, the objective function in (16) becomes

Uλ(G(·)) =
∫ 1

0
f(G(z), z)dz.

Define the following function:

M(z) :=
w′(1− z)

F−1
ρ (1− z)

, 0 < z < 1, (18)

which plays an important role in finding optimal solutions.

Let us first ignore the constraint that G(·) must be a quantile function (its monotonicity being

the key requirement), and consider the pointwise maximization of integrand f(x, z) for each fixed

z. When z ∈ (0, 1−α], the maximization problem is maxx≥0 f(x, z). Clearly, the unique maximizer

is x∗ = (u′)−1
(

λ
M(z)

)

. When z ∈ (1−α, 1), the maximization problem is maxx≥A f(x, z) and the

unique maximizer is x∗ = (u′)−1
(

λ
M(z)

)

∨A. This pointwise maximization procedure leads to the

introduction of the following function:

G∗
λ(z) := (u′)−1

(

λ

M(z)

)

1{z≤1−α} +

[

(u′)−1

(

λ

M(z)

)

∨A
]

1{z>1−α}. (19)

By this construction, G∗
λ(·) automatically satisfies the nonnegativity constraint and the aspiration

constraint in (16). If, furthermore, M(·) turns out to be nondecreasing, then G∗
λ(·) is nondecreas-

ing and hence a quntile function. In this case, G∗
λ(·) is optimal to (16).15

One can easily check that M(·) is nondecreasing when w(z) ≡ z or in general when w(·)
is concave. When w(z) ≡ z, there is no probability weighting and the rank-dependent utility

degenerates into the classical expected utility. In general, the concavity of w(·) represents a risk-

15This argument is applied in Jin and Zhou (2008) to solve the gain part problem in a portfolio selection model
under the cumulative prospect theory.
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seeking attitude (Yaari 1987). In this case, our HF/A model incorporates a risk-averse attitude

resulting from the concave utility function and a risk-loving attitude described by the probability

weighting function, and an optimal solution is to strike a balance between the two conflicting risk

attitudes.16

We now present the optimal solution to (13) assuming M(·) is nondecreasing. As in standard

expected utility maximization problems, we also need the following integrability assumption:

Assumption 6 There exists c > 0 such that for any λ > 0, E
[

ρ(u′)−1
(

λρ
w′(Fρ(ρ))

)

1{ρ≤c}
]

< +∞
and E

[

u
(

(u′)−1
(

λρ
w′(Fρ(ρ))

))

w′(Fρ(ρ))1{ρ≤c}
]

< +∞.

This assumption can be replaced with a weaker one that the asymptotic elasticity of u(·) is

strictly less than one. See Jin, Xu, and Zhou (2007) and Kramkov and Schachermayer (1999)

for detailed discussions. In classic expected utility maximization problems, i.e., in the case in

which w(z) ≡ z, Assumption 6 holds in most of the interesting cases, e.g., when ρ is lognormally

distributed and u(·) is a power utility function. In the presence of the weighting function, one

could check that this assumption still holds when ρ is lognormally distributed, u(·) is a power

utility function and w(·) is taken as (5) and (6), or (7) when γ > 1
2 . Having said that, Assumption

6 is not always valid. For instance, if u(·) is a power function, ρ is lognormally distributed and

w(·) is taken as (7) with a small γ, it is not difficult to show that Assumption 6 fails.

Theorem 2 Let Assumptions 5-6 hold, x0 > AE[ρ1{ρ≤F−1(α)}], and assume M(·) is nondecreas-
ing. Then, the unique optimal solution to (13) is given as

X∗ =

[

(u′)−1

(

λ∗ρ
w′(Fρ(ρ))

)

∨A
]

1{ρ≤F−1(α)} + (u′)−1

(

λ∗ρ
w′(Fρ(ρ))

)

1{ρ>F−1(α)}

where λ∗ is the value such that the initial budget constraint binds, i.e., E [ρX∗] = x0.

Proof For each fixed λ > 0, because M(·) is nondecreasing, G∗
λ(·) defined in (19) is also nonde-

creasing. As a result, G∗
λ(·) is optimal to (16). Let

X (λ) : =

∫ 1

0
F−1
ρ (1− z)G∗

λ(z)dz

= E
[

ρ

(

(u′)−1

(

λρ

w′(Fρ(ρ))

)

∨A
)

1{ρ≤F−1
ρ (α)}

+ ρ(u′)−1

(

λρ

w′(Fρ(ρ))

)

1{ρ>F−1
ρ (α)}

]

.

By Assumption 6 and the fact that Eρ <∞, X (·) is finite-valued and nonincreasing on (0,+∞).

Furthermore, because ρ has no atom, by the monotone convergence theorem, X (·) is continuous
16However, as discussed in Section 2, a concave weighting function does not appropriately capture hope and fear.
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on (0,+∞) and

lim
λ↓0

X (λ) = +∞, lim
λ↑+∞

X (λ) = AE
[

ρ1{ρ≤F−1(α)}
]

.

Therefore, for each x0 > AE
[

ρ1{ρ≤F−1(α)}
]

, there exists λ∗ > 0 such that X (λ∗) = x0. As

discussed in the general solution scheme in He and Zhou (2011b), G∗
λ∗(·) is optimal to (16) and

consequently X∗ := G∗
λ∗(1− Fρ(ρ)) is optimal to (13). The uniqueness follows easily.

5.2 Fear, Portfolio Insurance, and Fear Index

Theorem 2 requires the monotonicity of M(·). However, in this subsection we show that M(·)
is not nondecreasing for many weighting functions proposed in the literature together with a

reasonable pricing kernel ρ. Thus, a different methodology needs to be developed to solve (16)

without the monotonicity of M(·).
To start, it is straightforward to check that M(·) is nondecreasing if and only if

w′′(z)
w′(z)

≤ F̄ ′(z)

F̄ (z)
, 0 < z < 1 (20)

where F̄ (z) := F−1
ρ (z), 0 < z < 1.

The following proposition shows, however, that for the weighting functions in (5)-(8) together

with a reasonable pricing kernel, (20) is violated.

Proposition 2 Suppose ρ is lognormally distributed, i.e.,

Fρ(x) = Φ

(

lnx− µρ
σρ

)

for some µρ and σρ > 0. For any weighting function in (5)-(7) with 0 < γ < 1, there exists ε > 0

such that

w′′(z)
w′(z)

>
F̄ ′(z)

F̄ (z)
, 1− ε < z < 1. (21)

For the weighting function in (8), if b > σρ, then

w′′(z)
w′(z)

>
F̄ ′(z)

F̄ (z)
, z̄ < z < 1. (22)

Proof Because F̄ (z) = F−1
ρ (z) = eµρ+σρΦ

−1(z), we have

F̄ ′(z)

F̄ (z)
=

σρ
Φ′(Φ−1(z))
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where Φ′(·) is the probability density function (PDF) of a standard normal random variable.

Thus, for the weighting functions (5)-(7), it is sufficient to show that

w′′(Φ(y))
w′(Φ(y))

>
σρ

Φ′(y)

when y goes to +∞. Noticing 1− Φ(y) < Φ′(y)/y, y > 0, we can show that

lim inf
y↑+∞

w′′(Φ(y))
w′(Φ(y))

Φ′(y) = +∞

for all the weighting functions in (5)-(7), which shows that (21) holds for some ε > 0.

For the weighting function (8), it is straightforward to compute that

w′′(z)
w′(z)

=







− a
Φ′(Φ−1(z))

, 0 < z < z̄,

b
Φ′(Φ−1(z))

, z̄ < z < 1.

So (22) follows easily.

Proposition 2 stipulates thatM(·) is not nondecreasing with some common weighting functions

and a lognormally distributed pricing kernel. The following theorem shows that in this case the

behavior of the optimal solution to (13) is changed drastically when compared with Theorem 2.

Theorem 3 Let Assumption 5 hold and x0 > AE
[

ρ1{ρ≤F−1
ρ (α)}

]

. Suppose w(·) is twice differ-

entiable and F̄ (·) is differentiable. If there exists ε > 0 such that

w′′(z)
w′(z)

≥ F̄ ′(z)

F̄ (z)
, 1− ε < z < 1, (23)

then for any optimal solution X∗ to (13), it must hold that essinf X∗ > 0.

Proof Let X∗ be an optimal solution to (13) and let G∗(·) be its quantile function. Then, from

the general theory of quantile formulation, G∗(·) is optimal to (14) and X∗ = G∗(1 − Fρ(ρ))

P − a.s.. Therefore, it is sufficient to prove that G∗(0+) > 0.

Since G∗(·) is optimal to (14), by convex duality, G∗(·) is also optimal to (16) for some λ∗ > 0.

Because w′′(z)
w′(z) ≥ F̄ ′(z)

F̄ (z)
, 1 − ε < z < 1, M(·) is nonincreasing on (0, ε). Suppose G∗(0+) = 0. Let

z1 := inf{z ∈ (0, 1) | G∗(z) > 0}. We must have z1 < 1 because G∗(·) 6≡ 0. If z1 = 0, there exists

0 < z2 < ǫ such that G∗(z) < M(z) for z ∈ (0, z2]. Define

G̃(z) :=







G∗(z2) 0 < z ≤ z2

G∗(z) z2 < z < 1.
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If z1 > 0, we pick z3 ∈ (z1, 1) such that G∗(z3) > 0. Define

G̃(z) :=







G∗(z) ∨ δ 0 < z ≤ z3

G∗(z) z3 < z < 1

for some 0 < δ < min{G∗(z3),min0<z≤z3 M(z)}. In both cases, G̃(·) is feasible to (16). Fur-

thermore, it is straightforward to check that Uλ∗(G̃(·)) > Uλ∗(G
∗(·)), which is a contradiction.

Therefore, we must have G∗(0+) > 0 and the proof is complete.

This theorem shows that an optimal strategy needs to set a strictly positive deterministic floor

(essinf X∗ > 0) in wealth, in sharp contrast to the strategy presented in Theorem 2 when M(·) is
monotone.17 Such a deterministic floor is in line with the portfolio insurance commonly practiced

in the asset management industry. Portfolio insurance is a risk management strategy by means of

which a minimum level of wealth is guaranteed across the investment period. Portfolio insurance

has been widely studied in the literature; see, e.g. Basak (1995) and Grossman and Zhou (1996).

In most studies, the portfolio insurance level is imposed exogenously, and it is not clear how the

floor changes with respect to various market parameters. By contrast, our model generates a

portfolio insurance level decisively and endogenously.18 Moreover, in the following subsection we

will derive an explicit expression for this level.

The key condition that has prompted the need for portfolio insurance is (23), which is expressed

in terms of the “curvature” of the probability weighting function near 1. Recall that w(z) when

z is close to 1 is relevant to the exaggeration of the (small) probabilities of very bad outcomes;

hence, w
′′(z)
w′(z) when z is near 1 is relevant to fear. Theorem, 3, then implies that portfolio insurance

is necessary when the agent is sufficiently fearful, which is quantified as w′′(z)
w′(z) exceeding a certain

(moving) level when z is near 1.

The above discussion motivates us to define the following fear index for a weighting function

w(·):

Iw(z) :=
w′′(z)
w′(z)

, 0 < z < 1. (24)

Note that this index is important and relevant only when z is sufficiently close to 1.

The fear index is clearly an analogue of the Arrow-Pratt measure of absolute risk-aversion for

17For instance, if esssup ρ = +∞ and there is no probability weighting, i.e., w(z) ≡ z, in which case the agent’s
preference is dictated by the expected utility theory and M(·) is trivially nondecreasing, then the terminal wealth
X∗ has no strictly positive floor.

18The possibility of deriving an endogenous portfolio insurance level from a portfolio choice problem has also
been illustrated in several papers. Carlier and Dana (2011) derive the optimal demand for contingent claims for
an agent with rank-dependent utility and find that the optimal demand may have a flattening part, suggesting
portfolio insurance. The flattening structure has also been discussed in Ingersoll (2011) where the author considers
a portfolio choice problem faced by an agent whose preference is modeled by cumulative prospect theory.
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a utility function.19 It can be used to measure the agent’s level of fear. The higher this index,

the more convex the weighting function is, and the more fear the agent has. We have shown that

this index is critical in deciding the monotonicity of M(·) and the optimal behaviors of the agent

following our HF/A model. In particular, by Theorem 3, a sufficiently high level of fear, which is

characterized by the fear index exceeding a certain threshold, endogenously necessitates portfolio

insurance.

We now compute the fear indices for the weighting functions in (5)-(8). For the Kahneman-

Tversky weighting function (5), we have Iw(z) ≈ 2(1 − z)−1 as z ↑ 1. For the Tversky-Fox

weighting function (6), we have Iw(z) ≈ (1 − γ)(1 − z)−1 as z ↑ 1. For the Prelec weighting

function (7), we have Iw(z) ≈ (1− γ)(− ln p)−1 as z ↑ 1. For the Jin-Zhou weighting function (8),

we have Iw(z) = b
Φ′(Φ−1(z))

as z ↑ 1. Thus, for the Kahneman-Tversky weighting function, the

degree of fear is independent of the parameter γ. For the Tversky-Fox and the Prelec weighting

functions, a smaller γ leads to a higher degree of fear. For the Jin-Zhou’s weighting function, b

measures the degree of fear.

In view of Proposition 2, M(·) is typically not nondecreasing. From this point, we impose the

following assumption in place of the monotonicity of M(·):

Assumption 7 M(·) is continuously differentiable on (0, 1) and there exists 0 < z0 < 1 such that

M(·) is strictly decreasing on (0, z0) and strictly increasing on (z0, 1). Furthermore, limz↑1M(z) =

+∞.

Assumption 7 requires M(·) to be first decreasing and then increasing. From an economics point

of view, this requirement aligns with a suitable combination of a reversed S-shaped weighting

function and a market variable, namely, the agent is fearful of very bad market conditions and

hopeful for very good ones. Not surprisingly, Assumption 7 holds with the weighting functions in

(5)-(7) and a lognormally distributed market pricing kernel ρ, as shown in Figures 2-4.20

As for the Jin-Zhou weighting function (8), if ρ is lognormally distributed, i.e., Fρ(x) =

19Although we have been unable to find an explicit definition of the index (24) for probability weighting in the
literature, there are works that imply such an index. For instance, Abdellaoui (2002), Theorem 12, establishes that
a weighting function w2 is more “probabilistic risk averse” than another one w1 if there exists a continuous, convex
and strictly increasing function θ such that w2 = θ ◦ w1. It is not difficult to show that the latter condition is
further equivalent to Iw2

(z) ≥ Iw1
(z), 0 < z < 1. On the other hand, when u(x) ≡ x, the RDU (4) can be written

as V (X) =
∫∞

0
w(1 − FX(x))dx by integration by parts. Thus, this preference functional admits the local utility

U(x;F ) := −
∫ x

0
w′(1 − F (y))dy according to Machina (1982). The (generalized) Arrow-Pratt index for the local

utility, −U ′′(x;F )/U ′(x;F ), is w′′(1− F (x))F ′(x)/w′(1− F (x)). By Theorem 4 in Machina (1982), the higher the
Arrow-Pratt index is, the more risk averse the agent is. Thus, the fear index defined here is also related to the
generalized Arrow-Pratt index of a preference functional.

20Here we use the same market data as Mehra and Prescott (1985). More precisely, assume that there is only one
stock, e.g., the S&P 500 index. The investment opportunity set (r, b, σ) is estimated from the data of real returns
of the U.S. S&P 500 and Treasury Bills during the period 1889-1978: r = 1%, b = 7% and σ = 16.55%. The
investment period T is taken as 1 year. The pricing kernel can then be computed from (12). As for the weighting
functions, the values of parameters are estimated in Tversky and Kahneman (1992), Abdellaoui (2000), and Wu
and Gonzalez (1996). On the other hand, we can in fact prove analytically that Assumption 7 is satisfied for the
Prelec weighting function (7).
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Figure 2: Graph of M(z) with Tversky-Kahneman weighting function.

Φ
(

lnx−µρ
σρ

)

, then it is easy to compute that

M(z) =







ke−µρ+(b−σρ)Φ−1(1−z), 0 < z < 1− z̄.

ke(a+b)Φ
−1(z̄)−µρ−(a+σρ)Φ−1(1−z), 1− z̄ < z < 1.

Thus, when b > σρ, M(·) satisfies Assumption 7 with z0 = 1 − z̄. When b ≤ σρ, M(·) is

nondecreasing. In this subsection we are interested in the case in which b > σρ.

We conclude this subsection by studying the impact of fear on the optimal terminal wealth

when the aspiration constraint is absent.

Proposition 3 Under Assumption 5 and given that A = 0, suppose there are two functions,

w1(·) and w2(·), satisfying Assumptions 6 and 7. Assume

w1(z) = w2(z), 0 < z < 1− z0,

Iw1(z) ≥ Iw2(z) ≥
F̄ ′(z)

F̄ (z)
, 1− z0 < z < 1.

Let X∗
1 and X∗

2 be the optimal solutions corresponding to w1(·) and w2(·). Then, X∗
1 = X∗

2 .

Since the proof of Proposition 3 uses a result provided in the following subsection, we defer it

to the end of that subsection.

Proposition 3 states that as long as the agent is sufficiently fearful that portfolio insurance

becomes necessary, the level of fear affects neither the optimal terminal wealth nor—perhaps

more surprisingly—the level of portfolio insurance necessitated! This result can nevertheless be
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Figure 3: Graph of M(z) with Tversky-Fox weighting function
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Figure 4: Graph of M(z) with Prelec weighting function.
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explained as follows. Recall that fear is described as the tendency of individuals to overweight

extremely negative outcomes that occur with small probabilities. In other words, fear is triggered

only by the possibility of catastrophic events. If the agent is sufficiently fearful, then he will choose

to avoid catastrophic events by taking portfolio insurance. Once a portfolio insurance strategy

is in place, the degree of fear no longer affects the optimal portfolio because loss due to any

catastrophic event will be covered. In this case, the optimal portfolio depends only on the utility

function, as well as on the agent’s degree of hope and level of aspirations.

5.3 Optimal Solution without the Monotonicity Condition

When M(·) is not nondecreasing, the earlier pointwise maximization argument does not work

because G∗
λ(·), as defined in (19), is no longer an increasing function. In this case, a new technique

is necessary to solve the HF/A portfolio choice problem (13).

Without the monotonicity condition on M(·), the function G∗
λ(·) defined by (19) no longer

qualifies as a quantile function. Therefore, we have to modify G∗
λ(·) in some way so that the

resulting function is nondecreasing and, hopefully, a candidate for the optimal solution. To

demonstrate the technique that we apply, we first consider the case in which there is no aspiration

constraint, i.e., A = 0. Then the problem (16) becomes much simpler because the constraint

G((1 − α)+) ≥ A is removed.21

In the following, we denote

Ḡ(z) := (u′)−1(λ/M(z)), 0 < z < 1. (25)

By Assumption 7, Ḡ(·) is continuous on (0, 1), strictly decreasing on (0, z0) and strictly increasing

on (z0, 1), and limz↑1 Ḡ(z) = +∞. Recall f(x, z) defined in (17). For any fixed 0 < z < 1, f(·, z)
is strictly increasing on (0, Ḡ(z)) and strictly decreasing on (Ḡ(z),+∞).

Define

Sλ := {G(·) ∈ G | ∃y ∈ [z0, 1) such that G(z) = Ḡ(y)1{0<z≤y} + Ḡ(z)1{y<z<1},

0 < z < 1}.

We prove in the following proposition that one only needs to consider the type of quantile functions

in Sλ in order to solve (16).

Proposition 4 Let Assumptions 5-7 hold and A = 0. For any G(·) ∈ G that is feasible to (16),

there exists G̃(·) ∈ Sλ such that Uλ(G̃(·)) ≥ Uλ(G(·)) and the inequality becomes equality if and

only if G(·) = G̃(·).
21The problem (14) is called a Choquet maximization problem in Jin and Zhou (2008). However, Jin and Zhou

(2008) solved the Choquet maximization problem by assuming that M(·) was nondecreasing. So our approach in
this paper can also be employed to solve an extension of the Choquet maximization problem and, consequently,
that of the portfolio choice problem under CPT in Jin and Zhou (2008).
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Proof For any G(·) ∈ G, let z1 := inf{z ∈ (0, z0] | G(z) > Ḡ(z)} with the convention that

inf ∅ = z0. Define z2 := inf{z ∈ [z0, 1)] | Ḡ(z) > Ḡ(z1)}. Evidently, z0 ≤ z2 < 1 because

limz↑1 Ḡ(z) = +∞. Due to the continuity, Ḡ(z2) = Ḡ(z1). Define G̃(z) := Ḡ(z2)1{0<z≤z2} +

Ḡ(z)1{z2<z<1}. Clearly, G̃(·) ∈ Sλ. We are going to show that Uλ(G̃(·)) ≥ Uλ(G(·)).
For 0 < z < z1, G(z) ≤ G(z1) ≤ Ḡ(z1) = G̃(z) ≤ Ḡ(z), where the last inequality is due to

the fact that Ḡ(·) is decreasing on (0, z0]. Therefore, f(G(z); z) ≤ f(G̃(z); z). If z1 < z2, then

z1 < z0. In the case z1 < z < z2, G(z) ≥ G(z1+) ≥ Ḡ(z1) = Ḡ(z2) = G̃(z) ≥ Ḡ(z) and thus

f(G(z), z) ≤ f(G̃(z), z). For z2 < z < 1, clearly, f(G(z), z) ≤ f(Ḡ(z), z) = f(G̃(z), z). Therefore,

we have

Uλ(G(·)) =
∫ 1

0
f(G(z), z)dz ≤

∫ 1

0
f(G̃(z), z)dz = Uλ(G̃(·))

and it is easy to see that the inequality becomes equality if and only if G(·) = G̃(·).

In view of Proposition 4, we need only to consider the following problem:

Max
G(·)

Uλ(G(·)) =
∫ 1
0

[

u(G(z))w′(1− z)− λG(z)F−1
ρ (1− z)

]

dz

subject to G(·) ∈ Sλ,
(26)

which is essentially a one-dimensional optimization problem, in order to determine the optimal

y ∈ [z0, 1). To solve this problem, we introduce the following function:

ϕ(y) =

∫ y

0
w′(1− z)dz −M(y)

∫ y

0
F−1
ρ (1− z)dz, 0 < y < 1. (27)

Because M(·) is strictly decreasing on (0, z0], we have, for any y ∈ (0, z0],

∫ y
0 w

′(1− z)dz
∫ y
0 F

−1
ρ (1− z)dz

=

∫ y
0 F

−1
ρ (1− z)M(z)dz
∫ y
0 F

−1
ρ (1− z)dz

> M(y).

Thus, we conclude that ϕ(y) > 0 on (0, z0]. On the other hand, on (z0, 1),

ϕ′(y) = w′(1− y)−M(y)F−1
ρ (1− y)−M ′(y)

∫ y

0
F−1
ρ (1− z)dz

= −M ′(y)
∫ y

0
F−1
ρ (1− z)dz < 0

and

lim
y↑1

ϕ(y) = −∞.

So there exists a unique root z∗ ∈ (z0, 1) of ϕ(·) such that ϕ(z) > 0 on (0, z∗) and ϕ(z) < 0 on

(z∗, 1).
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Proposition 5 Let Assumptions 5-7 hold and A = 0. Let z∗ be the unique root of ϕ(·) defined

in (27). Then the unique optimal solution to (16) is

G∗
λ(z) = Ḡ(z∗)1{0<z≤z∗} + Ḡ(z)1{z∗<z<1}, 0 < z < 1. (28)

Proof Let

V (y) : = Uλ(Ḡ(y)1{0<z≤y} + Ḡ(z)1{y<z<1})

= u(Ḡ(y))

∫ y

0
w′(1− z)dz − λḠ(y)

∫ y

0
F−1
ρ (1− z)dz

+

∫ 1

y
u(Ḡ(z))w′(1− z)dz − λ

∫ 1

y
Ḡ(z)F−1

ρ (1− z)dz.

By Proposition 4, problem (16) is equivalent to

max
z0≤y<1

V (y).

We check the first-order derivative of V (·),

V ′(y) =
λḠ′(y)
M(y)

ϕ(y),

which implies directly that z∗ is the unique optimizer.

Proposition 5 shows that the optimal solution to (16) is a left truncation of Ḡ(·). To the left of

z∗ the optimal quantile function is flat and to the right of z∗ it follows Ḡ(·). Surprisingly, it follows
from (27) that the critical point z∗ is independent of the multiplier λ—in fact, independent even

of the utility function! It depends only on the investment opportunity Fρ(·) and on the weighting

function w(·).

Theorem 4 Let Assumptions 5-7 hold and A = 0. Suppose that x0 > 0. Then (13) has a unique

optimal solution

X∗ = (u′)−1

(

λ∗ρ
w′(Fρ(ρ))

)

1{ρ≤c∗} + (u′)−1

(

λ∗c∗

w′(Fρ(c∗))

)

1{ρ>c∗} (29)

where c∗ is the unique root of

ϕ̃(x) := x(1− w(Fρ(x)))− w′(Fρ(x))
∫ ∞

x
sdFρ(x) (30)

on (essinf ρ, F−1
ρ (1− z0)) and λ

∗ > 0 is the value such that E[ρX∗] = x0.
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Proof Let

X (λ) : =

∫ 1

0
F−1
ρ (1− z)G∗

λ(z)dz

= (u′)−1

(

λF−1
ρ (1− z∗)

w′(1− z∗)

)

∫ z∗

0
F−1
ρ (1− z)dz

+

∫ 1

z∗
(u′)−1

(

λF−1
ρ (1− z)

w′(1− z)

)

F−1
ρ (1− z)dz.

From Assumption 6, it follows that X (λ) is finite and nonincreasing on (0,+∞). By means of the

monotone convergence theorem, recalling that ρ is atomless, one can show that X (·) is continuous
and that

lim
λ↓0

X (λ) = +∞, lim
λ↑+∞

X (λ) = 0.

Therefore, there exists λ∗ such that X (λ∗) = x0 and, consequently, G∗
λ∗(·) is optimal to (14).

Then, X∗ := G∗
λ∗(1−Fρ(ρ)) is optimal to (13). If we let c∗ := F−1

ρ (1− z∗), then X∗ is exactly as

given in (29). Because z∗ is the unique root of ϕ(·) on (z0, 1), by changing the variable, one can

easily check that c∗ is the unique root of ϕ̃(·) on (essinf ρ, F−1
ρ (1− z0)).

With the optimal terminal wealth profile X∗ given by (29), we can divide the states of the

world into two classes: the class of “good” states (corresponding to the set {ρ ≤ c∗}) and the

class of “bad” states (corresponding to the set {ρ > c∗}). In bad states of the world, the final

wealth has a fixed, deterministic value, (u′)−1
(

λ∗c∗

w′(Fρ(c∗))

)

> 0, which is irrelevant to which state

the world is in. This value is exactly the insured wealth floor. Meanwhile the agent is hopeful for

good states, in which the wealth is (u′)−1
(

λ∗ρ
w′(Fρ(ρ))

)

, the value of which depends on the specific

state through ρ.22

In general, in the presence of the aspiration constraint (i.e. A > 0), a similar technique can

be applied. We defer the proof to Appendix A and state only the results here.

Introduce the following function:

ψ(z) :=

∫ z
0 w

′(1− s)ds
∫ z
0 F

−1
ρ (1− s)ds

, 0 < z < 1. (31)

On the one hand, compared with ϕ(·) in (27), we conclude that ψ(z) > M(z) on (0, z∗), ψ(z) <

M(z) on (z∗, 1) and ψ(z∗) = M(z∗). On the other hand, from ψ′(z) = − F−1
ρ (1−z)

(
∫ z
0 F

−1
ρ (1−s)ds)2

ϕ(z), it

follows that ψ(·) is strictly decreasing on (0, z∗) and strictly increasing on (z∗, 1).

22Because limz↑1 M(z) = +∞ due to Assumption 7 and u′(+∞) = 0 due to Assumption 5, we have

limρ→0(u
′)−1

(

λ∗ρ

w′(Fρ(ρ))

)

= limρ→0(u
′)−1

(

λ∗

M(1−Fρ(ρ))

)

= +∞. Thus, the wealth of the agent in good states is

unbounded.
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Let

xr : = E

{

ρ

[

(u′)−1

(

u′(A)M(z∗)ρ
w′(Fρ(ρ))

)

1{ρ≤F−1
ρ (1−z∗)} +A1{ρ>F−1

ρ (1−z∗)}

]}

, (32)

xp : = E

{

ρ

[(

(u′)−1

(

u′(A)ψ(1 − α)ρ

w′(Fρ(ρ))

)

∨A
)

1{ρ≤F−1
ρ (α)} +A1{ρ>F−1

ρ (α)}

]}

. (33)

The following theorem provides a complete solution to the HF/A portfolio choice problem (13).

Theorem 5 Let Assumptions 5 – 7 hold and suppose x0 > AE
[

ρ1{ρ≤F−1
ρ (α)}

]

. Let c∗ be the

unique root of ϕ̃(·) in (30).

1. Suppose Fρ(c
∗) < α < 1.

(a) If x0 ≥ xr, then the unique optimal solution to (13) is

X∗ := (u′)−1

(

λ∗ρ
w′(Fρ(ρ))

)

1{ρ≤c∗} + (u′)−1

(

λ∗c∗

w′(Fρ(c∗))

)

1{ρ>c∗} (34)

where λ∗ ≤ u′(A)M(z∗) is the value such that E[ρX∗] = x0.

(b) If xp ≤ x0 ≤ xr, then the unique optimal solution to (13) is

X∗ :=

[

(u′)−1

(

λ∗ρ
w′(Fρ(ρ))

)

∨A
]

1{ρ≤F−1
ρ (1−z0)} +A1{ρ>F−1

ρ (1−z0)} (35)

where u′(A)M(z∗) ≤ λ∗ ≤ u′(A)ψ(1 − α) is the value such that E[ρX∗] = x0.

(c) If x0 ≤ xp, then the unique optimal solution to (13) is

X∗ :=

[

(u′)−1

(

λ∗ρ
w′(Fρ(ρ))

)

∨A
]

1{ρ≤F−1
ρ (α)}

+(u′)−1

(

λ∗

ψ(1− α)

)

1{ρ>F−1
ρ (α)}

(36)

where λ∗ ≥ u′(A)ψ(1 − α) is the value such that E[ρX∗] = x0.

2. Suppose 0 < α ≤ Fρ(c
∗), then the unique optimal solution to (13) is

X∗ : =

[

(u′)−1

(

λ∗ρ
w′(Fρ(ρ))

)

∨A
]

1{ρ≤F−1
ρ (α)}

+ (u′)−1

(

λ∗ρ
w′(Fρ(ρ))

)

1{F−1
ρ (α)<ρ≤c∗} + (u′)−1

(

λ∗c∗

w′(Fρ(c∗))

)

1{ρ>c∗}

(37)

where λ∗ is the multiplier such that E[ρX∗] = x0.

As in the A = 0 case, an optimal strategy divides the states of the world into two or three

classes, depending on the parameter values. In the worst states, which are represented by {ρ > c∗},
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{ρ > F−1
ρ (1− z0)} or {ρ > F−1

ρ (α)}, the terminal wealth has a positive floor. In the best states,

which are represented by {ρ ≤ c∗}, {ρ ≤ F−1
ρ (1 − z0)} or {ρ ≤ F−1

ρ (α)}, the terminal wealth is

unbounded from above.

We close this subsection by providing a proof of Proposition 3.

Proof of Proposition 3 It follows from Theorem 5 that the optimal solution to (13) depends,

in addition to the pricing kernel ρ, the initial wealth x0 and the utility function u(·), only on

w(z), 0 < z < 1 − z0 when α ≤ Fρ(c
∗) or when α > Fρ(c

∗) and x0 ≥ xr. Recalling that A = 0

implies α = 0, we complete our proof.

5.4 Hope, Good States of the World, and the Hope Index

We now introduce an index for the agent’s level of hope and examine its impact on the optimal

payoff. The introduction of the hope index is motivated by the following result:

Proposition 6 Let Assumption 5 hold. Suppose that there are two functions, w1(·) and w2(·),
satisfying Assumptions 6 and 7 with the same z0. Let c∗i be the critical point c∗ determined as the

root of (30) corresponding to wi(·), i = 1, 2, respectively. If

w′
1(z)

1−w1(z)
≥ w′

2(z)

1− w2(z)
, 0 < z < 1− z0,

then c∗1 ≥ c∗2.

Proof Let ϕi(·) be the function defined in (27) corresponding to wi(·) and let z∗i be its unique

root in (z0, 1), i = 1, 2. Then, we have c∗i = F−1
ρ (1− z∗i ). Now we deduce

0 = ϕ1(z
∗
1) = w′

1(1− z∗1)

[

1− w1(1− z∗1)
w′
1(1− z∗1)

−
∫ z∗1
0 F−1

ρ (1− z)dz

F−1
ρ (1− z∗1)

]

≤ w′
1(1− z∗1)

[

1− w2(1− z∗1)
w′
2(1− z∗1)

−
∫ z∗1
0 F−1

ρ (1− z)dz

F−1
ρ (1− z∗1)

]

=
w′
1(1− z∗1)

w′
2(1− z∗1)

ϕ2(z
∗
1).

Thus, we have ϕ2(z
∗
1) ≥ 0. Because ϕ2(·) is strictly decreasing in (z0, 1), we conclude that z

∗
1 ≤ z∗2 ,

and consequently c∗1 ≥ c∗2.

Inspired by this result, we define

Hw(z) :=
w′(z)

1− w(z)
, 0 < z < 1 (38)
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for any given weighting function w(·). Theorem 6 can be restated as the critical point c∗ being

increasing with respect to Hw(z) when z is close to 0. According to Theorem 4, c∗ divides between

good and bad states of the world, and a greater c∗ means that the agent includes more scenarios

under good states, {ρ ≤ c∗}. Thus, we call Hw(z) the hope index, since this index sheds light

on how hope affects investing behavior: the higher the value of the index, the more hopeful the

agent is about the future world, and hence the higher leverage he needs to take in order to reap

the payoffs from more good states. Note also that the hope index, Hw(z), is, in terms of the

curvature of the weighting function when z is close to 0, consistent with the notion that hope is

relevant to the probability weighting of extremely good outcomes.

On the other hand, the following result stipulates that a significantly higher hope index leads

to a higher payoff in sufficiently good scenarios than that with a lower hope index.

Proposition 7 Let Assumption 5 hold and suppose there are two functions, w1(·) and w2(·),
satisfying Assumptions 6 and 7. Suppose essinf ρ = 0 and the utility function is a power one

u(x) = x1−η−1
1−η where η > 0. Let the optimal solutions corresponding to w1(·) and w2(·) be X∗

1 and

X∗
2 , respectively. If

lim
z↓0

Hw1(z)

Hw2(z)
= +∞,

then there exists c > 0 such that X∗
1 > X∗

2 on {ρ ≤ c}.

Proof From Theorem 5, X∗
1 = (u′)−1

(

λ∗1ρ
w′

1(Fρ(ρ))

)

andX∗
2 = (u′)−1

(

λ∗2ρ
w′

2(Fρ(ρ))

)

for some λ∗1, λ
∗
2 > 0

when ρ is sufficiently small. Noticing that

lim
ρ↓0

(u′)−1
(

λ∗1ρ
w′

1(Fρ(ρ))

)

(u′)−1
(

λ∗2ρ
w′

2(Fρ(ρ))

) = lim
ρ↓0

(u′)−1

(

w′
2(Fρ(ρ))

w′
1(Fρ(ρ))

λ∗1
λ∗2

)

= (u′)−1

(

lim
ρ↓0

w′
2(Fρ(ρ))

w′
1(Fρ(ρ))

λ∗1
λ∗2

)

= (u′)−1

(

lim
ρ↓0

Hw2(Fρ(ρ))

Hw1(Fρ(ρ))

λ∗1
λ∗2

)

= +∞,

we deduce that there exists c > 0 such that X∗
1 > X∗

2 on {ρ ≤ c}.

Let us compute the hope indices for the weighting functions in (5)-(7). For the Tversky-

Kahneman weighting (5), we have Hw(z) ≈ γzγ−1 as z ↓ 0. For the Tversky-Fox weighting

function (6), we have Hw(z) ≈ δγzγ−1 as z ↓ 0. For the Prelec weighting function (7), we have

Hw(z) ≈ δγ 1
p(− ln p)γ−1e−δ(− ln p)γ as z ↓ 0. For each of these three weighting functions, if we

have two weighting functions w1(·) and w2(·) with γ1 < γ2, then limz↓0
Hw1 (z)

Hw2 (z)
= +∞. In other

words, 1− γ can measure the hope for good situations. From Proposition 7, the higher the value

of 1− γ is, the higher the optimal payoff is for good scenarios.

For the Jin-Zhou weighting function (8), the hope index is Hw(z) ≈ ke(a+b)Φ
−1(z̄)−aΦ−1(z) as

z ↓ 0. Furthermore, for any a1 > a2 and their associated weighting functions, w1(·) and w2(·),
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we have limz↓0
Hw1 (z)

Hw2 (z)
= +∞. Therefore, a measures the degree of hope. From Proposition 7, the

higher the value of a is, the higher the optimal payoff is for good scenarios.

5.5 Aspirations, Gambles, and the Lottery-Likeness Index

In this subsection we investigate the role that aspirations play in affecting optimal investing

behavior, especially when the level of aspirations is exceedingly high. To simplify the discussion,

we assume that the utility function is a power function, i.e.,

u(x) =
x1−η − 1

1− η
(39)

where η > 0. Nonetheless, all of the qualitative results in this subsection remain true for a general

utility function.

Because the utility function is a power function, it is easy to see that the optimal solution to

the HF/A portfolio choice problem (13) is proportional to the initial wealth x0 if the aspiration

level is set to be a fixed proportion of the initial wealth. Therefore, in the remainder of this

subsection, we assume x0 = 1 without loss of generality, and we consider A to be the aspiration

level relative to the initial wealth.

Define

kr : =
1

E

[

(

ρ
w′(Fρ(ρ))

w′(Fρ(c∗))
c∗

)− 1
η
ρ1{ρ≤c∗} + ρ1{ρ>c∗}

] , (40)

kp : =
1

E

[(

(

ρ
w′(Fρ(ρ))

ψ(1− α)
)− 1

η ∨ 1

)

ρ1{ρ≤F−1
ρ (α)} + ρ1{ρ>F−1

ρ (α)}

] , (41)

ku : =
1

E
[

ρ1{ρ≤F−1
ρ (α)}

] . (42)

To study the impact of aspirations on trading behavior, we first reproduce Theorem 5 when u(·)
is a power function.

Corollary 1 Suppose u(·) is given in (39), x0 = 1 and let Assumptions 6 and 7 hold. Let c∗ be

the unique root of ϕ̃(·) in (30). If A > ku, the problem (13) is infeasible. Otherwise, we have the

following assertions:

1. Suppose Fρ(c
∗) < α < 1.

(a) When 0 ≤ A ≤ kr, the unique optimal solution to (13) is

X∗ = kr

(

w′(Fρ(c
∗))

c∗

)− 1

η

[

(

ρ

w′(Fρ(ρ))

)− 1

η

1{ρ≤c∗} +

(

c∗

w′(Fρ(c∗))

)− 1

η

1{ρ>c∗}

]

.
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(b) When kr ≤ A ≤ kp, the unique optimal solution to (13) is

X∗ = A

[((

λ1(A)

(

ρ

w′(Fρ(ρ))

)− 1

η

)

∨ 1

)

1{ρ≤F
−1

ρ (1−z0)}
+ 1{ρ>F

−1

ρ (1−z0)}

]

where λ1(A) is the unique number in the interval

[

ψ(1− α)
− 1

η ,
(

w′(Fρ(c∗))
c∗

)− 1
η

]

such

that

E

[((

λ

(

ρ

w′(Fρ(ρ))

)− 1

η

)

∨ 1

)

ρ1{ρ≤F
−1

ρ (1−z0)}
+ ρ1{ρ>F

−1

ρ (1−z0)}

]

=
1

A
.

(c) When kp ≤ A ≤ ku, the unique optimal solution to (13) is

X∗ = A

[((

λ2(A)

(

ρ

w′(Fρ(ρ))

)− 1

η

)

∨ 1

)

1{ρ≤F
−1

ρ (α)} + λ2(A)

(

1

ψ(1− α)

)− 1

η

1{ρ>F
−1

ρ (α)}

]

where λ2(A) is the unique number in the interval [0, ψ(1 − α)−
1
η ] such that

E

[((

λ

(

ρ

w′(Fρ(ρ))

)− 1

η

)

∨ 1

)

ρ1{ρ≤F
−1

ρ (α)} + λ

(

1

ψ(1− α)

)− 1

η

ρ1{ρ>F
−1

ρ (α)}

]

=
1

A
.

2. Suppose 0 < α ≤ Fρ(c
∗).

(a) When 0 ≤ A ≤
(

w′(Fρ(c∗))F
−1
ρ (α)

c∗w′(α)

)− 1
η

kr, the unique optimal solution to (13) is

X∗ = kr

(

w′(Fρ(c
∗))

c∗

)− 1

η

[

(

ρ

w′(Fρ(ρ))

)− 1

η

1{ρ≤c∗} +

(

c∗

w′(Fρ(c∗))

)− 1

η

1{ρ>c∗}

]

.

(b) When
(

w′(Fρ(c∗))F
−1
ρ (α)

c∗w′(α)

)− 1
η

kr ≤ A ≤ ku, the unique optimal solution to (13) is

X∗ : = A
[

((

λ3(A)

(

ρ

w′(Fρ(ρ))

)− 1

η

)

∨ 1

)

1{ρ≤F
−1

ρ (α)}

+ λ3(A)

(

ρ

w′(Fρ(ρ))

)− 1

η

1{F−1

ρ (α)<ρ≤c∗} + λ3(A)

(

c∗

w′(Fρ(c∗))

)− 1

η

1{ρ>c∗}

]

where λ3(A) is the unique number in the interval

[

0,
(

w′(α)

F−1
ρ (α)

)− 1
η

]

such that

E
{

[

λ

(

ρ

w′(Fρ(ρ))

)− 1

η

∨ A
]

ρ1{ρ≤F
−1

ρ (α)} + λ

(

ρ

w′(Fρ(ρ))

)− 1

η

ρ1{F−1

ρ (α)<ρ≤c∗}

+λ

(

c∗

w′(Fρ(c∗))

)− 1

η

ρ1{ρ>c∗}

}

=
1

A
.
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Proof Corollary 1 is the direct consequence of Theorem 5, taking into consideration the special

form of u(·).

From Corollary 1-1(a), we can see that kr is the portfolio insurance level when there are no

aspirations. It is clear that the portfolio insurance level increases with respect to the relative risk

aversion η.

Aspirations are responsive to immediate, specific needs or opportunities of the agent’s decision

nexus. Intuitively, a higher level of aspirations will drive the agent to be more aggressive and

to take on more risk. An extremely high level of aspirations will force the agent to exhibit a

lottery-buying type of investment behavior, namely, gambling on a big gain with a risk of losing

everything. Since X∗ = G∗(1 − Fρ(ρ)) ≥ G∗(1 − α) ≥ A, i.e., the aspirations are achieved when

ρ ≤ F−1
ρ (α), we can regard {ρ ≤ F−1

ρ (α)} as “winning states.” Similarly, {ρ > F−1
ρ (α)} consists

of “losing states” where the aspirations are not met. Motivated by this, we define the following

lottery-likeness index:

L(A) =
essinf

(

X∗ | ρ ≤ F−1
ρ (α)

)

esssup
(

X∗ | ρ > F−1
ρ (α)

) , (43)

which gives the ratio between the worst winning payoff and the best losing payoff. For a payoff

like that of a lottery, the value of this index is expected to be extremely large.23

Theorem 6 Suppose u(·) is given in (39), x0 = 1 and let Assumptions 6 and 7 hold. Let c∗ be

the unique root of ϕ̃(·) in (30). Suppose A ≤ ku, and let λ2(A) and λ3(A) be defined in Corollary

1. When Fρ(c
∗) < α < 1, we have

L(A) =







1, 0 ≤ A ≤ kp,

ψ(1−α)−
1
η

λ2(A)
, kp < A < ku.

When 0 < α ≤ Fρ(c
∗), we have

L(A) =











1, 0 ≤ A ≤
(

F−1
ρ (α)w′(Fρ(c∗))

w′(α)c∗

)− 1
η

kr,

1
λ3(A)

(

w′(α)

F−1
ρ (α)

)− 1
η
,
(

F−1
ρ (α)w′(Fρ(c∗))

w′(α)c∗

)− 1
η

kr ≤ A < ku.

Furthermore, L(A) is increasing in A, and

lim
A↑ku

L(A) = +∞.

Proof The expression of L(A) can be calculated directly from Corollary 1. Furthermore, it is

23For example, if a jackpot in a mark six lottery is regarded as the winning state and all the other prizes (including
no prize) as the losing states, then the corresponding index value (43) is extremely large.
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easy to see that λ2(A) and λ3(A) are decreasing in A and go to +∞ as A goes to ku. Consequently,

L(A) is increasing in A and limA↑ku L(A) = +∞.

The fact that L(A) > 1 for sufficiently large A indicates that there is a discontinuity of the

terminal wealth X∗ ≡ X∗(ρ) at ρ = F−1
ρ (α). This discontinuity suggests that the least payoff in

“winning states” is greater than the best payoff in “losing states,” which is a characteristic feature

of payoffs of lottery tickets. Theorem 6 confirms that a higher level of aspirations will make the

trading behavior more like that of buying into a lottery, which in turn justifies the introduction

of the lottery-likeness index to quantify the impact of aspirations on trading behavior.

Recall that in our HF/A model, there are two factors that may drive the agent to be risk-

taking: a high level of aspirations and a high level of hope, the latter being reflected by a large

value of the hope index or by a steep curvature of w(z) when z is close to 0. It is a natural question

whether a high level of hope will also induce lottery-buying behavior. Assume for simplicity of

the discussion that A = 0. According to Theorem 4, the winning states are given by {ρ ≤ c∗},
while the losing states are given by {ρ > c∗}. Then, an analogous definition of the index (43) is

essinf (X∗ | ρ ≤ c∗)
esssup (X∗ | ρ > c∗)

≡ 1.

In other words, even an extremely high level of hope will not lead to lottery-buying behavior.

6 Numerical Experiments

In this section, we report the results of our numerical experiments with the aim of demon-

strating the analytical findings in the previous section. In our experiments, we assume a constant

interest rate r, a constant stock expected return rate µ and a constant stock volatility rate σ. As

a result, the market price of risk is θ := σ−1(µ − r). Given a terminal time T , the pricing kernel

ρ is lognormally distributed, i.e., ln ρ is a normal random variable with the mean and standard

deviation

µρ = −
(

r +
||θ||2
2

)

T, σρ = ||θ||
√
T .

We use a power utility in (39) and the Jin-Zhou weighting function (8). We use the Jin-Zhou

weighting instead of the ones in (5)-(7) for the following two reasons: First, as observed in Sections

5.2 and 5.4, for the Tversky-Kahneman weighting function, the fear index is independent of the

parameter γ, whereas the hope index depends on γ. For the Tversky-Fox and Prelec weighting

functions, both the degrees of hope and fear are measured by the same parameter γ. The Jin-Zhou

weighting function is therefore the only one that has separate parameters, a and b, to measure

the degrees of hope and fear, respectively. This allows us to study the impact of hope and fear

on asset allocation separately by varying one parameter and fixing the other. Secondly, by using
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the Jin-Zhou weighting function, we can compute the optimal portfolios explicitly. As we will

see shortly, such explicit solutions facilitate a comparison between the optimal allocation to risky

assets in our model and that in the classical expected utility model.

We use the data set from Mehra and Prescott (1985) to provide estimates for r, µ and σ.

Calibrating to the real returns of Treasury Bills for the period 1889-1978, we set r = 1%. We

assume only one risky asset, which can be considered to be the market portfolio, and we use the

S&P 500 index as a proxy for the market portfolio. Using the real returns of the S&P 500 index for

the period 1889-1978, we set µ = 7% and σ = 15.34%. The terminal time T , which measures how

frequently investors evaluate their portfolios, is set at one year in light of the argument presented

in Benartzi and Thaler (1995). As a result, we have θ = 39.11%, µρ = −6.65% and σρ = 39.11%.

Lucas (1994) claims that the reasonable range of the relative risk aversion η should be between

1 and 2.5. Thus, we set η = 1.5 by taking a value in the middle of the range. Because the Jin-Zhou

weighting function has not been calibrated to real data in the literature, we choose parameter

values such that the resulting weighting function is graphically close to the weighting functions

(5)-(7), which are based on estimates available in the literature. We set z̄ = 1
3 because it has

been reported in the literature that the inflection point of the estimated weighting functions is

near 1/3; see e.g., Abdellaoui (2000). On the other hand, we set a = 3σρ and b = 2.2σρ. The

resulting weighting function is graphed in Figure 1 in Section 2 in comparison with the three

classical weighting functions. These values of a and b are fixed as a benchmark. Recall that a

measures the degree of hope and b measures the degree of fear. When studying the impact of

hope and fear on asset allocation, we will vary the values of a and b, respectively.

Finally, we set the initial wealth x0 = 1 without loss of generality.

Figures 5 and 6 below show the optimal terminal payoffs as functions of the pricing kernel

with different confidence and aspiration levels. In Figure 5, α is set at 0.5 and the aspiration

level A is given as 0.8, 0.91 and 1.5. In Figure 6, α is 0.1 and the aspiration level A is given as

1 and 3.4 respectively. We see that in both figures the functions with high aspiration levels are

discontinuous at points that divide winning and losing states, suggesting that the agent is forced

to construct a lottery-type payoff. This observation is further confirmed in Figure 7, where we

vary the aspiration level A from 0 to ku and plot the lottery-likeness index L (again, we consider

two confidence levels α, which in this case are set at 0.5 and 0.1, respectively). As predicted by

Theorem 6, this index increases when the aspiration level goes up, and it increases sharply when

the aspiration level becomes sufficiently high.

Next, we study the impact of hope and fear by varying the values of a and b while fixing the

aspiration level at A = 0. Figure 8 provides the optimal solutions with a at 0, 2σρ, 3σρ and 4σρ,

respectively, while b is set at 2.2σρ. Figure 9 depicts the optimal payoffs with b at 1.5σρ, 2.2σρ,

3σρ and 4σρ while a = 3σρ. From these two cross-sections, we can see that a higher a or a lower

b leads to a lower portfolio insurance level, as well as to a higher payoff in good scenarios.24 To

24Proposition 3 shows that the optimal solution does not depend on the degree of fear if the investor is already
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Figure 5: Graph of optimal solution X∗ as a function of ρ with different aspiration levels A and
a given confidence level α > Fρ(c

∗).

further investigate the impact of hope and fear on portfolio insurance, we take different values

of a and b and compute the corresponding portfolio insurance levels. The results are shown in

Figure 10. We can see that the portfolio insurance level increases when b increases or when a

decreases. Interestingly, the portfolio insurance level is almost always higher than 75 percent of

the initial wealth, and, with a high value of b and a low value of a, it is over 95 percent of the

initial wealth.

Finally, we set out to find the optimal dynamic portfolio and compare our model with the

classic expected utility maximization model. The particular structure of the Jin-Zhou weighting

function allows us to calculate the optimal portfolio explicitly. Recall that r is the constant

risk-free rate and θ is the constant market price of risk. Let

ρ(t) := e−(r+
1
2
||θ||2)t−θ⊤W (t), 0 ≤ t ≤ T.

Recall that Φ(·) and Φ′(·) are the CDF and PDF of the standard normal, respectively. The

following theorem provides the optimal portfolio and optimal wealth process under this market

setting.25

Theorem 7 Suppose A = 0, u(·) is given by (39), x0 = 1 and w(·) is given in (8) with a ≥
0, b ≥ σρ. Let c∗ be the unique root of ϕ̃(·) in (30). Then the optimal wealth process and the

sufficiently fearful. This result only holds true when the probability weighting function does not change at the high
end, i.e., when the investor’s degree of hope is fixed. Here, when the value of b changes, the whole shape of the
probability weighting function changes, leading to a change in the optimal solution.

25In this theorem we assume A = 0 for ease of exposition in order to be able to compare our results with those
of the utility maximization model. We can also compute the optimal portfolio explicitly with a general aspiration
level A.
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Figure 6: Graph of optimal solution X∗ as a function of ρ with different aspiration levels A and
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Figure 7: Increase in lottery-likeness index L with respect to aspiration level A.
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Figure 8: Optimal solution X∗ for different values of a without aspiration.
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Figure 9: Optimal solution X∗ for different values of b without aspiration.
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corresponding portfolio process are given as

X(t) = Γ(t, ρ(t)), π(t) = ∆(t, ρ(t))
1

η
(σ⊤)−1θX(t), 0 ≤ t < T, (44)

where

Γ(t, ρ) := kr

[

(c∗)
1
η

(

a
σρ

+1
)

e

(

(

1
η

(

a
σρ

+1
)

−1
)

r+ 1
η

(

a
σρ

+1
)(

1
η

(

a
σρ

+1
)

−1
)

||θ||2

2

)

(T−t)
ρ
− 1

η

(

a
σρ

+1
)

×Φ





ln c∗ +
(

r +
(

1
η

(

a
σρ

+ 1
)

− 1
2

)

||θ||2
)

(T − t)− ln ρ

||θ||
√
T − t





+e−r(T−t)
(

1− Φ

(

ln c∗ +
(

r − 1
2 ||θ||2

)

(T − t)− ln ρ

||θ||
√
T − t

))

]

,

and

∆(t, ρ) :=

(

a

σρ
+ 1

)









1−
kre

−r(T−t)
(

1− Φ

(

ln c∗+(r− 1
2
||θ||2)(T−t)−ln ρ

||θ||
√
T−t

))

Γ(t, ρ)









.

Furthermore, for each fixed t < T , Γ(t, ρ) and ∆(t, ρ) are strictly decreasing in ρ and

lim
ρ↓0

Γ(t, ρ) = +∞, lim
ρ↑∞

Γ(t, ρ) = e−r(T−t)kr, lim
ρ↓0

∆(t, ρ) =
a

σρ
+ 1, lim

ρ↑∞
∆(t, ρ) = 0. (45)
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Proof It is easy to compute that

w′(Fρ(x))
x

= ke
(a+b)Φ−1(1−z0)+aµρ

σρ x
−
(

a
σρ

+1
)

, x ≤ F−1
ρ (z̄).

Thus, from Corollary 1-1(a), the optimal terminal payoff is given as

X∗ = kr(c
∗)

1
η

(

a
σρ

+1
)

ρ
− 1

η

(

a
σρ

+1
)

1{ρ≤c∗} + kr1{ρ>c∗}.

By Theorem E.1 in Jin and Zhou (2008), the portfolio replicating ρ
− 1

η

(

a
σρ

+1
)

1{ρ≤c∗} and its wealth

process are

π1(t) =

[

1

η

(

a

σρ
+ 1

)

X1(t) +
1

||θ||
√
T − tρ(t)

(c∗)
1− 1

η

(

a
σρ

+1
)

Φ′

(

ln c∗ + (r + ||θ||2

2 )(T − t)− ln ρ(t)

||θ||
√
T − t

)]

× (σ⊤)−1θ,

X1(t) = ρ(t)
− 1

η

(

a
σρ

+1
)

e

[

(

1

η

(

a
σρ

+1
)

−1
)

r+ 1

η

(

a
σρ

+1
)(

1

η

(

a
σρ

+1
)

−1
)

||θ||2

2

]

(T−t)

× Φ





ln c∗ +
(

r +
(

1
η

(

a
σρ

+ 1
)

− 1
2

)

||θ||2
)

(T − t)− ln ρ(t)

||θ||
√
T − t



 .

Similarly, the portfolio replicating 1{ρ>c∗} is

π2(t) =

[

− 1

||θ||
√
T − tρ(t)

c∗Φ′
(

ln c∗ + (r + ||θ||2
2 )(T − t)− ln ρ(t)

||θ||
√
T − t

)]

(σ⊤)−1θ,

X2(t) = e−r(T−t)
[

1− Φ

(

ln c∗ +
(

r − 1
2 ||θ||2

)

(T − t)− ln ρ(t)

||θ||
√
T − t

)]

.

As a result, we derive (44).

On the other hand, we have

∂Γ

∂ρ
(t, ρ) = kr(c

∗)
1
η

(

a
σρ

+1
)

e

(

(

1
η

(

a
σρ

+1
)

−1
)

r+ 1
η

(

a
σρ

+1
)(

1
η

(

a
σρ

+1
)

−1
)

||θ||2

2

)

(T−t)
(

−1

η

(

a

σρ
+ 1

))

× ρ
− 1

η

(

a
σρ

+1
)

−1
Φ





ln c∗ +
(

r +
(

1
η

(

a
σρ

+ 1
)

− 1
2

)

||θ||2
)

(T − t)− ln ρ

||θ||
√
T − t



 < 0.

Thus, Γ(t, ρ) is strictly decreasing in ρ. Because

kre
−r(T−t)

(

1− Φ

(

ln c∗ +
(

r − 1
2 ||θ||2

)

(T − t)− ln ρ

||θ||
√
T − t

))

is strictly increasing in ρ, we can deduct that ∆(t, ρ) is strictly decreasing in ρ. Finally, all of the
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Figure 11: The quantity ∆(t, ρ) at different time t and pricing kernel value ρ.

limits in (45) can be derived easily.

From the monotonicity of Γ(t, ρ) in ρ and (45), it follows that the optimal wealth process always

lies above the portfolio insurance level, e−r(T−t)kr. On the other hand, ∆(t, ρ) is an interesting

quantity. Recall that in classical expected utility maximization the optimal portfolio is given in

the feedback form 1
η (σ

⊤)−1θX(t), i.e., the well-known Merton strategy. Thus, ∆(t, ρ) measures

the deviation from the Merton strategy due to the presence of the probability weighting function.

In view of (45), when ρ is very small (i.e., when the market is very good), ∆(t, ρ) ≈ a
σρ

+ 1 > 1,

indicating that the agent takes higher leverage than the Merton strategy does. Moreover, the

magnitude of ∆(t, ρ) is (roughly) proportional to a, a parameter that measures the degree of

hope. When ρ is very large (i.e., the market is very bad), ∆(t, ρ) ≈ 0, indicating that the agent

takes little risky exposure due to fear and indicating the resulting portfolio insurance requirement.

Figure 11 depicts ∆(t, ρ) with the parameters taking the values specified at the beginning of the

present section.

7 Concluding Remarks

In this paper we have introduced and formulated a new portfolio choice model—the HF/A

model—in continuous time. This model considers the role in decision making of three emotions:

hope, fear and aspirations. Hope and fear are modeled through a reversed S-shaped probability

weighting function from Quiggin’s RDU theory and aspirations are modeled by a probabilistic

constraint from Lopes’ SP/A theory. Motivated by a comparative statics analysis on the optimal

strategies in our model, these emotions have been further quantified via respective indices. In
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particular, the hope and fear indices are related to the curvatures of the probability weighting

function, whereas the level of aspirations can be measured by the degree to which the optimal

payoff resembles that of a lottery ticket.

The SP/A theory motivated us to study the portfolio choice problem featuring hope, fear and

aspirations. However, the ill-posedness result (Theorem 1) implies that the preference measure in

SP/A theory is inappropriate in continuous-time portfolio choice modeling because of the linearity

of the utility function. We have resolved this problem by introducing a concave utility function, a

component taken from RDU theory. We have found, in our HF/A model, that both fear and the

dislike of mean-preserving spreads lead to risk-averse behavior and that both hope and aspirations

lead to risk-seeking behavior. However, we have shown that each of these four component plays

its own distinct role in influencing investing behavior.

Appendix

A Proof of Theorem 5

The key step in the proof of Theorem 5 is to solve (16) for each λ > 0. First, we characterize

the subset of feasible solutions in which the optimal solution to (16) must lie. Following the

notation in Section 5.3, define

S
A
λ :=

{

G(·) ∈ G | G(z) = b1{0<z≤z0} +
[

b ∨ ḠA(z)
]

1{z0<z<1}, b ≥ Ḡ(z0)
}

(46)

if 1− α ≥ z0; and

S
A
λ := {G(·) ∈ G | G(z) = b1{0<z≤1−α} + [b ∨A] 1{1−α<z≤z0}

+
[

b ∨ ḠA(z)
]

1{z0<z<1}, b ≥ Ḡ(z0)}
(47)

if 1− α ≤ z0, where

ḠA(z) := Ḡ(z)1{0<z≤1−α} +
[

Ḡ(z) ∨A
]

1{1−α<z<1}, 0 < z < 1

and Ḡ(·) is defined as in (25).

Proposition 8 Let Assumptions 5 and 7 hold. For any G(·) ∈ G, there exists a G̃(·) ∈ Sλ such

that Uλ(G̃(·)) ≥ Uλ(G(·)) and the inequality becomes equality if and only if G(·) = G̃(·).

Proof First, consider the case in which 1 − α ≥ z0. For any feasible G(·), let z1 := inf{z ∈
(0, z0] | G(z) > Ḡ(z)} with inf ∅ = z0. Let b = Ḡ(z1) and z2 := inf{z ∈ [z0, 1) | Ḡ(z) > b}.
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Clearly, z0 ≤ z2 < 1 and Ḡ(z2) = Ḡ(z1) = b. If z2 ≤ 1− α, define

G̃(z) :=



















b 0 < z ≤ z2

Ḡ(z) z2 < z ≤ 1− α

ḠA(z) 1− α < z < 1.

If z2 > 1− α, define

G̃(z) :=







b 0 < z ≤ 1− α

b ∨ ḠA(z) 1− α < z < 1.

In both cases, we have G̃(·) ∈ S
A
λ .

If z2 ≤ 1− α, we have

Uλ(G(·)) =
∫ 1

0
f(G(z), z)dz

=

∫ z1

0
f(G(z), z)dz +

∫ z2

z1

f(G(z), z)dz

+

∫ 1−α

z2

f(G(z), z)dz +

∫ 1

1−α
f(G(z), z)dz

≤
∫ z1

0
f(Ḡ(z1), z)dz +

∫ z2

z1

f(Ḡ(z1), z)dz

+

∫ 1−α

z2

f(Ḡ(z), z)dz +

∫ 1

1−α
f(ḠA(z), z)dz

=

∫ 1

0
f(G̃(z), z)dz,

and the inequality becomes equality if and only if G(·) = G̃(·). If z2 > 1− α, we have

Uλ(G(·)) =
∫ 1

0
f(G(z); z)dz

=

∫ z1

0
f(G(z), z)dz +

∫ 1−α

z1

f(G(z), z)dz +

∫ 1

1−α
f(G(z), z)dz

≤
∫ z1

0
f(Ḡ(z1), z)dz +

∫ 1−α

z1

f(Ḡ(z1), z)dz +

∫ 1

1−α
f(b ∨ ḠA(z), z)dz

=

∫ 1

0
f(G̃(z), z)dz,

and the inequality becomes equality if and only if G(·) = G̃(·).
Next, we consider the case in which 1− α < z0. For any feasible G(·), again let z1 := inf{z ∈

(0, z0] | G(z) > Ḡ(z)} with inf ∅ = z0. Let b = Ḡ(z1). If b ≥ A, define z2 := inf{z ∈ [z0, 1) |
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Ḡ(z) > b}, and

G̃(z) :=







b 0 < z ≤ z2

Ḡ(z) z2 < z < 1.

If b < A, then the feasibility of G(·) implies z1 ≤ 1− α. Define

G̃(z) :=







b 0 < z ≤ 1− α

ḠA(z) 1− α < z < 1.

In both cases, G̃(z) ∈ S
A
λ . If b ≥ A, we have

Uλ(G(·)) =
∫ 1

0
f(G(z), z)dz

=

∫ z1

0
f(G(z), z)dz +

∫ z2

z1

f(G(z), z)dz +

∫ 1

z2

f(G(z), z)dz

≥
∫ z1

0
f(Ḡ(z1), z)dz +

∫ z2

z1

f(Ḡ(z1), z)dz +

∫ 1

z2

f(Ḡ(z), z)dz

= Uλ(G̃(·)),

and the inequality becomes equality if and only if G(·) = G̃(·). If b < A, we have

Uλ(G(·)) =
∫ 1

0
f(G(z), z)dz

=

∫ z1

0
f(G(z), z)dz +

∫ 1−α

z1

f(G(z), z)dz +

∫ 1

1−α
f(G(z), z)dz

≥
∫ z1

0
f(Ḡ(z1), z)dz +

∫ 1−α

z1

f(Ḡ(z1), z)dz +

∫ 1

z2

f(ḠA(z), z)dz

= Uλ(G̃(·)),

and the inequality becomes equality if and only if G(·) = G̃(·).

In view of Proposition 8, we need only consider the following problem:

Max
G(·)

Uλ(G(·)) =
∫ 1
0

[

u(G(z))w′(1− z)− λG(z)F−1
ρ (1− z)

]

dz

subject to G(·) ∈ S
A
λ , G((1 − α)+) ≥ A, G(0+) ≥ 0,

(48)

which is an optimization problem over the real line. The following proposition provides the result.

Before we state the proposition and its proof, however, let us recall ϕ(·) in (27) and ψ(·) in

(31) and their properties. ϕ(·) is strictly increasing on (0, z0) and strictly decreasing on (z0, 1).

Furthermore, ϕ(·) is positive on (0, z∗) and negative on (z∗, 1). ψ(·) is strictly decreasing on (0, z∗)
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and strictly increasing on (z∗, 1). In addition, ψ(z) > M(z) on (0, z∗), ψ(z) < M(z) on (z∗, 1)

and ψ(z∗) =M(z∗).

Proposition 9 Let Assumptions 5-7 hold. Let z∗ be the unique root of (27) and recall ψ(·) in

(31).

1. If 0 < 1−α < z∗, then ψ(1−α) > ψ(z∗) =M(z∗), and the unique optimal solution to (16)

is given as

G∗
λ(z) =



















Ḡ(z∗)1{0<z≤z∗} + Ḡ(z)1{z∗<z≤1}
λ

u′(A) ≤M(z∗),

A1{0<z≤z0} + ḠA(z)1{z0<z≤1} M(z∗) ≤ λ
u′(A) ≤ ψ(1− α),

(u′)−1
(

λ
ψ(1−α)

)

1{0<z≤1−α} + ḠA(z)1{1−α<z≤1}
λ

u′(A) ≥ ψ(1− α).

(49)

2. If z∗ ≤ 1− α < 1, then the unique optimal solution to (16) is given as

G∗
λ(z) = Ḡ(z∗)1{0<z≤z∗} + ḠA(z)1{z∗<z≤1}. (50)

Proof The proof is split into three cases: (i) 1−α ≥ z∗; (ii) z0 < 1−α < z∗; and (iii) 1−α < z0.

(i) First, consider the case in which 1 − α ≥ z∗. If A ≤ Ḡ(1 − α), i.e., λ
u′(A) ≤ M(1 − α),

then the optimal solution to (16) when A = 0 in Proposition 5 automatically satisfies the

additional aspiration constraint G((1 − α)+) ≥ A, and therefore it is also optimal in the

presence of A. It is easy to check that the optimal solution in (28) coincides with the one in

(50) when A ≤ Ḡ(1− α). Thus, we can assume that A ≥ Ḡ(1 − α), i.e., λ
u′(A) ≥M(1 − α).

Define

V (b) : = U(b1{0<z≤z0} +
[

b ∨ ḠA(z)
]

1{z0<z<1}), b ≥ Ḡ(z0).

Consider V (·) in three different domains. When Ḡ(z0) ≤ b ≤ Ḡ(1 − α), let y := Ḡ−1(b),

where Ḡ−1(·) is the inverse function of Ḡ(·) when restricted on [z0, 1). We have

V (b) = u(b)

∫ y

0
w′(1− z)dz − λb

∫ y

0
F−1
ρ (1− z)dz

+

∫ 1

y
u(ḠA(z))w

′(1− z)dz − λ

∫ 1

y
ḠA(z)F

−1
ρ (1− z)dz.
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Clearly,

V ′(b) = u′(b)
∫ y

0
w′(1− z)dz − λ

∫ y

0
F−1
ρ (1− z)dz

=
λ

M(y)
ϕ(y).

Because Ḡ(z0) ≤ b ≤ Ḡ(1−α), z0 ≤ y ≤ 1−α. Recalling that z0 < z∗ ≤ 1−α, we conclude
that b∗1 := Ḡ(z∗) uniquely maximizes V (·) in the interval [Ḡ(z0), Ḡ(1 − α)].

When Ḡ(1 − α) < b < A, we have

V (b) = u(b)

∫ 1−α

0
w′(1− z)dz − λb

∫ 1−α

0
F−1
ρ (1− z)dz

+

∫ 1

1−α
u(ḠA(z))w

′(1− z)dz − λ

∫ 1

1−α
ḠA(z)F

−1
ρ (1− z)dz,

and

V ′(b) = u′(b)
∫ 1−α

0
w′(1− z)dz − λ

∫ 1−α

0
F−1
ρ (1− z)dz

< λ

[

1

M(1 − α)

∫ 1−α

0
w′(1− z)dz −

∫ 1−α

0
F−1
ρ (1− z)dz

]

≤ 0,

where the first inequality is the case because b > Ḡ(1 − α) and the last inequality is the

case because 1 − α ≥ z∗ and ϕ(z) < 0 on (z∗, 1). Therefore, V (·) is strictly decreasing in

the interval [Ḡ(1 − α), A].

When b ≥ A, let y := Ḡ−1(b) ≥ 1− α. Then, we have

V (b) = u(b)

∫ y

0
w′(1− z)dz − λb

∫ y

0
F−1
ρ (1− z)dz

+

∫ 1

y
u(ḠA(z))w

′(1− z)dz − λ

∫ 1

y
(ḠA(z))F

−1
ρ (1− z)dz,

and

V ′(b) = u′(b)
∫ y

0
w′(1− z)dz − λ

∫ y

0
F−1
ρ (1− z)dz

=
λ

M(y)
ϕ(y) ≤ 0,

where the last inequality is due to z∗ ≤ 1 − α and ϕ(z) < 0 on (z∗, 1). Therefore, V (·) is

decreasing on (A,+∞).

To summarize, we conclude that V (·) obtains its maximum value at b∗1 = Ḡ(z∗), and there-

fore the optimal solution is given in (50).
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(ii) Next, consider the case in which z0 < 1− α < z∗. Using the same argument as for case (i),

we can assume that A ≥ Ḡ(1 − α), i.e., λ
u′(A) ≥ M(1 − α). Because 1 − α < z∗, we have

M(1− α) < ψ(1 − α). Again, define

V (b) : = U(b1{0<z≤z0} +
[

b ∨ ḠA(z)
]

1{z0<z<1}), b ≥ Ḡ(z0).

When Ḡ(z0) ≤ b ≤ Ḡ(1− α), letting y := Ḡ−1(b) ≤ 1− α, we have

V (b) = u(b)

∫ y

0
w′(1− z)dz − λb

∫ y

0
F−1
ρ (1− z)dz

+

∫ 1

y
u(ḠA(z))w

′(1− z)dz − λ

∫ 1

y
(ḠA(z))F

−1
ρ (1− z)dz.

Clearly,

V ′(b) = u′(b)
∫ y

0
w′(1− z)dz − λ

∫ y

0
F−1
ρ (1− z)dz

=
λ

M(y)
ϕ(y) > 0,

where the last inequality is the case because 1−α < z∗ and ϕ(z) > 0 on (0, z∗). Therefore,

V (·) is strictly increasing in the interval [Ḡ(z0), Ḡ(1 − α)].

When Ḡ(1 − α) < b < A, we have

V (b) = u(b)

∫ 1−α

0
w′(1− z)dz − λb

∫ 1−α

0
F−1
ρ (1− z)dz

+

∫ 1

1−α
u(ḠA(z))w

′(1− z)dz − λ

∫ 1

1−α
ḠA(z)F

−1
ρ (1− z)dz,

and

V ′(b) = u′(b)
∫ 1−α

0
w′(1− z)dz − λ

∫ 1−α

0
F−1
ρ (1− z)dz.

If M(1− α) ≤ λ
u′(A) ≤ ψ(1 − α), we have

V ′(b) > u′(A)
∫ 1−α

0
w′(1− z)dz − λ

∫ 1−α

0
F−1
ρ (1− z)dz

= u′(A)
∫ 1−α

0
F−1
ρ (1− z)dz

[

ψ(1 − α)− λ

u′(A)

]

≥ 0,

and, consequently, V (·) is strictly increasing in the interval [Ḡ(1 − α), A]. If λ
u′(A) ≥

ψ(1 − α), then it is easy to see that the unique optimizer of V (·) in this interval is

b∗2 := (u′)−1
(

λ
ψ(1−α)

)

.
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When b ≥ A, let y := Ḡ−1(b). Then, we have

V (b) = u(b)

∫ y

0
w′(1− z)dz − λb

∫ y

0
F−1
ρ (1− z)dz

+

∫ 1

y
u(ḠA(z))w

′(1− z)dz − λ

∫ 1

y
ḠA(z)F

−1
ρ (1− z)dz,

and

V ′(b) = u′(b)
∫ y

0
w′(1− z)dz − λ

∫ y

0
F−1
ρ (1− z)dz

=
λ

M(y)
ϕ(y).

If λ
u′(A) ≥ M(z∗), then Ḡ−1(A) ≥ z∗. Consequently, y > Ḡ−1(A) ≥ z∗ and V ′(b) <

0 because ϕ(·) is negative on (z∗, 1). In other words, V (·) is strictly decreasing on this

interval. If λ
u′(A) ≤ M(z∗), then Ḡ−1(A) ≤ z∗ and, consequently, the unique maximizer

b∗3 = (u′)−1
(

λ
M(z∗)

)

.

Finally, because z0 ≤ 1−α < z∗,M(1−α) < M(z∗) = ψ(z∗) < ψ(1−α). Then, we can sum

up the results and conclude that the optimizer of V (·) is (u′)−1
(

λ
ψ(1−α)

)

if λ
u′(A) ≥ ψ(1−α),

is A if M(z∗) ≤ λ
u′(A) ≤ ψ(1 − α) and is (u′)−1

(

λ
M(z∗)

)

if M(1 − α) ≤ λ
u′(A) ≤ M(z∗).

Therefore, the optimal solution is given in (49).

(iii) Finally, consider the case in which 1− α ≤ z0. Using the same arguments as in (i) and (ii),

we can assume that A ≥ Ḡ(z0), i.e.,
λ

u′(A) ≥M(z0). Again, we let

V (b) := U(b1{0<z≤1−α} + [b ∨A]1{1−α<z≤z0} +
[

b ∨ ḠA(z)
]

1{z0<z<1}), b ≥M(z0).

We first optimize V (·) in [A,+∞). In this interval, we have

V (b) = U(b1{0<z≤z0} +
[

b ∨ Ḡ(z)
]

1{z0<z<1}),

which is the same as the function V (·) in the proof of Proposition 5 after making the

transformation y = Ḡ−1(b). From the proof of Proposition 5, we can deduce that the

maximizer of V (·) on [A,+∞) is Ḡ(z∗) if λ
u′(A) ≤M(z∗) and is A if λ

u′(A) ≥M(z∗).

Next, we consider V (b) for other possible b. If A ≤ Ḡ(1 − α), i.e., λ
u′(A) ≤ M(1 − α),

then it is easy to see that V (·) is strictly increasing on [Ḡ(z0), A]. If A ≥ Ḡ(1 − α), i.e.,
λ

u′(A) ≥M(1−α), then it is easy to check that V (·) is strictly increasing in [Ḡ(z0), Ḡ(1−α)].
Thus, we need only consider the case in which A > Ḡ(1 − α), i.e., λ

u′(A) > M(1 − α), and

48



check V (b) for Ḡ(1− α) < b < A. In this case, we have

V (b) = u(b)

∫ 1−α

0
w′(1− z)dz − λb

∫ 1−α

0
F−1
ρ (1− z)dz

+

∫ 1

1−α
u(ḠA(z))w

′(1− z)dz − λ

∫ 1

1−α
ḠA(z)F

−1
ρ (1− z)dz,

and

V ′(b) = u′(b)
∫ 1−α

0
w′(1− z)dz − λ

∫ 1−α

0
F−1
ρ (1− z)dz.

Because 1 − α ≤ z0 < z∗, we have ψ(1 − α) > M(1 − α). Now, when M(1 − α) ≤ λ
u′(A) ≤

ψ(1 − α),

V ′(b) > u′(A)

(
∫ 1−α

0
F−1
ρ (1− z)dz

)[

ψ(1− α)− λ

u′(A)

]

≥ 0,

where the first inequality is due to b < A. Consequently, V (·) is strictly increasing in

[Ḡ(1 − α), A]. When λ
u′(A) ≥ ψ(1 − α), it is easy to see that the optimizer of V (·) in this

interval is (u′)−1
(

λ
ψ(1−α)

)

.

To summarize, the unique optimizer of V (·) is Ḡ(z∗) if λ
u′(A) ≤ M(z∗), is A if M(z∗) ≤

λ
u′(A) ≤ ψ(1−α) and is (u′)−1

(

λ
ψ(1−α)

)

if λ
u′(A) ≥ ψ(1−α). Therefore, the optimal solution

is given in (49).

Ultimately, the uniqueness of the optimal solution can be easily derived from the above proof.

Proof of Theorem 5 Let

X (λ) =

∫ 1

0
G∗
λ(z)F

−1
ρ (1− z)dz, λ > 0

where G∗
λ(·) is as given in (49) or (50), depending on the value of α. By Assumption 6, X (·) is

finite and decreasing on (0,+∞). Furthermore, because ρ is atomless, by applying the monotone

convergence theorem, we conclude that X (·) is continuous and

lim
λ↑+∞

X (λ) = AE
[

ρ1{ρ≤F−1
ρ (α)}

]

, lim
λ↓0

X (λ) = +∞.

Therefore, we can find λ∗ such that X (λ∗) = x0 and, consequently, G∗
λ∗(·) is optimal to (14).

Noticing that X (u′(A)M(z∗)) = xr and that X (u′(A)ψ(1−α)) = xp, the optimal solution to (13),

X∗ := G∗
λ∗(1− Fρ(ρ)), is exactly as given in (34)-(37).
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