
ar
X

iv
:2

30
4.

06
93

8v
1 

 [
q-

fi
n.

M
F]

  1
4 

A
pr

 2
02

3

Robust utility maximization with intractable claims

Yunhong Li∗ Zuo Quan Xu† Xun Yu Zhou‡

April 17, 2023

Abstract

We study a continuous-time expected utility maximization problem in which

the investor at maturity receives the value of a contingent claim in addition to the

investment payoff from the financial market. The investor knows nothing about

the claim other than its probability distribution, hence an “intractable claim”. In

view of the lack of necessary information about the claim, we consider a robust

formulation to maximize her utility in the worst scenario. We apply the quantile

formulation to solve the problem, expressing the quantile function of the optimal

terminal investment income as the solution of certain variational inequalities of

ordinary differential equations. In the case of an exponential utility, the problem

reduces to a (non-robust) rank–dependent utility maximization with probability

distortion whose solution is available in the literature.

Keywords: Intractable claim; robust model; quantile formulation; calculus of

variations; variational inequalities; rank-dependent utility.
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1 Introduction

The expected utility models have taken a central position in modern financial portfolio

selection theory. In a typical expected utility model, an investor looks for the best

portfolio in a given financial market to maximize her utility, based on a dynamically

expanding body of information and subject to various constraints. There are also the

so-called partial information models in which not all the information are available to the

investor and she needs to continuously observe some related information processes to
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gain better understanding of the underlying market over time, using techniques such as

filtering theory and adaptive controls.

In practice, however, there are situations where people, facing future contingent claims

(incomes or liabilities) that cannot be understood even if the time is very close to maturity,

aim to maximize the utility of a total sum including payoffs from the stock investment as

well as those “external” claims . For instance, the claim of an insurance contract is not

revealed until the related event occurs, the down payment of a mortgage is only known

when the purchase has been made, and the value of the employer’s stock option may have

little to do with the general stock market. These expected utility models are essentially

different from the typical partial information models mentioned above because, while the

probability distributions of these claims can be estimated, little or no information on

their correlations with the financial market are available. Such a claim, about which we

know nothing but its own distribution, is termed an “intractable claim” in Hou and Xu

[7].

Because intractable claims are not predictable nor hedgeable until they are realized,

classical stochastic control including filtering theory is not applicable. Hou and Xu [7]

formulate and investigate a continuous-time Markowitz’s mean–variance model with an

intractable claim and the objective to minimize the robust variance in the worst scenario.

The special structure of the mean–variance setting allows them to use the completion-of-

squares and quantile optimization techniques to derive the optimal solution.

In this paper we consider a continuous-time expected utility model (i.e. Merton’s

problem) with an intractable claim. The usual maximization of expected utility is not

even well defined because one cannot compute the expected utility of the sum of the

investment payoff form the market and the intractable claim without knowing the joint

distribution of the two. Instead, we introduce a robust model whose objective is to

maximize in the worst scenario, namely, to maximize the smallest possible expected

utility of the total terminal income over all possible realizations of the intractable claim.

While this formulation is inspired by [7], our model loses the mean–variance structure so

the approach there largely fails to work here.

At a first glance, the robust model still involves the expected utility of two random

payoffs whose correlation is unknown so the aforementioned difficulty seems to be intact.

However, we prove that at the minimum expected utility the two random incomes can

be separated through the sum of the (marginal) quantile functions of the two; hence the

robust measure is computable based on the respective information about the market and

the claim.

The idea of taking the quantile functions, instead of random variables, as the decision

variable to study preference functionals goes back to at least Schied [20]. Jin and Zhou [10]

employ the quantile method to overcome the difficulty arising from probability distortion

in a continuous-time behavioral portfolio selection model featuring cumulative prospect
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theory. He and Zhou [6] put forward a unified theory on this approach that can be

used to solve both expected and non-expected utility models and coin the term “quantile

formulation”. The theory has been further developed since then; see e.g. [30, 26, 5, 27,

7, 25, 28, 29].

In this paper, we apply the quantile formulation to tackle our problem. From the

“first-order condition” of the corresponding calculus of variation for quantile, we derive

an ordinary integro–differential equation (OIDE) as well as a variational inequality type

of ordinary differential equations (ODEs) that are satisfied by the quantile function of

the optimal terminal payoff from the stock market. Surprisingly, when the utility is expo-

nential, we show that our robust model can be reduced to a behavioral rank–dependent

utility maximization problem whose solution is available ([25]).

The rest of the paper is organized as follows. In Section 2, we introduce the financial

market and formulate the robust expected utility maximization (EUM) problem. We

turn the problem into its quantile formulation and study its well-posedness in Section 3.

Section 4 presents the solution. In Section 5 we discuss the special case of the exponential

utility. Finally, Section 6 concludes.

2 Problem Formulation

Throughout this paper, we fix a probability space (Ω, F,P) satisfying the usual as-

sumptions, along with a standard m-dimensional Brownian motion

W = {(W1(t), · · · , Wm(t))⊺, t > 0}

representing the randomness of the financial market under consideration (to be described

below), where (and hereafter) A⊺ denotes the transpose of a matrix or vector A. Unless

otherwise stated, a r.v. is the shorthand for an F-measurable random variable. We also

fix an investment horizon [0, T ] where T > 0. Let {Ft}t>0 be the filtration generated by

W complemented by all the P-null sets, and L0
FT

be the set of FT -measurable random

variables. We stress that FT $ F; so there is randomness outside of the financial market

or, equivalently, not every random variable belongs to L0
FT

.

For any r.v. Y , let FY denote its probability distribution function, and QF its quantile

(function) defined by

QY (t) := inf
{

z ∈ R
∣

∣

∣ FY (z) > t
}

, t ∈ (0, 1),

which is the right-continuous inverse function of FY . It is easy to check that every quantile

is a right-continuous and increasing (RCI) function on (0, 1).1 On the other hand, every

1In this paper by “increasing” we mean “non-decreasing”, and by “decreasing” we mean “non-
increasing”.
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RCI function Q on (0, 1) is the quantile for the r.v. Q(U), where U is any r.v. that is

uniformly distributed on (0, 1). Hence, the set of quantiles is the same as that of RCI

functions on (0, 1). We may also use the convention that

QY (0) := lim
t→0+

QY (t) and QY (1) := lim
t→1−

QY (t);

so
QY (0) = ess inf Y and QY (1) = ess sup Y.

We write X ∼ Y if the r.v.’s X and Y follow the same distribution.

The derivative of any absolutely continuous function in this paper is chosen as the

right-continuous version. Let C1−
RCI((0, 1)) be the set of functions f : (0, 1) → R that

are absolutely continuous with derivatives f ′ being RCI. Clearly, any function f ∈
C1−

RCI((0, 1)) is convex; hence the limits f(0+) = limt→0+ f(t) and f(1−) = limt→1− f(t)

exist (but may be infinity).

In what follows, “almost everywhere” (a.e.) and “almost surely” (a.s.) may be sup-

pressed for expositional simplicity whenever no confusion might occur. Finally, we use

|Z| to denote
√

Z⊺Z for any (column) vector Z.

Now we are ready to introduce the financial market and our investment problem.

2.1 Market Model

Consider a continuous-time arbitrage-free financial market where m + 1 assets are traded

continuously on [0, T ]. One of the assets is a bond, whose price S0(·) evolves according

to an ordinary differential equation (ODE):











dS0(t) = r(t)S0(t) dt, t ∈ [0, T ],

S0(0) = s0 > 0,

where r(t) is the appreciation rate of the bond at time t. The remaining m assets

are stocks, and their prices are modeled by a system of stochastic differential equations

(SDEs):










dSi(t) = Si(t)[βi(t) dt +
∑m

j=1 σij(t) dWj(t)], t ∈ [0, T ],

Si(0) = si > 0,

where βi(t) is the appreciation rate of the stock i and σij(t) is the volatility coefficient at

time t. Denote by β := {(β1(t), · · · , βm(t))⊺, t > 0} the appreciation rate vector process

and by σ := {(σij(t))m×m, t > 0} the volatility matrix process, along with the excess

return rate vector process B := {B(t), t > 0} where

B(t) := β(t) − r(t)1, t ∈ [0, T ],

with 1 = (1, 1, · · · , 1)⊺ denoting the m-dimensional unit vector.
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We impose the following standing assumptions on the market parameters in this paper:

• The processes r, β, B, and σ are all uniformly bounded and {Ft}t>0-progressively

measurable on [0, T ];

• The process B is not identical to zero; and

• The process σ is non-singular and its inverse process σ−1 is uniformly bounded on

[0, T ].

As is well known, the market is complete under the above assumptions. Define the market

price of risk process θ := {θ(t), t > 0} where

θ(t) := σ(t)−1B(t), t ∈ [0, T ].

Clearly, it is a uniformly bounded and not identical to zero process on [0, T ].

2.2 Investment Problem

There is a small investor (“she”) in the market whose transactions have no influence on

the asset prices in the market. She has an initial endowment x > 0 and invests in the

financial market over the time period [0, T ]. Denote by πi(t) the total market value of her

wealth invested in stock i at time t, i = 1, · · · , m. We allow short selling so that πi(t) can

take negative values. We also assume that the trading of shares takes place continuously

in a self-financing fashion (i.e., there is no consumption or income) and the market is

frictionless (i.e., transactions do not incur any fees or costs). The investor’s portfolio

(process) is π = {(π1(·), · · · , πm(·))⊺, t > 0}, and the corresponding wealth process Xπ

evolves according to the wealth SDE (see, e.g., Karatazas and Shreve [12]):

dXπ(t) = [r(t)Xπ(t) + π(t)⊺B(t)] dt + π(t)⊺σ(t) dW (t), t ∈ [0, T ]. (2.1)

In our model, the investor makes investment decisions based on the information {Ft}t>0

from the financial market, which are strictly less than those represented by F. So unlike

many existing studies in portfolio selection, ours is a partial information model. Accord-

ingly, we call π an admissible portfolio if it is {Ft}t>0-progressively measurable satisfying

∫ T

0
|π(t)|2 dt < ∞, a.s.

and that the corresponding wealth process Xπ is nonnegative. For any admissible port-

folio π, the SDE (2.1) admits a unique solution Xπ which is called an admissible wealth

process, and (Xπ, π) is called an admissible pair. Note that (2.1) is linear in Xπ and

π; so all the admissible pairs form a convex set. Moreover, all the admissible pairs are

{Ft}t>0-progressively measurable.
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The original, classical expected utility maximization (EUM) problem is formulated as

sup
π

E[u(Xπ(T ))] , (2.2)

subject to (Xπ, π) being an admissible pair with Xπ(0) = x > 0,

where u is a given utility function.

In our model, however, in addition to the investment payoff from the financial market,

the investor will also receive the value of a claim ϑ (for instance, an excise of her company’s

stock option, a bonus, the down payment of a mortgage or even a lottery prize) at the

maturity date T . She knows nothing about this claim – hence an intractable claim – except

its own distribution before T . In particular, she does not know the joint distribution

between this claim and the market, nor can she estimate this joint distribution purely

based on the market data. Moreover, ϑ is F-measurable, not FT -measurable; so it is not

a hedgable contingent claim in the financial market. As a result, it is not meaningful to

consider the utility of the total terminal wealth

E[u(Xπ(T ) + ϑ)] ,

because to determine this value the investor needs to know the joint distribution of Xπ(T )

and ϑ. Inspired by Hou and Xu [7], we consider instead the worst scenario over all the

possible realizations of ϑ, leading to the robust preference

J0(X) := inf
Y ∼ϑ

E[u(X + Y )] , (2.3)

where X is the payoff from the financial market, and the infimum is taken over all F-

measurable r.v.’s Y that are distributed the same as ϑ. It turns out, as will be shown

later, J0 does not rely on the joint distribution between X and ϑ.

To summarize, we have the following investment model:

V0(x) := sup
π

inf
Y ∼ϑ

E[u(Xπ(T ) + Y )] , (2.4)

subject to (Xπ, π) being an admissible pair with Xπ(0) = x > 0.

The problem can be regarded as a game between the investor (who chooses the best

portfolio π and its output Xπ in the financial market) and the nature (who chooses Y ,

the worst realization of ϑ, part of which may come from outside of the financial market).

In contrast to many classical game models, we can not switch the order of sup and inf

in the problem (2.4). It is not a classical control problem either, as we will show in

the subsequent analysis that the objective functional is not the standard expectation in

stochastic control theory (see, e.g., Yong and Zhou [32]). On the other hand, the classical

EUM problem (2.2) can be regarded as the special case of (2.4) where ϑ ≡ 0, in which

case the optimal value is denoted by VEU(x).

6



To ensure the problem (2.4) to be well-defined and to avoid undue technicalities, we

make the following assumption throughout this paper:

Assumption 2.1. The claim ϑ is almost surely lower bounded, that is,

ess inf ϑ > −∞.

Moreover, the utility function u is continuous on [min{0, ess inf ϑ}, ∞) and continuously

differentiable on (min{0, ess inf ϑ}, ∞) with u′ being strictly decreasing to 0 at infinity.

Furthermore,

E[u(ϑ)] < ∞.

Remark 2.1. The lower boundedness assumption on ϑ is very mild and reasonable, sat-

isfied in most practical cases. The last assumption E[u(ϑ)] < ∞ is fulfilled when ϑ has a

finite expectation, thanks to the concavity of u.

Under Assumption 2.1, the utility function u is strictly increasing and strictly concave

on [min{0, ess inf ϑ}, ∞), under which we will show that the problem (2.4) is well-posed,

namely, it has a finite optimal value (see Theorem 3.3 below).

3 Quantile Formulation

In this section we turn the problem (2.4) into a static optimization problem and

present its quantile formulation.

3.1 A static optimization problem

Employing the well-established martingale method, we can divide solving the problem

(2.4) into two steps. In the first step, we find the optimal solution X∗ to the following

static optimization problem

sup
X

J0(X),

subject to X ∈ Ax,
(3.1)

where Ax denotes the set of all possible terminal wealth at time T with an initial en-

dowment x. The second step is to find an admissible portfolio π∗ that replicates X∗,

which will be the optimal portfolio to the original dynamic problem (2.4). As the market

is complete by assumption, the second step is standard and can be solved by, say, the

backward stochastic differential equation (BSDE) theory. Hence, it suffices to study the

problem (3.1), which we will now focus on.

To solve (3.1), we need to first characterize the set Ax in a more tractable form. The

following result is well known (see, e.g., Karatazas and Shreve [12]).
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Lemma 3.1. The set Ax can be expressed as

Ax =
{

X ∈ L0
FT

: E[ρX] 6 x, X > 0
}

, (3.2)

where ρ is called the pricing kernel or the stochastic discount factor, given by

ρ := exp

(

−
∫ T

0

(

r(s) +
1

2
|θ(s)|2

)

ds +
∫ T

0
θ(s)⊺ dW (s)

)

.

The constraint E[ρX] 6 x in (3.2) is called the budget constraint.

It follows from our standing assumptions that θ is not identical to zero; hence ρ is a

genuine random variable (i.e. it is not deterministic). We assume

Assumption 3.1. The pricing kernel ρ has a finite expectation E[ρ] < ∞.

This again is a very mild assumption; in particular it is true when θ is a deterministic

process.

Let Uρ be the set of r.v.’s that are comonotonic with ρ and uniformly distributed on

(0, 1). This set is non-empty and ρ = Fρ(U) for any U ∈ Uρ (see, e.g. Xu [26]). In

particular, Uρ is a singleton if and only if Fρ is a continuous function, in which case

Uρ = {Fρ(ρ)}. This happens when, say, both r and θ are deterministic processes.

By virtue of Lemma 3.1, the problem (3.1) is equivalent to

sup
X∈L0

FT

J0(X),

subject to E[ρX] 6 x, X > 0.

(3.3)

We employ the quantile formulation method to tackle the problem (3.3), whose key

idea is to change the decision variable from X to its quantile. Denote by QX the quantile

function of a given r.v. X. The following lemma is critical in our quantile formulation.

Lemma 3.2. We have

J0(X) =
∫ 1

0
u
(

QX(t) + Qϑ(t)
)

dt. (3.4)

As a consequence, the functional J0 is law-invariant and strictly increasing in the sense

that J0(X) = J0(Y ) whenever X ∼ Y and one of J0(X) and J0(Y ) is finite, and J0(X1) >

J0(X2) whenever X1 > X2, P(X1 > X2) > 0 and J0(X2) < ∞. In particular,

J0(X + ε) > J0(X)

for any constant ε > 0 if J0(X) < ∞.

Proof. Recall that two r.v.’s X and Y are called comonotonic if

(X(ω) − X(ω′))(Y (ω) − Y (ω′)) > 0 dP × dP almost surely,
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and called anti-comonotonic if X and −Y are comonotonic (see, e.g. Schmeidler [21] and

Yaari [31]). It is well known that comonotonic r.v’s have the minimum convex order (see,

e.g., Müller [15], Dhaene et al. [3, 4]);2 so the infimum in (2.3) is obtained when X and

Y ∗ are comonotonic with Y ∗ ∼ ϑ, in which case

QX+Y ∗ = QX + QY ∗ a.e..

Consequently,

J0(X) =
∫ 1

0
u(QX+Y ∗(t)) dt =

∫ 1

0
u
(

QX(t) + QY ∗(t)
)

dt =
∫ 1

0
u
(

QX(t) + Qϑ(t)
)

dt.

So (3.4) holds.

Next, if X1 > X2 and P(X1 > X2) > 0, then QX1
> QX2

, and QX1
(t) > QX2

(t) for

some t ∈ (0, 1). By the right-continuity of quantiles, we have QX1
> QX2

on some right

neighborhood of t. Because u is strictly increasing and J0(X2) < ∞, we have

J0(X1) =
∫ 1

0
u
(

QX1
(t) + Qϑ(t)

)

dt >
∫ 1

0
u
(

QX2
(t) + Qϑ(t)

)

dt = J0(X2),

proving the strictly monotonicity.

Because J0 is law-invariant, henceforth we will define, with a slight abuse of notation:

J0(QX) := J0(X) ≡
∫ 1

0
u
(

QX(t) + Qϑ(t)
)

dt.

By the expression (3.4), we see that the original problem (2.4) is not a standard

stochastic control problem; hence classical stochastic control theory (e.g. Yong and Zhou

[32]) is not applicable directly. To overcome this difficulty, we employ a refinement of the

quantile formulation approach proposed in [28, 29] to tackle (2.4).

Let Q denote the set of all quantiles generated by nonnegative r.v.’s, that is,

Q : =
{

Q : (0, 1) → R
∣

∣

∣ Q(·) is the quantile for some nonnegative r.v. X
}

.

It is easy to see

Q =
{

Q : (0, 1) → [0, ∞)
∣

∣

∣ Q(·) is RCI
}

.

Evidently, Q is a convex set.

3.2 Well-posedness

Before tackling our problem (2.4), it is natural to ask whether the problem is well-

posed; that is, whether its optimal value is finite. An infinite optimal value signals a

2For a pair of r.v.’s X and Y , we say that X is smaller than Y in the sense of convex order, if
E[g(X)] 6 E[g(Y )] for all convex functions g such that both expectations exist.
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trivial optimization problem in which trade-offs between competing sub-objectives are not

properly modeled. The following result answers the question of well-posedness completely.

Recall that VEU and V0 are the value functions of the problems (2.2) and (2.4), re-

spectively.

Theorem 3.3. The following statements are equivalent.

1. VEU(x) < ∞ for some x > 0.

2. VEU(x) < ∞ for all x > 0.

3. V0(x) < ∞ for all x > 0.

4. V0(x) < ∞ for some x > 0.

5. There exists a constant λ > 0 such that

E
[

u
(

(u′)−1(λρ)
)]

< ∞, E
[

ρ(u′)−1(λρ)
]

< ∞.

Proof. The proof consists of the following steps: 1 =⇒ 2 =⇒ 3 =⇒ 4 =⇒ 1, 1 =⇒ 5 and

5 =⇒ 1.

1 =⇒ 2 : The proof is essentially from [9], which however is reproduced here for

reader’s convenience. Suppose that VEU(x) < ∞ for some x > 0. Fix an arbitary y > 0.

Then Y ∈ Ay if and only if X = x
y
Y ∈ Ax by (3.2). If 0 < y 6 x, then, because u is

increasing,

VEU(y) = sup
Y ∈Ay

E[u(Y )] = sup
X∈Ax

E
[

u
(y

x
X
)

]

6 sup
X∈Ax

E[u(X)] = VEU(x) < ∞.

If y > x, then, because u is concave, we have for k > 1, a > 0:

u(ka) − u(a)

ka − a
6

u(a) − u(0)

a − 0
,

i.e,
u(ka) 6 ku(a) − (k − 1)u(0).

It hence follows

VEU(y) = sup
X∈Ax

E
[

u
(y

x
X
)

]

6 sup
X∈Ax

E
[

y

x
u(X) − y − x

x
u(0)

]

=
y

x
VEU(x) − y − x

x
u(0) < ∞.

2 =⇒ 3 : Because u is concave, we have for a, b > 0:

u(a + b) − u(a)

b
6

u(b) − u(0)

b
,

i.e.,

u(a + b) 6 u(a) + u(b) − u(0). (3.5)
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This together with the monotonicity of u yields

J0(X) = inf
Y ∼ϑ

E[u(X + Y )]

6 inf
Y ∼ϑ

E[u(X + max{Y, 0})]

6 inf
Y ∼ϑ

(

E[u(X)] + E[u(max{Y, 0}) − u(0)]
)

= E[u(X)] + E[u(max{ϑ, 0}) − u(0)] . (3.6)

Maximizing both sides over X ∈ Ax yields

V0(x) 6 VEU(x) + E[u(max{ϑ, 0}) − u(0)] .

Thanks to Assumption 2.1, we have

E[u(max{ϑ, 0}) − u(0)] = E[u(ϑ) − u(min{ϑ, 0})] 6 E[u(ϑ)] − u(min{ess inf ϑ, 0}) < ∞.

The implication thus follows.

3 =⇒ 4 : This is trivial.

4 =⇒ 1 : Suppose Qϑ(0) = ess inf ϑ < 0. By the concavity of u, for x > y > 1, we

have
u(x) − u(y)

x − y
6 u′(1);

so
u(y) > u(x) + u′(1)(y − x).

This together with the monotonicity of u yields

J0(X) = inf
Y ∼ϑ

E[u(X + Y )]

> inf
Y ∼ϑ

E[u(X + ess inf Y )] = E[u(X + Qϑ(0))]

> E
[

u(X + Qϑ(0))1X>1+|Qϑ(0)|

]

+ E
[

u(Qϑ(0))106X61+|Qϑ(0)|

]

> E
[(

u(X) + u′(1)Qϑ(0)
)

1X>1+|Qϑ(0)|

]

− |u(Qϑ(0))|

> E
[

u(X)1X>1+|Qϑ(0)|

]

− u′(1)|Qϑ(0)| − |u(Qϑ(0))|

= E[u(X)] − E
[

u(X)106X61+|Qϑ(0)|

]

− u′(1)|Qϑ(0)| − |u(Qϑ(0))|

> E[u(X)] − |u(1 + |Qϑ(0)|)| − u′(1)|Qϑ(0)| − |u(Qϑ(0))|. (3.7)

The last inequality also holds when Qϑ(0) = ess inf ϑ > 0, because in this case

J0(X) = inf
Y ∼ϑ

E[u(X + Y )] > E[u(X + Qϑ(0))] > E[u(X)] .

Maximizing both sides of (3.7) over X ∈ Ax yields

V0(x) > VEU(x) − |u(1 + |Qϑ(0)|)| − u′(1)|Qϑ(0)| − |u(Qϑ(0))|,

11



proving the desired implication.

1 =⇒ 5 : If E[ρ(u′)−1(λρ)] = ∞ for all λ > 0, then by Jin, Xu and Zhou [9, Theorem

3.1], VEU(x) = ∞ for all x > 0, contradicting Statement 1. So there exists some λ > 0

such that
xλ := E

[

ρ(u′)−1(λρ)
]

< ∞.

Then by the definition of VEU, we have

E
[

u
(

(u′)−1(λρ)
)]

6 VEU(xλ).

But the right hand side (RHS) is finite by Statement 2, which has been proved to be a

consequence of Statement 1. This proves the desired implication.

5 =⇒ 1 : Let X0 := (u′)−1(λρ) and x0 := E[ρX0], then E[u(X0)] < ∞ and x0 < ∞ by

assumption. It thus follows that

VEU(x0) = sup
X∈Ax0

E[u(X)] 6 sup
X∈Ax0

E[u(X) − λρX] + λx0

6 E[u(X0) − λρX0] + λx0 = E[u(X0)] < ∞,

where the first equality is due to that E[ρX] 6 x0 for any X ∈ Ax0
, and the second

equality is due to ω-wise maximization. The proof is complete.

From now on we assume that the value functions of the problems (2.2) and (2.4) are

both finite, which is technically equivalent to that Statement 5 in Theorem 3.3 holds.

Lemma 3.4. The value function V0 to the problem (2.4) is concave and strictly increasing

on (0, ∞).

Proof. It follows immediately from the concavity of u that J0 is concave. The concavity

of V0 thus comes from the convexity of Ax and concavity of J0.

Next, we show
lim

x→∞
V0(x) = u(∞).

In fact, X = x
E[ρ]

is a feasible solution to the problem (3.3) with the initial endowment

x > 0; so

lim inf
x→∞

V0(x) > lim
x→∞

J0

( x

E[ρ]

)

= lim
x→∞

∫ 1

0
u
( x

E[ρ]
+ Qϑ(t)

)

dt > u(∞)

by Fatou’s lemma. For any feasible solution X to the problem (2.4), since u is increasing,

J0(X) =
∫ 1

0
u
(

QX(t) + Qϑ(t)
)

dt 6 u(∞),

which shows that V0(x) 6 u(∞). So we conclude limx→∞ V0(x) = u(∞).

We now show that V0 is strictly increasing. First, it follows from Lemma 3.2 that

V0 is increasing. Suppose V0 was not strictly increasing, then it would be a constant

12



on some interval. Because V0 is concave and finite at every point, V0 must reach its

(finite) maximum on that interval. Because V0 is increasing and limx→∞ V0(x) = u(∞),

we conclude V0(x) = u(∞) for some x > 0. This is impossible if u(∞) = ∞ as V0(x) < ∞.

Hence V0(x) = u(∞) < ∞. By the monotone convergence theorem, there exists t0 ∈ (0, 1)

such that
∫ 1

t0

Qρ(1 − s) ds >
1

2

∫ 1

0
Qρ(1 − s) ds =

1

2
E[ρ] .

Let X be any feasible solution to the problem (3.3). Then it follows from the Hardy–

Littlewood inequality and the non-negativity and monotonicity of quantiles that

x > E[ρX] >
∫ 1

0
QX(s)Qρ(1 − s) ds >

∫ 1

t0

QX(s)Qρ(1 − s) ds

> QX(t0)
∫ 1

t0

Qρ(1 − s) ds >
1

2
QX(t0)E[ρ] ,

which yields

J0(X) =
∫ 1

0
u
(

QX(s) + Qϑ(s)
)

ds 6

∫ t0

0
u
( 2x

E[ρ]
+ Qϑ(s)

)

ds +
∫ 1

t0

u(∞) ds.

Maximizing both sides over X ∈ Ax leads to

V0(x) 6
∫ t0

0
u
( 2x

E[ρ]
+ Qϑ(s)

)

ds +
∫ 1

t0

u(∞) ds <
∫ t0

0
u(∞) ds +

∫ 1

t0

u(∞) ds = u(∞),

where the last inequality is due to the strictly monotonicity of u and the fact that u(∞) <

∞. This contradicts that V0(x) = u(∞). The proof is thus complete.

Thanks to the strictly monotonicity in Lemma 3.2, we can now apply [26, Theorem

9] to obtain the following result.

Proposition 3.5. A random variable X∗ ∈ L0
FT

is an optimal solution to the problem

(3.1) if and only if it can be expressed as

X∗ = Q(1 − U)

where U ∈ Uρ and Q is an optimal solution to the following quantile optimization problem

sup
Q∈Q

J0(Q) (3.8)

subject to
∫ 1

0
Q(t)Qρ(1 − t) dt = x.

Moreover, the optimal value of the problem (3.8) is equal to V0(x), the optimal value of

the problem (2.4).

By virtue of this result, solving our original stochastic control problem (2.4) reduces to

solving the quantile optimization problem (3.8).
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4 Solution

We now solve (3.8), which is a constrained concave optimization (or calculus of vari-

ation) problem. The first step is to remove the constraint using the Lagrange method.

Lemma 4.1. A quantile Q is an optimal solution to (3.8) if and only if there exists a

constant λ > 0 such that Q satisfies

∫ 1

0
Q(t)Qρ(1 − t) dt = x, (4.1)

and solves the following optimization problem

Vλ = sup
Q∈Q

Jλ(Q), (4.2)

where

Jλ(Q) :=
∫ 1

0

[

u
(

Q(t) + Qϑ(t)
)

− λQ(t)Qρ(1 − t)
]

dt.

Moreover,
V0(x) = Vλ + λx.

Proof. =⇒: Because V0 is concave, for each given x > 0, we have

V0(y) − λy 6 V0(x) − λx, y > 0, (4.3)

where
λ = lim inf

∆→0+

V0(x + ∆) − V0(x)

∆
> 0,

due to the monotonicity of V0. By the concavity and finiteness of V0,

λ = lim inf
∆→0+

V0(x + ∆) − V0(x)

∆
6

V0(x) − V0(x/2)

x − x/2
< ∞.

If λ = 0, then (4.3) would indicate that x is a global maximizer of V0, contradicting the

strictly monotonicity of V0 from Lemma 3.4. So we conclude 0 < λ < ∞.

Suppose Q is an optimal solution to (3.8). Then it clearly satisfies (4.1). Also,

V0(x) = J0(Q) = Jλ(Q) + λ
∫ 1

0
Q(t)Qρ(1 − t) dt = Jλ(Q) + λx. (4.4)

For any Q ∈ Q, let
Qn(t) = min{Q(t), n},

and
yn =

∫ 1

0
Qn(t)Qρ(1 − t) dt 6

∫ 1

0
nQρ(1 − t) dt = nE[ρ] < ∞.
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Then, by definition,

Jλ(Qn) = J0(Qn) − λ
∫ 1

0
Qn(t)Qρ(1 − t) dt = J0(Qn) − λyn

6 V0(yn) − λyn 6 V0(x) − λx = Jλ(Q)

in view of (4.3) and (4.4). It hence follows

Jλ(Q) > Jλ(Qn) >
∫ 1

0
u
(

Qn(t) + Qϑ(t)
)

dt − λ
∫ 1

0
Q(t)Qρ(1 − t) dt.

Because
u
(

Qn(t) + Qϑ(t)
)

> u
(

Qϑ(t)
)

> u
(

Qϑ(0)
)

,

Fatou’s lemma yields

Jλ(Q) > lim inf
n→∞

∫ 1

0
u
(

Qn(t) + Qϑ(t)
)

dt − λ
∫ 1

0
Q(t)Qρ(1 − t) dt

>

∫ 1

0
u
(

Q(t) + Qϑ(t)
)

dt − λ
∫ 1

0
Q(t)Qρ(1 − t) dt = Jλ(Q).

This indicates that Q is an optimal solution to (4.2).

⇐=: Suppose there exists λ > 0 such that Q satisfies (4.1) and is an optimal solution

to (4.2). Then, for any feasible solution Q ∈ Q to (3.8),

J0(Q) = Jλ(Q) + λ
∫ 1

0
Q(t)Qρ(1 − t) dt = Jλ(Q) + λx

6 Jλ(Q) + λx = Jλ(Q) + λ
∫ 1

0
Q(t)Qρ(1 − t) dt = J0(Q).

Because Q is a feasible solution to (3.8), the above inequality shows that it is optimal to

(3.8).

Our problem now reduces to first solving the unconstrained optimization (4.2), and

then finding λ > 0 such that the resulting optimal solution satisfies (4.1). The quantile

optimization (4.2) is a concave optimization problem, which can be tackled by calculus

of variations following Xu [28, 29].

4.1 Well-posedness of (4.2)

Before solving (4.2), we need to first address its well-posedness.

Lemma 4.2. The problem (4.2) is well-posed if and only if

E
[

u
(

(u′)−1(λρ)
)

− λρ(u′)−1(λρ)
]

< ∞. (4.5)

Proof. By the estimates (3.6) and (3.7), we have

−C1 6 J0(X) − E[u(X)] 6 C2, ∀ X,
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where

C1 := |u(1 + |Qϑ(0)|)| + u′(1)|Qϑ(0)| + |u(Qϑ(0))|,
C2 := E[u(max{ϑ, 0})] − u(0).

Hence,

−C1 6 Jλ(Q) −
∫ 1

0

[

u
(

Q(t)
)

− λQ(t)Qρ(1 − t)
]

dt 6 C2, ∀ Q ∈ Q.

Maximizing both sides over Q ∈ Q yields

−C1 6 Vλ − sup
Q∈Q

∫ 1

0

[

u
(

Q(t)
)

− λQ(t)Qρ(1 − t)
]

dt 6 C2. (4.6)

Let
Q0(t) := lim

s→t+
(u′)−1(λQρ(1 − s)).

Then Q0 ∈ Q. Applying the first-order condition to the maximum of the function

u
(

x
)

− λxQρ(1 − t) in x, we have

u
(

Q(t)
)

− λQ(t)Qρ(1 − t) 6 u
(

(u′)−1(λQρ(1 − t))
)

− λ(u′)−1(λQρ(1 − t))Qρ(1 − t).

The RHS is, for a.e. t ∈ (0, 1), equal to

u
(

Q0(t)
)

− λQ0(t)Qρ(1 − t).

Hence, we conclude that

sup
Q∈Q

∫ 1

0

[

u
(

Q(t)
)

− λQ(t)Qρ(1 − t)
]

dt =
∫ 1

0

[

u
(

Q0(t)
)

− λQ0(t)Qρ(1 − t)
]

dt.

For U ∈ Uρ, we have Qρ(U) = ρ and

Q0(1 − U) = (u′)−1
(

λQρ(U)
)

= (u′)−1(λρ), a.s.,

so

sup
Q∈Q

∫ 1

0

[

u
(

Q(t)
)

− λQ(t)Qρ(1 − t)
]

dt = E
[

u
(

(u′)−1(λρ)
)

− λρ(u′)−1(λρ)
]

. (4.7)

This together with (4.6) implies that the optimal value of the problem (4.2) is finite if

and only if the condition (4.5) holds. The proof is complete.

Remark 4.1. Because

∂

∂λ
E
[

u
(

(u′)−1(λρ)
)

− λρ(u′)−1(λρ)
]

= −E
[

ρ(u′)−1(λρ)
]

< 0,
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the condition (4.5) holds if and only if either λ > λ1 or λ > λ1, where

λ1 = inf
{

λ > 0 : E
[

u
(

(u′)−1(λρ)
)

− λρ(u′)−1(λρ)
]

< ∞
}

.

4.2 Characterization of solution

We now investigate the problem (4.2). In view of Lemma 4.2, we only need to study

the case under the well-posedness condition (4.5), which is henceforth assumed.

Because u is strictly concave, (4.2) admits at most one optimal solution. The following

result characterizes the unique optimal solution, if it exists.

Lemma 4.3 (Optimality condition). A quintile Q ∈ Q is the unique optimal solution

to (4.2) if and only if it satisfies

∫ 1

0

[

u′
(

Q(t) + Qϑ(t)
)

− λQρ(1 − t)
](

Q(t) − Q(t)
)

dt 6 0, ∀ Q ∈ Q. (4.8)

Proof. Suppose Q is the unique optimal solution to (4.2). For any Q ∈ Q, ε ∈ (0, 1),

define
Qε(t) = Q(t) + ε

(

Q(t) − Q(t)
)

, t ∈ (0, 1).

Then Qε ∈ Q. Recalling that Q is optimal and applying Fatou’s lemma, we get

0 > lim inf
ε→0+

1

ε

[

∫ 1

0
u(Qε(t) + Qϑ(t)) − λQε(t)Qρ(1 − t) dt

−
∫ 1

0
u(Q(t) + Qϑ(t)) − λQ(t)Qρ(1 − t) dt

]

>

∫ 1

0

[

u′
(

Q(t) + Qϑ(t)
)

− λQρ(1 − t)
](

Q(t) − Q(t)
)

dt,

leading to (4.8).

Conversely, suppose Q ∈ Q satisfies (4.8). Because u is concave, we have the elemen-

tary inequality u(y) − u(x) 6 u′(x)(y − x) for any x, y ∈ R. It follows that

u
(

Q(t) + Qϑ(t)
)

− λQ(t)Qρ(1 − t) −
[

u(Q(t) + Qϑ(t)) − λQ(t)Qρ(1 − t)
]

6
[

u′
(

Q(t) + Qϑ(t)
)

− λQρ(1 − t)
](

Q(t) − Q(t)
)

, ∀ Q ∈ Q.

Integrating both sides in above and using (4.8), we conclude Q is optimal to (4.2).

Before proceeding further, we impose the following technical assumption in the rest

of this paper.

Assumption 4.1. The quantiles of ϑ and ρ satisfy

lim
t→0+

u′(Qϑ(t))

Qρ(1 − t)
= 0.
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This assumption together with E[ρ] < ∞ implies

E[u′(ϑ)] =
∫ 1

0
u′(Qϑ(t)) dt < ∞. (4.9)

Corollary 4.4. The optimal solution Q to the problem (4.2) must satisfy Q(0) = 0.

Proof. Because Q > 0 and u is concave, Assumption 4.1 implies

u′
(

Q(t) + Qϑ(t)
)

− λQρ(1 − t) 6 u′
(

Qϑ(t)
)

− λQρ(1 − t) < 0, for t ∈ (0, ε),

with ε > 0 being sufficiently small. Suppose Q(0) > 0, then we may assume Q(t) > 0 for

t ∈ (0, ε) by the right-continuity of Q. Now let Q(t) = Q(t)1t>ε. Then Q ∈ Q and

∫ 1

0

[

u′
(

Q(t) + Qϑ(t)
)

− λQρ(1 − t)
](

Q(t) − Q(t)
)

dt > 0,

which contradicts (4.8). The proof is complete.

It is hard to use the condition (4.8) to find the optimal solution to the problem (4.2)

because one would have to compare Q with all the other quantiles in Q, a task as difficult

as solving (4.2). Our next step is to find an equivalent condition to (4.8) that can be

easily verified and utilized. To this end, let

H(t) :=
∫ 1

t

[

λQρ(1 − s) − u′
(

Q(s) + Qϑ(s)
)]

ds.

Using E[ρ] < ∞, (4.9) and the monotonicity of u′, one can easily show that H is a

continuous function on [0, 1]. In terms of H , the inequality in (4.8) now reads

∫ 1

0
H ′(t)

(

Q(t) − Q(t)
)

dt 6 0.

By taking Q = 2Q and Q = 1
2
Q in above, we obtain the following two conditions

∫ 1

0
H ′(t)Q(t) dt = 0, (4.10)

and

∫ 1

0
H ′(t)Q(t) dt 6 0. (4.11)

Suppose H(a) < 0 for some a ∈ [0, 1). Let Q(t) = 1t∈[a,1), then Q ∈ Q and

∫ 1

0
H ′(t)Q(t) dt = −H(a) > 0,

contradicting (4.11). Hence, H > 0 on [0, 1] by continuity.

Suppose H > 0 on an interval (a, b] ⊂ (0, 1) and Q(b) > Q(a). Then since H > 0,
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H(1) = 0 and by integration by parts, we have

∫ 1

0
H ′(t)Q(t) dt = H(0)Q(0) +

∫

(0,1)
H(t) dQ(t) >

∫

(a,b]
H(t) dQ(t) > 0,

contradicting (4.10). This implies that Q is constant on every subinterval of
{

t ∈
(0, 1)

∣

∣

∣ H(t) > 0
}

, and consequently Q
′
= 0 on

{

t ∈ (0, 1)
∣

∣

∣ H(t) > 0
}

.

Together with Corollary 4.4, we conclude that if Q is the optimal solution to the

problem (4.2), then















min
{

Q
′
(t),

∫ 1

t

[

λQρ(1 − s) − u′
(

Q(s) + Qϑ(s)
)]

ds
}

= 0, for t ∈ (0, 1);

Q(0) = 0.

(4.12)

This is a so-called ordinary integro–differential equation (OIDE) with boundary condition

for Q. It is easy to check that (4.12) implies (4.10) and (4.11), which is equivalent to

(4.8). Therefore, it follows from Lemma 4.3 that the solution to (4.12) is indeed the

optimal solution to (4.2). Clearly, in comparison to (4.8), the condition (4.12) is easier

to verify and use because it only depends on Q itself.

Summarizing the preceding analysis we present the following main result.

Theorem 4.5 (Characterization of optimal solution I). A function Q is the unique

optimal solution to the problem (4.2) if and only if it is an RCI function on (0, 1) that

satisfies the OIDE (4.12).

Corollary 4.6. If Qρ is continuous, then so is Q, the optimal solution to the problem

(4.2). Moreover, we have either Q
′
(t) = 0 or

Q(t) = (u′)−1(λQρ(1 − t)) − Qϑ(t) (4.13)

for every t ∈ (0, 1). In particular, the latter case can only happen when Qϑ is continuous

at t.

Proof. We have shown earlier that on each subinterval of {t ∈ (0, 1) | H(t) > 0}, Q

is a constant, and hence continuous there. Because quantiles are right-continuous, Q is

continuous at 0 as well.

Now suppose H(t) = 0 at some t ∈ (0, 1). Because quantiles are RCI, u′ and Qρ are

continuous, we have

lim
∆→0+

H(t + ∆) − H(t)

∆
= u′

(

Q(t) + Qϑ(t)
)

− λQρ(1 − t),

lim
∆→0+

H(t) − H(t − ∆)

∆
= u′

(

Q(t−) + Qϑ(t−)
)

− λQρ(1 − t).
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Notice that t is a global minimizer of H , so the first limit is nonnegative and the second

one is nonpositive, giving

u′
(

Q(t) + Qϑ(t)
)

− λQρ(1 − t) > u′
(

Q(t−) + Qϑ(t−)
)

− λQρ(1 − t).

Because u′ is strictly decreasing, it follows that

Q(t) + Qϑ(t) 6 Q(t−) + Qϑ(t−).

But quantiles are increasing, the above should be an equation, which let us conclude Q

and Qϑ are both continuous at t. This further shows that H is differentiable at t, and

0 = H ′(t) = u′
(

Q(t) + Qϑ(t)
)

− λQρ(1 − t).

Consequently,

Q(t) = (u′)−1(λQρ(1 − t)) − Qϑ(t),

completing the proof.

As much as OIDEs such as (4.12) are more accessible than the general condition

(4.8), they are still hard to analyze in general. Next, we further simplify the condition

by turning (4.12) into an ODE.

Denote

Φ(t) =
∫ 1

t
u′
(

Q(s) + Qϑ(s)
)

ds. (4.14)

Then Φ ∈ C1−
RCI((0, 1)) and

Q(t) = (u′)−1(−Φ′(t)) − Qϑ(t), H(t) = −Φ(t) + λ
∫ 1

t
Qρ(1 − s) ds.

Noting that Φ′′ exists almost everywhere because Φ ∈ C1−
RCI((0, 1)), we can rewrite the

OIDE (4.12) as

min







−Φ′′(t)

u′′
(

(u′)−1(−Φ′(t))
) − Q′

ϑ(t), −Φ(t) + λ
∫ 1

t
Qρ(1 − s) ds







= 0, a.e. t ∈ (0, 1).

(4.15)

Using the following simple fact that min{a, b} = 0 if and only if min{ak, bℓ} = 0 for any

k, ℓ > 0, together with the boundary conditions, we end up with the following equation
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for Φ:










min
{

Φ′′(t) + Q′
ϑ(t)u′′

(

(u′)−1(−Φ′(t))
)

, −Φ(t) + λ
∫ 1

t Qρ(1 − s) ds
}

= 0, a.e. t ∈ (0, 1),

Φ(1−) = 0, Φ′(0+) = −u′(Qϑ(0)).

(4.16)

In (4.16), if Φ′ or Qϑ is not differentiable at some point t ∈ (0, 1), we convent

Φ′′(t) + Q′
ϑ(t)u′′

(

(u′)−1(−Φ′(t))
)

= +∞,

in which case the equation reduces to

Φ(t) = λ
∫ 1

t
Qρ(1 − s) ds,

or Φ′(t) = −λQρ(1 − t) whenever Qρ is continuous at t. Also note that it can happen

that u′(Qϑ(0)) = +∞.

Equation (4.16) is a system of variational inequalities of ODEs, or a single–obstacle

second-order ODE with mixed boundary conditions. The connection between (4.16) and

the optimal solution to the problem (4.2) is given as follows.

Theorem 4.7 (Characterization of optimal solution II). We have the following as-

sertions.

(1). If Q is the unique optimal solution to the problem (4.2), then

Φ(s) =
∫ 1

s
u′
(

Q(t) + Qϑ(t)
)

dt (4.17)

is a solution to (4.16) in C1−
RCI((0, 1)).

(2). If Φ is a solution to (4.16) in C1−
RCI((0, 1)), then

Q(t) = (u′)−1(−Φ′(t)) − Qϑ(t)

is the unique optimal solution to the problem (4.2).

As a consequence, (4.16) admits at most one solution in C1−
RCI((0, 1)).

Proof. (1). Because Q solves (4.2), we have (4.15). Consequently, we get the first equa-

tion in (4.16). The first boundary condition Φ(1−) = 0 is evident. It follows

from Corollary 4.4 that Q(0) = 0, which implies the second boundary condition

Φ′(0+) = −u′(Qϑ(0)). Moreover, as quantiles are RCI and u′ is continuously de-

creasing, it is easy to verify that Φ ∈ C1−
RCI((0, 1)).

(2). Because Φ solves (4.16) in C1−
RCI((0, 1)), it satisfies (4.15). Hence

Q(t) = (u′)−1(−Φ′(t)) − Qϑ(t)
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satisfies (4.12), which in turn is equivalent to (4.8). As Φ ∈ C1−
RCI((0, 1)) and Qϑ is

RCI, Q is right-continuous. By (4.12), Q is also increasing; so Q is a quantile. It

follows then from Lemma 4.3 that Q is the unique optimal solution to (4.2).

5 A Special Case of Exponential Utility

We have reduced the original problem to solving the equation (4.16). Such an equation

can be in general solved numerically, but more concrete solutions are possible for special

cases. In this section we study such a case where the utility function u(x) = −e−αx for

some α > 0 and Qϑ is continuous. Then (4.16) becomes











min
{

Φ′′(t) + αQ′
ϑ(t)Φ′(t), −Φ(t) + λ

∫ 1
t Qρ(1 − s) ds

}

= 0, a.e. t ∈ (0, 1),

Φ(1−) = 0, Φ′(0+) = −αe−αQϑ(0).
(5.1)

Note the second-order differential operator is now linear, which enables us to give a more

explicit solution.

For any constant c > 0, consider the following integral equation for χ:

χ(t) = c
∫ 1

t
eαQϑ(χ(s)) ds, t ∈ [0, 1].

Clearly, any solution χ(t) is continuous in t. Let χ = χ/c. Then

χ(t) =
∫ 1

t
eαQϑ(cχ(s)) ds, t ∈ [0, 1].

It follows from the monotone convergence theorem that χ(t) is increasing in c; hence χ(t)

is strictly increasing in c for every t ∈ [0, 1). Since Qϑ is continuous, χ(t) and thus χ(t)

are continuous in c for any fixed t ∈ [0, 1). If c = 0, then χ(0) = 0. If c > e−αQϑ(0), then,

since χ > 0 and and Qϑ is increasing,

χ(0) = c
∫ 1

0
eαQϑ(χ(s)) ds > c

∫ 1

0
eαQϑ(0) ds > 1.

So there exists a constant c > 0 such that χ(0) = 1, leading to the following equations

χ′(t) = −ceαQϑ(χ(t)), χ(0) = 1, χ(1) = 0.

Then

χ′′(t) = −ceαQϑ(χ(t))αQ′
ϑ(χ(t))χ′(t) = αQ′

ϑ(χ(t))(χ′(t))2, a.e. t ∈ (0, 1).

Let Ψ(t) = Φ(χ(t)), then Ψ′(t) = Φ′(χ(t))χ′(t) and

Ψ′′(t) = Φ′′(χ(t))(χ′(t))2 + Φ′(χ(t))χ′′(t) =
(

Φ′′(χ(t)) + αQ′
ϑ(χ(t))Φ′(χ(t))

)

(χ′(t))2.
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Replacing t by χ(t) in (5.1) and using the above facts, we get











min
{

Ψ′′(t), −Ψ(t) + λ
∫ 1

χ(t) Qρ(1 − s) ds
}

= 0, a.e. t ∈ (0, 1),

Ψ(0+) = 0, Ψ′(1−) = Φ′(χ(1−))χ′(1−) = cα.
(5.2)

This indicates that Ψ is the largest convex function dominated by the map

t 7→ λ
∫ 1

χ(t)
Qρ(1 − s) ds

on (0, 1) and satisfies the boundary conditions Ψ(0+) = 0 and Ψ′(1−) = cα. This leads

to an analytical expression of the solution to the problem (4.2): Φ(t) = Ψ(χ−1(t)).

Because of the special form of the exponential utility function u, we can solve (4.2)

in an alternative way. Indeed, rewrite (4.2) as

Vλ = sup
Q∈Q

∫ 1

0

[

u
(

Q(t)
)

|u(Qϑ(t))| − λQ(t)Qρ(1 − t)
]

dt.

Thanks to the triangle inequality and Assumption 2.1, we have

E[|u(ϑ)|] 6 E[|u(ϑ) − u(ess inf ϑ)|] + |u(ess inf ϑ)|
= E[u(ϑ) − u(ess inf ϑ)] + |u(ess inf ϑ)| < ∞.

Also we may assume E[|u(ϑ)|] > 0; for otherwise ϑ would be a constant and (2.4) would

reduce to the classical EUM problem (2.2) that has been solved in the literature. The

above allows us to define

w(t) :=
1

E[|u(ϑ)|]
∫ t

0
|u(Qϑ(1 − s))| ds.

It is easy to check w(0) = 0, w(1) = 1 and w is differentiable and increasing; so w is

a probability weighting (or distortion) function broadly involved in behavioral finance

and insurance among others; see, e.g., Kahneman and Tversky’s prospect theory [11],

Quiggin’s rank–dependent expected utility theory [18] and Wang’s distortion insurance

premium principle [22, 23, 24].

We now rewrite the problem (4.2) as

Vλ = E[|u(ϑ)|] sup
Q∈Q

∫ 1

0

[

u
(

Q(t)
)

w′(1 − t) − λQ(t)
Qρ(1 − t)

E[|u(ϑ)|]

]

dt. (5.3)

Intriguingly, the above is actually a quantile optimization problem arising from a behav-

ioral finance model under the rank-dependent utility theory that has been studied and

solved by Xia and Zhou [25] and Xu [27].

Theorem 5.1. Let u(x) = −e−αx, α > 0, and let δ(·) be the concave envelope of the
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following function

t 7→ −
∫ w−1(1−t)

0

Qρ(s)

E[|u(ϑ)|] ds

on [0, 1]. Then
Q(t) := (u′)−1

(

λδ′(t)
)

, t ∈ (0, 1),

is an optimal solution to (5.3) as well as to (4.2); and

X∗ := (u′)−1 (λδ′(1 − U))

is an optimal solution to the problem (3.1), where U ∈ Uρ is arbitrary and λ > 0 satisfies

∫ 1

0
(u′)−1 (λδ′(t)) Qρ(1 − t) dt = x.

Indeed, we have the following more explicit expression for X∗ without involving the

Lagrange multiplier λ.

Corollary 5.2. Let U ∈ Uρ and

X∗ :=
1

E[ρ]

(

x + α−1
∫ 1

0
ln(δ′(s))Qρ(1 − s) ds

)

− α−1 ln(δ′(1 − U)).

Then X∗ is an optimal solution to (3.1) with the initial endowment x > 0.

Proof. By Proposition 3.5, it is sufficient to prove that the optimal solution Q to (5.3)

given in Theorem 5.1 satisfies

Q(t) =
1

E[ρ]

(

x + α−1
∫ 1

0
ln(δ′(s))Qρ(1 − s) ds

)

− α−1 ln(δ′(t)).

Recalling that u(x) = −e−αx, u′(x) = αe−αx, we get

(u′)−1(x) = α−1 ln(α) − α−1 ln(x), x > 0;

so

x =
∫ 1

0
(u′)−1 (λδ′(s)) Qρ(1 − s) ds

=
∫ 1

0
(α−1 ln(α) − α−1 ln(λ) − α−1 ln(δ′(s)))Qρ(1 − s) ds

= (α−1 ln(α) − α−1 ln(λ))E[ρ] − α−1
∫ 1

0
ln(δ′(s))Qρ(1 − s) ds.

Hence

α−1 ln(α) − α−1 ln(λ) =
1

E[ρ]

(

x + α−1
∫ 1

0
ln(δ′(s))Qρ(1 − s) ds

)

.
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Consequently,

Q(t) = (u′)−1 (λδ′(t)) = α−1 ln(α) − α−1 ln(λ) − α−1 ln(δ′(t))

=
1

E[ρ]

(

x + α−1
∫ 1

0
ln(δ′(s))Qρ(1 − s) ds

)

− α−1 ln(δ′(t)),

as desired.

6 Concluding Remarks

This paper formulates and solves a robust EUM problem with an intractable claim

by employing quantile formulation and calculus of variations, with the solution derived

in terms of certain variational inequalities of ODEs. The result can be also used to price

the intractable claim ϑ. Because ϑ is unpredictable and unhedgeable, we are unable to

determine its (either supper or lower) hedging price the usual way. However, the results

of this paper allow us to determine its price according to the famous utility indifference

pricing principle; see e.g. [1, 2, 13, 14, 16, 17, 19].

Specifically, suppose the investor, with an initial endowment x, does not possess the

intractable claim initially but is considering buying it. Then her EUM problem before

purchasing ϑ is given by (2.2), with the optimal value VEU(x). If she pays p dollars to

buy the claim, then her EUM problem after the purchase becomes (2.4) with x replaced

by x − p, leading to the optimal value V0(x − p). The utility indifference pricing theory

stipulates that p should be such that the investor is “indifferent” between buying and not

buying ϑ, namely, p satisfies

VEU(x) = V0(x − p). (6.1)

Notice
lim

p→−∞
V0(x − p) = u(∞) > VEU(x),

and
V0(0) = E[u(ϑ)] .

It follows from Lemma 3.4 that the function V0 is continuous and strictly increasing; so

(6.1) admit a unique solution p 6 x if and only if VEU(x) > E[u(ϑ)]. Note the price is

negative when the claim is negative.

Beyond the utility indifference pricing, our result can be possibly applied to price the

intractable claim under other pricing principle; for instance, the marginal utility-based

pricing in [8]. We leave the details to interested readers.
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