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Abstract

We study a continuous-time Markowitz mean–variance portfolio selection model in which

a näıve agent, unaware of the underlying time-inconsistency, continuously reoptimizes over

time. We define the resulting näıve policies through the limit of discretely näıve policies that

are committed only in very small time intervals, and derive them analytically and explicitly.

We compare näıve policies with pre-committed optimal policies and with consistent planners’

equilibrium policies in a Black–Scholes market, and find that the former achieve higher

expected terminal returns than originally planned yet are mean–variance inefficient when

the risk aversion level is sufficiently small, and always take strictly riskier exposure than

equilibrium policies. We finally define an efficiency ratio for comparing return–risk tradeoff

with the same original level of risk aversion, and show that näıve policies are always strictly

less efficient than pre-committed and equilibrium policies.

Key Words. Continuous time, mean–variance model, time inconsistency, näıve agent,

pre-committed agent, consistent planner, equilibrium policies.

1 Introduction

The Markowitz mean–variance (MV) portfolio selection model (Markowitz, 1952 and Markowitz,

1959) is a monumental work in quantitative finance. The model formulates the investment prob-

lem as striving to achieve the best balance between return and risk, represented respectively

by the mean and variance of the final portfolio worth. Its variants, extensions and implications

have been passionately studied in theory and applied in practice to this day.

The original MV model is formulated for a static single period and solved by quadratic

program. It is natural and necessary to extend it to the dynamic setting, both in discrete

time and continuous time. However, a dynamic MV model is inherently time inconsistent;

namely, any “optimal” policy for the present moment will generally not be optimal for the next

∗The first version of the paper was completed in 2017, and part of the results was included in the first author’s
PhD thesis defended in 2020. The paper was finalized when the second author was on vacation in Las Vegas, a
place arguably ideal for observing the “näıve” behaviors studied in the paper.
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moment.1 This inconsistency comes from the variance term that does not satisfy the tower

rule: unlike the mean, there is no consistency over time in evaluating the same variance of

the final wealth. As a result, in sharp contrast to the classical time-consistent models, there

is no such notion as a dynamically optimal policy for a time-inconsistent model because any

such policy, once planned for this moment, may need to be given up quickly (and instantly

in a continuous-time setting) in favor of a different plan at the next moment. Technically,

time-inconsistency poses fundamental challenges in “solving” – whatever “solving” means – the

problem because the Bellman optimality principle, which is the very foundation of the classical

dynamic programming for studying dynamic optimization problems, is no longer valid.

Economists have recognized and studied time-inconstancy since as early as the 1950s. The

foundational paper Strotz (1956) describes three types of agents when facing time inconsistency.

Type 1, a “näıveté” (or näıf), is unaware of the time inconsistency and at any given time and

state of affairs seeks an “optimal” policy for that moment only, without knowing that he will

not uphold that policy for long. As a result, his policies change all the times, and the eventual

policy that is being actually carried out ex post can be vastly and characteristically different

from any of his short-lived “optimal” policies he originally planned to execute.2 The next two

types realize the issue of time inconsistency but act differently. Type 2 is a “pre-committer”

who solves the optimization problem only at time 0 and sticks to the resulting policy throughout

(via some “commitment device” if necessary and available), recognizing that the original policy

may no longer be optimal at later times. Type 3 is a “consistent planner” who is unable to

precommit and understands that her future selves may abandon whatever plans she makes now.

Her resolution is to optimize taking the future deviations from the current plan as constraints,

effectively leading to a game among selves at different times. The resulting policies are called

equilibrium ones.

It is important to note that it is not meaningful to determine which type is superior than

the others, simply because superiority depends on what criteria one uses – and now there are

no uniform criteria as in the time-consistent paradigm.3 In this sense, the Strotzian approach

to time-inconsistency is both normative (i.e. to advise people about the best course of actions,

especially in Types 2 and 3) and descriptive (i.e. to describe what people are actually doing, as

more with Type 1).

Mathematically, model formulations and solutions for deriving the three types of agent poli-

cies call for different treatments as they are very different from each other. The problems

are also challenging due to the invalidity of the dynamic programming approach. In the last

decade, there have been significant developments in studying time-inconsistent models analyt-

1Here a “policy” is a plan that maps any given time and state to an action (a portfolio in the MV model). It
is also called a feedback control law in control theory.

2For instance, Barberis (2012) shows, in a casino gambling model (which is time-inconsistent in discrete time
due to probability weighting), a näıve gambler’s initial plan was to gamble as long as possible when winning but
to stop if he started accumulating losses, he actually ends up doing the opposite: he gambles as long as possible
when losing and stops once he accumulates some gains. Similar behaviors are also observed, and indeed prevalent,
in stock investment especially with retail investors.

3In a recent note Zhang (2023), it is shown via a simple example that an equilibrium policy may not be Pareto
optimal, i.e. there exists another policy that is no worse for any self but strictly better for at least one self,
compared with the equilibrium policy.
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ically, mainly in three different settings: MV portfolio selection, and optimization problems

involving non-exponential discounting or probability weighting; see He and Zhou (2022) for

a recent survey on the related works. For the MV models, earlier works focused on Type 2,

pre-committed agents; see, e.g., Richardson (1989); Hakansson (1971); Li and Ng (2000); Zhou

and Li (2000); Lim and Zhou (2002); Bielecki et al. (2005); Xia (2005); Li and Zhou (2006),

although most of these works did not spell out that their solutions were pre-committed ones.

Later research gradually shifted to Type 3, consistent planners; see, e.g. Basak and Chabakauri

(2010); Hu et al. (2012); Björk and Murgoci (2014); Björk et al. (2014); He and Jiang (2022).

In contrast to the hitherto rich literature on pre-committed agents and consistent planners,

there are far fewer works on the general behaviors of näıve agents, and almost none in continuous

time (not necessarily limited to MV models).4 Barberis (2012) and Hu et al. (2022) study näıve

strategies in casino gambling models which are inherently discrete time. As shown in these

papers, finding näıve policies in discrete time is rather straightforward technically if the pre-

committed polices are already available: at each discrete time point one solves and obtains the

corresponding pre-committed policy, holds it until the next time point when one re-solves the

pre-committed problem, and repeats these steps until the terminal time. The eventual näıve

policy is then just to “paste” these piece-wise pre-committed policies together.

This pasting approach, however, becomes problematic in the continuous-time setting. In-

deed, assume that at each given time and state, say (s, y), there is a pre-committed policy

(t, x) 7→ π∗(t, x; s, y). This policy is executed at (s, y) only and instantaneously discarded there-

after, while a policy applied for just one single time–state initial point (s, y) has no impact on

the dynamics in continuous time. In other words, there would be no difference if one applied a

different policy, say π∗∗(s, y; s, y), at just the initial point (s, y). Therefore, while it is seemingly

intuitive to define the function (t, x) 7→ π∗(t, x; t, x) as the overall näıve policy, the definition is

nothing else than a heuristic, exactly because for each fixed (t, x) the action π∗(t, x; t, x) does

not impact the system and hence it is not clear how to interpret the resulting “continuously

pasted” policy (t, x) 7→ π∗(t, x; t, x). In the setting of optimal stopping, Huang and Nguyen-

Huu (2018) and Huang et al. (2020) define “näıve stopping policies” following this continuous

pasting approach, which is, in retrospect, still a heuristic for the same reason.

In sum, the notion of näıve policies, which is defined originally and naturally for discrete

time, collapses in continuous time. In this paper, we address this problem and make two main

contributions. First, we take a different approach to define the näıve policies that is faithful to

the original spirit of Strotz (1956) but adapted to the continuous-time setting, premised upon

the notion that, in general, any continuous-time behavior is the limit of discrete-time behaviors

when the time-step approaches zero.5 We fix a set of discrete time points and consider a ficti-

tious agent who only optimizes at each of these points and holds the resulting pre-committed

policy until the next point. It is then natural to use the “limit” – in a certain sense – of these

4Huang and Nguyen-Huu (2018) and Huang et al. (2020) define näıve stopping policies for continuous-time
optimal stopping problems. However, optimal stopping can be regarded as a special optimal stochastic control
problem, but not vice versa. Moreover, there is some delicate issue with the definition of näıve stopping policies
in Huang and Nguyen-Huu (2018) and Huang et al. (2020), which will be explained in the next paragraph.

5An analogy here is that the Brownian motion is just the limit of a simple random walk when the step size
diminishes to zero.
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discretely näıve agents when the step size becomes asymptotically small to describe the näıve

behavior in the original continuous-time model. One technical subtlety here is that policies are

generally only measurable functions whose limit is difficult to analyze. We consider instead

the limiting process of the wealth processes – which are analytically better behaved – of those

discrete agents, and find the policy that generates this limiting process as the wealth process.

It is important to note that the resulting policy must be time-consistent to be qualified as our

näıve policy, namely it should not depend on any specific time and state the discretely näıve

agent starts. There are two advantages in our approach. On one hand, the approach is both

general and constructive. It is general because the definition of a näıve policy applies readily to

any time-inconsistent problems beyond MV, and it is constructive because the definition itself

points to the direction of deriving a näıve policy. On the other hand, our approach is advan-

tageous from the implementation perspective (relevant to what is necessary in e.g. practical

applications and computer simulations): discrete-time processes are the only implementable

ones and policies defined directly in continuous time make implicit use of quantities that are

not necessarily accessible in a discrete-time setting, while our method naturally links to the

discrete-time approximation for implementation.

The second contribution is to compare the näıve policies with the other Strotzian types of

policies in a Black–Scholes market. Be mindful that it does not make much sense to use either

mean or variance of the terminal wealth alone for comparison, as the essence of the MV model

is to achieve a best trade-off between the two criteria. Instead, MV efficiency ought to be the

primary criterion. We show that, between a näıveté and a pre-committer and starting from

any given point of time and state, the former when sufficiently risk-seeking ends up with a

higher expected terminal wealth than he originally planned but is still MV inefficient (while the

latter is always MV efficient by definition). To compare näıve and equilibrium policies which

are both MV inefficient, we use an objective metric which is the risky weight defined as the

fraction of dollar amount invested in stocks. We show that a näıveté always allocate strictly

higher risky weight than the two types of consistent planners considered by Björk et al. (2014)

and He and Jiang (2022) respectively. This in turn suggests that the näıve policies tend to be

more risk-taking than their consistent planning counterparts.6 We finally define an efficiency

ratio for comparing return–risk tradeoff with the same original level of risk aversion, and prove

that näıve policies are always strictly less efficient than pre-committed and equilibrium policies.

Pendersen and Peskir (2017) introduce the notion of “dynamic optimality” in a continuous-

time MV model, which bears some relevance to näıve policies (although the paper stops short of

commenting on it). Definition 2 therein defines a dynamically optimal policy as there being no

other policy applied at present time could produce a more favourable value at the terminal time.

However, as discussed earlier, in a time-inconsistent problem there is no such thing as “dynamic

optimality”: as much as a näıveté attempts to reoptimize continuously over time, the resulting

actual policy at any given time may significantly deviate from the pre-committed optimal one

(and therefore is MV inefficient with respect to that given time, and indeed not optimal in

any sense). On the other hand, Pendersen and Peskir (2017) conjecture the analytical formula

6An analogous result is proved in Hu et al. (2022) for a casino gambling model: a näıve gambler stops gambling
no earlier than a gambler doing consistent planning.
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of such a “dynamically optimal” policy for a single stock Black–Scholes market, which turns

out to be exactly the “continuously pasted policy” discussed earlier, taking advantage of the

availability of the explicitly expressed pre-committed policies. We have already explained why

our definition of näıve policies is general and our derivation of these policies is constructive.

The rest of the paper is organized as follows. In Section 2 we formulate the continuous-time

MV portfolio selection model. In Section 3 we introduce the so-called 2−n-committed policies,

which are commited only during a small interval of length 2−n, before reoptimization. We

consider the limit of the wealth processes under these policies as n→∞, and define the policy

that generates this limiting wealth process as a näıve policy. We then state the main result that

expresses näıve policies analytically. In Section 4 we compare näıve policies with other types of

policies in a Black–Scholes market. Section 5 concludes the paper. Proofs related to the main

result are placed in Appendices.

2 A Continuous-Time Markowitz Model

In this section we review the continuous-time Markowitz MV model. We first introduce

notations.

Throughout this paper, M> denotes the transpose of any vector or matrix M , while all vec-

tors are column vectors unless otherwise specified. A fixed filtered complete probability space

(Ω,F ,P, {Ft}t≥0) is given along with a standard {Ft}t≥0-adapted, m-dimensional Brownian mo-

tion W (t) ≡ (W 1(t), ...,Wm(t))>. We use f or f(·) to denote the function f , and f(x) to denote

the function value of f at x. Likewise, we use X or X(·) to denote a stochastic process X = {Xs,

s ≥ 0}. Given a Hilbert space H and b > a ≥ 0, we denote by L2([a, b];H) the Hilbert space

of H-valued, square-integrable functions f on [a, b] endowed with the norm (
∫ b
a ||f(t)||2Hdt)1/2.

Moreover, we denote by L2
F ([a, b];Rm) the Hilbert space of Rm-valued, square-integrable and

{Ft}t≥0-adapted stochastic processes g endowed with the norm
[
E
∫ b
a ||g(t)||2dt

]1/2
, where || · ||

is the L2 norm in a Euclidean space.

A financial market has m+ 1 assets being traded continuously. One of the assets is a bank

account whose price process S0 is subject to the following equation:

dS0(t) = r(t)S0(t)dt, t ≥ 0; S0(0) = s0 > 0, (1)

where the interest rate function r(·) is deterministic. The other m assets are stocks whose price

processes Si, i = 1, ...,m, satisfy the following stochastic differential equations (SDEs):

dSi(t) = Si(t)

bi(t)dt+

m∑
j=1

σij(t)dW
j(t)

 , t ≥ 0; Si(0) = si > 0, (2)

where b(·) and σij(·), the appreciation and volatility rates functions respectively, are scalar-

valued and deterministic. Set the excess rate of return vector function and the volatility matrix
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function respectively as

B(t) := (b1(t)− r(t), ..., bm(t)− r(t))>, σ(t) := (σij(t))m×m.

An agent has total wealth X(t) at time t ∈ [0, T ], where T is a given terminal time of the

investment horizon. Assuming that the trading of shares takes place in a self-financing fashion

and that there are no transaction costs, the process X satisfies the canonical wealth equation

dX(t) =
[
r(t)X(t) +B(t)>π(t)

]
dt+ π(t)>σ(t)dW (t), t ∈ [0, T ], (3)

where each πi(t), i = 1, 2, ...,m, denotes the total market value of the agent’s wealth in the i-th

asset, resulting in a portfolio (π1(t), ..., πm(t))>, at time t. The agent considers portfolio choice

at time s when her wealth is y, where (s, y) ∈ [0, T )×R is given. The process π ≡ (π1, ..., πm)> =

{π(t) : s ≤ t ≤ T} is called an admissible portfolio (process) for (s, y) if π ∈ L2
F ([s, T ];Rm)

and the wealth equation (3) with initial condition X(s) = y admits a unique strong solution.

Denote by Us,y the set of admissible portfolio processes for (s, y).

We focus on a portfolio policy π = π(·, ·) which is a deterministic map from [0, T ] × R
to Rm. Such a policy specifies a portfolio π(t, x) when time is t and wealth is x.7 In the

classical, time-consistent setting, a policy π(·, ·) is independent of the initial time–state pair

(s, y), meaning that it is implemented no matter when and where one starts. Such policies are

called time-consistent ones. A time-consistent policy π = π(·, ·) is called admissible if for any

(s, y) ∈ [0, T )× R, the following SDE obtained by substituting π into the wealth equation (3)

dX(t) =
[
r(t)X(t) +B(t)>π(t,X(t))

]
dt+ π(t,X(t))>σ(t)dW (t), t ∈ [0, T ]; X(s) = y, (4)

admits a unique strong solution X and, moreover, the resulting portfolio process π ∈ Us,y where

π(t) := π(t,X(t)), t ∈ [s, T ]. Note that the wealth–portfolio process pair (X,π) depends on the

initial (s, y), and we say (X,π) is generated from the policy π with respect to (s, y).

The classical verification theorem for time-consistent problems (e.g. Yong and Zhou, 1999)

dictates that, under standard assumptions, there exists a time-consistent policy that generates

optimal wealth–portfolio process pair (X,π) for any given initial (s, y).

The following assumptions are in force throughout this paper.

(A1) r(t), B(t) and σ(t) are uniformly bounded on [0, T ].

(A2) B(t) 6= 0 a.e.t ∈ [0, T ] and σ(t)σ(t)> ≥ δI, ∀t ∈ [0, T ] for some δ > 0.

Given (s, y) ∈ [0, T ) × R, the Markowitz mean–variance portfolio selection problem over

[s, T ] is

min
π(·)∈Us,y

Vars,y(X(T )) (5)

subject to

Es,y[X(T )] = yf(s, T ),

(X(·), π(·)) satisfy (3) with X(s) = y
(6)

7In control theory, the policy here is also called the feedback control law, whereas the portfolio process corre-
sponds to the open-loop control.
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where Vars,y and Es,y denote respectively the variance and expectation conditional on Fs and

X(s) = y, and f(u, v), 0 ≤ u ≤ v ≤ T , is a given deterministic real-valued function satisfying

f(u, u) = 1, ∀u ∈ [0, T ]. The number f(u, v) represents the desired growth factor over the time

horizon [u, v]. It is economically sensible to consider the expected mean target to be dependent

of the initial (s, y), which is equivalent to the state-dependend risk aversion considered in Björk

et al. (2014). He and Jiang (2022) consider a more general target L(s, y) instead of yf(s, T );

see also Section 4 of this paper.

We add an assumption on f throughout this paper:

(A3) f ∈ C1([0, T ]× [0, T ]), f(u, v) ≥ e
∫ v
u r(t)dt, ∀ 0 ≤ u ≤ v ≤ T , and −∞ < ∂f

∂t (t, T )|t=T <
∞.

The second part of this assumption is natural, demanding the target return to be at least as

great as the risk-free return.

Given (s, y), the relation between Vars,y(X∗(T )) (or equivalently
√

Vars,y(X∗(T ))) and

Es,y[X∗(T )], where X∗(T ) is the optimal terminal wealth of the problem (5) – (6), is called

an efficient frontier with respect to (s, y), which gives the best risk–return tradeoff for future

investment when standing at (s, y).

The problem (5) – (6) has been solved explicitly in literature; see e.g. (Li and Zhou, 2006,

Theorem 2.1),8 with the following unique optimal policy (conditional on Fs and X(s) = y)

π∗(t, x; s, y) = −[σ(t)σ(t)>]−1B(t)>
[
x− γ(s, T )e−

∫ T
t r(v)dvy

]
, (t, x) ∈ [s, T )× R, (7)

where

γ(s, T ) :=
f(s, T )− e

∫ T
s [r(v)−ρ(v)]dv

1− e−
∫ T
s ρ(v)dv

, s ∈ [0, T ), (8)

with

ρ(t) := B(t)[σ(t)σ(t)>]−1B(t)> > 0.

Note that l’Hôspital’s rule along with Assumptions (A2)-(A3) yield that γ(·, T ) is continuous

at T ; hence is uniformly bounded on [0, T ].

Substituting the policy (7) into the wealth equation (3) we obtain that the corresponding

optimal wealth process is determined by the following SDE:
dX∗(t) =

[
(r(t)− ρ(t))X∗(t) + γ(s, T )ρ(t)e−

∫ T
t r(v)dvy

]
dt

−B(t)(σ(t)σ(t)>)−1σ(t)
[
X∗(t)− γ(s, T )e−

∫ T
t r(v)dvy

]
dW (t), t ∈ [s, T ],

X(s) = y.

(9)

Finally, the efficient frontier at (s, y) is

Vars,y(X∗(T )) =
1

e
∫ T
s ρ(v)dv − 1

(
Es,y[X∗(T )]− ye

∫ T
s r(v)dv

)2
. (10)

8The previous results such as (Li and Zhou, 2006, Theorem 2.1) are for the case when (s, y) = (0, x0), but
they extend readily to arbitrary initial (s, y) because the underlying mathematical problem of the latter is the
same.
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In sharp contrast to the time-consistent setting, the policy π∗(·, ·; s, y) given by (7) now

depends on the initial pair (s, y) explicitly. If the agent sticks to this policy during the entire

future time period [s, T ] without subsequently altering it, then it is the so-called optimal pre-

committed policy. If the agent is näıve à la Strotz who reoptimizes at every subsequent time

moment, then the policy (7) will be abandoned immediately (indeed instantaneously) at any

s̃ > s. More precisely, suppose the agent carries out (7) for a (little) while and reaches the state

X(s̃) at time s̃ > s. Now the current initial time becomes s̃ and the current initial state is X(s̃).

If the agent reoptimizes the problem for the remaining duration [s̃, T ], then the corresponding

policy at (s̃, X(s̃)) is (conditional on Fs̃)

π∗(t, x; s̃, X(s̃)) = −[σ(t)σ(t)>]−1B(t)>
[
x− γ(s̃, T )e−

∫ T
t r(v)dvX(s̃)

]
, (t, x) ∈ [s̃, T )× R.

(11)

Clearly, the two policies (7) and (11) are generally different as two functions on [s̃, T ]× R.

So, problem (5) – (6) admits a policy (7) that is optimal for the current (s, y) only. In other

words, the pre-committed optimal policy depends inherently on (s, y), which in turn causes

the time-inconsistency of the policy and hence that of the problem, as discussed above. A

time-inconsistent policy of the type (7) is defined only for the given (s, y).

3 Näıve Policies

A näıvetè (“he”) always “reoptimizes” under current information; as a result he devises

policies and then instantly abandons them in the continuous-time setting. Although at each

given time he tries to follow the pre-committed optimal policy (7) but his eventual policy due

to the constant changes could be completely different from (7). In this section, we define näıve

policies rigorously, and then derive them in analytical form for the MV problem (5)–(6).

3.1 A 2−n-committed agent

As discussed earlier, the difficulty of defining and analyzing näıve policies lies in the continuous-

time setting of the problem. We overcome this difficulty by introducing an auxiliary agent,

named the 2−n-committed agent, to approximate the behavior of the näıvetè.

A 2−n-committed agent (“she”) is one who behaves “in between” a pre-committer and a

näıvetè. Specifically, she partitions the time horizon [0, T ] into 2n equal-length intervals, with

the partitioning points being {tk}2
n

k=0 where tk = kT
2n . She first solves problem (5)-(6) with

(s, y) = (0, x0) to obtain the pre-committed optimal policy π(·, ·; 0, x0) defined by (7). She

implements and commits to this policy until time t1 when her wealth becomes X(t1), at which

she resolves problem (5)-(6) with (s, y) = (t1, X(t1)) and switches to the policy π(·, ·; t1, X(t1)).

She commits to this new policy until t2 before changing it to π(·, ·; t2, X(t2)). She then repeats

these steps until time T . Figure 1 illustrates the resulting wealth process under this construction.

Denote by {X∗(t; tk) : t ∈ [tk, tk+1]} the above wealth process in the time interval [tk, tk+1], k =

0, 1, · · · , 2n−1, withX∗(0; 0) = x0. By (9), these processesX∗(t; tk), t ∈ [tk, tk+1], k = 0, 1, · · · , 2n−1,
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Figure 1: This figure shows a sample path of the wealth process Xn(·) of the 2−n-committer.
Each segment of the process, represented by a different color, follows the pre-committed optimal
policy devised at the beginning of the corresponding time interval. The wealth process is
continuous.

can be determined by the following SDEs recursively:
dX∗(t; tk) =

[
(r(t)− ρ(t))X∗(t; tk) + γ(tk, T )ρ(t)e−

∫ T
t r(v)dvX∗(tk; tk−1)

]
dt

−B(t)(σ(t)σ(t)>)−1σ(t)
[
X∗(t; tk)− γ(tk, T )e−

∫ T
t r(v)dvX∗(tk; tk−1)

]
dW (t), t ∈ [tk, tk+1],

X∗(tk; tk) = X∗(tk; tk−1),

(12)

where X∗(t0; t−1) is defined as x0.

Now, by “pasting” X∗(·; tk), k = 0, 1, ..., 2n − 1, we obtain the following process:

Xn(s) :=



X∗(s; 0), 0 ≤ s < t1,

X∗(s; t1), t1 ≤ s < t2,

...

X∗(s; t2n−1), t2n−1 ≤ s ≤ T ,

(13)

which is the wealth process of the 2−n-committed agent, visualized by Figure 1. Obviously, this

process is adapted and continuous on [0, T ].

3.2 Näıve policies

While this 2−n-committed agent behaves somewhere between a pre-committed agent and a

näıve one, she is closer to the latter when n becomes larger. Therefore, we define a näıve policy

through the limit (in certain sense) of the 2−n-committed wealth process as n→∞.

Definition 1 If the 2−n-committed wealth process Xn converge to an adapted process X in
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some sense, and the limiting process X can be generated by a time-consistent admissible policy

π∗ = π∗(·, ·), then π∗ is called a näıve policy of the problem (5)-(6).

Some remarks on this definition are in order. First, this definition applies to more general

time-consistent problems instead of just the current Markowitz problem. As such, we intention-

ally leave vague the precise sense in which Xn converge to X in order to make the definition

general and applicable to other problems. For the present problem, we will see momentarily

that the convergence is in the weak-L2 sense. Second, a näıve policy in itself must be time-

consistent, meaning that it can no longer depend on any initial (s, y) and, in particular, on

(0, x0), even though each Xn is indeed constructed starting from a specific pair (0, x0). Third,

we do not define a näıve policy as simply the limit of 2−n-committed policies, because policies

are in general only measurable and they may not converge and are hard to analyze. Instead,

we consider the limit of wealth processes that are much better behaved, and try to derive the

equation satisfied by that limit. Then, in the current case of the mean–variance problem, we

verify whether the limiting equation is of the canonical form (4). If yes, then we can immedi-

ately identify the corresponding näıve policy. If not, then there exists no näıve policy per our

definition. For a more general time-consistent problem, we can compare the drift and diffusion

coefficients of the limiting equation with those of the system equation respectively to determine

the näıve policy or negate its existence. Finally, the choice of the dyadic sequence of partitions

(leading to the 2−n-committed policies) is not essential. Any other choice of partitions will lead

to the same näıve policy – so long as the largest interval converges to 0 – due to the uniqueness

of the limit of the corresponding wealth processes.

The following proposition, whose proof is deferred to Appendix A, indicates that the 2−n-

committed wealth processes Xn, n = 1, 2, · · · , are uniformly bounded in L2
F ([0, T ];R).

Proposition 1 It holds that

||Xn||2 := E
∫ T

0
|Xn(s)|2ds <∞, ∀n.

Moreover, ||Xn||2 is uniformly bounded in n.

Due to Proposition 1, the sequence {Xn}∞n=1 is uniformly bounded in the Hilbert space

L2
F ([0, T ];R), and hence is weakly compact. So there exists a weakly convergent subsequence

(still denoted as {Xn}∞n=1 without loss of generality) and a process X ∈ L2
F ([0, T ];R) such that

Xn → X weakly in L2
F ([0, T ];R).

The following theorem is the main result of the paper, which characterizes this limiting process

and, consequently, the näıve policy.
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Theorem 1 The weakly limiting process X satisfies the following SDE:
dX(t) =

[
(r(t)− ρ(t)) + γ(t, T )ρ(t)e−

∫ T
t r(s)ds

]
X(t)dt

−B(t)(σ(t)σ(t)>)−1σ(t)
[
1− γ(t, T )e−

∫ T
t r(s)ds

]
X(t)dW (t), t ∈ [0, T ],

X(0) = x0.

(14)

Moreover, the following is the näıve policy:

π∗(t, x) = −[σ(t)σ(t)>]−1B(t)>[1− γ(t, T )e−
∫ T
t r(s)ds]x, (t, x) ∈ [0, T ]× R. (15)

A proof of Theorem 1 is delayed to Appendices B.

Note that the explicitly presented policy (15) indeed does not depend on any initial pair

(s, y) and, in particular, on (0, x0). This means that even if the wealth process of the 2−n-

committed was to be alternatively constructed from a different initial pair (s, y), it would lead

to the same näıve policy (15). On the other hand, it generates X as its wealth process for the

given initial (0, x0).

To conclude this section, we illustrate our definition of näıve policies by presenting an

example beyond the mean–variance setting.

Example 1 Given (s, y) ∈ [0, T )× R, consider the following deterministic control problem

min
u(·)

∫ T

s
|u(t)− 2(t− s)|dt

subject to ẋ(t) = u(t), t ∈ [s, T ]; x(s) = y.

This problem is taken from (Zhang, 2023, Section 4) except that there is no state process therein.

To derive the näıve policy, consider a 2−n-committed agent who starting from (s, y) = (0, x0)

partitions [0, T ] with tk = kT
2n where k = 0, 1, · · · , 2n. Her control is

u(t) = 2(t− tk), for t ∈ [tk, tk+1), k = 0, 1, · · · , 2n − 1.

Let the corresponding state process be xn(·). Then, for t ∈ [tk, tk+1),

xn(t) =xn(tk) +

∫ t

tk

2(t′ − tk)dt′ = xn(tk) + (t− tk)2

=xn(tk−1) + (tk − tk−1)2 + (t− tk)2

= · · · = x0 + k

(
T

2n

)2

+ (t− tk)2.

For any t ∈ [0, T ], there is k such that t ∈ [tk, tk+1). Hence

|xn(t)− x0| = k

(
T

2n

)2

+ (t− tk)2 ≤ 2n
(
T

2n

)2

+

(
T

2n

)2

→ 0

as n→∞. So xn(t) converges to x(t) ≡ x0 uniformly in t ∈ [0, T ]. The policy that generates the
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limiting state process x(t) ≡ x0 is then u(t) = ẋ(t) = 0. It coincides with the “näıve strategy”

in (Zhang, 2023, Section 4) which is however based on the heuristic discussed earlier.

4 Comparison between Näıve and Other Types of Policies

In the continuous-time MV literature, two types of equilibrium policies by consistent plan-

ners have been introduced and studied: the weak equilibrium policies by Björk et al. (2014)

and the regular equilibrium policies by He and Jiang (2022). In this section, we compare the

näıve policies with these two types of equilibrium policies as well as the pre-committed ones, in

a Black–Scholes market.

4.1 Weak and regular equilibrium policies

We first review the two types of equilibrium strategies, whose definitions can be found,

in slight variants of the MV formulation, in Björk et al. (2014) and He and Jiang (2022)

respectively.

Given (s, y) ∈ [0, T ]× R, Björk et al. (2014) consider the following problem:

max
π(·)∈Us,y

J(s, y;π(·)) := Es,y[X(T )]− α(s, y)

2
Vars,y(X(T )) (16)

subject to (X(·), π(·)) satisfy (3) with X(s) = y. (17)

In the objective function of this problem, there is a risk-aversion term α(s, y) > 0 that depends

on the initial time s and initial state y; see Björk et al. (2014) for the many discussions on the

motivation of such a varying risk-aversion term.9 The problem is again time-inconsistent. Björk

et al. (2014) study the behavior of a consistent planner by considering the equilibrium policies

defined as follows. Given an admissible (time-consistent) policy π̂(·, ·), construct a new policy

πh by

πh(t, x) :=

π, t ∈ [s, s+ h), x ∈ R,

π̂(t, x), t ∈ [0, T ] \ [s, s+ h), x ∈ R,
(18)

where π ∈ Rm, h > 0 and s ∈ [0, T ) are aribitrarily given. Let π(·) and πh(·) be respectively

the portfolio processes generated by π̂ and πh starting from (s, y). We say that π̂ is a weak

equilibrium policy if the pertubed policy πh is admissible and

lim
h→0

inf
J(s, y; π̂)− J(s, y;πh)

h
≥ 0, (19)

for all π ∈ Rm and (s, y) ∈ [0, T )× R.

On the other hand, He and Jiang (2022) formulate the following problem:

min
π(·)∈Us,y

Vars,y(X(T )) (20)

9Björk et al. (2014) consider only the state-dependent risk aversion α(s, y) = α(y), but the method and results
therein readily extend to the time–state dependent case presetned here.
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subject to

Es,y[X(T )] = L(s, y),

(X(·), π(·)) satisfy (3) with X(s) = y,
(21)

where L(s, y) indicates the expected terminal wealth target when the initial pair is (s, y).10

When L(s, y) = yf(s, T ), the problem (20)–(21) reduces to the problem (5)–(6). He and Jiang

(2022) also study a consistent planner, except that they use the notion of regular equilibrium

policies which is very different from that of the weak equilibrium policies. Specifically, an

admissible, time-consistent policy π̂ is called a regular equilibrium policy if for any (s, y) ∈
[0, T ) × R, any π ∈ Rm such that πh constructed by (18) is admissible for sufficeintly small

h > 0, we have11

Vars,y(X
πh(T ))−Vars,y(X

π̂(T )) ≥ 0 (22)

for sufficiently small h > 0, where X π̂(T ) and Xπh(T ) are the terminal wealth values, both

starting from (s, y) and under π̂ and πh respectively.

The difference between the problems (16)–(17) and (20)–(21) is that the former uses a

weighting coefficient α(s, y)/2 in its objective function while the latter takes L(s, y) in its con-

straint. The two problems are related via the Lagrange multiplier method. As a result, if we

choose α(s, y) and L(s, y) in a certain way, then the respective pre-committed optimal polices

for the two problems coincide, as stipulated in the following proposition.

Proposition 2 If

1

α(s, y)
e
∫ T
s ρ(t)dt + ye

∫ T
s r(t)dt =

L(s, y)− e
∫ T
s [r(t)−ρ(t)]dty

1− e−
∫ T
s ρ(t)dt

, ∀(s, y) ∈ [0, T ]× R (23)

holds, then the pre-committed optimal policies for (16)–(17) and (20)–(21) are the same for any

(s, y) ∈ [0, T ]× R in the following form

π̄∗(t, x; s, y) = −[σ(t)σ(t)>]−1B(t)>
[
x− γ̄(s, T, y)e−

∫ T
t r(v)dv

]
, (t, x) ∈ [s, T ]× R, (24)

where

γ̄(s, T, y) :=
1

α(s, y)
e
∫ T
s ρ(v)dv + e

∫ T
s r(v)dvy.

Proof It follows from the equations (5.12), (5.1) and (6.7) in Zhou and Li (2000) that the

pre-committed optimal policy of (16)–(17) is (24). On the other hand, it follows from (Li and

Zhou, 2006, Theorem 2.1) that the precommitted strategy of (20)–(21) is

π̃∗(t, x; s, y) = −[σ(t)σ(t)>]−1B(t)>
[
x− γ̃(s, T, y)e−

∫ T
t r(v)dv

]
, (t, x) ∈ [s, T ]× R, (25)

where

γ̃(s, T, y) :=
L(s, y)− e

∫ T
s [r(v)−ρ(v)]dvy

1− e−
∫ T
s ρ(v)dv

.

10In the original formulation of He and Jiang (2022), the expected terminal wealth constraint is Es,y[X(T )] ≥
L(s, y), which is equivalent to the equality constraint formulated here.

11Here, the term “admissible” requires the corresponding portfolio processes generated by the relevant policies
for (s, y) to also satisfy the expectation constraint in (21).
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It is now evident that if (23) is satisfied, then γ̄(s, T, y) ≡ γ̃(s, T, y) leading to π̃∗(t, x; s, y) ≡
π̄∗(t, x; s, y).

The condition (23) ensures that the pre-committed solutions of the two problems coincide.

As a result, the näıve policies of the two problems are also identical because they are obtained

via the limit of pre-committed policies. However, (23) does not necessarily lead to the same

weak/regular equilibrium policies of the two problems, because equilibrium policies are not

based on pre-committed ones.

4.2 Comparisons

We now compare the näıve policies with the weak/regular equilibrium policies and the pre-

committed polices, in a Black–Scholes market for simplicity. Specifically, there is a risk-free

asset and only one risky asset (i.e. m = 1) with r(t) ≡ r > 0, B(t) ≡ b − r > 0, σ(t) ≡ σ > 0.

As a result, ρ(t) ≡ ρ = ( b−rσ )2 > 0.

We carry out the comparison for two cases. In Subsection 4.2.1, we choose α(s, y) = α
y

for some constant α > 0 in the problem (16)–(17), which is also a case examined closely in

Björk et al. (2014). The parameter α characterizes the risk preference of the agent, and a

greater α implies a higher degree of risk aversion. Subsection 4.2.2 studies the case when

L(s, y) = yek(T−s) for some constant k > r in the problem (20)–(21). Clearly, a greater k

indicates a smaller level of risk aversion. In each case, we choose f(·, ·), L(·, ·) and α(·, ·) in such

a way (e.g. to satisfy (23)) that the different formulations of the MV problem are consistent in

their respective pre-committed optimal policies.

4.2.1 The case α(s, y) = α
y

When α(s, y) = α
y , the corresponding L according to (23) is

L(s, y) = y

[
1

α

(
e(T−s)ρ − 1 + αe(T−s)r

)]
, (26)

whereas the corresponding f is

f(s, T ) =
1

α

[
e(T−s)ρ − 1 + αe(T−s)r

]
. (27)

It is easy to check that this f satisfies Assumption (A3). By Theorem 1, the näıve policy is

π∗(t, x) = −b− r
σ2

[
1− f(t, T )− e(r−ρ)(T−t)

1− e−ρ(T−t)
e−r(T−t)

]
x, (t, x) ∈ [0, T ]× R. (28)

Substituting the expression of f in (27) into the above and going through some simple compu-

tation, we finally get

π∗(t, x) =
b− r
ασ2

e(ρ−r)(T−t)x, (t, x) ∈ [0, T ]× R. (29)
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The risky weight function of this policy, defined as the ratio between the dollar amount in the

stock and the total wealth and denoted by cna, is thereby

cna(t) :=
π∗(t, x)

x
=
b− r
ασ2

e(ρ−r)(T−t), t ∈ [0, T ], (30)

which turns out to be a function of t only.

On the other hand, when α(s, y) = α
y , Theorem 4.6 in Björk et al. (2014) gives the weak

equilibrium policy of the problem (16)–(17) as

πwe(t, x) = cwe(t)x, (31)

where c(t) ≡ cwe(t) is the unique solution to the following integral equation

c(t) =
b− r
ασ2

[
e−

∫ T
t [r+(b−r)c(s)+σ2c(s)2]ds + αe−

∫ T
t σ2c(s)2ds − α

]
. (32)

Similarly, cwe is the risky weight function of the weak equilibrium policy.

Finally, we can rewrite (26) as

L(s, y) = ye
∫ T
s [r+ψ(t)]dt (33)

where

ψ(t) :=
r + (ρ− r)eρ(T−t)

αe(T−t)r + eρ(T−t) − 1
. (34)

Applying Theorem 1-i in He and Jiang (2022) and noting that the solution to the problem

(2.10) therein is v∗(t) = ψ(t)
b−r , we obtain the regular equilibrium policy for (20)–(21) to be

πre(t, x) = cre(t)x, (35)

where

cre(t) :=
ψ(t)

b− r
=

1

b− r
r + (ρ− r)eρ(T−t)

αe(T−t)r + eρ(T−t) − 1
, t ∈ [0, T ] (36)

is the risky weight of this equilibrium policy at t ∈ [0, T ].

The following proposition shows that the näıve policy allocates strictly more weight to the

risky asset than the two equilibrium policies at any time before T .

Proposition 3 In the Black–Scholes market, if α(s, y) = α
y , then we have

cwe(t) < cna(t), cre(t) < cna(t), ∀t ∈ [0, T ),

for any α > 0.

Proof Let us first prove c(t) ≡ cwe(t) < cna(t) ∀t ∈ [0, T ). We have the obvious inequality

ρ+ (b− r)c(s) + σ2c(s)2 > 0, ∀s ∈ [0, T ) (37)
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because ∆ := (b− r)2 − 4ρσ2 = −3(b− r)2 < 0. Recalling that c(·) satisfies (32), we deduce

cwe(t) =
b− r
ασ2

[
e−

∫ T
t [r+(b−r)c(s)+σ2c(s)2]ds + αe−

∫ T
t σ2c(s)2ds − α

]
≤ b− r

ασ2
e−

∫ T
t [r+(b−r)c(s)+σ2c(s)2]ds

<
b− r
ασ2

e−
∫ T
t (r−ρ)ds

=
b− r
ασ2

e(ρ−r)(T−t) = cna(t), ∀t ∈ [0, T ).

(38)

Next, we prove cre(t) < cna(t) ∀t ∈ [0, T ). Indeed

cre(t) =
1

b− r
r + (ρ− r)eρ(T−t)

αe(T−t)r + eρ(T−t) − 1

<
1

b− r
ρeρ(T−t)

αe(T−t)r

=
b− r
ασ2

e(ρ−r)(T−t) = cna(t), ∀t ∈ [0, T ).

The proof is complete.

So näıve policies take more risky exposure than the two types of equilibrium policies. It is

interesting to compare the näıvetè also with a pre-committer, realizing that the former strives

to follow the latter at every initial pair (s, y). Take (s, y) = (0, x0) for example. The pre-

committer’s expected terminal wealth is

E0,x0 [X∗(T )] = x0f(0, T ) = x0e
rT 1

α

[
e(ρ−r)T − e−rT + α

]
, (39)

noting (27). Although the näıvetè’s original expected target return was also x0f(0, T ) at (0, x0),

he changes mind all the time subsequently so his actual target return at (0, x0) can be signif-

icantly deviated from the original one. To see this, plugging in the näıve policy (29) to the

wealth equation (3) to obtain

dX∗(t) =

[
rX∗(t) +

1

α
ρe(ρ−r)(T−t)X∗(t)

]
dt+

b− r
ασ

e(ρ−r)(T−t)X∗(t)dW (t), t ∈ [0, T ]; X∗(0) = x0.

(40)

Taking the integral form of this SDE and applying expectation on both sides, we get an ODE

in terms of E0,x0 [X∗(·)]. Solving this ODE we arrive at

E0,x0 [X∗(T )] = x0e
rT e

1
α

ρ
ρ−r [e

(ρ−r)T−1]
. (41)

Recall that α > 0 is the risk aversion coefficient, and the smaller α the less risk averse the agent

is. Comparing (41) with (39) and noting that ρ
ρ−r [e(ρ−r)T − 1] > 0 always holds, the näıvetè’s

expected terminal wealth is larger than the pre-committer’s when α is small, and the former

grows exponentially fast while the latter does only linearly in α−1 as α→ 0. So a näıve policy

ends up achieving a much higher expected terminal wealth than a pre-committed one which
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is also his originally planned target.12 However, this by no means implies that the former is

superior to the latter because in an MV model there are two criteria and the variance is as

important as the return. Instead, we ought to analyze the risk–return tradeoff of a näıve policy

and compare it with the pre-committer’s which is known to attain the best such tradeoff.

To do this, we first have the following result.

Proposition 4 In the Black–Scholes market, the terminal wealth X(T ) of a policy π where

π(t) = c(t)X(t) starting from X0 = x0 satisfies

√
Var0,x0 [X(T )] =

√
e
∫ T
0 σ2c(t)2dt − 1 E0,x0 [X(T )]. (42)

Proof Under π(t) = c(t)X(t), the wealth process follows

dX(t) = [r + (b− r)c(t)]X(t)dt+ σc(t)X(t)dW (t), X(0) = x0.

Hence

E0,x0 [X(T )] = x0e
∫ T
0 [r+(b−r)c(t)]dt. (43)

By Itô’s formula

dX(t)2 = 2[r + (b− r)c(t) +
1

2
σ2c(t)2]X(t)2dt+ 2σc(t)X(t)2dW (t),

leading to

E0,x0 [X(T )2] = x20e
∫ T
0 [2r+2(b−r)c(t)+σ2c(t)2]dt. (44)

It follows that

Var0,x0 [X(T )] = E0,x0 [X(T )2]− (E0,x0 [X(T )])2

= x20e
∫ T
0 [2r+2(b−r)c(t)+σ2c(t)2]dt − x20e2

∫ T
0 [r+(b−r)c(t)]dt

= x20e
2
∫ T
0 [r+(b−r)c(t)]dt(e

∫ T
0 σ2c(t)2dt − 1)

= (e
∫ T
0 σ2c(t)2dt − 1)(E0,x0 [X(T )])2;

(45)

and hence the desired result.

A näıve agent with α(s, y) = α/y applies the policy π∗(t) = cna(t)X
∗(t) where cna is given

by (30). Applying Proposition 4 we deduce

√
Var0,x0 [X∗(T )] =

√
e

ρ

2α2(ρ−r)
[e2(ρ−r)T−1] − 1 E0,x0 [X∗(T )], for α > 0. (46)

Note the above is well defined when ρ = r because the limit of the expression exists when ρ→ r.

For the pre-committed agent, it follows from (10) and (39) that the corresponding relationship

is

12This also reconciles with the previously proved fact that näıve policies are more exposed to the stock than
equilibrium ones.
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Figure 2: This figure shows the risk–return tradeoffs of pre-committed agents and näıve agents.

√
Var0,x0 [X∗(T )] =

√
1

eρT − 1

(
E0,x0 [X∗(T )]− x0erT

)
, for E0,x0 [X∗(T )] ≥ x0erT . (47)

Because (47) is mean–variance efficient, the line represented by it must lie above that by

(46) on the expectation–standard deviation plane; see Figure 2 for a visual demonstration in

which x0 = 1, r = 0.05, σ = 0.1, b = 0.15 and T = 1. Note both lines start at (0, x0 exp(rT )) =

(0, exp(0.1)), corresponding to α = ∞ for the näıvetè and to E0,x0 [X∗(T )] = x0e
rT for the

pre-committer, and diverges as the expectation grows high. In other words, the näıve policy

(28) takes more risk than it needs to - as dictated by the efficient frontier – in order to achieve

a higher expected terminal wealth (41).

To sum, in the current MV setting, a näıve policy is more risk-loving than the other types

of polices while expecting higher terminal wealth. Although at every (s, y) it tries to follow

the pre-committed optimal policy, the actual policy turns out to be very different. It is MV

inefficient and certainly not “dynamically optimal” in any sense at any given (s, y).

4.2.2 The case L(t, x) = xek(T−t)

We now consider the case when L(t, x) = xek(T−t), where k > r (otherwise the problem

(20)–(21) is trivial). The corresponding f is f(t, T ) = ek(T−t), which satisfies Assumption
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(A3). Substituting this into (28) we obtain the näıve policy

π∗(t, x) = cna(t)x, (t, x) ∈ [0, T ]× R

where the risky weight is

cna(t) =
π∗(t, x)

x
=
b− r
σ2

e(k−r)(T−t) − 1

1− e−ρ(T−t)
, t ∈ [0, T ]. (48)

Next, it follows from (23) that the corresponding

α(s, y) =
φ(s)

y
(49)

where φ(s) := eρ(T−s)−1
ek(T−s)−er(T−s) > 0. Again, by Theorem 4.6 in Björk et al. (2014) we get the weak

equilibrium policy of the problem (16)–(17) to be

πwe(t, x) = cwe(t)x,

where c(t) ≡ cwe(t) uniquely solves

c(t) =
b− r
φ(t)σ2

[
e−

∫ T
t [r+(b−r)c(s)+σ2c(s)2]ds + φ(t)e−

∫ T
t σ2c(s)2ds − φ(t)

]
. (50)

Finally, by Theorem 1-i in He and Jiang (2022), the regular equilibrium policy for (20)–(21)

is

πre(t, x) = cre(t)x,

where

cre(t) :=
k − r
b− r

, t ∈ [0, T ]. (51)

Proposition 5 In the Black-Scholes market, if L(t, x) = xek(T−t), then we have

cwe(t) < cna(t), cre(t) < cna(t), ∀t ∈ [0, T ),

for any k > r.

19



Proof It follows from (50) that

cwe(t) ≡ c(t) =
b− r
φ(t)σ2

[
e−

∫ T
t [r+(b−r)c(s)+σ2c(s)2]ds + φ(t)e−

∫ T
t σ2c(s)2ds − φ(t)

]
≤ b− r
φ(t)σ2

e−
∫ T
t [r+(b−r)c(s)+σ2c(s)2]ds

<
b− r
φ(t)σ2

e−
∫ T
t (r−ρ)ds

=
b− r
φ(t)σ2

e(ρ−r)(T−t)

=
b− r
σ2

e(k−r)(T−t) − 1

1− e−ρ(T−t)
= cna(t), ∀t ∈ [0, T ),

(52)

where we have utilized (37) to get the second inquality and noted the definition of φ(·) to obtain

the second to the last equality.

Next, applying the general inequality

ex − 1

1− e−y
>
x

y
, ∀x > 0, y > 0, (53)

we deduce

cna(t) =
b− r
σ2

e(k−r)(T−t) − 1

1− e−ρ(T−t)
>
b− r
σ2

k − r
ρ

=
k − r
b− r

= cre(t).

The proof is complete.of

We can also compare the näıve policy with the pre-committed one with respect to any initial

(s, y) in the current case. Because the analysis is similar to that in the previous subsection, we

omit the details here.

4.3 Efficiency ratio

The näıve policy is not mean–variance efficient as discussed in Subsection 4.2.1 and illus-

trated by Figure 2. However, there is some subtlety in this comparison. The expected terminal

wealth target of the pre-committer is exogenous and fixed over time, while that of the näıvetè

is changing, as shown in Subsection 4.2.1, and hence is endogenous. Figure 2 shows that the

red line is above the blue one, which means that for the same expected terminal wealth, the

näıve policy results in larger standard deviation than the pre-committed one. The same ter-

minal expected terminal wealth, however, does not correspond to the same risk aversion level

represented by α (or by the compatible f or L) for the näıvetè and the pre-committer, because

the former ends up with a much higher expected return than the latter even with the same

original α, so long as α is sufficiently small.

Therefore, it will give a more complete picture of comparison if we compare the points on the

red and blue lines with the same primitive α, instead of just comparing the points with the same

expectation or standard deviation. To this end, we define the efficiency ratio R =
E0,x0 [X(T )]√
Var0,x0 [X(T )]

,

which represents the tangent of any point on the expectation–standard deviation plane. Note

R is a function of α. Clearly, the higher R is the better risk–return tradeoff an investment
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strategy achieves.

Proposition 6 In the Black–Scholes market, the efficiency ratio of a policy π where π(t) =

c(t)X(t) starting from X0 = x0 is

R =
1√

e
∫ T
0 σ2c(t)2dt − 1

.

Proof This is straightforward from Proposition 4.

Let us compare a näıvetè’s efficiency ratio, denoted by Rna(α), with a pre-committer’s,

denoted by R∗(α), for the same α in the setting of Subsection 4.2.1. The following result shows

that the former is always strictly less efficient than the latter.

Proposition 7 Under the assumption of Proposition 3, we have

R∗(α) > Rna(α)

for any α > 0.

Proof It follows from (10) and (39) that the ratio for a pre-committed policy is

R∗(α) =
E0,x0 [X∗(T )]√
Var0,x0(X∗(T ))

=
√
eρT − 1

 1

1− x0erT

E0,x0 [X∗(T )]


=
√
eρT − 1

(
1

1− α
e(ρ−r)T−e−rT+α

)
=

(eρT − 1 + αerT )√
eρT − 1

.

(54)

For a näıve policy, it follows from (46) that

Rna(α) =
1√

e
ρ

2α2(ρ−r)
[e2(ρ−r)T−1] − 1

≤ 1√
ρ

2α2(ρ−r) [e
2(ρ−r)T − 1]

=
α√

ρ
2(ρ−r) [e

2(ρ−r)T − 1]
. (55)

The above results imply that as α → 0, R∗(α) → eρT − 1 > 0 while Rna(α) → 0. This proves

R∗(α) > Rna(α) for sufficiently small α > 0. The desired result will then follow if we can show

that R′∗(α) ≥ R′na(α) for any α > 0.

To this end, we first prove a general inequality

e2x − e2y

2(x− y)
≥ e2x − 1

2x
, x 6= y, x 6= 0. (56)

Indeed, fix x 6= 0 and define a function f(y) := e2x−e2y
2(x−y) , y 6= x. Its first-order derivative is

f ′(y) =
e2x − e2y − 2xe2y + 2ye2y

2(x− y)2
=:

g(y)

2(x− y)2
, y 6= x. (57)

However g′(y) = 4(y − x)e2y. So g(y) is decreasing when y < x and increasing when y > x,
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leading to miny g(y) = g(x) = 0. Consequently, f ′(y) ≥ 0, ∀y 6= x, implying e2x−e2y
2(x−y) = f(y) ≥

f(0) = e2x−1
2x ∀y 6= x and x 6= 0 and proving (56).

It now follows from (56) that e2ρT−e2rT
2(ρ−r)T ≥

e2ρT−1
2ρT , leading to

eρT−1
ρT

e2ρT−e2rT
2(ρ−r)T

≤
eρT−1
ρT

e2ρT−1
2ρT

≤ 1

where the second inequality is due to the monotonicity of e
x−1
x in x ≥ 0. The above is equivalent

to √√√√ eρT−1
ρT

e2(ρ−r)T−1
2(ρ−r)T

≤ erT ,

which is further equivalent to

R′na(α) ≡ 1√
ρ

2(ρ−r) [e
2(ρ−r)T − 1]

≤ erT√
eρT − 1

≡ R′∗(α), α > 0.

The proof is complete.

Finally, let us compare the efficiency of the näıve policy with those of the weak and regular

equilibrium policies, denoted by Rwe(α) and Rre(α) respectively.

Proposition 8 Under the assumptions of either Proposition 3 or Proposition 5, we have

Rwe(α) > Rna(α), Rre(α) > Rna(α)

for any α > 0.

Proof It is immediate from Propositions 6, 3 and 5.

So a näıve policy always has a smaller efficiency ratio than those of the corresponding two

equilibrium policies. Once again, the comparison here is under the same level of the original

risk aversion reflected by the compatible f , α or L.

5 Conclusions

In this paper we define precisely and derive rigorously the policies implemented by a näıve

agent, a notion originally put forth by Strotz (1956), for a continuous-time Markowitz model

that is intrinsically time inconsistent. Such an agent attempts to optimize at any given time

but, since optimal policies depend on when and where one makes them in a time-inconsistent

problem, in effect constantly changes his policies. Ironically, the policy a näıveté actually

executes may be anything but he originally desired. At any given time and state he sets an

expected investment target and wants to achieve mean–variance efficiency but we show that his

final policy ends up with a (much) higher target return and an even higher variance that overall
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becomes mean–variance inefficient if he is sufficiently risk loving. Moreover, näıve policies are

universally riskier than their consistent planning counterparts.

Studying näıve behaviors in continuous-time problems is a nearly uncharted research area

where open questions abound. An outstanding problem is to derive sufficient conditions for

a näıve policy, analogous to the verification theorems for (time-consistent) optimality. The

essential difficulty of the problem is that a näıve policy ends up not optimal in any sense as we

have emphasized in the paper; hence solving the problem likely calls for a very different approach

compared with the classical verification theorems. From a behavioral economics perspective, on

the other hand, it is fascinating to inquire and understand how an originally well-intended policy

may go wrong or even go opposite when one insists on optimizing all the time. The definition of

näıve policies and the approach to derive them in this paper are generalizable to other types of

problems such as those with non-exponential discounting and probability weighting. As such,

we hope the paper has also set a stage for further study of these problems.
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Appendices

A Proof of Proposition 1

The main idea of the proof is to find a deterministic function Y to bound X2
n, which is

stated in the following lemma.

Lemma 9 Let Y satisfying the following ODE

dY (s) =
[
R∗ + (γ∗)2e−2

∫ T
s r(v)dvρ(s)

]
Y (s)ds, s ∈ [0, T ]; Y (0) = x0, (58)

where

R∗ := max
0≤s≤T

|2r(s)− ρ(s)|, γ∗ := max
0≤s≤T

γ(s, T ).

Then, we have, for every k = 0, 1, ..., 2n − 1,

E[X∗(s; tk)
2] ≤ Y (s), s ∈ [tk, tk+1].

Proof By Assumptions (A1)–(A3), it is clear that R∗ <∞ and γ∗ <∞.

Recall X∗(·; tk) satisfies the SDE (12) on [tk, tk+1] for k = 0, 1, ..., 2n − 1. Applying Itô’s

formula to X∗(t; tk)
2 and then taking conditional expectation on Ftk we obtain the (ω-wise)

ODEdE[X∗(t; tk)2|Ftk ] =
{

(2r(t)− ρ(t))E[X∗(t; tk)2|Ftk ] + γ(tk, T )2ρ(t)e−2
∫ T
t
r(v)dvX∗(tk; tk)2

}
dt, t ∈ [tk, tk+1],

E[X∗(tk; tk)2|Ftk ] = X∗(tk; tk)2.

(59)

Consider a new stochastic process Z(·; tk) which satisfies the ODE on [tk, tk+1] for k =

0, 1, ..., 2n − 1:dZ(t; tk) =
[
R∗Z(t; tk) + γ(tk, T )2ρ(t)e−2

∫ T
t r(v)dvX∗(tk; tk)

2
]
dt, t ∈ [tk, tk+1],

Z(tk; tk) = X∗(tk; tk)
2.

(60)

Because |2r(t)− ρ(t)| ≤ R∗, t ∈ [0, T ], a comparison theorem of ODEs yields

E[X∗(t; tk)
2|Ftk ] ≤ Z(t; tk), a.s., k = 0, 1, ..., 2n − 1. (61)

Now, we construct another stochastic process Z̄(·; tk) on [tk, tk+1] for k = 0, 1, ..., 2n − 1:dZ̄(t; tk) =
[
R∗ + (γ∗)2ρ(t)e−2

∫ T
t r(v)dv

]
Z̄(t; tk)dt, t ∈ [tk, tk+1],

Z̄(tk; tk) = X∗(tk; tk)
2.

(62)

It follows from (60) that Z(t; tk) increases in t ∈ [tk, tk+1]; hence Z(t; tk) ≥ X∗(tk; tk)
2 for
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t ∈ [tk, tk+1]. Then, we get

dZ(t; tk)

dt
= R∗Z(t; tk) + γ(tk, T )2ρ(t)e−2

∫ T
t r(v)dvX∗(tk; tk)

2

≤
[
R∗ + γ(tk, T )2ρ(t)e−2

∫ T
t r(v)dv

]
Z(t; tk)

≤
[
R∗ + (γ∗)2ρ(t)e−2

∫ T
t r(v)dv

]
Z(t; tk).

(63)

Comparing (62) and (63), we conclude from the Grownwall inequality that

Z(t; tk) ≤ Z̄(t; tk), a.s., t ∈ [tk, tk+1], k = 0, 1, ..., 2n − 1. (64)

To finish the proof we use mathematical induction on k. When k = 0, t ∈ [0, t1], it follows

from (61) and (64) that

E[X∗(t; 0)2] = E[E[X∗(t; 0)2|F0]] ≤ E[Z(t; 0)] ≤ E[Z̄(t; 0)] = Y (t). (65)

Now, assume that when k = m− 1, the following holds:

E[X∗(t; tm−1)
2] ≤ Y (t), t ∈ [tm−1, tm]. (66)

By (61) and (64) we obtain

E[X∗(t; tm)2] = E[E[X∗(t; tm)2|Ftm ]]

≤ E[Z(t; tm)]

≤ E[Z̄(t; tm)], t ∈ [tm, tm+1]

(67)

where the initial value of E[Z̄(·; tm)] on [tm, tm+1] is E[X∗(tm; tm)2] ≡ E[X∗(tm; tm−1)
2]. How-

ever, (66) gives E[X∗(tm; tm−1)
2] ≤ Y (tm), whereas E[Z̄(·; tm)] and Y (·) satisfy the same ODE

on [tm, tm+1]. Thus E[Z̄(t; tm)] ≤ Y (t) on [tm, tm+1]. Combining with (67), we get the desired

result.

We are now ready to prove Proposition 1. By Lemma 9, we have

||Xn||2 = E
∫ T

0
Xn(s)2ds =

2n∑
k=1

∫ tk

tk−1

E[X∗(s; tk−1)
2]ds

≤
2n∑
k=1

∫ tk

tk−1

Y (s)ds =

∫ T

0
Y (s)ds <∞.

(68)

B Proof of Theorem 1

To ease notation we use the followingγ(t) := γ(t, T ), A(t) := r(t)− ρ(t), C(t) := e−
∫ T
t r(v)dvρ(t),

D(t) := B(t)(σ(t)σ(t)>)−1σ(t)e−
∫ T
t r(v)dv, F (t) := B(t)(σ(t)σ(t)>)−1σ(t),

(69)
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with which we rewrite the SDE (12) as
dX∗(t; tk) = [A(t)X∗(t; tk) + γ(tk)C(t)X∗(tk; tk−1)] dt

+ [−F (t)X∗(t; tk) + γ(tk)D(t)X∗(tk; tk−1)] dW (t), t ∈ [tk, tk+1],

X∗(tk; tk) = X∗(tk; tk−1).

(70)

Denote

A∗ := max
t∈[0,T ]

|A(t)|2, C∗ := max
t∈[0,T ]

|C(t)|2, D∗ := max
t∈[0,T ]

||D(t)||2, F ∗ := max
t∈[0,T ]

||F (t)||2,

which are all finite due to the boundedness assumptions in (A1) and (A2).

In order to prove Theorem 1, we need the following lemma.

Lemma 10 The process Xn defined by (13) satisfies

lim
n→∞

max
k∈{0,...,2n−1},s∈[tk,tk+1]

E|Xn(s)−Xn(tk)|2 = 0.

Proof For s ∈ [tk, tk+1], we bound the term E|Xn(s)−Xn(tk)|2 as follows:

E|Xn(s)−Xn(tk)|2 = E|X∗(s; tk)−X∗(tk, tk−1)|2

≤ 2E
[∫ s

tk

(A(t)X∗(t; tk) + γ(tk)C(t)X∗(tk; tk−1)) dt

]2
+ 2E

[∫ s

tk

(−F (t)X∗(t; tk) + γ(tk)D(t)X∗(tk; tk−1)) dW (t)

]2
.

(71)

For bounding the first term on the right side of the above, we have by the Cauchy–Schwartz

inequality

E
[∫ s

tk

(A(t)X∗(t; tk) + γ(tk)C(t)X∗(tk; tk−1)) dt

]2
≤ (s− tk)

∫ s

tk

E |A(t)X∗(t; tk) + γ(tk)C(t)X∗(tk; tk−1)|2 dt

≤ (s− tk)
∫ s

tk

2E|A(t)X∗(t; tk)|2 + 2E|γ(tk)C(t)X∗(tk; tk−1)|2dt

≤ (s− tk)
∫ s

tk

(
2A∗E|X∗(t; tk)|2 + 2γ∗C∗E|X∗(tk; tk−1)|2

)
dt

≤ (s− tk)
∫ s

tk

(2A∗ + 2γ∗C∗)Y (T )dt = (2A∗ + 2γ∗C∗)(s− tk)2Y (T ),

(72)

where the last inequality follows from Lemma 9 and the fact that Y (s) is increasing in s ∈ [0, T ].

For the second term, by virtue of Itô’s isometry, we similarly have

E
[∫ s

tk

(−F (t)X∗(t; tk) + γ(tk)D(t)X∗(tk; tk−1)) dW (t)

]2
≤ (2γ∗D∗ + 2F ∗)(s− tk)Y (T ). (73)
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Combining the above, we obtain

E|Xn(s)−Xn(tk)|2 ≤ 4(s− tk)(A∗ + γ∗C∗ + γ∗D∗ + F ∗)Y (T ), s ∈ [tk, tk+1]. (74)

Thus,

max
k∈{0,...,2n−1},s∈[tk,tk+1]

E[Xn(s)−Xn(tk)]
2 ≤ 4T

2n
(A∗ + γ∗C∗ + γ∗D∗ + F ∗)Y (T )→ 0

as n→∞.

Because Xn → X weakly in L2
F ([0, T ];R), it follows from Mazur’s lemma that for each inte-

ger n ≥ 1, there exists a positive integer N(n) and a convex combination Vn :=
∑N(n)

k=n ak,nXk,

where ak,n ≥ 0 and
∑N(n)

k=n ak,n = 1, such that

Vn → X strongly in L2
F ([0, T ];R). (75)

By the definition of Vn, it satisfies the SDEdVn(t) = [A(t)Vn(t) + C(t)Un(t)]dt+ [−F (t)Vn(t) +D(t)Un(t)]dW (t),

Vn(0) = x0,
(76)

where

Un(t) :=

N(n)∑
k=n

ak,n[γ(mt,k)Xk(mt,k)], mt,k :=
N

2k
T when

N

2k
T ≤ t < N + 1

2k
T for some N ∈ N.

Consider the linear SDEdZ(t) = [A(t)X(t) + C(t)γ(t)X(t)]dt+ [−F (t)X(t) +D(t)γ(t)X(t)]dW (t),

Z(0) = x0.
(77)

We now prove that

lim
n→∞

∫ T

0
E|Vn(t)− Z(t)|2dt = 0. (78)

To this end, we first analyze Vn(t)− Z(t). We have

Vn(t)− Z(t) =

∫ t

0
[A(u)(Vn(u)−X(u)) + C(u)(Un(u)− γ(u)X(u))] du

+

∫ t

0
[−F (u)(Vn(u)−X(u)) +D(u)(Un(u)− γ(u)X(u))] dW (u)

=: Q1,n(t) +Q2,n(t).

(79)

As a result, ∫ T

0
E|Vn(t)− Z(t)|2dt ≤ 2

∫ T

0
E|Q1,n(t)|2dt+ 2

∫ T

0
E|Q2,n(t)|2dt. (80)
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We proceed to analyze E[Q2
1,n(t)] and E[Q2

2,n(t)], respectively. First

E|Q1,n(t)|2 ≤ TE
∫ t

0
|A(u)(Vn(u)−X(u)) + C(u)(Un(u)− γ(u)X(u))|2 du

≤ 2TA∗
∫ t

0
E|Vn(u)−X(u)|2du+ 2TC∗

∫ t

0
E|Un(u)− γ(u)X(u)|2du.

(81)

By the strong convergence of Vn to X, the first term above converges to 0 as n → ∞. For the

second term,∫ t

0
E|Un(u)− γ(u)X(u)|2du

=

∫ t

0
E|Un(u)− γ(u)Vn(u) + γ(u)Vn(u)− γ(u)X(u)|2du

≤ 2(γ∗)2
∫ t

0
E|Vn(u)−X(u)|2du+ 2

∫ t

0
E

∣∣∣∣∣∣
N(n)∑
k=n

ak,n [γ(u)Xk(u)− γ(mu,k)Xk(mu,k)]

∣∣∣∣∣∣
2

du.

(82)

Now,

∫ t

0
E

∣∣∣∣∣∣
N(n)∑
k=n

ak,n [γ(u)Xk(u)− γ(mu,k)Xk(mu,k)]

∣∣∣∣∣∣
2

du

=

∫ t

0
E|

N(n)∑
k=n

ak,n(γ(u)− γ(mu,k))Xk(u) + ak,nγ(mu,k)(Xk(u)−Xk(mu,k))|2du

≤ 2

∫ t

0

E|N(n)∑
k=n

ak,n(γ(u)− γ(mu,k))Xk(u)|2 + E|
N(n)∑
k=n

ak,nγ(mu,k)(Xk(u)−Xk(mu,k))|2
 du

≤ 2

∫ t

0

N(n)∑
k=n

ak,nE|(γ(u)− γ(mu,k))Xk(u)|2 +

N(n)∑
k=n

ak,nE|γ(mu,k)(Xk(u)−Xk(mu,k))|2
 du,

(83)

where the last inequality follows from the convexity of the function f(x) = x2. Because γ(·) is

continuous on [0, T ], it is uniformly continuous. Hence, for any ε > 0 there is n0 ∈ N such that

|γ(t)− γ(s)| ≤ ε whenever t, s ∈ [0, T ] with |t− s| ≤ 1
2n0 T . For n ≥ n0, we then have

2

∫ t

0

N(n)∑
k=n

ak,nE|(γ(u)− γ(mu,k))Xk(u)|2 +

N(n)∑
k=n

ak,nE|γ(mu,k)(Xk(u)−Xk(mu,k))|2
 du

≤ 2

∫ t

0

[
ε2 max

n≤k≤N(n)
E|Xk(u)|2 + (γ∗)2 max

n≤k≤N(n)
E|Xk(u)−Xk(mu,k)|2

]
du

≤ 2

∫ t

0

[
ε2Y (u) + (γ∗)2

4T

2n
(A∗ + γ∗C∗ + γ∗D∗ + F ∗)Y (T )

]
du

≤ 2

[
ε2 + (γ∗)2

4T

2n
(A∗ + γ∗C∗ + γ∗D∗ + F ∗)

]
TY (T ),

(84)

where the second inequality is by Lemma 9 and the proof of Lemma 10. Taking n → ∞ and
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then ε→ 0, we obtain

lim
n→∞

∫ t

0
E|

N(n)∑
k=n

ank (γ(u)Xk(u)− γ(mu,k)Xk(mu,k)) |2du = 0. (85)

Combining (81), (82) and (85) yields

lim
n→∞

E|Q1,n(t)|2 = 0. (86)

Moreover, according to the above analysis the bound of E|Q1,n(t)|2 does not depend on t; thus

the dominated convergence theorem gives

lim
n→∞

∫ T

0
E|Q1,n(t)|2dt =

∫ T

0
lim
n→∞

E|Q1,n(t)|2dt = 0. (87)

Employing Itô’s isometry we can derive similarly

lim
n→∞

∫ T

0
E|Q2,n(t)|2dt =

∫ T

0
lim
n→∞

E|Q2,n(t)|2dt = 0. (88)

By plugging (87) and (88) into (80) we establish (78), namely, Vn → Z strongly in L2
F ([0, T ];R).

Thus, Z(t, ω) = X(t, ω) except on a zero measure set in the space of [0, T ]× Ω. It follows that

X satisfies the same SDE as Z or, equivalently, X satisfies (14). Moreover, it is immediate that

this wealth equation is generated by the feedback policy (15). The proof is complete.
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