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There are usually two ways to study optimal stochastic control problems: Pontryagin's maximum 
principle and Bellman's dynamic programming, involving an adjoint process 4 and the value function 

4 V, respectively. The classical result on the connection between the maximum principle and dynamic 
I programming is known as $ ( t ) =  V , ( t , i ( t ) ) ,  where ?(.) is the optimal path. In this paper we establish a 

nonsmooth version of the classical result by employing the notions of super- and sub-differential 
introduced by Crandall and Lions. Thus the illusory assumption that V ( . ; )  is differentiable is 
dispensed with. 

KEY WORDS: Optimal stochastic control, maximum principle, dynamic programming, super- and 
sub-differential, viscosity solution. 

1 .  INTRODUCTION 

For S E  [0, I ] ,  the set of admissible controls Uad[s ,  11 will be the collection of (1) a 
standard probability space ( R , F , P )  and a r-dimensional Brownian motion 
{B( t )  : s  S t  1 )  with B(s) =O; (2) a r-valued Ss-adapted measurable process u(-, .) 
in [s ,  11, where 9: = a{B(r)  : s 5 r f t )  and r is a prescribed compact set in a metric 
space. We denote (R, 9, P, B(t); u) E Uad[s,  I ] ,  but sometimes we will only write 
u E Ua,[s, I ]  without mentioning the probability space and the Brownian motion, if 
no ambiguity arises. 

Let (s ,  y) E [O, 11  x Rd be fixed. For each ( a ,  9, P,  B(t);  u) E Uad[s ,  11,  there is a 
cost functional J(s, y; u) = E{J; L(r, x(r), u(r)) dr + h(x ( l ) ) ) ,  where x( . ) is the solution 
of the following SDE on the space (R, 9, P; 93: 

dx( t )  = a(t ,  x ( t ) )  dB(t)  + f ( t ,  x ( t ) ,  u(t))  dt ,  s  5 t  $ 1 ,  
x(s) = y. 

The optimal control problem is to minimize J( s , y ;u )  among all admissible 
controls. 

We denote the above problem by C , ,  to recall the dependence on the initial 
time s  and initial state y. The value function is then defined as 

*Project supported by the Science Fund of the Chinese Academy of Sciences. 
?The paper was written when the author stayed in Keio University, Hiyoshi, Yokohama, 223 Japan. 



2 XUN YU ZHOU 

V(s, y) = inf {J(s, y; u) : u E U,,,[S, 1)) (1.2) 

(2,ir) is called an optimal pair of the problem C,,, if i is the corresponding 
solution process of (1.1) for ir E Uad[s, 11 and J(s, y; ir) = V(s, y). 

To study the above optimal stochastic control problem, most researches were 
along either of two lines: maximum principle (MP in short) and dynamic 
programming (DP), which go back to Pontryagin [9] and Bellman [I], 
respectively. 

The MP says (the precise statement will be given later on): if (i,ii) is an optimal 
pair for C,,, then there exists a $;-adapted process t,h, called the adjoint process, 
such that 

EH(t, f (t), Nt), t,h(t)) =max EH(t ,  i(t),  (u, $it)) a.e. t E [s, 11, (1.3) 
U C ~  

where H is the Hamiltonian defined as: t 

H ( t , x , u , p ) = - p - f ( t , x , u ) - L ( t , x , u )  for ( ~ , ~ , ~ , ~ ) E [ O , I ] X R ~ X ~ X R ~ .  (1.4) 

On the other hand, the classical theory of D P  asserts that if I/(.,.)€ C',2, then it 
satisfies the following Hamilton-Jacobi-Bellman (H-J-B) equation: [5,8] 

where 

But this theory is highly unsatisfactory because the value function V is not 
smooth even in the simplest case, unless the diffusion term in (1.1) is nondegener- 
ate; see [5]. Recently, however, there has been a significant development in the 
study of DP due to the new conception of the viscosity solution introduced by 
Crandall-Lions 143. It asserts that V is a solution of (1.5) in viscosity sense, which 
is not required to be in C1*' [7]. Hence the result in 171 may be viewed as a 
nonsmooth version of the classical theory. 

Now a natural question arises: what is the relationship between MP and DP? In 
deterministic control (a=O), the well-known result is that if V(. ,.) E C ' , ~ ,  then 

see [5]. But it is also based on the assumption that V is smooth. Recently, this is 
improved by the author [ I l l ,  by showing that (1.6) can be interpreted as 
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where D; and D: is the sub and super differential evoked in defining the viscosity 
solution [4]. Some related work by Clarke and Vinter [3,10] is discussed below 
(see Remark 3.4). 

The present work is a continuation of the study to the connection between the 
MP and D P  in stochastic control. After precise statements of the MP and D P  in 
Section 2, we will give a stochastic version of (1.7) in Section 3, under the usual 
assumptions appearing in proofs of the M P  and DP. Therefore, the MP, DP and 
their connection can be established within a unij?ed framework of nonsmooth 
analysis: the framework of viscosity solution. 

2. MAXIMUM PRINCIPLE AND DYNAMIC PROGRAMMING 

Throughout this work, we impose the following assumptions: 

(A,) a(*;) is a continuous mapping from [0, I] x Rd to RdXr; sometimes we write 
o=(ol,  a,,. . . , or), where oi is Rd-valued, i=  1,2,. . . , r; 

(A,) f ( a ,  ., .) and L(., ., .) are continuous mappings from [O,l] x Rd x r to Rd and 
R1 respectively; moreover, f and L are continuous with respect to (t,x), 
uniformly in u E T; 

(A,) V(t, u) E [O,l] x r, f (t, ., u), L(t, ., u), ~ ( t ,  .) and h( . )  are continuously differen- 
tiable, where h(.) is R1-valued; 

(A,) 3 const K > 0 such that 

v(t, X, U) E LO, I] x R~ x r. (2.2) 

LEMMA 2.1 There exists a constant C >O such that 

I ~ ( t , x ; u ) - J ( s , y ; u ) ( ~ ~ ( I t - s I " ~ + I x - y l ) ,  V(t,x),(s, y )~ [O , l ]  x Rd, V U E U ~ ~ ;  (2.3) 

I v ( t , x ) - V ( ~ , y ) l ~ C ( l t - s 1 ~ ~ ~ + I ~ - y l ) ,  V(t,x),(s,y)~[O,l] x Rd. (2.4) 

Proof The proof is conventional and easy, hence omitted. 

THEOREM 2.1 (MP) Suppose (2,f) is an optimal pair for the problem C,,,, then 
there exists an adjoint process $(t) on [s, 11 which is 9:-adapted such that 

EH(t, i(t), a(t), $ ( t ) )  =max EH(t ,  2(t), u, $(t)), a.e. t E [s, 11 
ucr 

(2.5) 

H(t, 2(t), fi(t), $(t)) = max H(t, 2(t), u, $(t)), w.p.1; a.e. t E [s, 11. 
u e T  

(2.6) 

Furthermore, the process II/ can be represented as 
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where L, and h ,  denote respectively the gradients of L and h, and the random 
matrix 0 satisfies the following SDE 

I t 

+ j ai,(r, k(r))@(r, z) dB (r), for s 5 T 6 t; 
i = l  r 

o ( t ,~)=O,  for s S t < ~ ,  

here f, and a, denote respectively the Jacobian matrices of f  and o,. 

Proof See [I21 as one of the special cases. 

Remark 2.1 The forms of the MP are somewhat different depending on authors 
[2,6,12]. In [2], the adjoint process (I/ is described as a solution to some SDE. But 
in order to investigate the connection between the MP and DP, it is convenient to 
write the $ explicitly down as (2.7). See Section 3 for details. 

Before going to the statement of the DP, let us briefly recall the definition of the 
viscosity solution of a second-order nonlinear partial differential equation [7]. 

DEFINITION 2.1 Let Q be a smooth domain in Rn and o~ C(Q), the second-order 
super- (resp. sub-) differential of v at x EQ, denoted by D2"v(x) (resp. DZ* -) is the 
set defined as 

(resp. D2, -v(x) = { ( A ,  p) E Ron x R n : U  {...I 20)) .  
Y+X 

DEFINITION 2.2 Let G E C(Q x R x Rn x Rnx  ") and v E C(Q), o is called a viscosity 
solution of the equation G(x, o, 80, d2v) =0, if 

G(x, v(x), p, A) 0, V (A ,  p) E D ~ '  +v(x), V x E Q; (2.9) 

Remark 2.2 The first-order super- and sub-differential of VEC(Q) are now 
denoted by D"+V(X) and Dl*-u(x) respectively. See [4,11]. It is easy to see that if 
(A, p) E D2v +v(x), then p~ Dl, +u(x), etc. 

Remark 2.3 For a function VEC([O, I] x Q), when we write D;~~v(t ,x) ,  it is 
understood to be the super-differential with respect to the x-variable, etc. 
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THEOREM 2.2 (DP)  The value function V is a viscosity solution of the H-J-B 
equation (1.5) with the end condition 

Remark 2.4 Our definition of the value function (1.2) follows that in [5] ,  which 
is somewhat different from that in Lions [7] and Nisio [8].  The difference lies in 
that our value function satisfies a backward H-J-B equation while the one in [7,8] 
satisfies a forward H-J-B equation. Thus the proof of Theorem 2.2 is also 
somewhat different from that in [7]. 

Proof of Theorem 2.2 For fixed ( t ,  x) E [O, I ]  x Rd, let ( A ,  p)  E D;;; V( t ,  X )  where 
p~ Rd+' ,  A = ( A ~ ~ )  E R ( d + l ) x ( d + l ) ,  i, j=O, 1,2,. . . , d. By the property of sub- 
differential [7],  there exists F E CZ((0,l) x R d )  n Cb([O, 1) x R d )  such that 

V 8 > 0 ,  3(R,  8, P, B(r); u,) E U,,[t, 11 such that V( t ,  x )  2 J(t, x; u,) -c2. Note by the 
definition of the admissible control, for P-a.s. o E R, 

where x,  is the solution of (1 .1 )  for the control u, with initial ( t , x ) .  Applying It& 
formula to F(.;), we get from (2.14) that 
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2 - E sup H(t, x,  u, F,(t, x)) - o(E). 
ueT 

Dividing (2.15) by E and letting E tend to 0,  we arrive at 

O , l ) X R d ) ,  Now let (A ,  p) ED:;' V( t ,  x), there is also a function F E C, (( 
C,([O, 1) x Rd)  with the property (2.12) and 

F(s, Y )  > V(s,  y), v(s ,  Y )  f ( 4  4. (2.17) 

V E > 0, by Lemma 2.1, 3 6 = 6(t, E )  such that 

I J ( ~ + E , ~ ; u ) - J ( ~ + E , z ; u ) ( + I V ( ~ + E ,  y)- v (~+E,z ) (<E' ,  

Let (Dj) be a Bore1 partition of Rd with diameter l ~ ~ l < d .  Choose x j €  D,. For each 
j, 3(Qj ,P j ,  P j ,  Bj(r); vj) E Ued[t +E ,  11 such that 

J(t + s, x j ;  uj) S V ( t  + E,  x j )  + E', (2.19) 

hence for any Y E  Dj, 

Since uj is o(Bj(r),  t + E 5 r s)-adapted, so there exists a measurable Cj:  [t + E,  11 x 
C([ t  + E, I ]  + Rr)  -+ T such that oj(r, a) = Cj(r, B j ( .  Ar, w)).  Now for any u E T, let 
~ , ( . ) l , , , ~ + , ,  be the solution of (1.1) with the initial ( t , x )  and any admissible control 
(Q, 9, P, B(r); u(t) E U )  on [t ,  t  + E ] .  Define 

if s ~ [ t , t + ~ )  
u E ~ ,  0) = (2.2 1 )  {ii(s, B(. As, a) - B(t + E,  o)), if s e [ t  + 8, 11 and xe(t + E )  E Dj. 

It is clear that U,E  U J t ,  I ] ,  let X ,  be the corresponding solution of (1.1) for initial 
( t ,  x )  and the control u,. We can write 

F(t ,  x )  = V( t ,  x )  5 J(t, x; u,) 
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f + &  

E j ~ ( s ,  x,(s), u) ds + E ~ ( t  + E, x,(t + E)) + 3~~ (see (2.20)) 
f 

Using a similar calculation as (2.15), we get 

- po - aij(t, x)Aij + sup H(t, x, u, p,) 5 0. 
i , j = l  U E ~  

By combining (2.16) and (2.23), it follows that V is a viscosity solution of (1.5). 
Moreover, (2.1 1) is clear. The proof is completed. 

3. CONNECTION BETWEEN MAXIMUM PRINCIPLE AND DYNAMIC 
PROGRAMMING 

In deterministic control, the following principle plays an important role in the 
study of DP: if (2, t )  is optimal for the problem C,,,, then it is also optimal for 
C,,,,,,, for each t E [s, 11. See [I, 111. Sometimes it is called Bellman's principle of 
optimality. The following Lemma 3.1 is essentially a stochastic version of the 
Bellman's principle. 

LEMMA 3.1 Suppose (2, t), defined on a probability space (0, g, P) with a Brownian 
motion { B ( t ) :  s 5 t 5 I), is an optimal pair for C,,,, thenfor each t E [s, 11 

Proof Note for as .  w ER, (0 ,  % ~ ( . l F s ) ( o ) ,  B(r) - B(t); tlIf, ,]) E Uad[t, 11, hence 

then 3 E > 0 such that 
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Using a similar argument as in (2.18) (2.22), we can choose an admissible control 
u in [t ,  11 such that 

EJ(t ,  2(t);  v )  < EV(t,  2(t))  + E .  

Define 

then we have 
t 

J(s, y; u*) = E j L(r, f (r) ,  ii(r)) dr + EJ(t ,  i ( t ) ;  v)  
S 

This is a contradiction to the optimality of ii. Hence (3.3) is false. The proof is 
completed. 

Remark 3.1 It is easy to check that (3.1) is equivalent to that M ( t )  E V( t , k ( t ) )  + 
J: ~ ( r ,  2(r), ii(r)) dr is an 9;-martingale in [s, 1). 

In the following we will write a, to stand for x:=, ai,. 

LEMMA 3.2 Let ( f ,  ii) is optimal for C,, , and let t E [s, 11. Let ( be a 9:-measurable 
Rd-valued random variable. Then the solution of the following SDE 

can be represented by 

where 0 is the solution of (2.8). 

Proof It is easy to verify that the right side of (3.8) satisfies (3.7). Hence the 
result follows from the uniqueness of solutions of the SDE (3.7). 

THEOREM 3.1 Suppose (2,ii) is an optimal pair for the problem C,,,, then for any 
~ E C S ,  11 

where * is the adjoint process appearing in Theorem 2.1. 

Proof V Y ' E  Rd,  let x(.; y') satisfy the following SDE in [t ,  11: 
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r r 

~ ( r ;  yl) = y1 + Sf (0,  ~ ( e ;  yt), qe ) )  de + f ~ ( e ,  ~ ( e ;  y)) d ~ ( e ) ,  r 2 t .  (3.10) 
t 

Note m(r) -= S: ( 4 8 ,  x(8; y')) -a(& i ( 8 ) ) )  dB(8) is still an F:-martingale under 
~(.193(o) for a.s.o. Hence by a standard argument, we know there exists 
C = C( t )  > 0 such that 

Now we can write 

~ ( r ;  y') - R(r) = y' - R(t) 

Denote 

1 

r2(8; y') = f {a,(& A(8) + a(x(8; y') - .t(e))) - ox(B, i ( 0 ) ) )  da, for 8 E: [ t ,  11. 
0 
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Let z(.; y') satisfy the following SDE in [t, 11: 

r r 

~ ( r ;  y') = y' - i ( t )  + j fJ9, %(6), ir(O))z(8; y') d9 + j a,(& 3(6))2(8; y') dB(@). (3.13) 
t t 

By assumptions (A,) - (A,), (3.1 1) and dominated convergence theorem, we have 

~ ( w :  ~ ( / r , ( &  y ' )141~;)(o)-+0 as yr+%(t,o), VO€[t, I]} = 1, i =  1,2, (3.14) 

sup E((ri(& y')1419s) (w) 5 const. i = 1,2. (3.15) 
0 , O . y '  

Denote w(r; y') -= x(r; y') - 2(r) - z(r; y'). With the aid of (3.1 I), it is not difficult to 
derive that 

By virtue of (3.14) - (3.15), we get by the Gronwall's inequality 

Now we choose an R, c R with P(Q,)= l such that for any w o ~ Q 0 ,  (2.7), (3.1) 
and (3.1 1) are satisfied for any rational y' (i.e., all the coordinates of y' are rational 
numbers), and (a,% P( . I 3 3  (o,), B(r) - B(t); iil,,, ,,) E Uad[t, 1). Let w, E Q, be fixed, 
then for any rational y', we have 

where E'S E(.~F;) (o,). Using a similar calculation as in (3.12), we can rewrite 
(3.18) as 
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= E' j Lx(r, 2(r), ii(r)) [w(r; y') + @(r, t) ( y1 - k(t))] dr i : 

(by (3.17) which is a consequence of (3.11)) 

hence for any F>O, there exists a 6>0 such that if y; is rational and 
(yh - i ( t ,  wO)I < 6, then V(t, yk) - V(t, i(t ,  a,)) $ $(t, wo) ( yh - %(t, a,)) + F, where 
Is,l/l yh - 2(t, wo)l < 813. NOW choose 6' = min(l,6, 43(C + I$(t, wo)l)) where C is the 
constant in (2.4), then for any y' with 0 < 1 y' -2(t, wo)l <GI, find a fixed rational y', 
such that I y',-f(t, o o ) ( <  I y'- i ( t ,  wo)l and 1 y',- y'l < I  y' - i ( t ,  wo)IZ. Thus we get 

moreover, it is easy to compute that 
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This means (3.19) holds for any y'€Rd, which immediately leads to the fact that 
$(t, 0,) 6 D:' + V(t, i ( t ,  w,)). On the other hand, suppose p E D:* - V(t, $(t, w,)), then 
by the definition of first-order sub-differential 

hence p = $(t, wo), which is the left half of (3.9). The proof is now completed. 

Let us conclude the paper with some remarks. 

Remark 3.2 By Theorem 3.1, for any t E [s, 11, for as .  w ER, if V(c, .) is 
differentiable at 3(t, o ) ,  then $(t, w) = Vx(t, i ( t ,  w)). This is just a stochastic version 
of the classical result (1.6). Moreover, we do have examples, as we have raised in 
the deterministic case [ I l l ,  to show that the inclusions in (3.9) may be strict. In 
fact, if V(t, .) is not differentiable at k(t, a ) ,  then (3.9) implies Di* - V(t, i ( t ,  w)) = 4 
and $(t,o) ED:" V(t,i(t, w)). (Since in general if u is not differentiable at some 
point x, then either Dl9 -u(x) or D'p +u(x) will be empty.) 

Remark 3.3 In the deterministic case, it can further be proved [ l l ]  that 

By virtue of (3.21) we can derive the M P  directly from the DP. However, (3.21) 
fails to hold in the stochastic cases. In fact, the Hamiltonian in (3.21) should be 
replaced by a "generalized Hamiltonian" which is in quadratic form. Moreover, we 
are also required to study the second-order super- and sub-differential of V(., .) due 
to the fact that V satisfies a second-order H-J-B equation. A study of these 
subjects will appear in a forthcoming paper. 

Remark 3.4 Here we mention another framework of nonsmooth analysis, called 
"generalized gradient", to investigate the connection between the MP and DP, 
though only of the deterministic cases. Clarke-Vinter [3] and Vinter [lo] proves 
the following relationship, without assuming the differentiability of f, L and h in 
x-variable: 

where 8, and a,,, denotes respectively the generalized gradient in x-variable and 
(t, x)-variable. As mentioned in the foregoing, the analogous result to (3.22), in the 
framework of "viscosity solution" and the related "super- and sub-differential", is 
proved in [ l l ]  (see (1.7) and (3.21)). On the other hand, the connection between 
these two frameworks is not clear, but at least we have D1.+v(x) u Dl9-v(x) 
c ~v(x ) .  



MAXIMUM PRINCIPLE AND DYNAMIC PROGRAMMING 

Acknowledgements 

I would like to express my appreciation of the hospitality of the probability group in Keio University. 
In particular, I am greatly indebted to Professor H. Tanaka for his encouragement, suggestion and 
criticism during the course of this research. Thanks are also due to Professors M. Nisio and H. Kunita 
for their valuable comments and discussions on the manuscript. 

References 

[I] R. Bellman, Dynamic Programming, Princeton University Press, 1957. 
[2] A. Bensoussan, Lecture on stochastic control, Part I, Lecture Notes in Math. 972 (1983), 1-39. 
[3] F. H. Clarke and R. B. Vinter, The relationship between the maximum principle and dynamic 

programming, SIAM J .  Control Optim. 25 (1987), 1291-1311. 
[4] M. G. Crandall and P. L. Lions, Viscosity solution of Hamilton-Jacobi equations, Trans. Amer. 

Math. Soc. 277 (1983), 1-42. 
[5] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verlag, 

New York, 1975. 
[6] H. J. Kushner, Necessary conditions for continuous parameter stochastic optimization problems, 

SIAM J .  Control 10 (1972), 55C565. 
[7] P. L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations, part 

2: Viscosity solutions and uniqueness, Comm. Partial Diff. Equ. 11 (1983), 1229-1276. 
[8] M. Nisio, Lectures on Stochastic Control Theory, IS1 Lecture Notes 9, Macmillan India Ltd., 

Bombay, 1981. 
[9] M. L. Pontryagin, V. G. Boltyanskii, R. V. Gamkreledze and E. F. Mischenko, The Mathematical 

Theory of Optimal Processes, Interscience, New York, 1962. 
[lo] R. B. Vinter, New results on the relationship between dynamic programming and the maximum 

principle, Math. Control Sign. Syst. 1 (1988), 97-105. 
[ l l ]  X. Y. Zhou, Maximum principle, dynamic programming and their connections in deterministic 

controls, to appear in J .  Optim. Theory Appl. 
[12] X. Y. Zhou, Maximum principle of stochastic controlled systems of functional type, to appear in 

Acta Math. Sinica. 


