
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: VOI. 65, No. 2, MAY 1990 

Maximum Principle, Dynamic Programming, 
and Their Connection in Deterministic Control ''2 

X. Y. Z H O U  3 

Communicated by L. D. Berkovitz 

Abstract. Two major tools for studying optimally controlled systems 
are Pontryagin's maximum principle and Bellman's dynamic program- 
ming, which involve the adjoint function, the Hamiltonian function, 
and the value function. The relationships among these functions are 
investigated in this work, in the case of deterministic, finite-dimensional 
systems, by employing the notions of superdifferential and subdifferen- 
tiat introduced by CrandaI1 and Lions. Our results are essentially non- 
smooth versions of the classical ones. The connection between the 
maximum principle and the Hamilton-Jacobi-Bellman equation (in the 
viscosity sense) is thereby explained by virtue of the above relationship. 
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1. Introduction 

Given  (s, y)  ~ [0, 1] x R e, let us cons ider  the fol lowing opt imal  control  
p rob lem in Rd: 

f minimize  J(s, y; u)~ L(t, x(t), u(t)) dt+h(x(1)), ( l a )  

subject  to dx(t)/dt =f(t, x(t), u(t)), a.e. t c Is, 1], ( l b )  

x(s) =y, ( lc)  
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among all the admissible controls 

u ~ Uad[s, 1] = {u(. )l u is a Lebesgue measurable 

function from [s, 1] to F}, (ld) 

where F is a prescribed arbitrary set in R m. 
We denote the above problem by Csy, to emphasize the importance of 

the initial time s and the initial state y. The value function is defined as 

V(s, y) = inf{J(s, y; u): u ~ Uaa[s, 1]}. (2) 

The pair (~, ~) is called an optimal pair of the problem Csy if ~ is the 
corresponding solution of  (I) for ~ c Uad[S, I] and J(s, y; ~)= V(s, y). 

Since Pontryagin et al. (Ref. 1) proved the maximum principle (MP), 
and since Bellman (Ref. 2) put forward the method of dynamic programming 
(DP), most researches in optimal control theory have been carried out along 
one of these two lines. 

The MP says that, if (~, ~) is optimal for the problem C~y, then there 
exists a function 0 : [s, 1] -* R a, satisfying the adjoint equation 

dO( t)/ dt = - fx(  t, ~(t), ~( t) )O( t ) -L~( t ,  ~( t), a(t)),  

a.e. t c [s, 1], (3) 

~(1)  = hx( ; (1 ) ) ,  

such that 

H(t,  ~(t), ~(t), O( t ) )= max H(t,  ~(t), u, O(t)), 
U C F  

a.e. t ~ [s, 1], (4) 

where the Hamiltonian is given by 

H(t,  x, u,p) = - ( p , f ( t ,  x, u ) ) - L ( t ,  x, u), 

V(t,X, u,p)E[S, 1 ] x R  d x F x R  a. (5) 

On the other hand, DP asserts that, if the value function V(-, • ) happens 
to be continuously ditterentiable, then it satisfies the so-called Hamilton- 
Jacobi-Bellman (HJB) equation 

-aV( t ,  x ) /Ot+supH( t ,  x, u, OV(t, x)/Ox) = O, 
u c l "  

(t, x) 6 [0, 1] x R", (6) 

V(1, x ) = h ( x ) .  
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It seems, however, that the DP fails to have a solid ground from 
its very beginning, since it requires the value function to be smooth, 
which is not true even in the simplest cases; see Example 3.1 of this 
paper. As for the connection between MP and DP, the known result is 
(Ref. 3) 

~b(t)=OV(t,~(t))/Ox, V t6[s ,  1], (7) 

which also lacks generality, due to the same reason as above. This is an 
important gap in the literature. Recently, this gap was partially bridged by 
Crandall and Lions, who invented a new concept of solutions, called 
viscosity solutions, of nonlinear partial differential equations, including the 
HJB equation (Ref. 4). Lions successfully showed that the value function 
V turns out to be a viscosity solution of (6), under rather mild and reasonable 
assumptions (Refs. 5, 6). One of  the advantages of a viscosity solution is 
that existence, uniqueness, and stability theorems are all valid; hence, the 
DP can be established in a rigorous framework. 

This work tries to answer the following question in the case of  deter- 
ministic, finite-dimensional systems: What is the relationship between the 
MP and the DP, without assuming the continuous differentiability of the 
value functoin V( . , ,  )? We investigate the relationship among the functions 
~b, H, V by employing the notions of superdifferential and subdifferential, 
evoked in defining the viscosity solution. A similar claim to (7) is proved, 
which is now interpreted as a set inclusion among superdifferential, sub- 
differential, and singleton {qJ(t)}. Of course, our result reduces to the 
classical one (7), if V ( . , . )  is sufficiently smooth. Furthermore, several 
interesting properties of the superdifferential and the subdifferential of 
V ( . , . )  at (t, 2(t)) are derived. As a byproduct, the MP can be proved 
directly from the DP. Hence, MP, DP, and their connection can be treated 
within a unified framework of  viscosity solutions. 

2. Maximum Principle and Dynamic Programming 

In this section, we give the statement of the MP and the DP; we also 
give some lemmas for later use. First of all, we make some assumptions on 
the data appearing in problem (1), which will always remain in force: 

(A1) f ( . ,  . , . )  and L ( . , . ,  .) are continuous mappings from [0, l l x  
R e x F to R d and R ~, respectively; moreover, f and L are continuous with 
respect to (t, x), uniformly in u c F; 

(A2) for each (t, u) ~ [0, 1] x F, the functions f ( t , . ,  u), L ( t , . ,  u), and 
h(-)  are continuously differentiable0 where h(. ) is Rl-valued; 
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(A3) there exists a constant K > 0, which is independent of (t, u), 
such that 

If(t, x, u) - f ( t ,  y, u) I + IL(t, x, u) - L(t, y, u)[ + [h(x) - h(y) t 

< - K l x - y [ ,  Vx, y c R  d, 

I f ( t , x , u ) l + l t ( t , x , u ) l + l h ( x ) l < - K ( l + l x l ) ,  V x ~ R  d. 

Theorem 2.1. (MP) Suppose that (~, ~) is optimal for problem C~y. 
Then, there exists a function 0 satisfying the adjoint equation (3), such 
that the maximum condition (4) holds. 

The proof  of  the above theorem is well known. One may consult Ref. 
1 for the earliest rigorous proof, or Ref. 7, for the special case of  distributed- 
parameter systems, with the use of  the vector-valued theorem. 

Suppose that (~, ~) is optimal for problem C~y. Let qb(. , ,  ) Lemma 2.1. 
be the fundamental matrix of  the following ODE: 

dy ( t ) / d t  = f f ( t ,  ~(t) ,  a ( t ) )y ( t ) .  (8) 

Then, the following results hold: 
(i) sup,<r<t<l [qb(t, r)[ ~ const~ 
(ii) the adjoint function ~0 can be represented as 

;, 
O(t) = q~r(r, t)L.~(r, 2(r),  ~(r)) d r + ~ r ( 1 ,  t)h~(~(1)), (9) 

t 

Proof. (i) It is clear. 
(ii) We can check that the function t~ given by (9) satisfies Eq. (3), 

using the known properties of  the fundamental matrix. Hence, the result 
follows from the uniqueness of  the solution of  (3). D 

Now, let us recall briefly the definition of  viscosity solution (Refs. 4, 
5, 6). 

Definition 2.1. Let Q be an open set in R ", and let v c C(Q) .  The 
superdifferential [resp., subdifferential] of v at x ~  Q, denoted by D+v(x)  
[resp., D-v (x ) ] ,  is a set defined as 

D+v(x)  = {p ~ R ~ I ~ [ v ( y )  - v(x)  - (p, y - X ) ]/ly - x[ <- 0} 

[resp., D - v ( x )  = { p c  R"ll im{- • .}->0]. 
y ~ X  



JOTA: VOL. 65, NO. 2, MAY 1990 367 

Definition 2,2. Let H e  C( Q x R x R ~) and v ~ C( Q). The solution v 
is said to be a viscosity solution of  the nonlinear PDE 

H(x, v, Dr)= O, 

if 

H(x, v(x), p) <- O, Vx ~ Q, Vp e D+v(x), 

H(x,v(x),p)>-O, Vx~Q,  V p ~ D - v ( x ) .  

From now on, we denote by D+,xv(.,.) the superditterential in the 
(t, x)-variables and by D+~v(t, • ) the superdifferential in the x-variable for 
each fixed t, etc. 

Theorem 2.2. (DP) The value function V(. ,  .) is a viscosity solution 
of  the HJB equation (6). 

Remark 2.1. Our definition of  the value function (2) follows that in 
Ref. 3, which is somewhat different from that in Lions (Refs. 5, 6). The 
difference lies in that our value function satisfies a backward HJB equation, 
wihle Lions' value function satisfies a forward HJB equation. But the proof  
of  Theorem 2.2 is similar to that in Ref. 5. 

3. Main Results 

The adjoint function t), the Hamiltonian function H, and the value 
function V are the most important data appearing in the MP and DP. In 
this section, we show how they relate to each other within the framework 
of  the superdifferential and the subdifferential. 

Theorem 3.1. Suppose that ()~, t~) is optimal for problem C~v. Then, 
for any t 6 [s, 1], Dj,? V(t, £(t ) )  C {~p(t)} C D+~ V(t, ~(t)). 

Proof. For zE R a, let x ( . ;  z) be the solution of  (1) with control a, 
initial time t, and initial state z. Then, 

x(r; z ) -~ ( r )  

f - z - . ~ ( t ) +  {f(O,x(O;z),~(O))-f(O,~(O),a(O))}dO 
! 

I r T A 

- z  - ~ ( t ) +  f.~ (0, x(O), a(0) ) (x(0 ;  z) - £(0))  dO 
t 

+ e(o; z)(x(O; z)-~(o)) dO, (lo) 
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where 

~0 
1 

e(O; z)=- {ff(O, :~(O)+a(x(O; z)-.~(O)), 

~(o))-f[(o, ~(0), a(0))} de, 

with the following properties: 

lira e(O; z) =0,  VO~ [t, 1], ( l l a )  
z~.,~(t) 

suple(O; z)[ ~ const. ( l l b )  
O z  

By (10) and the variation-of-constants formula, we get 

x(r; z)-~(r) 

=qb(r, t)(z--~(t))+ ~P(r, 0)E(0; z)(x(O; z)-~(O)) dO, (12) 
t 

where dp is defined in Lemma 2.1. Therefore, 

V(t, z ) -  V(t, ~(t)) 

f, <-- {L(r, x(r; z), ~(r)) - L(r, :~(r), ~(r))} dr 
t 

+ h(x(1; z)) - h()~(1)) 

= f~ Lr~(r, ~(r), a(r))(x(r; z)-~(r)) dr 

+ co(r; z)(x(r; z ) -~(r) )  dr 
t 

+ h[(~(1))(x(1;  z ) - ~ ( 1 ) ) +  o(Ix(1; z ) -~(1) l ) ,  (13) 

where co( ' ;  z) is defined in a similar way to e ( . ;  z), with f~ replaced by 
Lx. By virtue of (12), we can rewrite (13) as follows: 

v ( t ,  z)  - v ( t ,  :~(t)) 

<~ f '  LT(r, ~(r), ~(r))~P(r, t) dr. ( z -~( t ) )  

+ h ~(~(1))¢P(1, t ) (z -~( t ) )+o(jz-~( t )] )  

= qJ'( t )(z-  ~(t)) + o(Iz - ~(t)l). 

The above inequality leads immediately to the conclusion that 
q- A ~h(t) e Dx V(t, x(t)). 
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On the other hand, suppose that p c DI~ V(t, £(t)). Then, 

0 -  < lira {V(t, z ) -  V(t, £( t ) - (p ,  z-£( t))} / lz-£( t)]  

~_lim (~O(t)-p, z-~(t)) / Iz-~(t)] .  
z ~ £ ( t )  

Hence, p = ~0(t). The proof is now complete. [] 

Remark 3.1. Theorem 3.1 is a nonsmooth version of (7). Indeed, if 
V(t,.) is differentiable, then the theorem reduces to (7). But in general, 
both the inclusions D2 V(t, 2(t)) C {0(t)} and {0(t)} C D~ V(t, £(t)) may 
be strict, which will be shown in the following example. 

Example 3.1. Consider the following optimal control problem Coo: 

minimize -x(1) ,  

subject to dx(t)/dt=x(t)u(t),  a.e. to [0 ,  1], 

x(0)--o, 

u( ' ) :  [0, 1 ] ~ { r c  R I [ 0 -  < r<_ 1}. 

The optimal pair of this problem is (£( . ) ,  ~(. )) = (0, 0). Moreover, one can 
easily compute that 

V ( t , x ) = f - x e x p ( 1 - t ) ,  if x > 0 ,  
L-x, if x-<0. 

Then, 

DI~ V(O, O) = q~, D+V(O,O)=[-e,-1], 0(0) = - 1 .  

Theorem 3.1 is lacking, since it says nothing about the Hamiltonian. 
In what follows, we will show that the Hamiltonian is related to the 
superdifferential and the subdifferential of V( . , .  ) at (t, ~(t)). 

Let us explore some properties of D[~ V(t, ~(t)) beforehand. 

Proposition 3.i. Suppose that (~, ~) is optimal for problem C,~,. Then, 
a.e. t e (s, 1), for any (p, q)~ D,~x V(t, ~(t)), we have 

p= H(t,£(t), ~( t), q)=maxH(t,£(t) ,  u, q). (14) 
u~-l" 
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Proof. We note that, for a.e. t ~ (s, 1), 

li~mo ( l / h )  LL(O, ~(0), ~(0))J  LL(t, ~(t), a(t))]"  

Fix t e (s, 1) such that (15) holds. If (p, q) ~ D~  V(t, ~(t)), then 

lira V(r, ~(r)) - V(t, ~(t)) - p ( r -  t) - (q ,  ~ ( r ) -  2(t)) >_ O. 
~+---7 [r - t I + [~( r) - ~( t)] 

Hence, 

Thus, 

o < l i m / _ i  ~ r c  L(O, ~(0), 4(0)) d O - p ( r - t )  
T~-, t_ ~, 

- f ~ (q , f (  O, ~( O), 4 ( 0 ) ) ) d o l l ,  r - t ,  

= -L ( t ,  ~(t), 4 ( t ) ) - p -  (q,f(t ,  :~(t), 4(0)) .  

(1~) 

p<-H( t ,~ ( t ) , 4 ( t ) , q ) .  

Similarly, letting r~' t, we may deduce that 

p >- H(t,  ~(t), 4(t), q). 

Therefore, the left-half part of (14) holds. Since q E D~V(t ,  ~(t)), hence 
q = ~b(t) by Theorem 3.1. Now, the right-half part of (14) follows from the 
maximum principle. 

On the other hand, suppose that (p, q)~ D,+V(t, ~(t)). Then, we can 
check the left-half part of  (14) by an argument similar to the above. 
Furthermore, since V(. ,  • ) is a viscosity solution of the HJB equation (6), 

- p + s u p H ( t ,  :~(t), 4(t), q)<-0, 

which is precisely the right-half part of  (14). The proof is completed. [] 

Remark 3.2. We can see from Proposition 3.1 that, if we choose 
q(t) c (D+xV(t, :~(t)))x, where (D,+V(t, :~(t)))x means the x-section of  the 
set D ~  V( t, 2(t)) ,  which is nonempty by the forthcoming Theorem 3.2, then 
q(.  ) satisfies the maximum condition almost everywhere. Together with 
Theorem 2.1 and Theorem 3.1, we know that ~b(. ) is a continuous selection 
of the set-valued function t ~  (D+~V(t, ~(t)))x that satisfies the MP. 

Theorem 3.2. Suppose that (~, t~) is optimal for problem Csy. Then, 
for a.e. t ~ [s, 1], 

DE V(t, ~(t)) C {(H(t,  ~(t), ~(t), ~(t)) ,  ~O(t))} c D+~ V(t, ~(t)). 
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Proof, The left inclusion of  the theorem is a direct consequence of 
Proposition 3.1 and Theorem 3.1. Now, let us turn to the right one. 

Fix t~(s, t) such that (15) holds. For (T, z)~[s, 1 ] x R  d, with ¢ >  t, let 
x ( . ;  r0 z) be the solution of  (1) with control ~/, initial time ¢, and initial 
state z. Then, for any r ~ [ z, 1 ], 

x(r;r,z)-£(r)= z-~(t)-  f(O, 2(O),~(O))dO 
t 

f .r r T + fx  (0, ~(0), a(O))ix(O; ~-, z) -,~(0)) dO 

+ e(0; ~-, z)(x(O; .r, z)-.~(O)) dO, 
J T  

where e ( . ; ~ ' , z ) ~ 0 ,  as ~--~t and z~( t ) ,  and e(0; ~',z) is uniformly 
bounded. By the variation-of-constants formula, we can write 

x(r;'r,z)-~(r)=~(r,r) z-2(t)-  f(o,~(o),a(O))clO 
t 

+ I)(I , (r ,  0)e(0;  ~-, z)(x(O; ~, z)-;:(0))  dOo 

By a similar computation as in the proof of Theorem 3.1, we have 

vo-, z) - v ( t ,  ~ ( t ) )  

<-(tO(z),z-2(t)- f "f(O,Y(O), ~(O)) dO ) 

- L(O,.~(O), ~(0)) d O + o ( b - t i + I z - 2 ( t ) t )  

-- O ( t ) + / P ( t ) O - - t ) + o ( I ~ - - t l ) , z - ~ ( t ) -  f ( O , ~ ( O ) , ~ ( o ) ) d O  
t 

f, - L(O,~(O), ~(0)) dO+o(l~'- t l+lz-~(t)[)  
t 

: (~0(t), z - )? ( t ) )  + (~-- t) H(t, ~(t),  ~(t),  0( t ) )  

+ o ( l ~ -  tl + tz - ~(t)t). t16) 

Moreover, when r <  t, a similar calculation also leads to (16). Hence, the 
desired result follows. 
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Remark 3.3. Let us see what the smooth version of Theorem 3.2 is. 
In fact, if V( . , .  ) is differentiable, then Theorem 3.1 yields 

OV(t, ;(t))/Ot = H(t, .~(t), ~(t), O(t)) 

= H(t, ;(t), ~(t), OV(t, ;(t))/Ox)), 

which is well known in classical dynamic programming theory (Refs. 3, 8). 

Remark 3.4. In Ref. 9, Barron and Jensen proved the MP via the DP. 
Here, by virtue of Theorem 3.2, we can present another simple proof of the 
MP by using the DP. In fact, since (H(t,~(t) ,~(t) ,O(t)),  6(t))~ 
D+xV(t, 2(t)), by the DP, we have 

-H( t ,~( t ) ,  t~(t); O(t))+supH(t,~(t),  u, ~O(t))-< 0, 

which yields the MP. 

4. Conclusions 

The idea of viscosity solution, including the superdifferential and the 
subdifferential, can be regarded as a type of nonsmooth analysis. Dynamic 
programming and its relationship to the maximum principle is interpreted 
in the language of viscosity solutions, while the illusory assumption that 
V( . , .  ) is smooth is removed. 

Another framework of nonsmooth analysis, called generalized gradient, 
was proposed by Clarke; see Ref. 10 for a thorough treatment of the 
generalized gradient. The MP and the DP have been stated within this 
framework (Refs. 1 t, 12); more recently, Clarke and Vinter related the MP 
and DP by 

dJ(t) e OxV(t, ~(t)), (17) 

where OxV(t,.) denotes the generalized gradient of V(t,. ); see Ref. 8. 
Obviously, Theorem 3.1 in this work is an analogous result to (17), 

which suggests that the MP, the DP, and their relationship can be treated 
uniformly within the framework of viscosity solution. 
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