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Abstract This paper is concerned with hypothesis tests for g-probabilities, a class of

nonlinear probability measures. The problem is shown to be a special case of a general

stochastic optimization problem where the objective is to choose the terminal state of

certain backward stochastic differential equations so as to minimize a g-expectation.

The latter is solved with a stochastic maximum principle approach. Neyman–Pearson

type results are thereby derived for the original problem with both simple and ran-

domized tests. It turns out that the likelihood ratio in the optimal tests is nothing

else than the ratio of the adjoint processes associated with the maximum principle.

Concrete examples, ranging from the classical simple tests, financial market modelling

with ambiguity, to super- and sub-pricing of contingent claims and to risk measures,

are presented to illustrate the applications of the results obtained.
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1 Introduction

A classical simple statistical hypothesis testing problem is to design a test so as to

minimize the probability of Type II error while confining that of Type I error to a given

acceptable significance level. The Neyman–Pearson lemma gives the most powerful test

for such a problem via a critical level of the likelihood ratio; see, e.g., [9] and [35]. It is a

natural yet challenging problem to extend this lemma to simple hypothesis testing for

nonlinear probabilities. Huber and Strassen [23] studied an extended Neyman–Pearson

lemma for the so-called 2-alternating capacities (or convex capacities as typically called

in the economics literature; see for example [4], [10], [23] and [36]). But little has been

known about the non 2-alternating case in the context of hypothesis tests.

The g-probability, induced by the g-expectation, a nonlinear expectation introduced

by Peng [33] via a nonlinear backward stochastic differential equation (BSDE), is an

example of the non 2-alternating capacity. Both the g-probability and g-expectation,

apart from their own theoretical values, have found important applications in vari-

ous areas especially in finance. For example, the super- and sub-pricing of contingent

claims in an incomplete market can both be captured by the g-probability; see, e.g.,

Chen and Kulperger [7]. Ambiguity in financial modelling can be described by the g-

expectation. Indeed, Chen and Epstein [6] introduced a k-ignorance model involving

the g-probability to study ambiguity aversion. The g-probabilities/expectations have

also been found to have intimate connection with the rapidly developed risk measure

theory. Recently the so-called coherent, sublinear and convex risk measures have been

proposed (see [1], [18], [19], [20], [21] and the references therein). In Gianin [22] in-

teresting relations between the coherent/convex risk measures and the g-expectations

are revealed. Coquet et al. [8] further showed that the relation can be extended to the

dynamic setting; hence dynamic coherent or convex risk measures can be formulated

via g-expectations. More applications of g-probabilities/expectations can be found in,

e.g., [5], [6], [22], [34] and the references therein.

In view of its wide applications, it is an important problem to investigate the

hypothesis tests for g-probabilities. In this paper, we study a simple hypothesis testing

problem for g-probability measures. More precisely, we test a simple hypothesis H0:

g = g0 versus a simple alternative hypothesis H1: g = g1 where g0 and g1 are generating

functions of two possible g-probabilities. This problem is a generalization of the classical

hypothesis testing involving the (Kolmogorov) probability measure; yet very different

from that of Huber and Strassen [23] because a g-probability is inherently not 2-

alternating.

A key idea of solving the problem is to “embed” it into an optimal stochastic

control problem. This is very natural because the BSDEs defining the g-probabilities

involved readily provide the state equations. The question is what the “control variable”

should be. We take the test (the random variable serving as the terminal value of

a BSDE) as the control variable, and then use a variational technique to obtain a

stochastic maximum principle, i.e., a first-order necessary condition that characterizes

the optimal test. This “terminal perturbation technique” was indeed first introduced

by El Karoui, Peng and Quenez [14] in order to solve a recursive utility optimization

problem, and employed by Ji and Peng [24] (along with Ekeland’s variational principle)

to obtain a necessary condition for a mean–variance portfolio selection problem with

non-convex wealth equations. For its systematic application in stochastic control with

state constraints, we refer the reader to a recent paper by Ji and Zhou [25]. The present

paper, however, is the first to apply this technique to statistical hypothesis tests.
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In our approach, we consider a general stochastic optimization problem where the

objective is to choose the terminal state of certain BSDEs so as to minimize a g-

expectation subject to another g-expectation bounded by a given level. This problem

covers the testing problem for g-probabilities as a special case. We then employ a

stochastic maximum principle approach to derive a necessary condition for the opti-

mal randomized tests. Furthermore, under the convexity assumption, we prove that

the established necessary condition is sufficient. We also show that the optimal tests

can be solved by some forward-backward stochastic differential equations (FBSDEs)

with constraints. These necessary/sufficient conditions resemble in form the classical

Neyman–Pearson lemma. More interestingly, the likelihood ratio in the optimal tests

is nothing else than the ratio of the adjoint processes associated with the maximum

principle.

We finally present five concrete applications, some of which were indeed part of the

original motivation of this research, to illustrate the general results obtained. These

include the classical Neyman–Pearson lemma, the design of a financial portfolio to

learn a financial market with ambiguity, super- and sub-pricing of contingent claims,

and the minimization of the shortfall risk in hedging a risky position.

Parts of the results in this paper have been announced (without proofs) in Ji and

Zhou [26].

This paper is organized as follows: In section 2, we formulate the hypothesis test-

ing problem for g-probabilities. Some auxiliary stochastic optimization problems are

introduced and solved in section 3. In section 4, we use the general results of section 3

to derive the Neyman–Pearson type lemmas for g-probabilities. Several examples are

presented in section 5. Proofs of main results are put in Appendices A and B.

2 Problem Formulation

Let W (·) = {W (t) : 0 ≤ t ≤ T} be a standard d-dimensional Brownian motion defined

on a complete probability space (Ω,F , P ). The information structure is given by a

filtration F = {Ft}0≤t≤T , which is the augmented σ−algebra generated by W (·), with

FT = F . Denote by L2
F (0, T ; Rn) the space of all Ft−adapted processes x(·) with

values in Rn such that E
∫ T
0 | x(t) |2 dt < ∞, and by L2(Ω,FT , P ) the set of all

FT -measurable random variables ξ with value in R1 such that E | ξ |2< ∞.

Associated with a function

g = g(y, z, t) : R1 × R1×d × [0, T ] → R1

we introduce the following conditions:

(H1) g is uniformly Lipschitz in (y, z);

(H2) g(y, z, t) is continuous in t and
∫ T
0 g2(0, 0, t)dt < ∞;

(H3) g(y, 0, t) ≡ 0 ∀(y, t) ∈ R1 × [0, T ].

For any ξ ∈ L2(Ω,FT , P ) and g satisfying (H1)-(H2), the following nonlinear back-

ward stochastic differential equation (BSDE)

y(t) = ξ +

∫ T

t
g(y(s), z(s), s)ds −

∫ T

t
z(s)dWs, 0 ≤ t ≤ T (2.1)

has a unique solution (y(·), z(·)) ∈ L2
F (0, T ; R1) × L2

F (0, T ; R1×d); see [32] and [38].

This leads to the following definition of g-expectation and g-probability.
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Definition 2.1 ([33]) Given g satisfying (H1)-(H3) and ξ ∈ L2(Ω,FT , P ), let (y(·), z(·))

be the solution of (2.1). The g-expectation of ξ, denoted by Eg[ξ], is defined as Eg[ξ] =

y(0). Furthermore, for any A ∈ FT , the g-probability of A, denoted by Pg(A), is defined

as Pg[A] = Eg[1A].

Such a g-expectation is a nonlinear expectation and a g-probability is a non-additive

probability measure. They certainly depend on the particular choice of the function

g, which is called the generating function or generator, serving as a parameter, of the

expectation and the probability. Note that under (H3), for any constant c one has

Eg[c] = c.

We now introduce hypothesis tests for g-probabilities. Let G be a given set of

generating functions satisfying (H1)-(H3), and G0 ⊂ G with both G0 and G \G0 non-

empty. G is called the set of admissible hypotheses, and G0 (resp. G \G0) called a null

hypothesis H0 (resp. alternative hypothesis H1). If G0 (resp. G\G0) consists of only one

element, then it is called simple, otherwise composite. In this paper, we are concerned

with tests with a simple null hypothesis H0: g = g0 versus a simple alternative H1:

g = g1. It should be noted that there is a rich theory on simple hypothesis tests in the

classical statistics literature, including the Neyman-Pearson fundamental lemma.

Specifically, a statistical test is defined as follows.

Definition 2.2 Given g0 and g1 satisfying (H1)-(H3). A test for a simple null hypoth-

esis H0: g = g0 versus a simple alternative H1: g = g1 is an FT-measurable random

variable ξ : Ω → {0, 1}, which rejects H0 on the event {ξ = 1}. For 0 < α < 1, the test

is said to have a significance level α if Pg0(ξ = 1) ≤ α.

For an outcome of the test, i.e., a sample ω from the sample space Ω, the hypothesis

g0 is rejected (resp. accepted) if ω ∈ {ξ = 1} (resp. ω ∈ {ξ = 0}). Thus, Pg0(ξ = 1)

is the g-probability of Type I error (i.e. that of rejecting H0 when it is true), whereas

Pg1(ξ = 0) the g-probability of Type II error (i.e. that of accepting H0 when it is false).

Naturally, we need to design a test that keeps both types of error as small as possible.

However, these two types of error are often conflicting in the sense that usually the

smaller the one type the larger the other, and vice versa. Hence a common way is to

find a test that minimizes the g-probability of Type II error, among all tests that keep

the g-probability of Type I error below the given acceptable significance level α ∈ (0, 1).

In this spirit, we formulate the following problem

Minimize
ξ∈L

Pg1(ξ = 0),

subject to Pg0(ξ = 1) ≤ α,
(2.2)

where

L =
{

ξ | ξ ∈ L2(Ω,FT , P ) and ξ ∈ {0, 1} a.s.
}

.

As with the classical Neyman-Pearson lemma, one needs also to consider the ran-

domized tests (see [9], [15], [28] and [37]).

Definition 2.3 Given g0 and g1 satisfying (H1)-(H3). A randomized test for a simple

null hypothesis H0: g = g0 versus a simple alternative H1: g = g1 is an FT -measurable

random variable ξ : Ω → [0, 1], which rejects H0 with probability ξ(ω) on outcome ω.

For 0 < α < 1, the test is said to have a significance level α if Eg0 [ξ] ≤ α.
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The requirement that Eg0 [ξ] ≤ α guarantees that the hypothesis H0, if it is true,

is rejected “on average” with at most α. In other words, with such a randomized test

ξ, Eg0 [ξ] represents the averaged Type I error while Eg1 [1 − ξ] represents the averaged

Type II error.

Set

L̄ =
{

ξ | ξ ∈ L2(Ω,FT , P ) and 0 ≤ ξ ≤ 1 a.s.
}

.

For a given acceptable significance level α ∈ (0, 1), a randomized test is

Minimize
ξ∈L̄

Eg1 [1 − ξ],

subject to Eg0 [ξ] ≤ α.
(2.3)

3 General Stochastic Optimization Problems

In this section, we introduce and solve some auxiliary and general stochastic optimiza-

tion problems that include our hypothesis tests formulated in the previous section as

special cases. These problems are interesting in their own rights.

3.1 A problem with convex constraints

We start with a problem corresponding to the randomized test problem. Set

U = {ξ | ξ ∈ L2(Ω,FT , P ) and ξ ∈ K a.s.}

where K is a bounded closed convex subset in R1. In fact, in this case, K = [k1, k2]

where k1 ≤ k2. Notice that the boundary of K, ∂K = {k1, k2}, is nonconvex when

k1 < k2.

For a given constant α such that Eg0 [k1] < α < Eg0 [k2], consider the following

stochastic optimization problem:

Minimize
ξ∈U

Eg1 [h(ξ)],

subject to Eg0 [ξ] ≤ α
(3.1)

where h(y) : R1 → R1 is a given function, and g0 and g1 two given generating functions

leading to the following BSDEs:















−dy0(t) = g0(y0(t), z0(t), t)dt − z0(t)dW (t),

y0(T ) = ξ,

−dy1(t) = g1(y1(t), z1(t), t)dt − z1(t)dW (t),

y1(T ) = h(ξ).

(3.2)

The following additional assumption, which is stronger than (H1), is introduced.

(H4) g0 and g1 (resp. h) are continuously differentiable in (y, z) (resp. y) and their

derivatives are uniformly bounded.

We start with necessary conditions of an optimal solution to (3.1). Let ξ∗ be optimal

to (3.1) with (y∗0(·), z∗0(·), y∗1(·), z∗1(·)) the solution to (3.2) corresponding to ξ = ξ∗.

Denote the derivatives gi
y(t) = gi

y(y∗i (t), z∗i (t), t) and gi
z(t) = gi

z(y∗i (t), z∗i (t), t), i = 0, 1.

The following is the main result of this subsection.
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Theorem 3.1 Assume (H2)-(H4). If ξ∗ is an optimal solution to (3.1), then ξ∗ must

be of the following form

ξ∗ = k11{h1m(T )>−h0hy(ξ∗)n(T )}+b1{h1m(T )=−h0hy(ξ∗)n(T )}+k21{h1m(T )<−h0hy(ξ∗)n(T )}

(3.3)

where h1 ∈ R1, h0 ∈ R1 with h0 ≥ 0, b is a random variable with b ∈ K a.s., and

(m(·), n(·)) is the solution of the following adjoint equations:

{

dm(t) = g0
y(t)m(t)dt + g0

z(t)′m(t)dW (t), m(0) = 1,

dn(t) = g1
y(t)n(t)dt + g1

z(t)′n(t)dW (t), n(0) = 1.
(3.4)

A proof of Theorem 3.1 is relegated to Appendix A.

Also we remark that from the proof in Appendix A the above theorem holds true

when ξ is constrained in a random interval and/or when the function h is also random

(i.e., h = h(y, ω) whereas h(y, ·) is FT -measurable for each fixed y).

A natural question now is whether the form (3.3) is sufficient for an optimal solu-

tion. To address this we introduce the following convexity condition.

(H5) g0 and g1 (resp. h) are convex in (y, z) (resp. y), and h is a strictly decreasing

function.

Remark: Under (H5) the following functionals defined on U by

ξ → Eg0 [ξ],

ξ → Eg1 [h(ξ)]

are both convex (see [14]). Note that in general if Eg[·] is convex, then the corresponding

generator g is independent of y (see [27, Theorem 3.2]) given Assumption (H3). On the

other hand, Assumption (H3) is unnecessary for many results in this paper.

Let

V (α) = inf
ξ∈A(α)

Eg1 [h(ξ)] (3.5)

where A(α) = {ξ | ξ ∈ U and Eg0 [ξ] ≤ α}. Applying the classical Lagrange approach

in convex analysis (see [29]), we have

Lemma 3.2 We assume (H1), (H2) and (H5). Then there exists a constant v∗ > 0

such that

V (α) = inf
ξ∈U

{Eg1 [h(ξ)] + v∗(Eg0 [ξ] − α)}. (3.6)

Moreover, if the infimum is attained in (3.5) by ξ∗, then the infimum is attained in

(3.6) by ξ∗ with Eg0 [ξ∗] = α. Conversely, if there exist vo > 0 and ξo ∈ U such that

the infimum is achieved in inf
ξ∈U

{Eg1 [h(ξ)] + vo(Eg0 [ξ] − α)} with Eg0 [ξo] = α then the

infimum is achieved in (3.5) by ξo.

Theorem 3.3 We assume (H2), (H4) and (H5). If ξ∗ is optimal for (3.1), then there

exists a constant v > 0 and a random variable b ∈ K a.s. such that

ξ∗ = k11{vm(T )>−hy(ξ∗)n(T )} + b1{vm(T )=−hy(ξ∗)n(T )} + k21{vm(T )<−hy(ξ∗)n(T )}

(3.7)

and Eg0 [ξ∗] = α, where m(·) and n(·) are solutions of the adjoint equations (3.4).

Conversely, if ξ∗ ∈ U has the form (3.7) with Eg0 [ξ∗] = α, then ξ∗ is optimal.
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Proof. See Appendix B. �

Remark: If the generators of the g-expectations are not smooth, i.e. (H4) does

not hold, we can show that (3.7) is still a sufficient form for optimality, where the

derivatives involved should be replaced by the subdifferentials (in the sense of con-

vex analysis). Specifically, one may choose a proper measurable version of hy(ξ∗) in

∂h(ξ∗), where ∂h is the subdifferential of h. Similarly, in the adjoint equations (3.4)

(gi
y(y∗i (t), z∗i (t), t), gi

z(y∗i (t), z∗i (t), t)) should be interpreted as a vector-valued adapted

process which belongs to ∂gi(y∗i (t), z∗i (t), t) dP ⊗ dt almost surely. Here ∂gi is the

subdifferential of gi with respect to (y, z).

3.2 A problem with nonconvex constraints

Now we move on to the problem with nonconvex constraints, which is a generalized

version of the original simple test problem. Set

Ũ = {ξ | ξ ∈ L2(Ω,FT , P ) and ξ ∈ ∂K a.s.}

where K = [k1, k2], ∂K = {k1, k2}.

We are interested in the following stochastic optimization problem with (noncon-

vex) constraint:

Minimize
ξ∈Ũ

Eg1 [h(ξ)],

subject to Eg0 [ξ] ≤ α.
(3.8)

The main difficulty here, of course, is that the constraint set Ũ is nonconvex; hence

the usual convex perturbation approach fails. Thus it is difficult to derive a necessary

condition of an optimal solution to the above problem. Our purpose is to derive a

sufficient condition instead.

Theorem 3.4 Under Assumptions (H2), (H4) and (H5), if there exist a constant v > 0

and a random variable b ∈ ∂K a.s. such that

ξ∗ = k11{vm(T )>−hy(ξ∗)n(T )} + b1{vm(T )=−hy(ξ∗)n(T )} + k21{vm(T )<−hy(ξ∗)n(T )}

(3.9)

with Eg0 [ξ∗] = α, where m(·) and n(·) are the solutions of the adjoint equation (3.4),

then ξ∗ is optimal.

Proof. The proof is almost the same as that proving the sufficiency part of Theorem

3.3; hence is omitted. �

Remark: Again, a non-smooth version of Theorem 3.4 holds when g0 and g1 are

not smooth, where the derivatives are replaced by the subdifferentials.

4 Solving Hypothesis Testing Problems

In this section, we apply the general results derived in the previous section to our

hypothesis testing problems (2.2) and (2.3) respectively. Before doing so we introduce

the following assumption, which is weaker than (H3):

(H3)’ Eg[0] = 0 and Eg[1] = 1.

This assumption guarantees that 0 ≤ Eg[ξ] ≤ 1 ∀ξ ∈ L̄, based on the backward

comparison theorem (El Karoui et al. [13, Theorem 2.2]). The g-expectation whose gen-

erator g satisfies (H1)-(H2) and (H3)’ can be regarded as a generalized g-expectation.
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4.1 Simple tests

We start with the simple testing problem (2.2), which can be rewritten as

inf
ξ∈L

Eg1 [1 − ξ],

subject to Eg0 [ξ] ≤ α
(4.1)

where 0 < α < 1.

Theorem 4.1 Under Assumptions (H2), (H3)’, (H4) and (H5), if there exist a con-

stant v > 0 and a random variable b ∈ {0, 1} a.s. such that

ξ∗ = 1{vm(T )<n(T )} + b1{vm(T )=n(T )} (4.2)

with Eg0 [ξ∗] = α, where m(·) and n(·) are the solutions of adjoint equation (3.4), then

the test ξ∗ must be optimal.

Proof. Applying Theorem 3.4 with h(y) = 1 − y, ∂K = {0, 1} and 0 < α < 1, we

obtain the desired result immediately. �

Remark: The form (4.2) specifies a class of random variables that may possibly

serve as an optimal simple test. The constant v and the random variable b could be

determined by the condition Eg0 [ξ∗] = α if one further specifies certain distribution for

b. In particular, if n(T )/m(T ) has no atom, then (4.2) reduces to ξ∗ = 1{n(T )/m(T )>v},

which is indeed in exactly the same form as the classical Neyman–Pearson lemma

(where n(T )/m(T ) is the likelihood ratio).

4.2 Randomized tests

Let us now consider the randomized problem (2.3). The following is the necessary

condition without the convexity restriction on the generators.

Theorem 4.2 We assume (H2)–(H4). Let ξ∗ be an optimal randomized test. Then

there exist h1 ∈ R1, h0 ∈ R1 with h0 ≥ 0 and a random variable b ∈ [0, 1] a.s. such

that

ξ∗ = 1{h1m(T )<h0n(T )} + b1{h1m(T )=h0n(T )} (4.3)

with Eg0 [ξ∗] = α, where m(·) and n(·) are solutions of the adjoint equations (3.4).

Proof. Noting that h(y) = 1 − y, K = [0, 1] and 0 < α < 1, (4.3) follows immedi-

ately from Theorem 3.1. That Eg0 [ξ∗] = α is due to the strict comparison theorem of

BSDE. In fact, if ξ∗ is optimal and Eg0 [ξ∗] < α, then we can construct a randomized

test ξ̂ such that ξ̂ ≥ ξ∗, P (ξ̂ > ξ∗) > 0 and Eg0 [ξ̂] = α. Such a construction is feasible

due to the continuity of the solutions of BSDEs on parameters (El Karoui et al. [13,

Proposition 2.4]) and the strict comparison theorem of BSDEs (El Karoui et al. [13,

Theorem 2.2]). For this ξ̂, we have Eg1 [1− ξ∗] > Eg1 [1− ξ̂], again by virtue of the strict

comparison theorem of BSDEs, which contradicts the optimality of ξ∗. �

Under the additional convexity assumption on the generators, we have the following

sufficient and necessary condition for the optimal randomized test.
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Theorem 4.3 Under Assumptions (H2), (H3)’, (H4) and (H5), a randomized test ξ∗

is optimal if and only if there exist a constant v > 0 and a random variable b ∈ [0, 1]

a.s. such that

ξ∗ = 1{vm(T )<n(T )} + b1{vm(T )=n(T )} (4.4)

and

Eg0 [ξ∗] = α

where m(·) and n(·) are the solutions of the adjoint equations (3.4).

Proof. This is a direct deduction of Theorem 3.3. �

In addition to the characterization of an optimal test, a question of interest is

whether we know a priori that such an optimal test exists. Such an existence problem

is addressed in the following theorem.

Theorem 4.4 Under Assumptions (H2), (H3)’, (H4) and (H5), there must exist a

unique optimal randomized test to problem (2.3).

Proof. The following functional

J(ξ) = Eg1 [1 − ξ], ξ ∈ L̄

is convex. However, L̄ is bounded, closed and convex; hence it is weakly compact. Since

ξ 7→ J(ξ) is strongly continuous (see [13] and [14]) and convex, by classical results in

convex analysis (see [3]), J is weakly lower-semicontinuous. Thus the minimum of the

problem (2.3) is attained (see, e.g., [3, Corollary 3.20]). The proof is complete. �

The next question is what a general procedure is to compute the optimal random-

ized test ξ∗. Indeed, we can obtain ξ∗ by solving the following forward–backward SDE

(FBSDE) system



































dm(t) = g0
y(y0(t), z0(t), t)m(t)dt + g0

z(y0(t), z0(t), t)m(t)dW (t),

−dy0(t) = g0(y0(t), z0(t), t)dt − z0(t)dW (t),

m(0) = 1, y0(T ) = ξ∗,

dn(t) = g1
y(y1(t), z1(t), t)n(t)dt + g1

z(y1(t), z1(t), t)n(t)dW (t),

−dy1(t) = g1(y1(t), z1(t), t)dt − z1(t)dW (t),

n(0) = 1, y1(T ) = 1 − ξ∗,

(4.5)

together with the constraints ξ∗ = 1{vm(T )<n(T )} + b1{vm(T )=n(T )} and Eg0 [ξ∗] = α.

Note that there has been now a rich theory on solving a FBSDE system (where the

unknowns are the 6-turple (m, n, y0, z0, y1, z1)), both analytically and numerically, like

(4.5); see, e.g., [11], [30], [31], [38] and [39].

In [23] an important representation theorem is derived which states that a test for

capacities has a “representation” in terms of a test for usual probabilities in the sense

that the two tests have the same likelihood ratio. By virtue of the explicit form in The-

orem 4.3, n(T )/m(T ) can be considered as a (generalized) likelihood ratio for our test

(see also Section 5.1 for elaboration on this point), we have the similar representation

theorem for g-capacities.

Theorem 4.5 There exist two probability measures Q0 and Q1 which are absolutely

continuous with respect to the probability measure P such that the randomized test

between Pg0 and Pg1 has the same likelihood ratio as a test between Q0 and Q1.
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Proof. In view of Theorem 4.3 the likelihood ratio of a randomized test between

Pg0 and Pg1 is
n(T )
m(T )

. Thus we can define two probability measures Q0 and Q1 such that

the Radon-Nikodym derivative dQ0/dP (resp. dQ1/dP ) is equal to m(T )/EP [m(T )]

(resp. n(T )/EP [n(T )]). �

Let us conclude this section by remarking that in this paper we assume that g is a

deterministic function for simplicity. The g-expectation and probability can be defined

for a more general random generator g (see [33]). All the results in this paper still hold

when the generators involved are proper stochastic processes.

5 Applications

In this section, five examples are given to illustrate applications of the general results

obtained.

5.1 Neyman–Pearson lemma for probabilities

We start with specializing our results to the classical Neyman-Pearson lemma (see

[9] and [28]) for usual probabilities. Suppose there is a nominal probability measure

µ and a standard d-dimensional Brownian Motion, W µ(·), defined on the complete

probability space (Ω,F , µ). For two real vectors θ and φ, we define

m(T ) = exp{θ′Wµ(T ) −
1

2
T ‖ θ ‖2}, n(T ) = exp{φ′Wµ(T ) −

1

2
T ‖ φ ‖2}.

Suppose that a probability measure Q (resp. P ) is absolutely continuous with re-

spect to µ on F which admits the Radon-Nikodym derivative m(T ) (resp. n(T )). Our

purpose is to test the ‘hypothesis’ Q against an ‘alternative’ P . In other words, we try

to find a randomized test which solves the following problem:

inf
ξ∈L̄

EP [1 − ξ],

subject to EQ[ξ] ≤ α.

By Girsanov’s theorem, we have that EQ[ξ] = Eµ[m(T )ξ], EP [ξ] = Eµ[n(T )ξ].

On the other hand, EQ and EP are (very special) g-expectations: EQ[ξ] = Eg0 [ξ],

EP [ξ] = Eg1 [ξ], with the following generators

g0(y, z, t) = zθ, g1(y, z, t) = zφ.

Hence, by Theorem 4.3, the optimal randomized test has the form

ξ∗ = 1{vm(T )<n(T )} + b1{vm(T )=n(T )}

where v > 0 is a constant and b ∈ [0, 1] is a random variable. However, θ and φ

are deterministic vectors implying that µ(vm(T ) = n(T )) = 0. Thus, the optimal

ξ∗ = 1{vm(T )<n(T )}, recovering the classical Neyman–Pearson lemma.

Since n(T )/m(T ) is known to be the likelihood ratio in this particular example,

we have an interpretation of the adjoint processes governed by (3.4) for the general

g-probability case: n(T )/m(T ) can be seen as a generalization of the “likelihood ratio”.

In Huber and Strassen [23], they derived a generalized Radon-Nikodym derivative of

a capacity with respect to another capacity. Our results show that such a generalized

Radon-Nikodym derivative in our context is nothing else than the ratio of the adjoint

processes.
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5.2 Learning a financial market with ambiguity

In this example, we consider a financial market model where the risk premium process

is ambiguous to the investor, and the investor hopes to “learn” the market by choosing

an appropriate portfolio and observing the resulting final wealth position.

Assume there are one bank account (risk free instrument) and d stocks (risky

instruments) in a financial market. The respective prices S0(·) and S1(·), · · · , Sd(·) are

governed by the equations

dS0(t) = rS0(t)dt, S0(0) = s0,

dSi(t) = Si(t)[bi(t)dt +
d
∑

j=1
σijdWµ(t)], Si(0) = si > 0; i = 1, . . . , d

where Wµ(·) is a standard d-dimensional Brownian Motion defined on a complete

probability space (Ω,F , µ). We adopt the usual assumptions: the interest rate r > 0,

and the stock-volatility matrix σ = {σij}1≤i,j≤d is assumed to be invertible. Set B :=

(b1 − r, . . . , bm − r)′. The risk premium η is defined by η ≡ (η1, . . . , ηm)′ := σ−1B.

However, η is ambiguous to the investor, which is usually caused by the so-called mean–

blue problem, namely, the difficulty in estimating the appreciation rates b1, . . . , bd. For

simplicity, we suppose that there are only two possibilities: η(·) = θ (hypothesis) versus

η(·) = φ (alternative). Our question is: can the investor design a trading strategy so

that s/he can learn the real risk premium by simply observing the corresponding final

wealth position? In other words, if s/he wants to use the wealth X(T ) as a sample to test

the above simple hypothesis, what should be the best form of X(T )? After obtaining

the optimal X∗(T ), one can get the corresponding portfolio π∗(·) by replicating X∗(T ),

since the market is complete in our setup.

We recall that the wealth process X(·) of the investor satisfies the following equation

{

dX(t) = [rX(t) + π(t)′ση]dt + π(t)′σdWµ(t),

X(0) = x,
(5.1)

where x is the initial wealth and π(·) ≡ (π1(·), . . . , πm(·))′ is a trading strategy (or

portfolio). Here πi(t) is the amount of money held in the ith stock at time t.

Set y(t) = e−rtX(t) and z(t) = e−rtπ(t)′σ, then the dynamics of (5.1) can be

rewritten as

−dy(t) = −z(t)η(t)dt − z(t)dW µ(t).

Denote by Q (resp. P ) the probability measure which admits the Radon-Nikodym

derivative m(T ) (resp. n(T )) with respect to µ on F where

m(T ) = exp{θ′Wµ(T ) −
1

2
T ‖ θ ‖2}, n(T ) = exp{φ′Wµ(T ) −

1

2
T ‖ φ ‖2}.

We are now in the framework of Section 5.1. Hence the optimal randomized test has

the form e−rT X∗(T ) = 1{vm(T )<n(T )} or

X∗(T ) = erT 1{vm(T )<n(T )}.

This is the payoff of a digital (or binary) option, and one can use a standard Black–

Scholes approach to find the corresponding replicating strategy. The details are left to

the interested reader.
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5.3 Super-pricing a contingent claim

In this subsection we consider the super-pricing

sup
Q∈P

EQ[ξ]

of a contigent claim ξ where

P =

{

Q |
dQ

dP
= exp{−

1

2

∫ T

0
| vt |

2 dt +

∫ T

0
vtdWt}, sup

t∈[0,T ]
| vt |≤ k

}

.

The problem is addressed in [6], [7] and [13] via g-expectation. By Lemma 2 in

[7], the above pricing problem can be described by a g-expectation with the generator

ḡ(y, z, t) = k | z | where k is a positive constant. Our simple hypothesis testing problem

is to test

H0 : ḡ = ḡ0 versus a simple alternative hypothesis H1 : ḡ = ḡ1

where

ḡ0(y, z, t) = θ | z |, ḡ1(y, z, t) = φ | z | .

Specifically, for a given α ∈ (0, 1) we need to solve the following optimization problem

inf
ξ∈L̄

Eḡ1 [1 − ξ],

subject to Eḡ0 [ξ] ≤ α.
(5.2)

Note that in this case the generator is convex, yet inherently non-differentiable

at z = 0. As remarked earlier we have only a sufficient condition for the optimal

randomized test. More precisely, if there exist a constant v > 0 and a random variable

b ∈ [0, 1] such that a randomized test ξ = 1{vm(T )<n(T )} + b1{vm(T )=n(T )} satisfies

Eḡ0 [ξ] = α, then ξ is an optimal test. Here m(·) and n(·) are the solutions of the

following adjoint equations:

{

dm(t) = m(t)ḡ0
z(t)dW (t), m(0) = 1,

dn(t) = n(t)ḡ1
z(t)dW (t), n(0) = 1,

with ḡi
z(t), i = 0, 1, denoting an adapted process belonging dP ⊗ dt almost surely to

∂gi(z∗i (t)), where ∂ḡi is the subdifferential of ḡi with respect to z.

5.4 A k-ignorance model and sub-pricing a contingent claim

Chen and Epstein [6] formulates a so-called k-ignorance model to incorporate the notion

of ambiguity aversion. It leads to a g-expectation whose generator is g(y, z, t) = −k | z |,

where k is a positive constant describing the degree of ambiguity aversion. On the

other hand, the same generator describes the sub-pricing counterpart of the problem

in Subsection 5.3:

inf
Q∈P

EQ[ξ].

Similarly, we consider the situation where k is unknown and we only know that it

is either θ or φ. Then our simple hypothesis testing problem is to test

H0 : g = g0 versus H1 : g = g1
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where

g0(y, z, t) = −θ | z |, g1(y, z, t) = −φ | z | .

However, in this case, it is difficult to solve the optimization problem

inf
ξ∈L̄

Eg1 [1 − ξ],

subject to Eg0 [ξ] ≤ α,
(5.3)

directly, since now g0 and g1 are concave in z, and hence the general theory developed

in the previous sections (especially the sufficient condition) does not apply. To get

around, we consider instead of (5.3) the following dual problem

sup
ξ∈L̄

Eg1 [ξ],

subject to Eg0 [1 − ξ] ≥ β
(5.4)

where β ∈ (0, 1) can be interpreted as the power of the randomized test ξ.

Now we transform problem (5.4) into a problem like (5.2). For any constant c and

ξ ∈ L̄, it is easy to check that

−Eg[−ξ] = Eḡ[ξ], −Eḡ[−ξ] = Eg[ξ];

Eg[c + ξ] = c + Eg[ξ], Eḡ[c + ξ] = c + Eḡ[ξ].

Thus, problem (5.4) becomes

inf
ξ∈L̄

(Eḡ1 [1 − ξ] − 1),

subject to Eḡ0 [ξ] ≤ 1 − β
(5.5)

which is problem (5.2) if α = 1 − β.

5.5 Minimizing shortfall risk

In a complete financial market, if the seller of a contingent claim does not have enough

initial wealth, he may fail to hedge the contingent claim perfectly. Thus, he must

face some shortfall risk. Föllmer and Leukert [17] use the expectation of the shortfall

weighted by the loss function as a shortfall risk measure. In this subsection, we use a

general measure, the convex risk measure, to evaluate the shortfall and consequently

minimize such a shortfall risk.

We suppose that the complete financial market model is the same as in Section

5.2, except now that there is no ambiguity in the risk premium process. For simplicity,

we assume that the interest rate r ≡ 0. Let H be a given contingent claim which

is a nonnegative random variable in L2(Ω,F , P ). It is well known that there is a

unique equivalent martingale measure P ∗ ≈ P such that the price of H at time 0 is

H0 = EP∗ [H]. If the seller’s initial wealth X̃0 is smaller than H0, he cannot perfectly

hedge H and the shortfall is −(H − XT )+.

Now we need to measure appropriately the shortfall −(H − XT )+. Recall that a

convex risk measure is a map from X , a proper set of financial positions, to R, satisfying

the monotonicity, translation invariance, and convexity; see Föllmer and Schied [19] for
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details. As in [22], we take X =L2(Ω,F , P ) in our case and introduce a risk measure

ρg : L2(Ω,F , P ) → R by

ρg(X) = Eg[−X], ∀X ∈ L2(Ω,F , P )

where the generator g is convex and satisfies (H2)-(H4). It follows from Proposition 11

in [22] that ρg is a convex risk measure.

Consequently, the seller of the contingent claim will solve the following optimization

problem:
inf
π(·)

ρg(−(H − XT )+),

subject to X0 ≤ X̃0

where X0 is the initial wealth used to hedge the claim. Since X0 = EP∗ [XT ], the above

problem is equivalent to
inf
XT

Eg((H − XT )+),

subject to EP∗ [XT ] ≤ X̃0.
(5.6)

Now we show that the optimal X∗
T must satisfy 0 ≤ X∗

T ≤ H. In fact, if P (X∗
T >

H) > 0, we can construct a feasible terminal wealth X̃T such that 0 ≤ X̃T ≤ H and

(H − X̃T )+ < (H − X∗
T )+. Thus, Eg((H − X̃T )+) < Eg((H − X∗

T )+) by the strict

comparison theorem of BSDEs. This leads to a contradiction.

Thus, without loss of generality we assume that 0 ≤ XT ≤ H and (5.6) becomes

inf
0≤XT ≤H

Eg(H − XT ),

subject to EP∗ [XT ] ≤ X̃0.
(5.7)

Note that EP∗ is a trivial g-expectation with a linear generator. Thus, in view

of the remark immediately following Theorem 3.1, (5.7) is essentially a special case

of problem (3.1) where h(XT ) = H − XT – except that now XT is constrained in a

random interval: 0 ≤ XT ≤ H and h is a random function.

Following the proof in section 3.1, we have that there exist a positive number v and

a random variable b (0 ≤ b ≤ H) such that the optimal terminal wealth X∗
T satisfies

X∗
T = 1{v<n(T )} + b1{v=n(T )}

and

EP∗ [X∗
T ] = X̃0

where n(T ) is the solutions of the following adjoint equation at time T .

{

dn(t) = gy(t)n(t)dt + gz(t)′n(t)dW (t),

n(0) = 1.

Similar to Theorem 4.5, we can obtain the optimal terminal wealth by solving the

following forward backward system:































−dy(t) = g(y(t), z(t), t)dt − z(t)dW (t),

y(T ) = H − X∗
T ,

dn(t) = gy(t)n(t)dt + gz(t)′n(t)dW (t),

n(0) = 1,

EP∗ [X∗
T ] = X̃0,

X∗
T = 1{v<n(T )} + b1{v=n(T )}.
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After obtaining the optimal terminal wealth X∗
T , we can get the optimal strategy

π(·) by replicating X∗
T .

Remark: Even when the wealth equation in question is nonlinear (e.g. when the

risk-free borrowing rate is different from the lending rate), our method still works. This

is because the approach developed in section 3 is not only suitable for g-expectations

but also for BSDEs satisfying the usual assumptions.

A

This appendix is devoted to a proof of Theorem 3.1. First of all, for each 0 ≤ ρ ≤ 1 and ξ ∈ U ,
define ξρ = ξ∗ + ρ(ξ − ξ∗). Let (yρ

0
(·), zρ

0
(·), yρ

1
(·), zρ

1
(·)) be the solution to (3.2) corresponding

to ξ = ξρ, and (ŷ0(·), ẑ0(·), ŷ1(·), ẑ1(·)) be the solution of the following variational equations:















−dŷ0(t) = (g0
y(t)ŷ0(t) + g0

z(t)ẑ0(t))dt − ẑ0(t)dW (t),
ŷ0(T ) = ξ − ξ∗,

−dŷ1(t) = (g1
y(t)ŷ1(t) + g1

z(t)ẑ1(t))dt − ẑ1(t)dW (t),
ŷ1(T ) = hy(ξ∗)(ξ − ξ∗).

(A0)

For i = 0, 1, set

ỹ
ρ
i (t) = ρ−1(yρ

i (t) − y∗
i (t)) − ŷi(t)

z̃
ρ
i (t) = ρ−1(zρ

i (t) − z∗i (t)) − ẑi(t)

Lemma A1 Assume (H2)-(H4). Then

lim
ρ→0

E( sup
0≤t≤T

[ỹρ
i (t)2]) = 0,

lim
ρ→0

(E[
∫ T

0
| z̃

ρ
i (t) |2 dt]) = 0, i = 0, 1.

Proof. We only prove for i = 0. From (3.2) and (A0) it follows







−dỹ
ρ
0
(t) = ρ−1[g0(yρ

0
(t), zρ

0
(t), t) − g0(y∗

0
(t), z∗

0
(t), t) − ρg0

y(y∗
0
(t), z∗

0
(t), t)ŷ0(t)

−ρgi
z(y∗

0
(t), z∗

0
(t), t)ẑ0(t)]dt − z̃

ρ
0
(t)′dW (t),

ỹ
ρ
0
(T ) = 0.

Let

Aρ(t) =

∫

1

0

g0

y(y∗
0(t) + λρ(ŷ0(t) + ỹ

ρ
0
(t)), z∗0 (t) + λρ(ẑ0(t) + z̃

ρ
0
(t)), t)dλ,

Bρ(t) =

∫

1

0

g0

z(y∗
0(t) + λρ(ŷ0(t) + ỹ

ρ
0
(t)), z∗0 (t) + λρ(ẑ0(t) + z̃

ρ
0
(t)), t)dλ,

Cρ(t) = [Aρ(t) − g0

y(y∗
0(t), z∗0 (t), t)]ŷ0(t) + [Bρ(t) − g0

z(y∗
0(t), z∗0 (t), t)]ẑ0(t).

Then
{

−dỹ
ρ
0
(t) = (Aρ(t) · ỹρ

0
(t) + Bρ(t) · z̃ρ

0
(t) + Cρ(t))dt − z̃

ρ
0
(t)′dW (t),

ỹ
ρ
0
(T ) = 0.

A standard estimation on the above BSDE (see, e.g., [38, p.349]) yields

E( sup
0≤t≤T

[ỹρ
i (t)2]) + E

∫ T

t

| z̃
ρ
0
(s) |2 ds

≤ KE

∫ T

t

| ỹ
ρ
0
(s) |2 ds + KE

∫ T

t

| Cρ(s) |2 ds

where K > 0 is a constant. However, the Lebesgue dominated convergence theorem implies

lim
ρ→0

E

∫ T

0

| Cρ(t) |2 dt = 0.
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The desired result follows by applying Grownwall’s inequality. �
Let d(·, ·) be the metric in U naturally induced by its norm, and introduce a mapping

Fε(·) : U → R by

Fε(ξ) =
(

(Eg0 [ξ] − α)2 + (max(0, Eg1 [h(ξ)] − Eg1 [h(ξ∗)] + ε))2
) 1

2

where ε is a given positive constant. It is easy to verify that Fε(·) is a continuous functional
on U .

Remark: In the following proof, we only prove the case where the optimal ξ∗ satisfies
Eg0 [ξ∗] = α (i.e. the constraint is binding). If Eg0 [ξ∗] < α, then we need only to redefine Fε(ξ)
as

Fε(ξ) =
(

(max(0, Eg1 [h(ξ)] − Eg1 [h(ξ∗)] + ε))2
) 1

2

and the proof is similar.
Lemma A2 Under the assumptions of Theorem 3.1, there must exist h1 ∈ R1, h0 ∈ R1

with h0 ≥ 0 and |h0| + |h1| = 1 such that the following variational inequality holds

h1ŷ0(0) + h0ŷ1(0) ≥ 0 (A1)

where ŷi(0), i = 0, 1, are the solutions of (A0) valued at time 0.
Proof. It is easy to check that

Fε(ξ
∗) = ε; Fε(ξ) > 0 ∀ξ ∈ U,

which leads to Fε(ξ∗) ≤ inf
ξ∈U

Fε(ξ) + ε. Thus by Ekeland’s variational principle ([12, Theorem

1.1]), there exists ξε ∈ U such that

(i) Fε(ξε) ≤ Fε(ξ∗),
(ii) d(ξε, ξ∗) ≤ √

ε,
(iii) Fε(ξ) +

√
εd(ξ, ξε) ≥ Fε(ξε) ∀ξ ∈ U.

For any ξ ∈ L2 and 0 ≤ ρ ≤ 1 introduce the following notation

ξ̂ = ξ − ξ∗, ξ̂ε = ξ − ξε, ξε
ρ = ξε + ρξ̂ε.

Then we have
Fε(ξ

ε
ρ) +

√
εd(ξε

ρ, ξε) − Fε(ξ
ε) ≥ 0 (A2)

where
d(ξε

ρ, ξε) = (E | ρξ̂ε |2)
1

2 = ρ(E | ξ̂ε |2)
1

2 .

Consider the following variational equation















−dŷε
0
(t) = [g0

y(yε
0
(t), zε

0
(t), t)ŷε

0
(t) + g0

z(yε
0
(t), zε

0
(t), t)ẑε

0
(t)]dt − ẑε

0
(t)dW (t),

ŷε
0
(T ) = ξ̂ε,

−dŷε
1
(t) = [g1

y(yε
1
(t), zε

1
(t), t)ŷε

1
(t) + g1

z(yε
1
(t), zε

1
(t), t)ẑε

1
(t)]dt − ẑε

1
(t)dW (t),

ŷε
1
(T ) = hy(ξε)ξ̂ε

(A3)

where (yε
0
(·), zε

0
(·), yε

1
(·), zε

1
(·)) is the solution to (3.2) corresponding to ξ = ξε. A similar result

to Lemma A1 has

lim
ρ→0

| ρ−1(Egi [ξε
ρ] − Egi [ξε]) − ŷε

i (0) |= 0, i = 0, 1,

namely,
Egi [ξε

ρ] − Egi [ξε] = ρŷε
i (0) + o(ρ).

This leads to the following expansions:

| Eg0 [ξε
ρ] − α |2 − | Eg0 [ξε] − α |2= 2ρ(Eg0 [ξε] − α)ŷε

0(0) + o(ρ);

| Eg1 [ξε
ρ] − Eg1 [h(ξ∗)] + ε |2 − | Eg1 [ξε] − Eg1 [h(ξ∗)] + ε |2

= 2ρŷε
1(0)(Eg1 [ξε] − Eg1 [h(ξ∗)] + ε) + o(ρ).
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Now consider two cases:
Case 1 : For sufficiently small ρ > 0, Eg1 [h(ξε

ρ)] − Eg1 [h(ξ∗)] + ε > 0. In this case,

lim
ρ→0

Fε(ξε
ρ) − Fε(ξε)

ρ

= lim
ρ→0

1

Fε(ξε
ρ) + Fε(ξε)

[Fε(ξε
ρ)]2 − [Fε(ξε)]2

ρ

=
1

Fε(ξε)

{

(Eg0 [ξε] − α)ŷε
0(0) + (Eg1 [ξε] − Eg1 [h(ξ∗)] + ε)ŷε

1(0)
}

.

Set

hε
1 =

Eg0 [ξε] − α

Fε(ξε)
, hε

0 =
1

Fε(ξε)
[Eg1 [ξε] − Eg1 [h(ξ∗)] + ε] ≥ 0.

It then follows from (A2) that

hε
1ŷε

0(0) + hε
0ŷε

2(0) ≥ −
√

ε(E | ξ̂ε |2)
1

2 . (A4)

Case 2 : There exists {ρn} ↓ 0 such that Eg1 [h(ξε
ρn

)] − Eg1 [h(ξ∗)] + ε ≤ 0. In this case,

Fε(ξε
ρn

) =| Eg0 [ξε
ρn

] − α |. Hence

lim
ρn→0

Fε(ξε
ρn

) − Fε(ξε)

ρn

=
1

Fε(ξε)
(Eg0 [ξε] − α)ŷε

0(0).

Setting

hε
1 =

Eg0 [ξε] − α

Fε(ξε)
, hε

0 = 0,

then clearly (A4) holds as well for this case.
In summary, for a given ε, we have (i) A4) holds, (ii) hε

0
≥ 0, and (iii) | hε

0
|2 + | hε

1
|2= 1

for both cases. Consequently, there exists a converging subsequence of (hε
0
, hε

1
) (still denoted

by (hε
0
, hε

1
)) with the limit (h0, h1). Since hε

0
≥ 0, we have h0 ≥ 0. On the other hand, it is

easy to check that ŷε
1
(0) → ŷ0(0), ŷε

1
(0) → ŷ1(0) as ε → 0. This proves (A1). �

Proof of Theorem 3.1. Applying Itô’s lemma to h0ŷ1(t)n(t) + h1ŷ0(t)m(t) and using
(A0) and (3.4), we have

E[(h0ŷ1(T )n(T ) + h1ŷ0(T )m(T )) − (h0ŷ1(0)n(0) + h1ŷ0(0)m(0))] = 0.

However,

E[h0ŷ1(T )n(T ) + h1ŷ0(T )m(T )] = E〈h0hy(ξ∗)n(T ) + h1m(T ), ξ − ξ∗〉.

It then follows from (A1) that

E〈h0hy(ξ∗)n(T ) + h1m(T ), ξ − ξ∗〉 ≥ 0.

Since the above is true for any ξ ∈ U , we have

〈h1m(T ) + h0hy(ξ∗)n(T ), u − ξ∗〉 ≥ 0 a.s., ∀u ∈ K.

Set
Ω̄ , {ω ∈ Ω | ξ∗(ω) ∈ ∂K}.

Thus, for each u ∈ K,

〈h1m(T ) + h0hy(ξ∗)n(T ), u − ξ∗〉 ≥ 0 a.s. on Ω̄,

h1m(T ) + h0hy(ξ∗)n(T ) = 0 a.s. on Ω̄c.

This leads to

h0n(T ) = h1m(T ) a.s. on {k1 < ξ∗ < k2};
h0n(T ) ≤ h1m(T ) a.s. on {ξ∗ = k1};
h0n(T ) ≥ h1m(T ) a.s. on {ξ∗ = k2}.

It is easy to see that (3.3) holds. The proof is complete. �
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B

In this appendix we prove Theorems 3.3.

Proof of Theorem 3.3. (1) To prove the necessary condition. Let ξ∗ be optimal and
(y∗

0
, z∗

0
) and (y∗

1
, z∗

1
) be the corresponding solutions with respect to g0 and g1. Take ξ ∈ U .

Then, for each 0 ≤ ρ ≤ 1, ξρ = ξ∗ + ρ(ξ − ξ∗) ∈ U since K is a convex set.. Let (ŷi, ẑi) be the
solution of the variational equation (A0), and (yρ

i , z
ρ
i ) be the solution to (3.2) associated with

generator gi and terminal condition ξρ, i = 1, 2. Finally, set

ỹ
ρ
i (t) = ρ−1(yρ

i (t) − y∗
i (t)) − ŷi(t)

z̃
ρ
i (t) = ρ−1(zρ

i (t) − z∗i (t)) − ẑi(t).

Similar to Lemma A1, we have the following convergence results:

lim
ρ→0

( sup
0≤t≤T

E[ỹρ
i (t)2]) = 0, lim

ρ→0

(E[

∫ T

0

| z̃
ρ
i (t) |2 dt]) = 0.

Since ξ∗ is optimal, for each 0 ≤ ρ ≤ 1, we have

Eg1 [(ξρ)] + v(Eg0 [ξρ] − α) ≥ Eg1 [h(ξ∗)] + v(Eg0 [ξ∗] − α).

Dividing the inequality by ρ and letting ρ → 0, we have

ŷ1(0) + vŷ0(0) ≥ 0 (B1)

where ŷi(0) denotes the solution of (A0) at time 0. Applying Itô’s lemma to ŷ1(t)n(t) +
vŷ0(t)m(t) and noting (3.4) we have s

E[(ŷ1(T )n(T ) + vŷ0(T )m(T )) − (ŷ1(0)n(0) + vŷ1(0)m(0))] = 0.

It follows from (B1) that

E[ŷ1(T )n(T ) + vŷ0(T )m(T )]

= E[(hy(ξ∗)n(T ) + vm(T ))(ξ − ξ∗)] ≥ 0.

A standard analysis shows that

〈vm(T ) + hy(ξ∗)n(T ), u − ξ∗〉 ≥ 0, a.s., ∀u ∈ K.

Hence, similar to the proof of Theorem 3.1, (3.7) holds.
Eg0 [ξ∗] = α is due to the strict backward comparison theorem.

(2) To prove the sufficient condition. For any ξ ∈ U , we want to prove

Eg1 [h(ξ)] + v(Eg0 [ξ] − α) ≥ Eg1 [h(ξ∗)] + v(Eg0 [ξ∗] − α)

or
Eg1 [h(ξ)] − Eg1 [h(ξ∗)] + v(Eg0 [ξ] − Eg0 [ξ∗]) ≥ 0.

Set

f1(y, z, t) = g0(y∗
0(t) + y, z∗0 (t) + z, t) − g0(y∗

0(t), z∗0 (t), t),

f2(y, z, t) = g0

y(y∗
0(t), z∗0 (t), t)y + g1

z(y∗
0(t), z∗0 (t), t)z.

Consider (A0) and the following equation







−d(y0(t) − y∗
0
(t)) = [g0(y0(t), z0(t), t) − g0(y∗

0
(t), z∗

0
(t), t)]dt − (z0(t) − z∗

0
(t))dW (t),

= [f1(y0(t) − y∗
0
(t), z0(t) − z∗

0
(t), t)dt − (z0(t) − z∗

0
(t))dW (t),

y0(T ) − y∗
0
(T ) = ξ − ξ∗.



19

By assumption (H5),

f1(y, z, t) ≥ f2(y, z, t) ∀y, z, dP ⊗ dt − a.s.

Using the comparison theorem, we have

y0(t) − y∗
0(t) ≥ ŷ0(t) ∀t, P − a.s.

where ŷ0(t) is the solution of (A0). Using the similar analysis, we obtain

y1(t) − y∗
1(t) ≥ ŷ1(t).

Thus, we have

Eg1 [h(ξ)] − Eg1 [h(ξ∗)] + v(Eg0 [ξ] − Eg0 [ξ∗])
= y1(0) − y∗

1
(0) + v[y0(0) − y∗

0
(0)]

≥ ŷ1(0) + vŷ0(0)
= E[ŷ1(T )n(T ) + vŷ0(T )m(T )]
= E[(ξ − ξ∗)(vm(T ) + hy(ξ∗)n(T ))].

Since we assume that (3.7) holds, it is easy to prove

E[(ξ − ξ∗)(vm(T ) + hy(ξ∗)n(T ))] ≥ 0.

By Lemma 3.2, we obtain the result. �
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