
Journal of Machine Learning Research 23 (2022) 1-55 Submitted 8/21; Revised 1/22; Published 4/22

Policy Evaluation and Temporal–Difference Learning in
Continuous Time and Space: A Martingale Approach

Yanwei Jia yj2650@columbia.edu
Department of Industrial Engineering and Operations Research
Columbia University
New York, NY 10027, USA

Xun Yu Zhou xz2574@columbia.edu

Department of Industrial Engineering and Operations Research &

The Data Science Institute

Columbia University

New York, NY 10027, USA

Editor: Csaba Szepesvari

Abstract

We propose a unified framework to study policy evaluation (PE) and the associated tempo-
ral difference (TD) methods for reinforcement learning in continuous time and space. We
show that PE is equivalent to maintaining the martingale condition of a process. From this
perspective, we find that the mean–square TD error approximates the quadratic variation
of the martingale and thus is not a suitable objective for PE. We present two methods to
use the martingale characterization for designing PE algorithms. The first one minimizes
a “martingale loss function”, whose solution is proved to be the best approximation of the
true value function in the mean–square sense. This method interprets the classical gradi-
ent Monte-Carlo algorithm. The second method is based on a system of equations called
the “martingale orthogonality conditions” with test functions. Solving these equations in
different ways recovers various classical TD algorithms, such as TD(λ), LSTD, and GTD.
Different choices of test functions determine in what sense the resulting solutions approx-
imate the true value function. Moreover, we prove that any convergent time-discretized
algorithm converges to its continuous-time counterpart as the mesh size goes to zero, and
we provide the convergence rate. We demonstrate the theoretical results and corresponding
algorithms with numerical experiments and applications.

Keywords: continuous time and space, reinforcement learning, policy evaluation, tem-
poral difference, martingale

1. Introduction

Policy evaluation (PE) is a crucial step in most critic-related reinforcement learning (RL)
algorithms such as actor-critic algorithms and policy iteration. Its objective is to esti-
mate/predict the value function of a given policy using samples, generally without knowl-
edge about the environment. Existing PE methods have predominantly been limited to
discrete-time problems with finite-state Markov decision processes (MDPs). For instance,
Monte Carlo methods use samples to estimate expectations assuming the whole sample
trajectories can be repeatedly presented for training; hence they are compatible with offline

c©2022 Yanwei Jia and Xun Yu Zhou.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/21-0947.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/21-0947.html

Jia and Zhou

learning. The most popular PE methods are based on the temporal difference (TD) error.
These are incremental learning procedures driven by the error between temporally succes-
sive predictions. Sutton (1988) argues that predictions of the TD methods are both more
accurate and easier to compute than other methods. More importantly, these methods can
learn the value in real-time before a task terminates; hence it can be used both online and
offline (Sutton and Barto, 2018).

Despite the fast development and vast applications, there are two major limitations in
the current study on RL in general and on PE in particular. First, most algorithms are
developed for MDPs, and little attention has been paid to problems with continuous time
and space. The few existing studies in the continuous setting have been largely restricted
to deterministic systems; see for example Baird (1993); Doya (2000); Frémaux et al. (2013);
Vamvoudakis and Lewis (2010) and Lee and Sutton (2021), where the state processes follow
ordinary differential equations (ODEs) and there are no environmental noises. In particular,
Baird (1993) and Doya (2000) are the first to propose some continuous-time versions of the
TD methods. In real life, however, there are abundant examples in which an agent can
or indeed needs to interact with a random environment at ultra-high frequency, e.g., high-
frequency stock trading, autonomous driving, and robots navigation. Second, while there
have been numerous PE algorithms proposed using function approximation such as residual
gradient, gradient Monte Carlo, and TD(λ), they were usually devised in heuristic and
ad hoc manners and their underlying objectives were not always clearly stated.1 Although
many of them are proved to be convergent, the limiting functions are not always interpreted
properly especially if the function approximators do not contain the true solutions. In short,
there seems a lack of a unified framework to study PE and there is need for a continuous time
and space perspective, from which many well-known algorithms appear as discretizations.

The goal of this paper is to bridge these gaps by providing a unified theoretical un-
derpinning of PE in continuous time and space with general Markov diffusion processes.
Instead of discretizing time, state, and action from the start and then applying the existing
discrete techniques and results, we carry out all our theoretical analysis for the continuous
setting and discretize time only at the final, algorithmic stage. The advantage of doing
so is two-fold. On one hand, as Doya (2000) argues, the control performance with this
approach will be smoother and the right granularity for discretization will be guided by
the function approximation. On the other hand, and indeed more importantly, for analyses
in a continuous setting, we have plenty of well-developed tools at our disposal including
those of stochastic calculus, differential equations, and stochastic control, which, in turn,
will provide better interpretability/explainability to the underlying learning technologies.

Stochastic optimization in continuous time and space, also known as stochastic control,
has a long history starting from the 1960s. However, its theory is model-based, namely,
the system dynamics and the objective functions are assumed to be given and known. The
problem can then be solved by well-established approaches such as Pontryagin’s maximum
principle and Bellman’s dynamic programming. For full accounts of the stochastic control
theory see, e.g., Yong and Zhou (1999) and Fleming and Soner (2006). On the other hand,
to our best knowledge, the study on model-free RL for diffusion processes started only
recently. Wang et al. (2020) propose an entropy-regularized, stochastic relaxed control

1. See Appendix A, Table 1, for a list of names of existing PE algorithms for MDPs.

2

Policy Evaluation and TD Learning in Continuous Time

formulation for trading off exploration and exploitation in continuous time and space, and
derive the continuous version of the Boltzmann distribution (Gibbs measure) as the optimal
exploratory policy. When the problem is linear–quadratic (LQ), namely the dynamic is
linear and the payoff is quadratic in state and action, the optimal strategy specializes to
Gaussian exploration. Wang and Zhou (2020) apply this general theory to a mean–variance
financial portfolio selection problem, which is inherently of an LQ structure, and design
an algorithm for extensive simulation and empirical experiments. Dai et al. (2020) further
consider the equilibrium mean–variance strategies addressing the time-inconsistent issue of
the problem. Guo et al. (2022) extend the formulation and results of Wang et al. (2020) to
mean-field games. Gao et al. (2020) use the idea of Wang et al. (2020) to a non-learning
problem – simulated annealing for nonconvex optimization formulated as controlling the
temperature of a Langevin diffusion.

For PE, there are generally two aspects one should address. First and more funda-
mentally, one specifies a mathematical objective against which a learning task is evaluated.
Usually, such an objective is described by either an optimization problem (to minimize a
loss/error function) or a system of equations. Second and on the implementation front, one
designs an algorithm to achieve the objective. Many papers have contributed to the second
aspect, namely, to develop more efficient numerical solvers to accelerate convergence, reduce
variance, or save computational cost; see, e.g., Xu et al. (2002); Liu et al. (2016); Du et al.
(2017). In contrast to that line of research, the present paper focuses on the first aspect
aiming at building a unified theoretical framework for PE. We propose and analyze several
common objectives in the continuous setting, and demonstrate that they generate continu-
ous counterparts of some of the best-known PE algorithms for MDPs. This not only leads
to PE algorithms for the continuous problems but also provides additional foundations for
the discrete ones. As our algorithms designed for continuous setting are discretized in time
for implementation, their convergence with a fixed discretization mesh size has been already
established by existing results. Moreover, we show that, as the discretization gets finer, the
limiting point of a convergent discrete-time algorithm also converges to the corresponding
solution to the continuous problem, and we further provide the convergence rate.

The entire theoretical analysis of the current paper is premised upon the fact that the
value function along the state process combined with the accumulated running payoff is a
martingale. This martingality naturally gives rise to a target for offline learning: the value
of the martingale at any given time is the least square estimate of that at the terminal time.
On the other hand, the martingality leads to orthogonality conditions that in turn generate
algorithms corresponding to many existing well-known TD algorithms for MDPs.

A similar martingale condition can also be derived for discrete-time MDPs, which is
equivalent to the so-called Bellman equation or the Bellman consistency. In Appendix C
we provide such a derivation. However, to our best knowledge, in the existing RL literature
such a condition has not been explicitly presented – even if it is rather straightforward to
deduce – nor has it been employed to study PE. Instead, the Bellman equation has been the
predominant tool to devise PE algorithms. We demonstrate that the change of perspective
from the Bellman equation to the martingality is crucial in our analysis.

Specifically, our main contributions can be summarized as follows:

(i) We show that the continuous analogue of the näıve residual gradient method, which
minimizes the mean-square TD error (Barnard, 1993; Baird, 1995; Doya, 2000; Wang

3

Jia and Zhou

and Zhou, 2020), converges to the minimizer of the quadratic variation of the afore-
mentioned martingale. It is, therefore, inconsistent with the learning objective. This
in turn provides a theoretical explanation why the method is not a desired approach
for PE when the environment is stochastic.

(ii) We propose a martingale loss function based on the total mean-square error between
the said martingale process and its terminal value. We prove that minimizing such a
loss function is equivalent to minimizing the mean-square error between the approxi-
mate value function and the true one. This loss function is implementable on samples,
and justifies the Monte Carlo PE with function approximation (Sutton and Barto,
2018) in the classical MDP and RL literature.

(iii) We provide a unified perspective to interpret TD errors and the related algorithms,
including TD(λ), least square TD (LSTD), and gradient TD (GTD and its variants),
based on the martingale orthogonality conditions. Specifically, by introducing a fi-
nite number of suitable test functions to these conditions, the learning problem is
transformed into a system of equations called moment conditions. From this vantage
point, we realize that TD(λ) is nothing but to directly apply stochastic approxima-
tion to solve such equations, LSTD is to solve them explicitly when they form a linear
system, and GTD methods are to solve various quadratic forms of the moment condi-
tions. In addition, different choices of the test functions determine in what sense the
true value function is approximated. For example, TD(λ) essentially correspond to
different test functions for different values of λ, and hence may converge to different
limits.

For reader’s easy reference, we present Table 1 in Appendix A summarizing popular PE
methods and algorithms, and the interpretations we will have discovered in this paper in
terms of the objectives and the convergent limits of the algorithms.

As the conditional expectation in the expression of the value function is connected to
both a partial differential equation (PDE) through the Feynman–Kac formula (Karatzas
and Shreve, 2014) and to a backward stochastic differential equation (BSDE) through a
martingale representation theorem (El Karoui et al., 1997), the results of the current paper
have natural implications on applying machine learning methods to numerically solve (high-
dimensional) PDEs in search of breaking the “curse of dimensionality”. The latter has been
a hotly pursued topic lately; see for example Raissi (2018) and Huré et al. (2019). Han
et al. (2018) propose a deep learning approach to solving PDEs by solving the associated
BSDEs via simulation. All these works need to assume that the coefficients of the PDEs
are known. The results of our paper shed light on solving PDEs by PE methodologies in
a data-driven way, in view of the intimate connection among PDEs, BSDEs and PE for
Markov diffusion process.2

The rest of the paper proceeds as follows. In Section 2, we formulate the PE problem
in continuous time and space and present the martingale characterization of the value
function. In Section 3, we extend the classical mean-square TD error to the continuous
setting and show why it is not a proper objective when the environment is stochastic through

2. It is interesting to note that there seems to be less research on solving recursive Bellman-like equations
using MDPs, even though the same curse of dimensionality exists for discrete-time equations.

4

Policy Evaluation and TD Learning in Continuous Time

simple simulated counter-examples and theoretical analysis. In Section 4, we propose several
objectives for PE from the martingale perspective, based on which we recover and interpret
some well-studied PE algorithms. We also present numerical experiments for demonstration.
Section 5 is devoted to some extensions of our problem formulation along with applications
to option-like payoffs and linear-quadratic problems. In Section 6 we discuss the choice of
test functions and the way to do function approximation from the algorithmic perspective.
We conclude in Section 7. Appendix contains some supplementary materials and all the
proofs.3

2. Problem Formulation and Preliminaries

Throughout this paper, by convention all vectors are column vectors unless otherwise spec-
ified, and Rk is the space of all k-dimensional vectors (hence k × 1 matrices). Let A and
B be two matrices of the same size. We denote by A ◦ B the inner product between A
and B, by |A| the Euclidean/Frobenius norm of A, and write A2 := AA>, where A> is A’s
transpose.

A general continuous-time RL problem can be formulated under the stochastic control
framework with controlled Itô’s stochastic differential equations (SDEs), analogous to MDPs
in discrete time. However, since this paper concerns only a part (though a crucial part) of the
RL problem, namely policy evaluation (PE) under a fixed control policy, we will formulate
the problem without the control variable, which is the continuous-time counterpart of the
Markov reward process (MRP) in discrete time.4

Let d,m be given positive integers, T > 0, and b : [0, T]×Rd 7→ Rd and σ : [0, T]×Rd 7→
Rd×m be given functions. The state (or feature) dynamic follows a Markov diffusion process
governed by an SDE:

dXs = b(s,Xs)ds+ σ(s,Xs)dWs, (1)

such that for any given initial time–state pair (t, x) ∈ [0, T] × Rd, the SDE (1) with
Xt = x admits a solution X = {Xs, t ≤ s ≤ T} on a certain filtered probability space
(Ω,F ,P; {Fs}s≥t) along with a standard {Fs}s≥t-adapted m-dimensional Brownian motion
W = {Ws, s ≥ t}. Note here we are concerned with the weak solution which includes the
filtered probability space and the Brownian motion as part of the solution. See Karatzas
and Shreve (2014) for various notions of solutions to an SDE.

Assuming the weak solution of (1) is unique (i.e. all the solutions have identical proba-
bility distribution, even if possibly with different sample paths), we define the value function

J(t, x) = E
[∫ T

t
r(s,Xs)ds+ h(XT)

∣∣∣Xt = x

]
, (2)

where r is an (instantaneous) reward (cost) function (i.e. rate of reward/cost conditioned
on time and state) and h the lump-sum reward (cost) function applied at the end of the
planning period, T .

3. The codes to reproduce our results are publicly available at https://www.dropbox.com/sh/

5vyaw0yognhcabf/AACsArMcNmEuSwpXxcRq-qT1a?dl=0.
4. PE sometimes is also referred to as the prediction problem. A general stochastic control formulation of

RL can be founded in Wang et al. (2020), which will also be reviewed in Appendix B.

5

https://www.dropbox.com/sh/5vyaw0yognhcabf/AACsArMcNmEuSwpXxcRq-qT1a?dl=0
https://www.dropbox.com/sh/5vyaw0yognhcabf/AACsArMcNmEuSwpXxcRq-qT1a?dl=0

Jia and Zhou

Unlike most RL problems that are formulated in an infinite planning horizon (known
as continuing tasks), the current paper mainly focuses on a finite horizon setting (known as
episodic tasks).5 Finite horizons reflect limited lifespans of real-life tasks, e.g., a trader sells
a financial contract with a maturity date, a robot finishes a task before a deadline, and a
video gamer strives to pass a checkpoint given a time limit.

The PE task is, for a fixed given policy (which is suppressed in the formulation above
due to the reason we stated earlier), to devise a numerical procedure to find J(t, x) as
a function of (t, x) using multiple sample trajectories of the process {s,Xs, r(s,Xs)}t≤s≤T ,
where {Xs, t ≤ s ≤ T} is the solution to (1), without the knowledge of the model parameters
(the functional forms of b, σ, r, h). Hence we cover the settings of on-policy (i.e., the samples
are generated under a target policy)6, episodic (i.e., the same learning task is repeated for
many episodes/multiple trajectories), offline (i.e., the approximated function is updated
after a full episode/trajectory has been run) and online (i.e., the approximated function
is updated in real time as we go). We emphasize that for a finite-horizon problem, it is
generally too ambitious to expect an effective algorithm that learns from a single trajectory
with no resets, due to the limited sample size. Learning with a single trajectory is usually
done in an infinite horizon setting.

We make the following standard regularity assumptions on the coefficients of (1) and
the reward function (2) to ensure the theoretical well-posedness of the problem:

Assumption 1 The following conditions hold true:

(i) b, σ, r, h are all continuous functions in their respective arguments;

(ii) b, σ are uniformly Lipschitz in x, i.e., for ϕ = b, σ, there exists a constant C > 0 such
that

|ϕ(t, x)− ϕ(t, x′)| ≤ C|x− x′|, ∀t ∈ [0, T], x, x′ ∈ Rd;

(iii) b, σ have linear growth in x, i.e., for ϕ = b, σ, there exists a constant C > 0 such that

|ϕ(t, x)| ≤ C(1 + |x|), ∀(t, x) ∈ [0, T]× Rd;

(iv) r and h both have polynomial growth in x, i.e., there exist constants C > 0 and µ ≥ 1
such that

|r(t, x)| ≤ C(1 + |x|µ), |h(x)| ≤ C(1 + |x|µ), ∀(t, x) ∈ [0, T]× Rd.

Under Assumption 1(i)-(iii), the SDE (1) admits a unique strong solution (and hence a
unique weak solution) whose moments of any given order are uniformly bounded; see, e.g.,
Karatzas and Shreve (2014). The unique existence of a weak solution alone requires much
weaker assumptions; see e.g. Stroock and Varadhan (1979), but we will not pursue along

5. We will briefly discuss the infinite horizon case with exponentially discounted payoff in Subsection 5.1.
6. Sutton et al. (2008) uses “behavioral policy” to describe the policy to generate observations and “target

policy” to describe the policy we want to evaluate. Off-policy means training on data from a behavioral
policy in order to learn the value of a target policy, and on-policy means that the behavioral policy
coincides with the target policy in learning.

6

Policy Evaluation and TD Learning in Continuous Time

that line. On the other hand, Assumption 1(iv) is to ensure that J(t, x) is finite for any
(t, x).

We now recall some existing results on Markov diffusion processes underpinning the
theoretical analysis in this paper. First, J can be characterized by a PDE based on the
celebrated Feynman–Kac formula (Karatzas and Shreve, 2014):7{

LJ(t, x) + r
(
t, x
)

= 0, (t, x) ∈ [0, T)× Rd,
J(T, x) = h(x),

(3)

where

LJ(t, x) :=
∂J

∂t
(t, x) + b

(
t, x
)
◦ ∂J
∂x

(t, x) +
1

2
σ2
(
t, x
)
◦ ∂

2J

∂x2
(t, x)

is known as the infinitesimal generator associated with the diffusion process (1). Here,
∂J
∂x ∈ Rd is the gradient, and ∂2J

∂x2 ∈ Rd×d is the Hessian.
The above PDE would be fully specified had the model been completely known.8 If the

state space has a dimension up to 4 (i.e. d ≤ 4), the equations can be efficiently solved
numerically by methods such as Monte-Carlo and finite element algorithms. Unfortunately,
in many practical applications the model parameters are not known, nor is the dimension
small. Here, to avoid unnecessary technicality, we assume

Assumption 2 The PDE (3) admits a classical solution J ∈ C1,2([0, T) × Rd) satisfying
the polynomial growth condition, i.e., there exist constants C > 0 and µ ≥ 1 such that

|J(t, x)| ≤ C(1 + |x|µ), ∀(t, x) ∈ [0, T]× Rd.

Second, the PDE (3) is related to the following forward–backward stochastic differential
equation (FBSDE):{

dXs = b(s,Xs)ds+ σ(s,Xs)dWs, s ∈ [t, T]; Xt = x,
dYs = −r

(
s,Xs

)
ds+ ZsdWs, s ∈ [t, T]; YT = h(XT).

(4)

Its solution, {(Xs, Ys, Zs), t ≤ s ≤ T}, has the following representations in terms of J :

Ys = J(s,Xs), Zs =
∂J

∂x
(s,Xs)

>σ
(
s,Xs

)
, s ∈ [t, T]. (5)

The above relationship can be easily seen by applying Itô’s formula to J ; for details see
El Karoui et al. (1997).

For any fixed (t, x) ∈ [0, T]× Rd and {Xs, t ≤ s ≤ T} solving the first equation of (4),
define

Ms := J(s,Xs) +

∫ s

t
r
(
s′, Xs′

)
ds′ ≡ Ys +

∫ s

t
r
(
s′, Xs′

)
ds′, s ∈ [t, T]. (6)

The following result is the theoretical foundation of this paper, which characterizes the
value function J by the martingality of M .

7. This PDE is a spacial case of the (nonlinear) Hamilton-Jacobi-Bellman (HJB) equation in continuous-
time stochastic control when the control variable is fixed.

8. Some of this PDE’s theoretical properties, such as existence, uniqueness, and regularity, have been well
studied in terms of viscosity solution; see, e.g., Crandall et al. (1992); Beck et al. (2021).

7

Jia and Zhou

Proposition 1 Suppose Assumptions 1 and 2 hold. For any fixed (t, x) ∈ [0, T] × Rd and
{Xs, t ≤ s ≤ T} solving the first equation of (4), the process M = {Ms, t ≤ s ≤ T} is
a square-integrable martingale. Conversely, if there is a continuous function J̃ such that
for all (t, x) ∈ [0, T] × Rd, M̃ = {M̃s, t ≤ s ≤ T} is a square-integrable martingale, where
M̃s := J̃(s,Xs) +

∫ s
t r
(
s′, Xs′

)
ds′, and J̃(T, x) = h(x), then J̃ ≡ J on [0, T]× Rd.

This proposition inspires a martingale approach to PE in continuous-time RL, which
will be developed in this paper. Essentially, the approach exploits the equivalence between
PE (Feynman–Kac formula) and the martingality.

Finally, for a square-integrable semi-martingale M = {Mt, 0 ≤ t ≤ T}, its quadratic
variation process, denoted by 〈M〉 = {〈M〉t, 0 ≤ t ≤ T}, is defined to be (Karatzas and
Shreve, 2014)

〈M〉t = lim
||∆||→0

K−1∑
i=0

(Mτi −Mτi−1)2 <∞,

where ∆ : 0 = τ0 < · · · < τK = t is an arbitrary partition of the interval [0, t], and
||∆|| = max1≤i≤K{τi − τi−1} is the largest mesh size. For M defined by (6), we have

〈M〉t = 〈Y 〉t =

∫ t

0
|Zs|2ds, t ∈ [0, T]. (7)

Introduce

L2
F ([0, T]) =

{
κ = {κt, 0 ≤ t ≤ T} is real-valued and Ft-progressively measurable : E

∫ T

0
κ2
tdt <∞

}
.

It is a Hilbert space with L2-norm ||κ||L2 = (E
∫ T

0 κ2
tdt)

1
2 . More generally, for any semi-

martingale Y = {Ys, s ≥ 0}, we denote

L2
F ([0, T];Y) =

{
κ = {κt, 0 ≤ t ≤ T} : κ is Ft-progressively measurable and E

∫ T

0
|κt|2d〈Y 〉t <∞

}
.

3. Temporal Difference Error in Continuous Time

In this section, we first review Doya (2000)’s TD error approach for deterministic dynamics
and then explain why we can not extend that approach to the stochastic setting.

3.1 Doya’s TD algorithm for deterministic dynamics

Many RL algorithms for discrete-time MDPs use TD error to evaluate policies. Doya
(2000) extends the TD approach to RL with continuous time and space, albeit only for
deterministic dynamics. For readers’ convenience and for highlighting the key differences
between deterministic and stochastic settings, we briefly review Doya (2000)’s approach
here.

In our setting with σ = 0 (and hence all the expectations are dropped), Doya’s approach
starts with the obvious identity

J(t,Xt) =

∫ t′

t
r(s,Xs)ds+ J(t′, Xt′), t′ ∈ (t, T]. (8)

8

Policy Evaluation and TD Learning in Continuous Time

Rearranging this equation and dividing both sides by t′ − t, we obtain

J(t′, Xt′)− J(t,Xt)

t′ − t
+

1

t′ − t

∫ t′

t
r(s,Xs)ds = 0. (9)

Letting t′ → t on the left hand side motivates the definition of the TD error rate:9

δt := J̇t + rt, (10)

where J̇t := d
dtJ(t,Xt) is the total derivative of J along (t,Xt), and rt := r(t,Xt).

The function approximation approach widely employed for PE first approximates J by
a parametric family of functions Jθ (upon using linear spans of basis functions or neural
networks, or taking advantage of any known or plausible structure of the underlying prob-
lem), with θ ∈ Θ ⊆ RL. Henceforth, we always use θ-superscripted functions to denote
those corresponding to the parameterized functions. For instance, δθt := J̇θt + rt.

Doya (2000) determines θ by minimizing the mean–square TD error (MSTDE)

MSTDE(θ) :=
1

2

∫ T

0
|δθt |2dt ≡ 1

2

∫ T

0

∣∣J̇θt + rt
∣∣2dt, (11)

in view of the fact that this error ought to be zero theoretically.
To approximate and compute MSTDE(θ), we discretize [0, T] into small intervals [ti, ti+1],

i = 0, 1, · · · ,K − 1, with an equal length ∆t, where t0 = 0 and tK = T . This leads to

MSTDE(θ) ≈ 1

2

K−1∑
i=0

(
Jθ(ti+1, Xti+1)− Jθ(ti, Xti)

ti+1 − ti
+ rti

)2

∆t =: MSTDE∆t(θ). (12)

A gradient descent algorithm is then applied to obtain the minimizer θ∗ of MSTDE∆t which
in turn determines J(t, x) = Jθ

∗
(t, x). Namely,

θ ← θ−α
K−1∑
i=0

(
Jθ(ti+1, Xti+1)− Jθ(ti, Xti)

ti+1 − ti
+rti

)(
∂Jθ

∂θ
(ti+1, Xti+1)− ∂J

θ

∂θ
(ti, Xti)

)
, (13)

where α is the learning rate (step size). This updating rule is also referred to as the näıve
residual gradient method (Barnard, 1993; Baird, 1995).

The above algorithm is stated in the offline setting; namely, one uses the whole sample
trajectory to update θ. However, TD-learning is often advocated for online learning: instead
of observing the full sample path over [0, T], one updates the estimate of the value function
at each discrete time point using all available historical information. Take the most popular
one-step method for example. With the time discretization described above, this method
updates θ by

θ ← θ − α
(
Jθ(ti+1, Xti+1)− Jθ(ti, Xti)

ti+1 − ti
+ rti

)(
∂Jθ

∂θ
(ti+1, Xti+1)− ∂Jθ

∂θ
(ti, Xti)

)
.

9. Doya (2000) still refers this term as “TD error”, while we add “rate” in its definition to reflects that
it is indeed the instantaneous temporal difference at a given time t. However, we will use both terms
interchangeably in this paper.

9

Jia and Zhou

Notice that this increment is just one term in that of (13).
The most important feature of these TD-based algorithms that makes them imple-

mentable for learning is that one can observe the payoffs rti and the states Xti , and hence
can compute Jθ(ti, Xti), i = 0, 1, · · · ,K − 1, through samples, without having to know the
model parameters.

3.2 Mean-square TD error for stochastic dynamics

If we are to extend the MSTDE approach näıvely from Doya (2000)’s deterministic setting
to the current stochastic (diffusion) setting, then we first note that the following equation,
which is similar to (8), holds

J(t,Xt) = E

[∫ t′

t
r(s,Xs)ds+ J(t′, Xt′)

∣∣∣Ft] . t′ ∈ (t, T]. (14)

This equation is called Bellman’s consistency. Then

E

[
J(t′, Xt′)− J(t,Xt)

t′ − t
+

1

t′ − t

∫ t′

t
r(s,Xs)ds

]
= 0. (15)

We may then be tempted to define a stochastic version of the TD error rate as in (10).
Unfortunately, the path-wise total derivative J̇t = d

dtJ(t,Xt) no longer exists in the current
diffusion case; hence, the TD error rate δt is not well defined now. This issue stems from
the intrinsic non-differentiability of (non-degenerate) diffusion processes. For instance, it
is well-known that with probability one, the sample trajectory of a Brownian motion is
nowhere differentiable.

To facilitate our analysis without getting overly technical, we make the following regu-
larity assumption on the value function approximators Jθ we use in this paper:

Assumption 3 Jθ(t, x) is a sufficiently smooth function of (t, x, θ) so that all the deriva-
tives required exist in the classical sense. Moreover, for all θ ∈ Θ, Jθ(·, X·), LJθ(·, X·) +

r·,
∣∣∂Jθ
∂x (·, X·)>σ(·, X·)

∣∣ ∈ L2
F ([0, T]), and their L2-norms are continuous functions of θ.

Given an approximator Jθ, a theoretically well-defined error based on (14) in continuous
time is the so-called Bellman’s error rate:

lim
t′→t+

1

t′ − t
E

[∫ t′

t
r(s,Xs)ds+ Jθ(t′, Xt′)− Jθ(t,Xt)

∣∣∣Ft] = LJθ(t,Xt) + r
(
t,Xt

)
. (16)

This can be derived by applying Itô’s formula to Jθ(t,Xt).
If there is no randomness in the environment, the conditional expectation in (16) van-

ishes and hence Bellman’s error coincides with TD error (10) in the deterministic case.
In a non-degenerate stochastic environment, however, only Bellman’s error {LJθ(t,Xt) +
r
(
t,Xt

)
, 0 ≤ t ≤ T} is well defined on sample trajectories. Note that this error is zero

everywhere for the true value function, according to (3). So it seems natural to set a PE
objective to minimize Bellman’s error. Unfortunately, this error accounts for the condi-
tional expectation and thus represents the average of temporal differences over infinitely

10

Policy Evaluation and TD Learning in Continuous Time

many sample trajectories that are distributed according to the SDE (1). Therefore, the
knowledge about the state dynamics is required in computing the conditional expectation
or, equivalently, in applying the operator L. This knowledge is nevertheless unknown to
the agent in our RL setting. In other words, in sharp contrast to the TD error, Bellman’s
error and its discretization version cannot be computed with only samples in a black-box
environment.

On the other hand, even though MSTDE does not exist theoretically in the continuous-
time stochastic setting, we can still define and compute its discretization version, in a way
analogous to (12):

MSTDE∆t(θ) :=
1

2
E

[
K−1∑
i=0

(
Jθ(ti+1, Xti+1)− Jθ(ti, Xti)

ti+1 − ti
+ rti

)2

∆t

]
. (17)

Indeed, Wang and Zhou (2020) use this version to develop a PE algorithm for the mean–
variance problem. A natural question is whether minimizing MSTDE∆t(θ) (or equivalently
applying the stochastic version of the residual gradient algorithm (13)) will lead to the
correct solution in the stochastic environment. The answer is unfortunately negative, as
illustrated by the following example.

Example 1 Let us find a function that represents the conditional expectation J(t, x) =
E[X1|Xt = x], where Xt = Wt is a Brownian motion. This is probably the simplest example
possible. Because the Brownian motion is a martingale, we know the ground truth solution
J(t, x) = x. Pretending we do not know this solution, we proceed to minimize MSTDE∆t(θ)
to learn J based on the simulated sample paths of the state process X ≡ W = {Wt, 0 ≤
t ≤ 1}, which is a standard Brownian motion starting from W0 = 0.

We first use a parameterized family Jθ(t, x) = [θ(1 − t) + 1]x to approximate J . This
family contains the true function when θ = 0. The discretized MSTDE is

MSTDE∆t(θ) =
1

2
E

K−1∑
i=0

((
θ(1− ti+1) + 1

)
Xti+1 −

(
θ(1− ti) + 1

)
Xti

ti+1 − ti

)2

∆t

 .
We apply the stochastic gradient decent (SGD) with the updating rule

θ ← θ−α
K−1∑
i=0

((
θ(1− ti+1) + 1

)
Xti+1 −

(
θ(1− ti) + 1

)
Xti

ti+1 − ti

)[
(1− ti+1)Xti+1 − (1− ti)Xti

]
.

In our simulation we use multiple independent episodes for training. We take the time
grid size as ∆t = 0.01, initialize the parameter to be θ(0) = −1, and apply the above
updating rule with the learning rate α = 0.01.

Figure 1 illustrates the convergence of θ to θ∗MSTDE = −3
2 which is not the true so-

lution θtrue = 0. In other words, the value function is not correctly learned by MSTDE.
Equivalently, it does not solve the PDE (3) or the FBSDE (4) correctly.

11

Jia and Zhou

Figure 1: The paths of parameters over episodes with different objectives for
Example 1. The true solution is θtrue = 0. Applying SGD to minimize MSTDE∆t leads to
θ∗MSTDE = −3

2 . Applying SGD to minimize the martingale loss function generates the correct
solution. We repeat the experiment for 100 times to calculate the standard deviations,
which are represented as the shaded areas. The width of each shaded area is twice the
corresponding standard deviation.

3.3 Theoretical characterization of mean-square TD error

To understand theoretically why taking the objective of minimizing MSTDE does not work
for stochastic problems, recall the processes (X,Y, Z) and the martingale M defined through
(4)–(6) in which we take t = 0. Then

K−1∑
i=0

(
J(tt+1, Xti+1)− J(ti, Xti)

ti+1 − ti
+ rti

)2

∆t

=
1

∆t

K−1∑
i=0

(
J(ti+1, Xti+1)− J(ti, Xti) +

∫ ti+1

ti

rtsds+O
(
(∆t)2

))2

≈ 1

∆t
〈M〉T =

1

(∆t)2
〈Y 〉T =

1

∆t

∫ T

0
|Zt|2dt,

which is not zero, unlike in the deterministic setting. Hence, minimizing the MSTDE
is wrong, because it is equivalent to minimizing the expected quadratic variation of the
martingale M , which should not be minimized as the objective for estimating the value
function.10

Take Example 1 again:

Example 1 (Continued) Let us use the previously taken parameterized family Y θ
t =

Jθ(t,Xt) = [θ(1− t) + 1]Xt to approximate J . Then

dM θ
t ≡ dY θ

t = [θ(1− t) + 1]dWt,

10. A related notion in financial econometrics is the realized variance of a time series, which is proved to be
an unbiased estimate of the integrated variance or the quadratic variation, see, e.g., Barndorff-Nielsen
and Shephard (2002).

12

Policy Evaluation and TD Learning in Continuous Time

leading to

〈M θ〉1 =

∫ 1

0

[
1 + θ(1− t)

]2
dt =

1

3
θ2 + θ + 1,

which is minimized at θ∗ = −3
2 , instead of the desired value θtrue = 0. This theoretical

value matches the simulation result reported in Figure 1.

We now present a slightly more involved example, one that includes a running reward
term.

Example 2 We seek a function representing the conditional expectation J(t, x) = E[X2
1 −∫ 1

t ds|Xt = x] whereXt = Wt is a Brownian motion. Theoretically, the problem is equivalent
to solving the following BSDE:

dYt = dt+ ZtdWt, Y1 = X2
1 .

The true solution is Yt = X2
t , Zt = 2Xt, namely, J(t, x) = x2. If we use a parameterized

family Y θ
t = Jθ(t,Xt) = [θ0(1− t) + 1]X2

t + θ1(1− t)Xt + θ2(1− t) to approximate J , then
the desired parameter values are θtrue = (0, 0, 0).

Let us compute the quadratic variation of M θ
t := Y θ

t − t. By Itô’s lemma and replacing
Xt by Wt, we obtain

dM θ
t = (−θ2 − θ1Wt − θ0W

2
t − 1)dt+

[
2
(
θ0(1− t) + 1

)
Wt + θ1(1− t)

]
dWt.

Then its expected quadratic variation is

E[〈M θ〉1] =E
∫ 1

0

[
2
(
θ0(1− t) + 1

)
Wt + θ1(1− t)

]2
dt

=

∫ 1

0

[
4
(
θ0(1− t) + 1

)2
t+ θ2

1(1− t)2
]

dt

=4

(
1

12
θ2

0 +
1

3
θ0 +

1

2

)
+

1

3
θ2

1,

.

which attains minimum at θ∗0 = −2, θ∗1 = 0.
Here, the parameter θ2 is not present in the expected quadratic variation, and hence

remains undetermined. However, due to numerical errors in computing the TD error, we can
determine θ2 by minimizing the high-order small term in the quadratic variation, given the
minimizer, (θ∗0, θ

∗
1), of the leading term. To do this, recall we have the following expansion:

(dM θ
t)2 = · · ·︸︷︷︸

leading-order term

(dWt)
2 + · · ·︸︷︷︸

high-order small term

(dt)2 + · · ·︸︷︷︸
mean-zero term

dWtdt.

So, parameters will be determined first through the leading term in the quadratic variation.
Parameters that do not show up in the leading term have much smaller but non-negligible
impact on the TD error, which can be determined through the second term in the above.
Finally, the mean-zero term can be ignored because it will be averaged out.

Therefore, in the current example, θ2 will be determined through minimizing the fol-
lowing:

E
∫ 1

0
(−θ2 − θ∗1Wt − θ∗0W 2

t − 1)2dt =

∫ 1

0

[
(θ2 + 1)2 + 2(θ2 + 1)θ∗0t+ 3θ∗0

2t2
]

dt.

13

Jia and Zhou

The minimizer is θ∗2 = 0. So, optimal parameters to minimize the MSTDE are θ∗MSTDE =
(−2, 0, 0) and hence the resulting learned function is J(t, x) = (2t−1)x2. However, the true
function is J(t, x) = x2.11

We now verify this analysis by simulation. The discretized mean-square TD error is

MSTDE∆t(θ) =
1

2
E

K−1∑
i=0

(
Jθ(ti+1, Xti+1)− Jθ(ti, Xti)

ti+1 − ti
− 1

)2

∆t

 .
We initialize the parameter to be θ(0) = (−1,−1,−1), and use the SGD algorithm. The
learning rate is taken as 0.01. The result, shown in Figure 2, is consistent with the above
theoretical analysis, which incidentally justifies our scheme of determining some of the
parameters through the high-order term.

Figure 2: The paths of parameters over episodes with different objectives for
Example 2. The true solution is θtrue = (0, 0, 0). Applying SGD to minimize mean-square
TD error leads to θ∗MSTDE = (−2, 0, 0). Applying SGD to minimize the martingale loss
function leads to the desired solution. We repeat the experiment for 100 times to calculate
the standard deviations of the predicted parameters, which are represented as the shaded
areas. The width of each shaded area is twice the corresponding standard deviation.

Next, we present a general result stipulating that any algorithm minimizing MSTDE∆t

indeed converges to the minimizer of the quadratic variation of M θ.
First, it follows from Itô’s lemma that

dM θ
t =

[
LJθ(t,Xt) + rt

]
dt+

(
∂Jθ(t,Xt)

∂x

)>
σ(t,Xt)dWt.

Hence

d〈M θ〉t ≡
(
dM θ

t

)2
=

[(
∂Jθ(t,Xt)

∂x

)>
σ(t,Xt)

]2

(dWt)
2

︸ ︷︷ ︸
leading-order term: quadratic variation

+
[
LJθ(t,Xt) + rt

]2
(dt)2 + (· · ·)dWtdt︸ ︷︷ ︸

high-order small term

.

(18)

11. Even though the two parameters θ∗1 , θ
∗
2 agree with the correct ones, this seems to be a coincidence and

the final learned value function still deviates from the true one.

14

Policy Evaluation and TD Learning in Continuous Time

The first term on the right hand side is the leading order term since (dWt)
2 = dt. Therefore,

minimizing the left hand side is essentially to minimize this leading term.
Before presenting the theorem that formalizes this result, let us note that in the time-

discretization throughout this paper, Xti , i = 0, 1, · · · ,K, are discrete observations of the
continuous-time process X which is the exact solution to (1), instead of its approximation
resulting from any numerical approximation scheme (such as the ones in Kloeden and Platen,
1992). So, in our paper the only approximation happens in evaluating the cumulative reward
between two consecutive observations – we use the instantaneous reward rti observed at
time ti multiplied by the length of the time window to approximate the total reward:
rti∆t ≈

∫ ti+1

ti
rtsds – and in calculating the integral on [0, T] by a discrete sum with the

forward Euler scheme.
Clearly, the error of approximating cumulative reward is 0 if the running reward is a

constant. When it is not a constant, the convergence rate of the approximation requires
some conditions, which we put forward as an assumption.

Assumption 4 There exist constants C > 0 and µ1, µ2, µ3 ≥ 0, such that

|r(t′, x′)− r(t, x)| ≤ C|t′ − t|µ1 |x′ − x|µ2(|x′|µ3 + |x|µ3),∀t′, t ∈ [0, T], x′, x ∈ Rd.

Theorem 2 Suppose Assumptions 1, 2, and 3 hold. Let

θ∗MSTDE(∆t) ∈ arg min
θ∈Θ

MSTDE∆t(θ)

and assume that θ∗MSTDE := lim∆t→0 θ
∗
MSTDE(∆t) exists. Then

θ∗MSTDE ∈ arg min
θ∈Θ

E
∫ T

0

∣∣∣∣∣
(
∂Jθ(t,Xt)

∂x

)>
σ(t,Xt)

∣∣∣∣∣
2

dt.

Moreover, if Assumption 4 also holds true, then

E
∫ T

0

∣∣∣∣∣∣
(
∂Jθ

∗
MSTDE(∆t)(t,Xt)

∂x

)>
σ(t,Xt)

∣∣∣∣∣∣
2

dt−min
θ∈Θ

E
∫ T

0

∣∣∣∣∣
(
∂Jθ(t,Xt)

∂x

)>
σ(t,Xt)

∣∣∣∣∣
2

dt ≤ C∆t,

for some constant C.

In contrast, the true value function J solves the PDE (3) which corresponds to the
coefficient of the (dt)2 term in (18). So once again the parameters should minimize the
mean-square Bellman’s error (which as discussed earlier depends on the model parameters
and hence any algorithm trying to accomplish it is not implementable). This shows a
fundamental discrepancy between the objective of MSTDE and that of PE in the stochastic
diffusion environment.

The undesirability of the näıve residual gradient or MSTDE has actually been noticed
in the discrete-time MDP literature. For example, Sutton et al. (2009) point out the sim-
ilar problem of MSTDE and present a simple counterexample in an adsorbing three-state
Markov chain. Sutton and Barto (2018, p.272) comment that “by penalizing all TD errors
it (MSTDE) achieves something more like temporal smoothing than accurate prediction,”

15

Jia and Zhou

although the authors stop short of explaining why it achieves temporal smoothing. Our
theory confirms this intuition by a rigorous analysis showing that, in the diffusion setting,
the MSTDE minimizer is primarily determined through minimizing quadratic variation.
As quadratic variation measures the smoothness of a diffusion process, the value function
process {Jθ(t,Xt), 0 ≤ t ≤ T} has the smoothest trajectory at θ = θ∗MSTDE.

3.4 Online mean-square TD error algorithms

So far our discussions have been focused on the offline setting. However, TD is often used
for online learning. The question now is whether an online algorithm may correct the errors
arising from MSTDE.

Let us take the one-step online method for illustration. Precisely, suppose the time
discretization is 0 = t0 < t1 < · · · < tK = T . At each time ti+1, i = 0, · · · ,K − 1, this
method updates θ by the following SGD algorithm:

θ ← θ − α
(
Jθ(ti+1, Xti+1)− Jθ(ti, Xti)

ti+1 − ti
+ rti

)(
∂Jθ

∂θ
(ti+1, Xti+1)− ∂Jθ

∂θ
(ti, Xti)

)
,

and then loop over all episodes.
Since multiple episodes are used, this procedure, by and large, can be viewed as drawing

samples in the time direction uniformly (since the learning rate is constant, one does not
differentiate among different times). Therefore, such a one-step updating rule is equivalent
to solving

min
θ

Et∼U(0,T)

[(
Jθ(t+ ∆t,Xt+∆t)− Jθ(t,Xt)

∆t
+ rt

)2
]

≈min
θ

1

∆t

∫ T

0
E[(dM θ

t)2] ≈ min
θ

E[

∫ T

0
d〈M θ〉t] = min

θ
E[〈M θ〉T],

where U(0, T) is the uniform distribution on [0, T]. This is the same optimization problem
as the offline learning when we use the whole trajectory; hence, theoretically, it will lead to
the same undesired solution that is determined by Theorem 2.

We revisit Examples 1 and 2 and implement the above online algorithm to minimize
the mean-square TD error. Figures 3 and 4 show the results of the learned parameters
respectively. As predicted by our analysis, they again converge to the same wrong solutions
that are determined by minimizing quadratic variation.

4. Martingale Perspective and Approach

It follows from the previous section that MSTDE is not the right objective/loss function for
PE in continuous-time stochastic RL. In this section we propose and analyze several other
objective functions or criteria all based on the martingality of the process M , and connect
some of them to well-studied alternative TD algorithms for MDPs.

4.1 Offline learning: Martingale loss function

In this subsection, we propose a loss function that uses full sample trajectories and is
therefore applicable for offline learning, and test the corresponding algorithm’s performance.

16

Policy Evaluation and TD Learning in Continuous Time

Figure 3: The paths of parameters over episodes with different objectives under
the online setting for Example 1. The true solution is θtrue = 0. Applying SGD to
minimize one-step MSTDE∆t online leads to θ∗MSTDE = −3

2 . CTD(0) and CTD(1) lead
to the desired solution. We repeat the experiment for 100 times to calculate the standard
deviations, which are represented as the shaded areas. The width of each shaded area is
twice the corresponding standard deviation.

Figure 4: The path of parameters over episodes for different objectives under the
online setting for Example 2. The true solution is θtrue = (0, 0, 0). Based on our analysis
of quadratic variation, the minimizer is θ∗MSTDE = (−2, 0, 0). CTD(0) and CTD(1) lead to
the desired solution. We repeat the experiment for 100 times to calculate the standard
deviations, which are represented as the shaded areas. The width of each shaded area is
twice the corresponding standard deviation.

17

Jia and Zhou

Let the state process be {Xt, 0 ≤ t ≤ T}. Recall that the square-integrable martingality
of Mt = J(t,Xt) +

∫ t
0 r(s,Xs)ds characterizes the correct value function. The martingale

condition is further equivalent to

Mt = E[MT |Ft], for all t ∈ [0, T],

which in turn stipulates that the process at any given time prior to the terminal time T is the
expectation of the terminal value conditional on all the information available at that time.
However, a fundamental property of the conditional expectation yields that Mt minimizes
the L2-error between MT and any Ft-measurable random variables, namely,

Mt ≡ E[MT |Ft] = arg min
ξ is Ft-measurable

E|MT − ξ|2, for all t ∈ [0, T].

This property inspires the following loss function, termed the martingale loss function:

ML(θ) :=
1

2
||MT −M θ

· ||2L2 =
1

2
E
∫ T

0
|MT −M θ

t |2dt

≈1

2
E
[K−1∑
i=0

(
h(XT)− Jθ(ti, Xti) +

∫ T

ti

r(s,Xs)ds

)2

∆t

]

≈1

2
E
[K−1∑
i=0

(
h(XtK)− Jθ(ti, Xti) +

K−1∑
j=i

r(tj , Xtj)∆t

)2

∆t

]

=
1

2
E
[K−1∑
i=0

(
h(XtK) +

K−1∑
j=0

r(tj , Xtj)∆t− Jθ(ti, Xti)−
i−1∑
j=0

r(tj , Xtj)∆t

)2

∆t

]
= : ML∆t(θ),

(19)

where 0 = t0 < t1 < · · · < tK = T is a mesh grid in time. Note that this loss function
does not rely on the knowledge of the functional forms of b, σ, r or h.12 As long as we can
observe the accumulated reward

∑i−1
j=0 r(tj , Xtj) along with the final reward h(XT), the

loss function can be implemented with the expectation replaced by the average over sample
trajectories.

This loss function uses the whole trajectory to calculate the difference between the
predicted value function and the realized reward-to-go, minimizing which naturally leads
to an unbiased estimation. This approach is the continuous-time analogue of the so-called
Monte Carlo policy evaluation with function approximation (Sutton and Barto, 2018) in
the classical MDP and RL literature. It is primarily for offline learning where one observes
multiple trajectories offline and updates estimate after observing one full trajectory.

The martingale loss objective is not of a TD type; it does not compare the approximate
function values at two consecutive times. To explain the difference between the martingale
loss function and the mean-square TD error, let us assume that the running reward r ≡ 0
for simplicity. In this case, Mt = J(t,Xt) is a martingale. The martingale loss considers the
difference values of J between any time instance and the final time, J(XT) − J(ti, Xti) =

12. In particular, MT = h(XT) +
∫ T

0
rsds does not depend on the parameter θ and can be directly observed

from samples as the total reward obtained over [0, T].

18

Policy Evaluation and TD Learning in Continuous Time

h(XT) − J(ti, Xti), while the TD concerns the difference between two consecutive time
instances, J(ti+1, Xti+1)−J(ti, Xti). The intuition why the former leads to the right solution
is that it always compares the current value of J with that of the final time, h(XT), which is
observable and thus can serve as an ultimate and correct target. In fact, instead of thinking
of J(t, x) as a bivariate function of time t and space x, in any numerical procedure one is
essentially looking for K functions of x, denoted by Ji(·) = J(ti, ·), where i = 0, · · · ,K − 1,
with JK(x) = h(x) known and given. Therefore, the martingale loss is the aggregated error
between Ji and JK = h, minimizing which also minimizes the error between Ji and JK for
each i. As a result, each Ji converges to the correct value. In contrast, the mean-square
TD error represents the aggregated intertemporal L2 error between Ji and Ji+1. When
computing this error, each Ji except J0 shows up twice in |Ji − Ji+1|2 and |Ji − Ji−1|2;
so the resulting function Ji will be twisted away from the true value, leading to a wrong
solution.

Finally, we can apply SGD to minimize the proposed martingale loss function and the
updating rule is given by

θ ← θ + α
K−1∑
i=0

(
h(XtK) +

K−1∑
j=i

r(tj , Xtj)∆t− Jθ(ti, Xti)

)
∂Jθ

∂θ
(ti, Xti)∆t. (20)

Let us call this the ML (martingale loss) algorithm, which is the counterpart of the gradient
Monte Carlo in classical RL with MDP, when G(ti) := h(XtK)+

∑K−1
j=i r(tj , Xtj)∆t is taken

as the Monte Carlo target at each ti (Sutton and Barto, 2018). We apply this algorithm to
numerically solve Examples 1 and 2, and find that it leads to the true solution; see Figures
1 and 2. In our implementation, the initial value is the same as before and the learning rate
is tuned for smoother convergence. In particular, the initial learning rate is set to be 0.01
and decays according to (]episode)−0.67 where]episode denotes the number of episode.13

The next theorem states that minimizing the martingale loss function is equivalent to
minimizing the mean-square error between the estimated value function Jθ and the true
value function J . This error is known as the mean-square value error (MSVE):

MSVE(θ) = E
∫ T

0
|J(t,Xt)− Jθ(t,Xt)|2dt. (21)

Theorem 3 It holds that

arg min
θ∈Θ

ML(θ) = arg min
θ∈Θ

MSVE(θ).

Moreover, under Assumptions 1, 2, and 3, as ∆t → 0, any convergent subsequence of
the minimizer of the discretized martingale loss function θ∗ML(∆t) ∈ arg minθ∈Θ ML∆t(θ)
converges to the minimizer of martingale loss function; that is

lim
∆t→0

θ∗ML(∆t) = θ∗ML ∈ arg min
θ∈Θ

ML(θ) = arg min
θ∈Θ

MSVE(θ).

13. This decay schedule satisfies the usual requirement on the decay rate of the learning rate for the conver-
gence of SGD algorithms. Note here our purpose is not to optimize convergence rates, but to confirm
the limiting point for a convergent algorithm. Tuning the learning rate is not crucial to our results, as
long as the algorithm does converge.

19

Jia and Zhou

Furthermore, if in addition Assumption 4 holds, then

ML (θ∗ML(∆t))−min
θ∈Θ

ML(θ) ≤ C(∆t)min{1,µ1+
µ2
2
}

for some constant C > 0.

Clearly, MSVE is a theoretically sound loss function for learning. However, by itself
it does not lead to an implementable algorithm because the true value J is not observable
from data. Theorem 3 strengthens the theoretical foundation of the martingale loss function
that is implementable. Moreover, this theorem establishes the convergence together with the
convergence rate of applying any convergent algorithm developed for minimizing discrete-
time martingale loss as the time step tends to zero. Therefore, it also provides a theoretical
foundation for implementing the discretization procedure.

We illustrate this result with the following examples.

Example 3 Consider the same learning problem in Example 1, but with a different pa-
rameterized value function given by Jθ(t, x) = θx3. Recall Xt = Wt is a Brownian motion.
The main difference between this example and the previous ones is that now the paramet-
ric family does not contain the true solution. Indeed, it does not even satisfy the correct
terminal condition that Jθ(1, w) = x, which could happen in more complex problems when
the terminal payoff functions are unknown. Recall the true value function is J(t, x) = x.
Let us compute the MSVE:

E
∫ 1

0
|J(t,Xt)− Jθ(t,Xt)|2dt = E

∫ 1

0

(
Wt − θW 3

t

)2
dt =

∫ 1

0
(t− 6θt2 + 15θ2t3)dt.

The minimizer is θ∗ = 4
15 . According to Theorem 3, minimizing the martingale loss function

should converge to this solution.

Example 4 Consider the same learning problem in Example 1, with the parameterized
value function Jθ(t, x) = x+ (1− t)eθx−

1
2
θ2t+θ. Recall Xt = Wt is a Brownian motion. This

time it satisfies the terminal condition, but still does not contain the true solution. Let us
compute the MSVE:

E
∫ 1

0
|J(t,Xt)− Jθ(t,Xt)|2dt = E

∫ 1

0
(1− t)2e2θWt−θ2t+2θdt

=

∫ 1

0
(1− t)2eθ

2t+2θdt = −e
2θ(2− 2eθ

2
+ 2θ2 + θ4)

θ6
.

The minimizer is θ∗ ≈ −2.12568. According to Theorem 3, minimizing the proposed mar-
tingale loss function should converge to this solution.

We test the numerical solutions to Examples 3 and 4 by applying our ML algorithms
with SGD. The initial learning rate is taken as 0.001 and decays as (]episode)−0.67. Figures
5 and 6 confirm the result of Theorem 3.

20

Policy Evaluation and TD Learning in Continuous Time

Figure 5: ML and CTD(λ) methods converge to different points for Example 3.
Applying ML algorithm leads to θ∗ML = 4

15 , which is the minimizer of MSVE. CTD methods
converge to θ∗moment = 0, which is the solution to the moment condition. In this case, the
moment conditions associated with CTD(0) and CTD(1) have the same solution so the two
algorithms converge to the same point. We repeat the experiment for 100 times to calculate
the standard deviations, which are represented as the shaded areas. The width of each
shaded area is twice the corresponding standard deviation.

4.2 Online and offline learning: TD based on martingale orthogonality
conditions

We have proposed a martingale loss function to interpret the Monte Carlo PE. This approach
requires the whole sample trajectory over [0, T]; so it is inherently offline and is difficult to
extend to the online setting where only historical samples are available when one updates
the approximated function in real time. Classically, TD learning was introduced as a remedy
to enable online learning. However, based on our previous discussion, the mean-square TD
error is not the correct objective function to learn the value function even though it can
indeed be implemented online. In this section, we propose a different approach, again based
on the martingality of the process M , that generates the continuous-time counterparts of
several well-studied TD algorithms and that works both online and offline.

This approach starts with noting that M being a square-integrable martingale implies

E
∫ T

0
ξtdMt = 0, (22)

for any ξ ∈ L2
F ([0, T],M) (called a test function).14 In fact, the following result shows

that this is a necessary and sufficient condition for the parameterized process M θ
t to be a

martingale.

Proposition 4 In general, a diffusion process M θ ∈ L2
F ([0, T]) is a martingale if and

only if E
∫ T

0 ξtdM
θ
t = 0 for any ξ ∈ L2

F ([0, T],M θ). In the current setting, E
∫ T

0 ξtdM
θ
t =

E
∫ T

0 ξt
[
LJθ(t,Xt) + rt

]
dt.

14. It would be more appropriate to call it a test process because ξ needs to be generally an adapted stochastic
process. However, we use the more common term “test function”.

21

Jia and Zhou

Figure 6: ML and CTD(λ) methods converge to different points with different
values of λ for Example 4. Applying ML algorithm leads to θ∗ML ≈ −2.12568, which
is the minimizer of MSVE. CTD(0) converges to θ∗moment,CTD(0) ≈ −1.83923, which is the

solution to the moment condition associated with the choice of test function for CTD(0).
CTD(1) converges to θ∗moment,CTD(1) ≈ −2.12568, which is the solution to the moment

condition associated with the choice of test function for CTD(1). Because of the different
choices of test functions, the two CTD algorithms converge to different points. It is a
coincidence that ML and CTD(1) converge to the same point. We repeat the experiment
for 100 times to calculate the standard deviations, which are represented as the shaded
areas. The width of each shaded area is twice the corresponding standard deviation.

We call (22) a family of martingale orthogonality conditions. In theory, one should vary
all possible test functions and thus this family has infinitely many equations. For numerical
approximation methods, however, we can choose finitely many test functions in special
forms. Notice that, for a parametric family {Jθ : θ ∈ Θ ⊂ RL}, in principle, we need at
least L equations as our martingale orthogonality conditions in order to fully determine
θ. For example, we can take ξt = ∂Jθ

∂θ (t,Xt) ∈ RL. (Here, and henceforth, ξt may be
vector-valued and (22) is accordingly a vector-valued equation or a system of equations.)
In statistics and econometrics, a problem of the type (22) with a finite number of equations
is also referred to as moment conditions, and a systematic way to analyze and solve it is
known as the generalized methods of moments (GMM); see, e.g., Hansen (1982).

To devise algorithms based on this theory, we need to answer the following questions:
How to choose these finite number of test functions? And how to solve the resulting moment
conditions in an effective and efficient way? It turns out that answering these two questions
suitably in our continuous setting gives rise to algorithms that correspond to several well-
known conventional TD learning algorithms in discrete setting.

• Choose ξt = ∂Jθ

∂θ (t,Xt), and use stochastic approximation (Robbins and Monro, 1951)
to update parameters after a whole episode (offline):

θ ← θ+α

∫ T

0

∂Jθ

∂θ
(t,Xt)dM

θ
t ≈ θ+α

K−1∑
i=0

∂Jθ

∂θ
(ti, Xti)

(
Jθ(ti+1, Xti+1)−Jθ(ti, Xti)+rti∆t

)
,

22

Policy Evaluation and TD Learning in Continuous Time

or to update parameters at every time step (online):

θ ← θ + α
∂Jθ

∂θ
(t,Xt)dM

θ
t ≈ θ + α

∂Jθ

∂θ
(ti, Xti)

(
Jθ(ti+1, Xti+1)− Jθ(ti, Xti) + rti∆t

)
.

These algorithms correspond to the TD(0) algorithm (Sutton, 1988).

• Choose ξt =
∫ t

0 λ
t−s ∂Jθ

∂θ (s,Xs)ds, where 0 < λ ≤ 1, and use stochastic approximation
to update parameters after one episode:

θ ←θ + α

∫ T

0

∫ t

0
λt−s

∂Jθ

∂θ
(s,Xs)dsdM

θ
t

≈ θ + α
K−1∑
i=0

i∑
j=0

∆tλ(i−j)∆t∂J
θ

∂θ
(tj , Xtj)

(
Jθ(ti+1, Xti+1)− Jθ(ti, Xti) + rti∆t

)
,

or to update parameters at every time step:

θ ←θ + α

∫ t

0
λt−s

∂Jθ

∂θ
(s,Xs)dsdM

θ
t

≈ θ + α
i∑

j=0

∆tλ(i−j)∆t∂J
θ

∂θ
(tj , Xtj)

(
Jθ(ti+1, Xti+1)− Jθ(ti, Xti) + rti∆t

)
.

These algorithms correspond to the TD(λ) algorithm (Sutton, 1988). Here the param-
eter λ dictates how much weight to be put on historical predictions in the procedure.
When λ = 1, it puts equal weight on all the past predictions. The smaller λ becomes,
the more weight on more recent predictions. When λ = 0, past predictions do not
matter, resulting in the TD(0) algorithm.

It should be noted that TD(0) and TD(λ) algorithms are not exactly gradient based;
rather, they use stochastic approximation as a first-order method to solve (22). In
the literature they are also referred to as semi-gradient TD algorithms (Sutton and
Barto, 2018) because they do include a part of the gradient.

• Choose ξt = ∂Jθ

∂θ (t,Xt) and take the approximated value function to be a linear

combination of a series of basis functions: Jθ(t, x) =
∑L

j=1 θjφj(t, x). Then ∂Jθ

∂θ (t, x) =

φ(t, x) := (φ1(t, x), · · · , φL(t, x))> ∈ RL. In this case, (22) becomes a system of linear
equatins in θ and can be solved explicitly as

θ = −
[
E
∫ T

0
φ(t,Xt)

(
dφ(t,Xt)

>)]−1

E
∫ T

0
rtφ(t,Xt)dt,

assuming the matrix inverse exists. The expectation can be estimated using sample
average across multiple trajectories. Hence, if there are M episodes, we have

θ =−
(

1

M

M∑
k=1

∫ T

0
φ(t,X

(k)
t)
(
dφ(t,X

(k)
t)>

))−1(1

M

M∑
k=1

∫ T

0
r

(k)
t φ(t,X

(k)
t)dt

)

≈−
(

1

M

M∑
k=1

K−1∑
i=0

φ(ti, X
(k)
ti

)
(
φ(ti+1, X

(k)
ti+1

)> − φ(ti, X
(k)
ti

)>
))−1(1

M

M∑
k=1

K−1∑
i=0

r
(k)
ti
φ(ti, X

(k)
ti

)∆t

)
,

23

Jia and Zhou

where the superscript (k) signifies that the corresponding observations are taken from
the k-th episode. If there is only one trajectory up to time t = tj , then we estimate
the parameter using long-time average (under certain ergodicity condition) to obtain

θ =−
(

1

t

∫ t

0
φ(s,Xs)

(
dφ(s,Xs)

>))−1(1

t

∫ t

0
rsφ(s,Xs)ds

)
≈−

(
1

j

j−1∑
i=0

φ(ti, Xti)
(
φ(ti+1, Xti+1)> − φ(ti, Xti)

>))−1(1

j

j−1∑
i=0

rtiφ(ti, Xti)∆t

)
.

These algorithms correspond to the (linear) least square TD(0), or LSTD(0), algo-
rithms (Bradtke and Barto, 1996). LSTD and its variants (Boyan, 2002) are often
discussed in the context of linear function approximation. Despite the name of “least
square”, it does not solve any minimization problem per se; instead it uses the linear
structure to obtain the exact solution to (22) and then use sample average to estimate
the expectation. Xu et al. (2002) and Geramifard et al. (2006) develop a more efficient
way to implement this solution in a recursive way. The reason why it is called “least
square” comes from the instrumental variable approach to regression problems (Ljung
and Söderström, 1983).15 Bradtke and Barto (1996) show that the basis functions in
LSTD are indeed instrumental variables.

• We choose ξt = ∂Jθ

∂θ (t,Xt), and minimize the GMM objective function

GMM(θ) =
1

2
E
[∫ T

0
ξtdM

θ
t

]>
AE

[∫ T

0
ξtdM

θ
t

]
,

where A is a given matrix. Different choices of A lead to a variety of algorithms
corresponding to what are broadly called gradient TD (GTD) algorithms for MDPs.
For example, taking A = I, the identity matrix, corresponds to GTD(0) by Sutton

et al. (2009). Another choice is A = [E
∫ T

0 ξtξ
>
t dt]−1. In this case, the gradient of the

objective in θ is (noting ξt also depends on θ)

E
[∫ T

0
d

(
∂M θ

∂θ
(t,Xt)

)
ξ>t

]
u+ E

[∫ T

0

∂ξt
∂θ

>
dM θ

t

]
u− E

[∫ T

0
u>ξt

∂ξt
∂θ

(t,Xt)
>udt

]
,

where u := [E
∫ T

0 ξtξ
>
t dt]−1E[

∫ T
0 ξtdM

θ
t] and ∂ξt

∂θ is the Jacobian matrix. In particular,
∂ξt
∂θ = ∂2Jθ

∂θ2 (t,Xt) is the Hessian matrix and hence is symmetric. When Jθ(t, x) =∑L
j=1 θjφj(t, x) is the linear span of basis functions, the last two terms of the gradient

will vanish because ∂ξt
∂θ = ∂2Jθ

∂θ2 (t,Xt) = 0.

Two GTD algorithms, called GTD2 and TDC (Sutton et al., 2008, 2009), apply
stochastic approximation at two different time scales to update u and θ respectively.

15. Instrumental variables are widely used in statistics and econometrics to estimate causal relationship
when exploratory variables are endogenous. A necessary condition for being a instrumental variable is
that it must be uncorrelated with the residual term. In the context of TD learning, the residual term is
the TD error.

24

Policy Evaluation and TD Learning in Continuous Time

Specifically, in both algorithms, u is estimated with long-term average:

u← u+ αu

[
ξtdM

θ
t − ξtξ>t u∆t

]
≈ u+ αu

[
ξti(M

θ
ti+1
−M θ

ti)− ξtiξ
>
tiu∆t

]
,

and then θ is updated with two different one-step sampling methods. The GTD2
algorithm proceeds as follows:

θ ←θ − αθ

[
d

(
∂M θ

∂θ
(t,Xt)

)
ξ>t u+

∂ξt
∂θ

>
dM θ

t u− u>ξt
∂ξt
∂θ

>
u∆t

]

≈θ − αθ
[(

∂M θ

∂θ
(ti+1, Xti+1)− ∂Mθ

∂θ
(ti, Xti)

)
ξ>tiu

+
∂ξ

∂θ
(ti, Xti)

>(M θ
ti+1
−M θ

ti)u− u
>ξti

∂ξ

∂θ
(ti, Xti)

>u∆t

]
.

The TDC algorithm observes that ∂Jθ

∂θ (t,Xt) = ξt and hence updates θ by

θ ←θ − αθ

[
ξtdM

θ
t + ξt′ξ

>
t u∆t+

∂ξt
∂θ

>
dM θ

t u− u>ξt
∂ξt
∂θ

>
u∆t

]

≈θ − αθ
[
ξti(M

θ
ti+1
−M θ

ti) + ξti+1ξ
>
tiu∆t

+
∂ξ

∂θ
(ti, Xti)

>(M θ
ti+1
−M θ

ti)u− u
>ξti

∂ξ

∂θ
(ti, Xti)

>u∆t

]
.

GTD(0), GTD2 and TDC are gradient based methods as well as typical GMM meth-
ods to minimize a quadratic form of the conditions (22), where expectations are es-
timated using long term averages as in Hansen et al. (1996). Sutton et al. (2008,
2009) and Maei et al. (2009) study stochastic approximation and incremental imple-
mentation of the gradient of quadratic functions for linear and non-linear function
approximation respectively.

All the above methods can be classified into two types. The first type applies stochastic
approximation to solve the moment conditions directly, like TD(λ). This is the classical TD
learning. The second type follows GMM to minimize a quadratic function of the moment
conditions by computing its gradient and approximating the expectation by either long-
term average or one long sample trajectory. We call it the GTD method, following Sutton
et al. (2008). LSTD is limited to linear approximation only and hence can be considered as
a special case of the first type when the moment conditions can be explicitly solved so the
only computation needed is to estimate the expectation using samples.

It should be noted that although the goal of this paper is to devise PE algorithms for the
continuous setting, the actual implementations of the various algorithms described above are
all discrete-time with a fixed mesh size ∆t. These algorithms correspond to some discrete-
time versions of the moment conditions. So natural and important theoretical questions
are whether such an algorithm converges to the solution of the continuous-time version of
the respective moment conditions as ∆t→ 0 and, if yes, what the convergence rate is. The
next two theorems answer these questions.

25

Jia and Zhou

Henceforth we impose the following assumption on the test functions used for moment
conditions.

Assumption 5 A test function ξ = {ξt, 0 ≤ t ≤ T} is an RL′-valued adapted process
satisfying |ξ| ∈ L2

F ([0, T];M θ) and E[|ξt′ − ξt|2] ≤ C(θ)|t′ − t|α for any t, t′ ∈ [0, T], where
C(θ) is a continuous function of θ and 0 < α ≤ 2 is a given constant.

The following is about the convergence of the TD type algorithms when ∆t→ 0.

Theorem 5 Denote by θ∗moment(∆t) the solution to the discrete-time moment conditions
with mesh size ∆t:

E
K−1∑
i=0

ξti(M
θ
ti+1
−M θ

ti) = 0.

Then, under Assumptions 1, 2, 3, and 5, as ∆t → 0, any convergent subsequence of
θ∗moment(∆t) converges to the solution to the continuous-time moment conditions (22); that
is,

θ∗moment := lim
∆t→0

θ∗moment(∆t)

solves (22). Moreover, if in addition Assumption 4 holds, then

|E
∫ T

0
ξtdM

θ∗moment(∆t)
t | ≤ C(∆t)min{α

2
,µ1+

µ2
2
}

for some constant C.

The next theorem is on the convergence of the GTD type algorithms when ∆t→ 0.

Theorem 6 Let the discretized GMM objective function be

GMM∆t(θ) :=
1

2
E

[
K−1∑
i=0

ξθti(M
θ
ti+1
−M θ

ti)

]>
A∆tE

[
K−1∑
i=0

ξθti(M
θ
ti+1
−M θ

ti)

]
,

where A∆t is a discretized approximation of A satisfying |A∆t −A| ≤ C̃(θ)|∆t|β, with C̃(θ)
being a continuous function of θ and β > 0 a constant.16 Then, under Assumptions 1, 2,
3, and 5, as ∆t→ 0, any convergent subsequence of the minimizer of the discretized GMM
objective function θ∗GMM(∆t) ∈ arg minθ∈Θ GMM∆t(θ) converges to the minimizer of the
continuous GMM objective function; that is,

lim
∆t→0

θ∗GMM(∆t) = θ∗GMM ∈ arg min
θ∈Θ

GMM(θ).

Moreover, if in addition Assumption 4 holds, then

GMM (θ∗GMM(∆t))−min
θ∈Θ

GMM(θ) ≤ C(∆t)min{α
2
,µ1+

µ2
2
,β}

for some constant C.

16. When A is a constant as in GTD(0), A∆t = A. When A = [E
∫ T

0
ξtξ
>
t dt]−1 as in GTD2 and TDC,

A∆t := [E
∑K−1
i=0 ξtiξ

>
ti∆t]

−1 is the discretization approximation of this integral.

26

Policy Evaluation and TD Learning in Continuous Time

From now on, to distinguish our algorithms from their existing discrete-time counter-
parts, we will add a prefix “C”, signifying “continuous”, to the names of the algorithms.
For instance, we will call them CTD(λ), CLSTD, and so on.

The next important question is in what sense the aforementioned methods approximate
the correct value function. First, a convergent CTD(0) or CTD(λ) algorithm should con-
verge to the solution to the moment conditions (22) based on the respective choices of test
functions. Intuitively, such an algorithm searches for one particular Bellman’s error process
LJθ(t,Xt)+rt within the parametric family such that it is orthogonal to the underlying test
functions. These TD learning methods are usually easy to implement and work effectively
in many applications. To demonstrate, we re-compute the problems in Examples 1 and 2
using online CTD(0) and CTD(1) algorithms with stochastic approximation. The learning
rate is chosen as 0.01. Both algorithms converge to the correct values; see Figures 3 and 4.

However, a caveat is that these algorithms may not always work. On one hand, due to
possible misspecification of the parametric family, solutions to the moment conditions may
not exist, in which case the algorithms will not converge; see Example 5 below where the
test function is not properly chosen. On the other hand, as the following continuations of
Examples 3 and 4 illustrate, even if the solution to the moment conditions exists uniquely
and an algorithm converges, the resulting solution may vary depending on the choice of test
functions.

Example 5 Consider the same learning problem in Example 1, now with the parameterized
value function Jθ(t, x) = x + (1 − t)eθx−

1
2
θ2t[(θ + 1)2 + 1]. Recall Xt = Wt is a Brownian

motion. This family does not contain the true solution. If we choose the test function to
be the constant 1 and use CTD(0), a convergent algorithm should solve

0 = E
∫ 1

0
eθWt− 1

2
θ2t[(θ + 1)2 + 1]dt = (θ + 1)2 + 1.

However, there is no solution to the above equation. Our implementation of CTD(0) indeed
generates a divergent sequence of iterates; see Figure 7.

On the other hand, we can use the martingale loss function to get a solution. Indeed, it
follows from Theorem 3 that the ML algorithm is equivalent to minimizing

E
∫ 1

0
|J(t,Xt)− Jθ(t,Xt)|2dt = E

∫ 1

0
(1− t)2e2θWt−θ2t[(θ + 1)2 + 1]2dt

=

∫ 1

0
(1− t)2eθ

2tdt[(θ + 1)2 + 1]2 = −2− 2eθ
2

+ 2θ2 + θ4

θ6
[(θ + 1)2 + 1]2,

whose minimizer is around −0.875301. The implementation of ML confirms this theoretical
prediction; see Figure 7.

Example 3 (Continued) We revisit this example where Jθ(t, x) = θx3. Recall Xt = Wt

is a Brownian motion. There is no running reward so M θ
t = θX3

t and dM θ
t = 3θW 2

t dWt +
3θWtdt. Hence, any test function that is not identically 0 leads to the only solution θ∗ = 0.
As a result, any convergent CTD algorithm should converge to 0, yielding a value function
Jθ
∗
(t, x) = 0 that is significantly deviated from the true one J(t, x) = x. See Figure 5 for

the CTD(0) and CTD(1) experiment results.

27

Jia and Zhou

Example 4 (Continued) Consider the parameterized value function Jθ(t, x) = x+ (1−
t)eθx−

1
2
θ2t+θ. Recall Xt = Wt is a Brownian motion. In this case, dJθ(t,Xt) = dWt + (1−

t)θeθWt− 1
2
θ2t+θdWt − eθWt− 1

2
θ2t+θdt.

If we use the one-step or one-episode CTD(0) algorithm with ξt = ∂Jθ

∂θ (t,Xt) = (1 −
t)eθXt−

1
2
θ2t+θ(Xt − θt+ 1), then the moment condition (22) becomes

0 =E[

∫ 1

0
(1− t)eθWt− 1

2
θ2t+θ(Wt − θt+ 1)eθWt− 1

2
θ2t+θdt]

=

∫ 1

0
(1− t)(1 + tθ)e(2+tθ)θdt =

e2θ[2− θ + θ2 − θ3 + eθ
2
(−2 + θ + θ2)]

θ5
.

This equation has a unique solution θ ≈ −1.83923. A convergent CTD(0) algorithm should
converge to this point, which is however different from the solution produced by the mar-
tingale loss function approach.

If we use the one-step or one-episode CTD(1) algorithm with ξt =
∫ t

0
∂Jθ

∂θ (s,Xs)ds =∫ t
0 (1− s)eθWs− 1

2
θ2s+θ(Ws − θs+ 1)ds, then the moment condition (22) is

0 =E[

∫ 1

0

∫ t

0
(1− τ)eθWτ− 1

2
θ2τ+θ(Wτ − θτ + 1)dτeθWt− 1

2
θ2t+θdt]

=

∫ 1

0

∫ t

0
E
[
eθWτ− 1

2
θ2τ (Wτ − θτ + 1)E[eθWt− 1

2
θ2t|Fτ]

]
(1− τ)e2θdτdt

=

∫ 1

0

∫ t

0
E[e2θWτ (Wτ − θτ + 1)](1− τ)e−θ

2τ+2θdτdt

=

∫ 1

0

∫ t

0
(1 + τθ)(1− τ)eθ

2τ+2θdτdt

=
e2θ[6 + 2eθ

2
(−3 + θ + θ2)− (−1 + θ)θ(−2 + 2θ + θ3)]

θ7
.

There is a unique solution θ ≈ −2.12568, to which a convergent CTD(1) algorithm con-
verges. This solution coincides with the one by the martingale loss function approach.

The implementations of the above algorithms are reported in Figure 6, which are con-
sistent with the theoretical analysis.

When the parametric family is a linear span of some basis functions, the unique solution
that solves the moment conditions is theoretically guaranteed under very mild conditions,
which is numerically generated by the CLSTD algorithm. More generally, all the CGTD
methods aim to minimize some quadratic forms of the moment conditions regardless of
whether the existence and/or uniqueness of the solution to the conditions holds, and hence
usually produce more robust results. Moreover, these methods have a clear geometric
interpretation. Recall that the true value function minimizes Bellman’s error to zero. The
space of approximate linear functions may not contain the true function, but the CGTD
algorithms minimize the projection of Bellman’s error onto the linear space. This intuition
is formalized in Sutton et al. (2009) and Maei et al. (2009), who show that the discrete-
time GTD minimizers, instead of directly approximating the value function, minimize the
so-called mean-square projected Bellman’s error (MSPBE). Here, we present a continuous-
time version of the result with a more general choice of the test functions.

28

Policy Evaluation and TD Learning in Continuous Time

Theorem 7 For L′ linearly independent test functions ξθ,(1), · · · , ξθ,(L′) ∈ L2
F ([0, T]), de-

note by Πθ the projection operator onto the linear space spanned by {ξθ,(1), · · · , ξθ,(L′)}.
Then

1

2
E
[∫ T

0
ξθt dM θ

t

]> [
E
∫ T

0
ξθt (ξθt)>dt

]−1

E
[∫ T

0
ξθt dM θ

t

]
=

1

2
E
[∫ T

0

(
LJθ(t,Xt) + rt

)
ξθt dt

]> [
E
∫ T

0
ξθt (ξθt)>dt

]−1

E
[∫ T

0

(
LJθ(t,Xt) + rt

)
ξθt dt

]
=

1

2
||Πθ

(
LJθ(·, X·) + r·

)
||2L2 =: MSPBE(θ).

Recall Example 5 in which the moment condition admits no solution due to the choice
of the test function and hence CTD methods such as CTD(0) will not converge. We now
illustrate that CGTD does lead to a solution that is the minimizer of MSPBE.

Example 5 (Continued) Consider the same learning problem in Example 1 with the

parameterized value function Jθ(t, x) = x + (1 − t)eθx−
1
2
θ2t[(θ + 1)2 + 1]. Recall Xt = Wt

is a Brownian motion. If we choose the test function to be the constant 1, the projection
of eθWt− 1

2
θ2t[(θ + 1)2 + 1] onto the subspace spanned by the test function 1 is (θ + 1)2 + 1.

Theorem 7 yields that CGTD2 or CTDC algorithms should minimize E
∫ 1

0

∣∣(θ+ 1)2 + 1
∣∣2dt,

whose minimizer is −1. We implement CTD(0) and CGTD2 (along with ML) and show
the results in Figure 7. In our implementation, the initial learning rate for all the three
algorithms is 0.01 and decays as (]episode)−0.67. The results confirm our theoretical analysis.

Figure 7: Minimizing martingale loss function and CGTD methods converge to
the respective minimizers, while CTD(0) diverges, for Example 5. Applying SGD
to minimize the martingale loss function leads to θ∗ML ≈ −0.875301, CTD(0) does not
converge since there is no solution to the moment condition, and CGTD method leads to
θ∗MSPBE = −1, which is equivalent to minimizing the mean-square projected Bellman’s error.
We repeat the experiment for 100 times to calculate the standard deviations, which are
represented as the shaded areas. The width of each shaded area is twice the corresponding
standard deviation.

29

Jia and Zhou

5. Extensions and Applications

In this section, we extend the martingale characterization to the case with an exponential
discount factor, and discuss the non-Markovian setting through an example of a fractional
Brownian motion. Then we present two applications – a problem with option-like payoff
and a linear-quadratic problem in infinite time horizon.

5.1 Extension to discounted case

In many applications the payoff functions involve discounting. We now extend our analysis
for PE to such a case. Note that, in this case, if we let T →∞, then we will have an infinite
time horizon problem.

We modify the value function of (2) to

J(t, x) =E
[∫ T

t
e−ρ(s−t)r(s,Xs)ds+ e−ρ(T−t)h(XT)

∣∣∣Xt = x

]
, (23)

where the discount rate ρ > 0 is known and given.
The PDE (3) is revised to{

LJ(t, x) + r
(
t, x
)

= ρJ(t, x), (t, x) ∈ [0, T)× Rd,
J(T, x) = h(x),

(24)

and the FBSDE (4) becomes{
dXs = b(s,Xs)ds+ σ(s,Xs)dWs, s ∈ [t, T]; Xt = x,

dYs = −e−ρ(s−t)r
(
s,Xs

)
ds+ ZsdWs, s ∈ [t, T]; YT = e−ρ(T−t)h(XT),

(25)

whereas the relationship (5) is now

Ys = e−ρ(s−t)J(s,Xs), Zs = e−ρ(s−t)∂J

∂x
(s,Xs)

>σ
(
s,Xs

)
, s ∈ [t, T]. (26)

Finally

Ms := e−ρ(s−t)J(s,Xs)+

∫ s

t
e−ρ(s′−t)r

(
s′, Xs′

)
ds′ ≡ Ys+

∫ s

t
e−ρ(s′−t)r

(
s′, Xs′

)
ds′, s ∈ [t, T]

(27)
is a martingale.

Fixing the initial time t = 0, the above analysis suggests that the martingale loss function
should be

E
∫ T

0
|MT −M θ

t |2dt =E
∫ T

0

∣∣∣∣e−ρTh(XT)− e−ρtJθ(t,Xt) +

∫ T

t
e−ρsr

(
s,Xs

)
ds

∣∣∣∣2dt

≈E
[K−1∑
i=0

(
e−ρTh(XT)− e−ρtiJθ(ti, Xti) +

K−1∑
j=i

e−ρtjr(tj , Xtj)∆t

)2

∆t

]
.

.

On the other hand, dM θ
t = e−ρtdJθt − ρe−ρtJθt dt+ e−ρtrtdt = e−ρt(dJθt + rtdt− ρJθt dt);

hence the martingale orthogonality condition (22) is modified to

E
∫ T

0
ξt(dJ

θ
t + rtdt− ρJθt dt) = 0, (28)

30

Policy Evaluation and TD Learning in Continuous Time

for any test function ξ ∈ L2
F ([0, T]). Note here the discount factor has been absorbed by

the test function and thus omitted.
If we set T =∞ in (23) and assume the payoff does not depend on t, then the problem

becomes

J(x) = E
[∫ ∞

0
e−ρtr(Xt)dt|X0 = x

]
.

This type of problems occur when the time horizon is sufficiently long or indefinite. Note
that in this case the value function does not depend on time explicitly. As a result, there
is no longer a terminal condition; instead, it is usually replaced by a growth condition such
as E[e−ρtJ(Xt)]→ 0 as t→∞.

As the martingale loss function requires full trajectories, it may not be directly applicable
for the infinite-horizon problem where we are obviously not able to observe a whole sample
until “infinity”. However, the martingale loss function can still be defined by truncating at
a sufficiently long time T with an artificial terminal condition e−ρTh(XT) = 0. Therefore,
in the episodic setup with repeatedly presented finite training sets, we can still learn the
value function by minimizing the martingale loss function. However, with a very long
horizon, people are more interested in online learning with no reset by observing a single
trajectory. As a result, TD learning is a better choice. All the previously discussed TD
learning methods with suitable test functions can be applied based on the conditions (28).

5.2 Extension to non-Markovian setting

A key assumption of the current paper is that the state process X is Markovian. Indeed, the
Markov property determines that the value function J , defined through (2), is a function
of the current state x, instead of the whole past history of X. However, the martingale
perspective may extend beyond the Markovian setting. While a general non-Markovian PE
theory goes beyond the scope of this paper and warrants a full separate research, here we
use an example to illustrate.

Recall in Example 1, the state process X = W is a Brownian motion, which is Markov-
nian. Now we consider instead a fractional Brownian motion WH with the Hurst index H.
When H = 1

2 , WH reduces to a Brownian motion; but when H 6= 1
2 , it is well known to be

a non-Markov process. For basic theory and applications of fractional Brownian motions,
see e.g. Mandelbrot and Van Ness (1968).

For a non-Markov process, the value function is a functional of the current time t and
the entire state trajectory up to t. For example,

E[WH
T |Ft] = WH

t −
∫ t

0
ΨH(T, s|t)dWH

s ,

where

ΨH(T, s|t) = −
sin
(
π(H − 1

2)
)

π
s

1
2
−H(t− s)

1
2
−H
∫ T

t

zH−
1
2 (z − t)H−

1
2

z − s
dz;

see Sottinen and Viitasaari (2017).
For Example 1 with Xt = Wt replaced by Xt = WH

t , the only modification we need is
to introduce the value function J(t,Xt∧·) that is a functional of the past trajectory with

31

Jia and Zhou

the terminal condition J(1, X1∧·) = E[X1|X1∧·] = X1. In our experiment, we use a two-
layer fully connected neural network plus an LSTM type of recurrent neural network to
approximate such a path-dependent functional satisfying the terminal condition:

Jθ(t,Xt∧·) = Xt + (1− t) NNθ
(

LSTMθ(t,Xt∧·)
)
,

and then minimize the martingale loss function or apply the CTD(0) algorithm to update
the parameters. Here LSTMθ maps a sequence of time-series data (Xt0 , · · · , Xtk , · · · , XtK)
to a sequence of output (Yt0 , · · · , Ytk , · · · , XtK) recursively where the time-tk output Ytk
depends on the past trajectory (Xt0 , · · · , Xtk). For details of this network structure, see
Hochreiter and Schmidhuber (1997).

We then compare the mean-square value errors between the learned functional and the
ground truth solution with both algorithms. Figure 8 shows the trend of convergence of
both the ML and CTD(0) methods, although the convergence is not as sharp as in the other
Markov examples (most likely due to the non-Markovian setting and a fairly general neural
network used). We also see that CTD(0) performs better than ML in this case.

Figure 8: The mean-square value errors of the learned value functional with
ML and CTD(0) algorithm for a fractional Brownian motion with Hurst index
H = 0.75. The MSVEs are evaluated with 1000 independent trajectories and standard
deviations are computed, which are represented as the shaded areas. The width of each
shaded area is twice the corresponding standard deviation.

5.3 Option-like payoff

We apply the theory developed so far to evaluate

J(t, x) = E[e−r(T−t)h(XT)|Xt = x], (29)

where X = {Xt, 0 ≤ t ≤ T} is the state process. This type of evaluation occurs in option
pricing in which X is the underlying stock price process and h is the payoff function (usually
known and given) at the maturity T .

32

Policy Evaluation and TD Learning in Continuous Time

In our simulation, we generate X from a geometric Brownian motion

dXt

Xt
= (r − q)dt+ σdWt,

and take h as a call option payoff

h(x) = (x−K)+.

Moreover, we set T = 1,K = 1, r = 0.01, q = 0, σ = 0.3. The price process is generated
from X0 = 1.

The value function has a theoretical (ground truth) form given by the Black–Scholes
formula

J(t, x) = e−r(T−t)[e(r−q)(T−t)xΦ(d+)−KΦ(d−)],

where

d± =
log(x/K) + (r − q ± 1

2σ
2)(T − t)

σ
√
T − t

,

and Φ is the distribution function of the standard normal.
For learning the value function in our numerical experiment, we parameterize it by

Jθ(t, x) = (x −K)+ + (T − t) NNθ(t, x), where NNθ is a general bivariate neural network
taking both time and space as inputs. This particular form is inspired by that of the payoff
function along with the fact that time to maturity, T − t, is critical in pricing an option.
We use both ML and online CTD(0) in our experiment, with the martingale loss function
being

E
∫ T

0

∣∣e−rT (XT −K)+ − e−rtJθ(t,Xt)
∣∣2dt.

In our implementation, we use a simple three-layer fully connected neural network with
softplus activation function and 128 and 64 neurons, that is,

NNθ(u) = θ5a

(
θ3a
(
θ1u+ θ2

)
+ θ4

)
+ θ6, a(x) = log(1 + ex),

where θ1 ∈ R128×2, θ2 ∈ R128×1, θ3 ∈ R64×128, θ4 ∈ R64×1, θ5 ∈ R64×1, θ6 ∈ R.
Since now we have hundreds of parameters and the functional forms are complex, instead

of comparing the learned parameters, we assess the performance of learning by the following
three errors:

J(0, x0)− Jθ(0, x0), E
∫ T

0

∣∣J(t,Xt)− Jθ(t,Xt)
∣∣2dt, E

∫ T

0

∣∣∂J
∂x

(t,Xt)−
∂Jθ

∂x
(t,Xt)

∣∣2dt,

where θ is the vector of optimized parameters obtained, and J is the ground truth value
function. In these errors, the first one is in terms of price difference at the initial time t = 0,
and the second one in terms of the averaged total price differences over time. The last one
concerns the accuracy in determining ∂J

∂x , the so-called “Delta” of the option which is the
quantity of the underlying stock needed to hedge the option risk.

The PDE (24) satisfied by J is nothing else than the well-known Black-Scholes PDE:

∂J

∂t
+ (r − q)x∂J

∂x
+

1

2
σ2x2∂

2J

∂x2
− rJ = 0, J(T, x) = (x−K)+.

33

Jia and Zhou

Hence, as discussed earlier, PE can also be regarded as an alternative method to solve such
a PDE. This in turn presents a benchmark in our experiment for comparison purpose, which
is the deep learning method in Han et al. (2018) called the deep BSDE method for solving
PDEs. Note that their method requires the perfect knowledge about the model parameters
or, equivalently, not only samples of {Xt, 0 ≤ t ≤ T} but also samples of {Wt, 0 ≤ t ≤ T}
that drives the state process. When implementing the deep BSDE method, we apply a
neural network with the same structure to keep the computational cost at the similar level.
We use the Adam algorithm for optimization with one trajectory for each episode so that
the number of training sample trajectories is also kept the same.17

Figure 9 shows the comparison. For the first two criteria, the errors by the two PE
methods developed in this paper, (offline) ML and online CTD(0), both converge to zero
very quickly, while it takes some time for those with the BSDE method to be close to zero.
For the last criterion, the errors by the PE methods remain close to zero and keeps almost
flat from the start, while the BSDE method oscillates dramatically at the start before
converging to 0. Indeed, we have shown that minimizing the martingale loss function is
equivalent to approximating the value function itself in the mean–square sense, without
concerning at all the derivatives of the function. In contrast, the deep BSDE method
strives also to learn the derivative term (the Zt term in FBSDE (25)) directly and hence
requires more knowledge about the system. This example shows that PE methods can be
used to learn the function itself effectively but may not provide an accurate approximation
to the derivative value. In particular, in terms of estimating the value function, ML achieves
the smallest error and CTD(0) is only slightly behind due to its online setting; but deep
BSDE can ultimately learns the derivative. As such, PE methods provide more flexibility
for users with tasks such as solving a PDE. It also suggests that for continuous-time RL
one should avoid methods relying on the derivatives of the estimated value function.

Finally, we point out that the purpose of this example is to compare our methods with
the deep PDE/BSDE method. Because (29) holds in the risk-neutral world where data
cannot be actually observed, our method cannot be used directly to evaluate an option
price. It remains an interesting problem to price options based on physical probability and
the real-world data.

5.4 Infinite time horizon linear-quadratic problem

Consider the following value function

J(x) = E
[∫ ∞

0
e−ρtr(Xt)dt|X0 = x

]
,

where X = {Xt, 0 ≤ t < ∞} is the state process. In our simulation, we generate X from
an OrnsteinUhlenbeck (OU) process

dXt = a(b−Xt)dt+ σdWt,

17. The Adam algorithm is proposed in Kingma and Ba (2014) and is considered to be an improvement over
the vanilla SGD algorithm. We follow Han et al. (2018) to apply the Adam algorithm. Implementation of
neutral networks is through Tensorflow 2. All the computations are conducted on an Intel(R) Core(TM)
i7-1065G7 CPU @ 1.30GHz 1.50 GHz Windows laptop.

34

Policy Evaluation and TD Learning in Continuous Time

0 200 400 600 800 1000

episode

0

0.5

1

1.5

2
 ML

 CTD(0)

 Deep BSDE

Figure 9: Comparison of learned value functions by ML, online CTD(0) and deep
BSDE methods. From left to right, we show the errors against the true solutions in terms
of |J(0, x0) − Jθ(0, x0)|, E

∫ T
0

∣∣J(t,Xt) − Jθ(t,Xt)
∣∣2dt, E

∫ T
0

∣∣∂J
∂x (t,Xt) − ∂Jθ

∂x (t,Xt)
∣∣2dt re-

spectively. These expectations are evaluated using 5000 independent trajectories. Standard
deviations are represented as the shaded areas. The width of each shaded area is twice the
corresponding standard deviation.

which is well-known to converge to its unique stationary distribution when a > 0 and σ > 0.
And we take r to be a quadratic function:

r(x) =
1

2
x2 + qx.

This is a discounted linear-quadratic (LQ) control problem in infinite time horizon.
By the standard stochastic control theory via dynamic programming (Yong and Zhou,

1999, Chapter 6) we can compute the value function explicitly as J(x) = 1
2Ax

2 + Bx+ C,
where

A =
1

ρ+ 2a
, B =

abA+ q

ρ+ a
, C =

abB + 1
2σ

2A

ρ
.

We set a = 1, b = 1, σ = 0.5, ρ = 1.5, q = 1, X0 = 0, and simulate the trajectories
up to T = 2 × 105. In our experiment, we parameterize the value function by Jθ(x) =
1
2θ0x

2 + θ1x+ θ2. We implement CTD(0), CLSTD(0), and CGTD2 algorithms and report
the results in Figure 10. Since the parametric functions lie in a linear space, CLSTD(0)
explicitly solves the moment conditions, and hence converges fastest. CGTD2 converges
faster than CTD(0) because the former is a true gradient-based algorithm.

6. Some Algorithmic Aspects

In this section we discuss two problems from the algorithmic perspective: the choice of test
functions and the way to perform function approximation.

6.1 Choice of test functions

One of the most important implications of the martingale viewpoint is the introduction of
the test functions. In Subsection 4.2, we show that the choice of test functions determines
in what sense the true value function is approximated and, hence, a same algorithm with
different test functions may converge differently, as illustrated in Examples 3 – 5. While this
characterization remains abstract in theory and provides little guidance on how to actually

35

Jia and Zhou

Figure 10: Comparison of learned parameters with different online TD algo-
rithms. All the algorithms converge to the correct value function. Among them, CLSTD(0)
converges the fastest and CTD(0) the slowest. We repeat the experiment for 100 times to
calculate the standard deviations, which are represented as the shaded areas. The width of
each shaded area is twice the corresponding standard deviation.

select test functions, here we present a simple example to demonstrate how test functions
may affect the convergence from an algorithmic perspective.

Consider the same LQ problem in Subsection 5.4, with a = 0, σ = 1, and q = 0.
In this case, Xt = X0 + Wt now becomes a Brownian motion, which has no stationary
distributions.18

As before, we parameterize the value function by Jθ = 1
2ρx

2 +θ. This parametric family

contains the true value function with θtrue = 1
2ρ2 . The conventional choice of the test

function in TD(0) is ξt = ∂Jθ

∂θ (Xt) = 1, leading to the following updating rule on θ:

θ ← θ + α[Jθ(Xt+∆t)− Jθ(Xt) + r(Xt)∆t− ρJθ(Xt)∆t].

Denote by θt the learned parameter value at time t. Then, at the continuous-time limit, θt
satisfies an SDE (ignoring the learning rate constant α):

dθt = dJθt(Xt) + r(Xt)dt− ρJθt(Xt)dt.

By Itô’s lemma, dJθt(Xt) = Xt
ρ dWt + 1

2ρdt; hence

dθt =

(
1

2ρ
− ρθt

)
dt+

Xt

ρ
dWt.

Suppose the initial guess of θ is θ0. Then

E[θt] =
1

2ρ2
(2θ0ρ

2e−ρt + 1− e−ρt)→ 1

2ρ2
= θtrue as t→∞.

That is, asymptotically, the conventional choice of the test function indeed leads to an unbi-
ased estimate. Let us now calculate Var(θt), the variance of θt. Set zt = θt− 1

2ρ2 (2θ0ρ
2e−ρt+

1− e−ρt), which satisfies the SDE:

dzt = −ρztdt+
Xt

ρ
dWt, z0 = 0.

18. Such non-stationary processes are common in practice. Due to the presence of the discount factor, the
corresponding LQ problem is still well-posed.

36

Policy Evaluation and TD Learning in Continuous Time

Itô’s lemma provides

dz2
t = 2zt[−ρztdt+

Xt

ρ
dWt] +

X2
t

ρ2
dt, zt = 0.

Hence

Var(θt) = E[z2
t] =

1

4ρ4

(
e−2ρt − 1 + ρt− 2ρX2

0e
−2ρt + 2ρX2

0

)
→∞, as t→∞.

So, the conventionally chosen test function does not produce a consistent estimator of θ due
to the blow-up in variance, which in turn is caused by the non-stationarity of the underlying
state process – a Brownian motion in this example – whose variance grows linearly in time.

However, this issue can be resolved by selecting a tailored test function. Recall the
CTD(0) algorithm with a general test function ξt updates θ by

θ ← θ + αξt

[
Jθ(Xt+∆t)− Jθ(Xt) + r(Xt)∆t− ρJθ(Xt)∆t

]
.

Applying the same SDE approximation, we derive

dθt = ξt

(
1

2ρ
− ρθt

)
dt+ ξt

Xt

ρ
dWt.

Intuitively, to reduce the variance of θt, we need to choose a test function that can cancel
the growing trend in variance. There are many choices to achieve this goal, but a simple one
is to take ξt = 1

|Xt|+1 so that the volatility term above is bounded. We call this a “tailored
choice” of test function for this particular LQ problem. The cost of this variance reduction
method is the introduction of some bias in the mean as some correlation enters into the
drift term.

Figure 11 visualizes the result of a simulation study that confirms our analysis. With the
conventional test function ξt = 1, even though the average of the learned parameter values
across different experiments tends to be close to the true value, these values become more
volatile as time grows larger. On the other hand, with our tailored test function ξt = 1

|Xt|+1 ,
the variance is reduced dramatically, though the average is slightly off from the true value.

Overall, the study we provide in this subsection shows the promise of our martingale
framework in designing more efficient algorithms with suitable choice of test functions,
which may at the same time extend the existing literature on RL algorithms for MDPs.

6.2 Function approximation: global vs sectional

For a finite-horizon problem, the value function J(t, x) is a bivariate function of time t
and state x. Hitherto we have used a global approximator Jθ in the sense that we use
the same parameter θ when approximating J(t, ·) by Jθ(t, ·). Another way of function
approximation is sectional, namely, we approximate J(t, ·) by Jθt(t, ·) where the parameter
θt may be time-varying. More precisely, let the time discretization be fixed with the grid
points 0 = t0 < t1 < · · · < tK = T , and let Jθ00 (x), · · · , JθKK (x) approximate the value

function at these points, namely, Jθii (x) ≈ J(ti, x), i = 0, 1, · · · ,K.
To compare these two methods of function approximation, the first thing to note is that

the number of parameters to learn grows linearly in the number of time steps with the

37

Jia and Zhou

Figure 11: Comparison of the learned parameters under the conventional test
function and the tailored test function. Conventional CTD(0) refers to the algorithm

using test function ξt = ∂Jθ

∂θ (Xt) = 1, and Tailored CTD(0) refers to the one using test
function ξt = 1

|Xt|+1 . In the simulation, the problem primitives are a = 0, σ = 1, q =
0, ρ = 1.5, the initial state is X0 = 0 and initial guess of the parameter θ is θ0 = 1. The
true parameter is θtrue = 2

9 ≈ 0.22. The learning rate is α = 0.1. We repeat the experiment
for 100 times to calculate the standard deviations, which are represented as the shaded
areas. The width of each shaded area is twice the corresponding standard deviation.

sectional approximation, while remains the same with the global one. Hence, the latter has
an edge in terms of computational cost when a finer time grid is used. Second, and indeed
more importantly, the sectional approximation may become problematic for online learning.
To see this, suppose we are now at (ti, Xti) in the online setting. Applying the idea of the
conventional TD(0) algorithm, one can update the parameter θi−1 by

θi−1 ← θi−1 + α
∂J

θi−1

i−1

∂θi−1
(Xti−1)

[
Jθii (Xti)− J

θi−1

i−1 (Xti−1)
]
.

The question is how to update θk for k = i, i+ 1, · · · ,K without knowing the future states
Xtk? It seems the best we could do is to update θk according to

θk ← θk + α
∂Jθkk
∂θk

(Xti−1)
[
Jθii (Xti)− J

θi−1

i−1 (Xti−1)
]
. (30)

This form is less intuitive because we use the current and past states to update parameters
for future value functions. In contrast, the global parameterization views the value function
as a whole; hence a temporal advancement naturally leads to an update of the whole
bivariate function, including a prediction into the future as well as an updated evaluation
of the past.

Finally, we run a simulation for Example 1 to compare the learning results of the two
function approximation approaches, both in offline learning (using martingale loss function)
and online learning (using CTD(0) for the global approximation and (30) for the sectional
one). Recall that the ground truth is J(t, x) = x, and we have used the global approximation

38

Policy Evaluation and TD Learning in Continuous Time

with Jθ(t, x) = [θ(1−t)+1]x. For the sectional approximation, we consider a simple form of
Jθii (x) = θix, with unknown parameters θ0, · · · , θK−1 while it is known that θK = 1 based
on the terminal condition.

We evaluate the performance of the different approximation approaches by MSVE as
defined in (21). For the global approximation, this error is

E
∫ T

0
|J(t,Xt)− Jθ(t,Xt)|2dt = E

∫ T

0
θ2(1− t)2W 2

t dt =
1

12
θ2.

For the sectional approximation, this error is calculated by

E
K−1∑
i=0

|J(ti, Xti)− J
θi
i (Xti)|2∆t =

K−1∑
i=0

(θi − 1)2ti∆t.

The results are presented in Figure 12. For this simple example, the number of unknown
parameters in the sectional approach is small so the difference in computational cost is
insignificant. Otherwise, we observe that the global approximation performs similarly as
the sectional one in the offline setting (the ML method), but significantly better in the
online setting (the CTD(0) method).

Figure 12: Comparison of the mean-square value errors of the learned value func-
tion using globel and sectional approximation methods with ML and CTD(0)
algorithms. The initial guess is θ = −1 for global approximation and θi = ti, 0 ≤ i ≤ K−1,
for sectional approximation so that the two methods are initialized to be the same function.
The learning rate is α = 0.01. We repeat the experiment for 100 times to calculate the
standard deviations, which are represented as the shaded areas. The width of each shaded
area is twice the corresponding standard deviation.

7. Conclusions

In this paper, we provide a unified theoretical framework for studying PE in RL with con-
tinuous time and space. The theory is premised upon the observation that PE is equivalent

39

Jia and Zhou

to enforcing the martingality of a stochastic process. Many existing and popular PE algo-
rithms, which somewhat scatter around in the MDP literature, can find a common ground
through this “martingale lens”. These algorithms can be modified for solving PE in the
continuous setting for actual implementation.

The martingale perspective is potentially useful for studying many important problems
related to PE that have been well developed in the discrete setting but remain open in
the continuous setting, including off-policy evaluation, state-action value estimation, and
convergence analysis. Furthermore, it may inspire new questions that have not been posed
by traditional RL research. For example, how to “optimally” choose test functions and how
their choices affect the convergence rate in both discrete and continuous settings.

Finally, PE is formulated for Itô processes in this paper, mainly because such a process
has convenient and well-studied properties and can reasonably model many real-life dy-
namics. The martingale view, however, is generalizable beyond Itô processes such as jump
diffusions, non-Markov processes and semi-martingales.

Acknowledgments

We are grateful for comments from the seminar participants at University of Southern
California, Boston University, Imperial College, University of Connecticut, the International
Seminar on SDEs and Related Topics, the Joint Seminar by AIFT and Columbia University
and the World Online Seminars on Machine Learning in Finance, and from the participants
at the 6th Berlin Workshop for Young Researchers in Mathematical Finance and the IMSI
Workshop on Advances in Optimal Decision Making under Uncertainty. We thank Jerome
Detemple, Steven Kou, Huyên Pham, Moris Strub, Wenpin Tang, Nizar Touzi, Renyuan
Xu and Jianfeng Zhang for helpful discussions and comments on the paper. We are also
indebted to the Action Editor and three anonymous referees for constructive comments
which have led to an improved version of the paper. Zhou gratefully acknowledges financial
support through a start-up grant and the Nie Center for Intelligent Asset Management at
Columbia University.

40

Policy Evaluation and TD Learning in Continuous Time

Appendix A: A Summary of Popular PE Methods

The following Table 1 summarizes popular PE methods and algorithms, and the interpre-
tations we have discovered in this paper in terms of objectives (loss/error functions to be
minimized or equations to be solved) and limiting points of convergent algorithms.

Method
Representative

algorithms
Online Objective

Converging
point

Monte Carloa
gradient

Monte Carlo
No

minimize
martingale

loss function

minimizers of
mean-square value

function error

Residual
gradientb

näıve
residual
gradient

Yes
minimize

mean-square
TD error

minimizers of
quadratic variation

Semi-gradient
TD learningc

TD(λ)
LSTD(λ)

Yes
solve

moment conditions
zeros to

moment conditions

Gradient
TD learningd

GTD(0)
GTD2
TDC

Yes

minimize
quadratic form

of moment
conditions

minimizers of
mean-square

projected
Bellman error

a. Sutton and Barto (2018).
b. Baird (1995).
c. Sutton (1988); Bradtke and Barto (1996). This terminology is taken from Sutton and Barto (2018,

Chapter 9).
d. Sutton et al. (2008, 2009).

Table 1: Summary of popular PE methods in RL literature. The table summarizes
different PE methods. The first three columns indicate the names of the methods, those of
the representative algorithms, and whether applicable online and/or offline. The last two
columns reveal the objectives and the converging points of the corresponding algorithms.

Appendix B: Stochastic Control Formulation of RL

Let d,m, n be given positive integers, T > 0, and b : [0, T] × Rd × Rn 7→ Rd and σ :
[0, T]×Rd×Rn 7→ Rd×m be given functions. A stochastic control problem is to control the
state (or feature) dynamic governed by an SDE:

dXs = b
(
s,Xs,u(s,Xs)

)
dt+ σ

(
s,Xs,u(s,Xs)

)
dWs, s ∈ [0, T], (31)

where u : (t, x) ∈ [0, T]×Rd 7→ u(t, x) ∈ U is a given (measurable) feedback control policy,
with U ⊆ Rn being the action space representing the constraints on an agent’s decisions
(controls or actions).

41

Jia and Zhou

Given a policy u and an initial time–state pair (t, x) ∈ [0, T]×Rd, let {Xt,x,u
s , t ≤ s ≤ T}

be the solution to (31) with Xt = x. The value function under the policy u is

J(t, x;u) =E
[∫ T

t
r(s,Xt,x,u

s ,u(s,Xt,x,u
s))ds+ h(Xt,x,u

T)
∣∣∣Xt,x,u

t = x

]
, (32)

where r : [0, T]× Rd × Rn 7→ R and h : Rd 7→ R are given reward functions.

A policy u is called admissible if (31) has a unique weak solution and (32) is finite for
any (t, x) ∈ [0, T] × Rd. A typical RL problem is to maximize (minimize) J(t, x;u) over
all admissible policies u. In the classical (model-based) stochastic control literature, the
functional forms of b, σ, r and h are known, and there are well-developed theories to solve
the problem; see, e.g., Yong and Zhou (1999); Fleming and Soner (2006). However, in the
RL context, these functional forms are typically unknown, although in some applications
that of h may be known because it may be interpreted as a given target the agent specifies
(e.g. in option pricing h is the payoff function of an option, which is typically given and
known; see Subsection 5.3).

The PE task as a part of the general RL problem is, for a given policy u, to devise a
numerical procedure to find J(t, x;u) as a function of (t, x) using multiple sample trajecto-
ries of the process {s,Xt,x,u

s , r
(
s,Xt,x,u

s ,u(t,Xt,x,u
s)

)
}t≤s≤T , without the knowledge of the

model parameters (the functional forms of b, σ, r, h).

If we suppress u, which is fixed in PE, then we recover the formulation (1)–(2). Note
that the formulation also covers the “exploratory” setting of Wang et al. (2020) in which the
admissible control policies are probability-distribution-valued, because the value function
therein is of the same form as (32) under a fixed distributional control policy.

Appendix C: Martingale in Discrete-time Markov Reward Processes

We show that there is also a martingale property in the classical discrete-time RL MDP
formulation. To be consistent with the main setting of this paper, we consider only the
finite horizon episodic tasks; the infinite horizon continuing tasks can be studied similarly.

LetX = {Xt, t = 0, 1, · · · , T} be a discrete-time Markov process adapted to {Ft}t=0,1,··· ,T
in a filtered probability space (Ω,P,F , {Ft}t=0,1,··· ,T). One is interested in finding the value
function v defined by

v(t, x) = E

[
T−1∑
s=t

r(s,Xs) + h(XT)
∣∣∣Xt = x

]
,

where r(t, x) is the expected reward at time t conditioned on being at state x, and h is the
final reward.

When the state space is finite and discrete, X is referred to as a Markov reward process
(MRP) or alternatively as an MDP with a fixed policy. When the state space is infinite or
typically continuous, it is usually called a semi-MRP or a semi-MDP.

42

Policy Evaluation and TD Learning in Continuous Time

Set Mt = v(t,Xt) +
∑t−1

s=0 r(s,Xs) with MT = h(XT) +
∑T−1

s=0 r(s,Xs). Then, for any
t = 0, 1, · · · , T − 1, by Markov property, we obtain

E[Mt+1|Ft] =

t∑
s=0

r(s,Xs) + E[v(t+ 1, Xt+1)|Ft]

=
t−1∑
s=0

r(s,Xs) + E[r(t,Xt) + v(t+ 1, Xt+1)|Ft]

=
t−1∑
s=0

r(s,Xs) + v(t,Xt) = Mt,

where the last equality is due to

E[r(t,Xt) + v(t+ 1, Xt+1)|Ft] = E[r(t,Xt) + v(t+ 1, Xt+1)|Xt] = v(t,Xt),

which is the well-known Bellman equation for a discrete-time MRP.
So, M being a martingale is equivalent to the value function satisfying the Bellman

equation, which in turn can be used to characterize PE. From this martingale perspective,
we can develop parallel approaches such as the martingale loss function and the martingale
orthogonality condition that will recover various conventional PE algorithms for discete-
time MRPs.

Appendix D: Proofs of Statements

Proof of Proposition 1

Proof To show M is a martingale, observe that based on (2), we have

Ms = E
[∫ T

s
r
(
s′, Xs′

)
ds′ + h(XT)|Xs

]
+

∫ s

t
r
(
s′, Xs′

)
ds′ = E[MT |Fs],

where we have used the Markov property of the process {Xs, t ≤ s ≤ T}. This establishes
that M is a martingale.

Conversely, if M̃ is a martingale, then M̃s = E[M̃T |Fs], which is equivalent to

J̃(s,Xs) = E
[∫ T
s r
(
s′, Xs′

)
ds′ + J̃(T,XT)|Fs

]
= E

[∫ T
s r
(
s′, Xs′

)
ds′ + h(XT)|Fs

]
= J(s,Xs), s ∈ [t, T].

Letting s = t, we conclude J̃(t, x) = J(t, x).

Proof of Theorem 2

We first present two lemmas that will be useful for the proof of Theorem 2 and also other
theorems later.

43

Jia and Zhou

Lemma 8 Let fh(x) = f(x) + rh(x), where f is a continuous function and rh converges to
0 uniformly on any compact set as h→ 0.

(a) Suppose x∗h ∈ arg minx fh(x) 6= ∅ and limh→0 x
∗
h = x∗. Then x∗ ∈ arg minx f(x).

Moreover, if there exists α > 0 such that |rh(x)| ≤ Chα for some constant C, then
|f(x∗h)− f(x∗)| ≤ 2Chα.

(b) Suppose fh(x∗h) = 0 and limh→0 x
∗
h = x∗. Then f(x∗) = 0. Moreover, if there exists

α > 0 such that |rh(x)| ≤ Chα for some constant C, then |f(x∗h)| ≤ Chα.

Proof

(a) For any y, we have f(x∗h) + rh(x∗h) = fh(x∗h) ≤ fh(y). The sequence {x∗h} forms a
compact set; hence rh(x∗h) → 0 as h → 0. Letting h → 0, since x∗h → x∗ and f is
continuous, we obtain f(x∗) ≤ f(y). Since y is arbitrary, x∗ ∈ arg minx f(x).

Moreover, we have

0 ≤ f(x∗h)− f(x∗) = fh(x∗h)− rh(x∗h)− fh(x∗) + rh(x∗) ≤ −rh(x∗h) + rh(x∗) ≤ 2Chα.

(b) Since f(x∗h) + rh(x∗h) = fh(x∗h) = 0, |f(x∗h)| = |rh(x∗h)|. The sequence {x∗h} forms a
compact set; hence rh(x∗h) → 0 as h → 0. Letting h → 0, since x∗h → x∗ and f is
continuous, we obtain |f(x∗)| = 0.

The second statement is straightforward since |f(x∗h)| = |rh(x∗h)| ≤ Chα.

Lemma 9 Under Assumptions 1 and 4, we have

E
[∫ t+h

t
|r(s,Xs)− r(t,Xt)|2 ds

]
≤ Ch2µ1+µ2+1.

Proof By Assumption 4, for s ∈ [t, t+ h], we have

|r(s,Xs)− r(t,Xt)|2 ≤ Ch2µ1 |Xs −Xt|2µ2(|Xs|2µ3 + |Xt|2µ3).

When µ2 > 0, we take p > 1 sufficiently large such that 2µ2p ≥ 1, and q > 1 such that
1
p + 1

q = 1.

Under Assumption 1, we have the usual moment estimate of the solution to an SDE,
e.g., Yong and Zhou (1999, Chapter 1, Theorem 6.1). Together with Hölder’s inequality,

44

Policy Evaluation and TD Learning in Continuous Time

we have

E
[∫ t+h

t
|Xs −Xt|2µ2(|Xs|2µ3 + |Xt|2µ3)ds

]
≤
(
E
[∫ t+h

t
|Xs −Xt|2µ2pds

])1/p(
E
[∫ t+h

t
(|Xs|2µ3 + |Xt|2µ3)qds

])1/q

≤C
(
E
[∫ t+h

t
|Xs −Xt|2µ2pds

])1/p(
h max
t≤s≤t+h

E
[
|Xs|2µ3q

])1/q

≤C
(∫ t+h

t
(s− t)µ2pds

)1/p

h1/q

≤Ch(µ2p+1)/ph1/q = Chµ2+1.

When µ2 = 0, the above inequality also holds true as E
[∫ t+h

t |Xs − Xt|2µ2(|Xs|2µ3 +

|Xt|2µ3)ds

]
≤ Ch.

Now we are already to prove Theorem 2.

Proof By Itô’s lemma, we have

K−1∑
i=0

(
Jθ(tt+1, Xti+1)− Jθ(ti, Xti)

ti+1 − ti
+ rti

)2

∆t

=
1

∆t

K−1∑
i=0

(
Jθ(ti+1, Xti+1)− Jθ(ti, Xti) +

∫ ti+1

ti

rtids

)2

=
1

∆t

K−1∑
i=0

(∫ ti+1

ti

[LJθ(s,Xs) + rti]ds+

∫ ti+1

ti

(
∂Jθ

∂x

)>
σ(s,Xs)dWs

)2

=
1

∆t

K−1∑
i=0

{(∫ ti+1

ti

[LJθ(s,Xs) + rti]ds

)2

+

(∫ ti+1

ti

(
∂Jθ

∂x

)>
σ(s,Xs)dWs

)2

+ 2

(∫ ti+1

ti

[LJθ(s,Xs) + rti]ds

)(∫ ti+1

ti

(
∂Jθ

∂x

)>
σ(s,Xs)dWs

)}
.

Itô’s isometry implies

E
[(∫ ti+1

ti

(
∂Jθ

∂x

)>
σ(s,Xs)dWs

)2]
= E

∫ ti+1

ti

∣∣∣ (∂Jθ
∂x

)>
σ(s,Xs)

∣∣∣2ds.

Thus,

MSTDE∆t(θ) =
1

∆t
E
∫ T

0

∣∣ (∂Jθ
∂x

)>
σ(s,Xs)

∣∣2ds+
1

∆t

K−1∑
i=0

E
[(∫ ti+1

ti

[LJθ(s,Xs) + rti]ds

)2]

+
2

∆t

K−1∑
i=0

E
[(∫ ti+1

ti

[LJθ(s,Xs) + rti]ds

)(∫ ti+1

ti

(
∂Jθ

∂x

)>
σ(s,Xs)dWs

)]
.

45

Jia and Zhou

We write MSTDE∆t(θ)∆t = QV(θ) +R(θ), where

QV(θ) := E
∫ T

0

∣∣ (∂Jθ
∂x

)>
σ(s,Xs)

∣∣2ds

and

R(θ) :=
K−1∑
i=0

E
[(∫ ti+1

ti

[LJθ(s,Xs) + rti]ds

)2

+ 2

(∫ ti+1

ti

[LJθ(s,Xs) + rti]ds

)(∫ ti+1

ti

(
∂Jθ

∂x

)>
σ(s,Xs)dWs

)]
.

We apply Cauchy-Schwarz inequality and obtain

|R(θ)| ≤
K−1∑
i=0

E
∫ ti+1

ti

[LJθ(s,Xs) + rti]
2ds(∆t)2

+ 2

K−1∑
i=0

{
E
[(∫ ti+1

ti

[LJθ(s,Xs) + rti]ds

)2]
E
[(∫ ti+1

ti

(
∂Jθ

∂x

)>
σ(s,Xs)dWs

)2]}1/2

≤
K−1∑
i=0

E
∫ ti+1

ti

[LJθ(s,Xs) + rti]
2ds(∆t)2

+ 2

K−1∑
i=0

{[
E
∫ ti+1

ti

[LJθ(s,Xs) + rti]
2ds(∆t)2

][
E
∫ ti+1

ti

∣∣ (∂Jθ
∂x

)>
σ(s,Xs)

∣∣2ds

]}1/2

=(∆t)2E
∫ T

0
[LJθ(s,Xs) + r̄s]

2ds

+ 2∆t
K−1∑
i=0

{[
E
∫ ti+1

ti

[LJθ(s,Xs) + r̄s]
2ds

][
E
∫ ti+1

ti

∣∣ (∂Jθ
∂x

)>
σ(s,Xs)

∣∣2ds

]}1/2

≤(∆t)2E
∫ T

0
[LJθ(s,Xs) + r̄s]

2ds

+ 2∆t

{
K−1∑
i=0

E
∫ ti+1

ti

[LJθ(s,Xs) + r̄s]
2ds

}1/2{K−1∑
i=0

E
∫ ti+1

ti

∣∣ (∂Jθ
∂x

)>
σ(s,Xs)

∣∣2ds

}1/2

=(∆t)2E
∫ T

0
[LJθ(s,Xs) + r̄s]

2ds+ 2∆t

{
E
∫ T

0
[LJθ(s,Xs) + r̄s]

2ds

}1/2√
QV(θ),

where r̄s := rti for the unique i such that ti ≤ s < ti+1.

It follows from the triangle inequality that{
E
∫ T

0
[LJθ(s,Xs) + r̄s]

2ds

}1/2

= ||LJθ(·, X·) + r̄·||L2 ≤ ||LJθ(·, X·) + r·||L2 + ||r − r̄||L2 .

46

Policy Evaluation and TD Learning in Continuous Time

Hence,

|R(θ)| ≤(∆t)2
(
||LJθ(·, X·) + r·||L2 + ||r − r̄||L2

)2
+ 2∆t

(
||LJθ(·, X·) + r·||L2 + ||r − r̄||L2

)√
QV (θ)

≤4(∆t)2
(
2 MSBE(θ) + ||r − r̄||2L2

)
+ 2∆t

√
QV(θ)

(√
2 MSBE(θ) + ||r − r̄||L2

)
,

where MSBE(θ) = ||LJθ(·, X·) + r·||2L2 is the mean-square Bellman error.
Because r̄ is a simple process approximating r, we have ||r− r̄||L2 → 0 as ∆t→ 0, which

is independent of θ. For an arbitrary compact set Γ, Assumption 3 yields that MSBE(θ)
and QV(θ) are both continuous functions of θ; hence supθ∈Γ MSBE(θ) and supθ∈Γ QV(θ)
are both finite. Consequently,

sup
θ∈Γ
|R(θ)| ≤4(∆t)2

(
2 sup
θ∈Γ

MSBE(θ) + ||r − r̄||2L2

)
+ 2∆t

√
sup
θ∈Γ

QV(θ)
(√

2 sup
θ∈Γ

MSBE(θ) + ||r − r̄||L2

)
→ 0 as ∆t→ 0.

The desired result now follows from Lemma 8.
Moreover, under Assumption 4, it follows from Lemma 9 that

||r − r̄||2L2 =
K−1∑
i=0

E
∫ ti+1

ti

(r(s,Xs)− r(ti, Xti))
2 ds ≤ K(∆t)2µ1+µ2+1 = (∆t)2µ1+µ2 .

Therefore, our analysis above yields

sup
θ∈Γ
|R(θ)| ≤ C1∆t+ C2(∆t)2 + C3(∆t)µ1+µ2/2+1 + C4(∆t)2µ1+µ2+2,

where the leading term in the right hand side is O(∆t). The desired result again follows
from Lemma 8.

Proof of Theorem 3

Proof Since Mt = J(t,Xt) +
∫ t

0 r(s,Xs)ds is a martingale, we have

ML(θ) =E
∫ T

0
|MT −M θ

t |2dt

=E
∫ T

0
(MT −Mt +Mt −M θ

t)2dt

=E
∫ T

0
[(MT −Mt)

2 + (Mt −M θ
t)2 + 2(MT −Mt)(Mt −M θ

t)]dt

=E
∫ T

0
(MT −Mt)

2dt+ E
∫ T

0
(Mt −M θ

t)2dt+ 2

∫ T

0
E
(

(Mt −M θ
t)E[(MT −Mt)|Ft]

)
dt

=E
∫ T

0
|J(t,Xt)− Jθ(t,Xt)|2dt+ E

∫ T

0
|MT −Mt|2dt.

47

Jia and Zhou

The second term does not rely on θ. This proves our first statement.
Next, let us estimate the difference between the continuous-time and the discretized

martingale loss functions. Denote

m(t, θ) = E[(MT −M θ
t)2] = E[

(
h(XT)− Jθ(t,Xt) +

∫ T

t
rsds

)2
],

and

∆M̃ θ
ti = h(XT)− Jθ(ti, Xti) +

K−1∑
j=i

r(tj , Xtj)∆t = h(XT)− Jθ(t,Xt) +

∫ T

t
r̄sds,

where r̄s := rti for the unique i such that ti ≤ s < ti+1.
Then

ML(θ)−ML∆t(θ) =

∫ T

0
m(t, θ)dt−

K−1∑
i=0

m(ti, θ)∆t+

K−1∑
i=0

m(ti, θ)∆t−ML∆t(θ)

=
K−1∑
i=0

∫ ti+1

ti

[m(t, θ)−m(ti, θ)]dt+ ∆t
K−1∑
i=0

E[(MT −M θ
ti)

2 − (∆M̃ θ
ti)

2].

The first term is bounded by∣∣∣∣∣
K−1∑
i=0

∫ ti+1

ti

[m(t, θ)−m(ti, θ)]dt

∣∣∣∣∣ ≤
K−1∑
i=0

sup
t∈[0,T]

|∂m
∂t

(t, θ)|
∫ ti+1

ti

(t−ti)dt =
T

2
sup
t∈[0,T]

|∂m
∂t

(t, θ)|∆t.

To estimate the second term, recall that

MT −M θ
ti −∆M̃ θ

ti =

∫ T

ti

(rs − r̄s)ds.

Hence∣∣E[(MT −M θ
ti)

2 − (∆M̃ θ
ti)

2]
∣∣ =

∣∣∣∣E[2

∫ T

ti

(rs − r̄s)ds(MT −M θ
ti)−

(∫ T

ti

(rs − r̄s)ds
)2

]

∣∣∣∣
≤2m(ti, θ)

1
2 (E[(

∫ T

ti

(rs − r̄s)ds)2])
1
2 + E[(

∫ T

ti

(rs − r̄s)ds)2]

≤2T sup
t∈[0,T]

|m(t, θ)|
1
2 ||r − r̄||L2 + T 2||r − r̄||2L2 .

Therefore, we have proved

|ML(θ)−ML∆t(θ)| ≤
T

2
sup
t∈[0,T]

|∂m
∂t

(t, θ)|∆t+ 2T 2 sup
t∈[0,T]

|m(t, θ)|
1
2 ||r− r̄||L2 + T 3||r− r̄||2L2 .

For an arbitrary compact set Γ, under Assumption 3, supt∈[0,T],θ∈Γ |∂m∂t (t, θ)|+supt∈[0,T],θ∈Γ |m(t, θ)| <
∞, and ||r − r̄||L2 → 0. Hence as ∆t→ 0,

sup
θ∈Γ
|ML(θ)−ML∆t(θ)| → 0.

48

Policy Evaluation and TD Learning in Continuous Time

By Lemma 8, we obtain the desired conclusion.

Moreover, under Assumption 4, it follows from Lemma 9 and the proof of Theorem 2
that

sup
θ∈Γ
|ML(θ)−ML∆t(θ)| ≤ C1∆t+ C2(∆t)µ1+µ2/2 + C3(∆t)2µ1+µ2 ,

where the leading term in the right hand side is O
(

(∆t)min{1,µ1+
µ2
2
}
)

. The desired result

again follows from Lemma 8.

Proof of Proposition 4

Proof The “only if” part is evident. To prove the “if” part, assume that dM θ
t = Atdt +

BtdWt. In particular, in our case, At = LJθ(t,Xt) + rt and Bt = (∂J
θ

∂x)>σ(t,Xt). A,B ∈
L2
F ([0, T]) follows from Assumption 3. For any 0 ≤ s < s′ ≤ T , take ξt = sgn(At) if

t ∈ [s, s′] and ξt = 0 otherwise. Then

0 = E
∫ s′

s
ξtdM

θ
t = E

∫ s′

s
(|At|dt+ ξtBtdWt) = E

∫ s′

s
|At|dt,

where the expectation of the second term vanishes because |ξB| ≤ |B| ∈ L2
F ([0, T]) and

hence E
∫ ·

0 ξtBtdWt is a martingale. This yields At = 0 almost surely, and thus M θ is a
martingale.

49

Jia and Zhou

Proof of Theorem 5

Proof Based on Lemma 8, it suffices to examine the difference

∣∣E∫ T

0
ξtdM

θ
t − E

K−1∑
i=0

ξti(M
θ
ti+1
−M θ

ti)
∣∣ =

∣∣EK−1∑
i=0

∫ ti+1

ti

(ξt − ξti)dM θ
t

∣∣+
∣∣EK−1∑

i=0

ξti

∫ ti+1

ti

(rs − rti)ds
∣∣

≤E
K−1∑
i=0

∫ ti+1

ti

|ξt − ξti | · |LJθ(t,Xt) + rt|dt+ E
[(K−1∑

i=0

ξ2
ti

)1/2(K−1∑
i=0

(∫ ti+1

ti

(rs − rti)ds
)2
)1/2]

≤
K−1∑
i=0

(
E
∫ ti+1

ti

|ξt − ξs|2dt
)1/2(E∫ ti+1

ti

(
LJθ(t,Xt) + rt

)2
dt

)1/2

E
[(K−1∑

i=0

ξ2
ti

)1/2(K−1∑
i=0

(∫ ti+1

ti

(rs − rti)2ds

)
∆t

)1/2]

≤
K−1∑
i=0

(
E
∫ ti+1

ti

(
LJθ(t,Xt) + rt

)2
dt

)1/2(∫ ti+1

ti

C(t− ti)αdt

)1/2

+ (∆t)1/2||r − r̄||L2

(
K−1∑
i=0

E[ξ2
ti]

)1/2

≤
K−1∑
i=0

(
E
∫ ti+1

ti

(
LJθ(t,Xt) + rt

)2
dt

)1/2
√

C

1 + α
(∆t)

1+α
2 + ||r − r̄||L2 ||ξ̄||L2

≤
(K−1∑

i=0

E
∫ ti+1

ti

(
LJθ(t,Xt) + rt

)2
dt

)1/2

K1/2

√
C

1 + α
(∆t)

1+α
2 + ||ξ̄||L2(∆t)µ1+µ2/2

≤||LJθ(·, X·) + r·||L2

√
CT

1 + α
(∆t)

α
2 + ||ξ̄||L2(∆t)µ1+µ2/2.

Hence, for an arbitrary compact set Γ, under Assumption 3, we have

sup
θ∈Γ

∣∣E∫ T

0
ξtdM

θ
t − E

K−1∑
i=0

ξti(M
θ
ti+1
−M θ

ti)
∣∣

≤ sup
θ∈Γ
||LJθ(·, X·) + r·||L2

√
CT

1 + α
(∆t)

α
2 + sup

θ∈Γ
||ξ̄||L2(∆t)µ1+µ2/2 → 0,

as ∆t→ 0.

Since the leading term above is O
(
(∆t)min{α/2, µ1+µ2/2}

)
, we obtain the convergence

rate in view of Lemma 8.

50

Policy Evaluation and TD Learning in Continuous Time

Proof of Theorem 6

We first prove an error estimate of the following form:

∣∣(b+ ∆b)>(D + ∆D)(b+ ∆b)− b>Db
∣∣

=
∣∣D ◦ [(b+ ∆b)(b+ ∆b)> − bb>] + ∆D ◦ (b+ ∆b)(b+ ∆b)>

∣∣
≤|D||(b+ ∆b)(b+ ∆b)> − bb>|+ |∆D||(b+ ∆b)(b+ ∆b)>|
=|D||∆b∆b> + b∆b> + ∆bb>|+ |∆D||b+ ∆b|2

=|D||∆b|2 + 2|D||b||∆b|+ 2|∆D||b|2 + 2|∆D||∆b|2.

Based on the proof of Theorem 5, we have that for an arbitrary compact set Γ,

sup
θ∈Γ

∣∣∣∣∣E
∫ T

0
ξtdM

θ
t − E

K−1∑
i=0

ξti(M
θ
ti+1
−M θ

ti)

∣∣∣∣∣
≤ sup

θ∈Γ
||LJθ(·, X·) + r·||L2

√
CT

1 + α
(∆t)

α
2 + sup

θ∈Γ
||ξ̄||L2(∆t)µ1+µ2/2 → 0.

Given that |A∆t −A| ≤ C̃(θ)|∆t|β, we get

sup
θ∈Γ
|GMM∆t(θ)−GMM(θ)| → 0,

as ∆t→ 0. By Lemma 8, we obtain the desired results.

Moreover, based on the error estimate of the quadratic form, we obtain

sup
θ∈Γ
|GMM∆t(θ)−GMM(θ)|

≤C
[
O
(

(∆t)α/2
)

+O
(

(∆t)µ1+µ2/2
)

+O
(

(∆t)β
)

+ o
(

(∆t)α/2 + (∆t)µ1+µ2/2 + (∆t)β
)]
,

where the leading term is O
(
(∆t)min{α/2, µ1+µ2/2, β}

)
.

In particular, when A =
[
E
∫ T

0 ξθt (ξθt)>dt
]−1

and A∆t =
[
E
∑K−1

i=0 ξθti(ξ
θ
ti)
>∆t

]−1
, we

claim the condition |A∆t −A| ≤ C̃(θ)|∆t|β holds true. To see this, recall that

|(D+∆D)−1−D−1| = |
∞∑
k=0

(D−1∆D)kD−1−D−1| ≤
∞∑
k=0

|D−1∆D||(D−1∆D)kD−1| ≤ |D−1|2|∆D|
1− |D−1||∆D|

.

51

Jia and Zhou

Thus, it suffices to estimate the difference

∣∣E∫ T

0
ξθt (ξθt)>dt− E

K−1∑
i=0

ξθti(ξ
θ
ti)
>∆t

∣∣ =
∣∣EK−1∑

i=0

∫ ti+1

ti

[ξθt (ξθt)> − ξθti(ξ
θ
ti)
>]dt

∣∣
≤
K−1∑
i=0

∫ ti+1

ti

E[ξθt (ξθt)> − ξθti(ξ
θ
ti)
>]dt

≤
K−1∑
i=0

∫ ti+1

ti

E[|ξθt − ξθti |
2 + 2|ξθt − ξθti ||ξ

θ
t |]dt

≤
K−1∑
i=0

∫ ti+1

ti

C(θ)(t− ti)αdt+ 2

K−1∑
i=0

∫ ti+1

ti

E[|ξθt − ξθti ||ξ
θ
t |]dt

≤TC(θ)

1 + α
(∆t)α + 2

K−1∑
i=0

(
E
∫ ti+1

ti

|ξθt − ξθti |
2dt
)1/2(E∫ ti+1

ti

|ξθt |2dt
)1/2

≤TC(θ)

1 + α
(∆t)α + 2

√
C(θ)

1 + α
(∆t)

1
2

+α
2

K−1∑
i=0

(
E
∫ ti+1

ti

|ξθt |2dt
)1/2

≤TC(θ)

1 + α
(∆t)α + 2

√
TC(θ)

1 + α
(∆t)

α
2 ||ξθ||L2 .

Proof of Theorem 7

Proof Denote by 〈κ, κ̃〉L2 := E
∫ T

0 κtκ̃tdt the inner product in L2
F ([0, T]). It follows from

the property of projection that 〈κ − Πθκ, ξ
θ,(j)〉L2 = 0 for any κ ∈ L2

F ([0, T]) and all
j = 1, · · · , L′.

As a stochastic process, LJθ(·, X·) + r· ∈ L2
F ([0, T]). Write

Πθ

(
LJθ(·, X·) + r·

)
=

L′∑
i=1

α(i)(θ)ξ
θ,(i)
· =: α(θ)>ξθ· .

Then

〈Πθ

(
LJθ(·, X·) + r·

)
,Πθ

(
LJθ(·, X·) + r·

)
〉L2

=
∑

1≤i,j≤L′
α(i)(θ)α(j)(θ)〈ξθ,(i)· , ξ

θ,(j)
· 〉L2 = α(θ)>Aθα(θ),

where the ij-th entry of the L′ × L′ matrix Aθ is 〈ξθ,(i)· , ξ
θ,(j)
· 〉L2 .

On the other hand,

E
[∫ T

0

(
Πθ

(
LJθ(·, X·) + r·

))
ξθt dt

]
= E

[∫ T

0

(
LJθ(t,Xt) + rt

)
ξθt dt

]
= Aθα(θ).

52

Policy Evaluation and TD Learning in Continuous Time

Therefore,

1

2
E
[∫ T

0

(
LJθ(t,Xt) + rt

)
ξθt dt

]> [
E
∫ T

0
ξθt (ξθt)>dt

]−1

E
[∫ T

0

(
LJθ(t,Xt) + rt

)
ξθt dt

]
=

1

2
α(θ)>Aθ(Aθ)−1Aθα(θ)

=
1

2
E
∫ T

0

∣∣∣∣Πθ

(
LJθ(·, X·) + r·

)∣∣∣∣2dt =
1

2
||Πθ

(
LJθ(·, X·) + r·

)
||2L2 = MSPBE(θ).

References

L. C. Baird. Advantage updating. Technical report, Write Lab Wright-Patterson Air Force
Base, OH 45433-7301, USA, 1993.

L. C. Baird. Residual algorithms: Reinforcement learning with function approximation. In
Machine Learning Proceedings 1995, pages 30–37. Elsevier, 1995.

E. Barnard. Temporal-difference methods and Markov models. IEEE Transactions on
Systems, Man, and Cybernetics, 23(2):357–365, 1993.

O. E. Barndorff-Nielsen and N. Shephard. Estimating quadratic variation using realized
variance. Journal of Applied Econometrics, 17(5):457–477, 2002.

C. Beck, M. Hutzenthaler, and A. Jentzen. On nonlinear feynman–kac formulas for viscosity
solutions of semilinear parabolic partial differential equations. Stochastics and Dynamics,
21(08):2150048, 2021.

J. A. Boyan. Technical update: Least-squares temporal difference learning. Machine Learn-
ing, 49(2):233–246, 2002.

S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal difference
learning. Machine Learning, 22(1):33–57, 1996.

M. G. Crandall, H. Ishii, and P.-L. Lions. Users guide to viscosity solutions of second order
partial differential equations. Bulletin of the American mathematical society, 27(1):1–67,
1992.

M. Dai, Y. Dong, and Y. Jia. Learning equilibrium mean-variance strategy. SSRN preprint
SSRN:3770818, 2020.

K. Doya. Reinforcement learning in continuous time and space. Neural Computation, 12
(1):219–245, 2000.

S. S. Du, J. Chen, L. Li, L. Xiao, and D. Zhou. Stochastic variance reduction methods for
policy evaluation. In International Conference on Machine Learning, pages 1049–1058.
PMLR, 2017.

53

Jia and Zhou

N. El Karoui, S. Peng, and M. C. Quenez. Backward stochastic differential equations in
finance. Mathematical Finance, 7(1):1–71, 1997.

W. H. Fleming and H. M. Soner. Controlled Markov processes and viscosity solutions,
volume 25. Springer Science & Business Media, 2006.

N. Frémaux, H. Sprekeler, and W. Gerstner. Reinforcement learning using a continuous
time actor-critic framework with spiking neurons. PLoS Computational Biology, 9(4):
e1003024, 2013.

X. Gao, Z. Q. Xu, and X. Y. Zhou. State-dependent temperature control for Langevin
diffusions. SIAM Journal on Control and Optimization, pages 1–26, 2020.

A. Geramifard, M. Bowling, and R. S. Sutton. Incremental least-squares temporal difference
learning. In Proceedings of the National Conference on Artificial Intelligence, volume 21,
page 356. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999,
2006.

X. Guo, R. Xu, and T. Zariphopoulou. Entropy regularization for mean field games with
learning. Mathematics of Operations Research, 2022.

J. Han, A. Jentzen, and W. E. Solving high-dimensional partial differential equations using
deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.

L. P. Hansen. Large sample properties of generalized method of moments estimators. Econo-
metrica, pages 1029–1054, 1982.

L. P. Hansen, J. Heaton, and A. Yaron. Finite-sample properties of some alternative GMM
estimators. Journal of Business & Economic Statistics, 14(3):262–280, 1996.

S. Hochreiter and J. Schmidhuber. LSTM can solve hard long time lag problems. Advances
in neural information processing systems, pages 473–479, 1997.

C. Huré, H. Pham, and X. Warin. Some machine learning schemes for high-dimensional
nonlinear PDEs. arXiv preprint arXiv:1902.01599, 33, 2019.

I. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus, volume 113. Springer,
2014.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations.
Springer, 1992.

J. Lee and R. S. Sutton. Policy iterations for reinforcement learning problems in continuous
time and space – Fundamental theory and methods. Automatica, 126:109421, 2021.

B. Liu, J. Liu, M. Ghavamzadeh, S. Mahadevan, and M. Petrik. Proximal gradient temporal
difference learning algorithms. In IJCAI, pages 4195–4199, 2016.

54

Policy Evaluation and TD Learning in Continuous Time

L. Ljung and T. Söderström. Theory and practice of recursive identification. MIT press,
1983.

H. R. Maei, C. Szepesvari, S. Bhatnagar, D. Precup, D. Silver, and R. S. Sutton. Convergent
temporal-difference learning with arbitrary smooth function approximation. In NIPS,
pages 1204–1212, 2009.

B. B. Mandelbrot and J. W. Van Ness. Fractional Brownian motions, fractional noises and
applications. SIAM Review, 10(4):422–437, 1968.

M. Raissi. Deep hidden physics models: Deep learning of nonlinear partial differential
equations. Journal of Machine Learning Research, 19(1):932–955, 2018.

H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, pages 400–407, 1951.

T. Sottinen and L. Viitasaari. Prediction law of fractional Brownian motion. Statistics &
Probability Letters, 129:155–166, 2017.

D. W. Stroock and S. R. S. Varadhan. Multidimensional diffusion processes, volume 233
of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathe-
matical Sciences]. Springer-Verlag, Berlin-New York, 1979.

R. S. Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3(1):9–44, 1988.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. Cambridge, MA:
MIT Press, 2018.

R. S. Sutton, C. Szepesvári, and H. R. Maei. A convergent o(n) temporal-difference algo-
rithm for off-policy learning with linear function approximation. In NIPS, 2008.

R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesvári, and
E. Wiewiora. Fast gradient-descent methods for temporal-difference learning with lin-
ear function approximation. In Proceedings of the 26th Annual International Conference
on Machine Learning, pages 993–1000, 2009.

K. G. Vamvoudakis and F. L. Lewis. Online actor–critic algorithm to solve the continuous-
time infinite horizon optimal control problem. Automatica, 46(5):878–888, 2010.

H. Wang and X. Y. Zhou. Continuous-time mean–variance portfolio selection: A reinforce-
ment learning framework. Mathematical Finance, 30(4):1273–1308, 2020.

H. Wang, T. Zariphopoulou, and X. Y. Zhou. Reinforcement learning in continuous time
and space: A stochastic control approach. Journal of Machine Learning Research, 21
(198):1–34, 2020.

X. Xu, H.-g. He, and D. Hu. Efficient reinforcement learning using recursive least-squares
methods. Journal of Artificial Intelligence Research, 16:259–292, 2002.

J. Yong and X. Y. Zhou. Stochastic Controls: Hamiltonian Systems and HJB Equations.
New York, NY: Spinger, 1999.

55

	Introduction
	Problem Formulation and Preliminaries
	Temporal Difference Error in Continuous Time
	Doya's TD algorithm for deterministic dynamics
	Mean-square TD error for stochastic dynamics
	Theoretical characterization of mean-square TD error
	Online mean-square TD error algorithms

	Martingale Perspective and Approach
	Offline learning: Martingale loss function
	Online and offline learning: TD based on martingale orthogonality conditions

	Extensions and Applications
	Extension to discounted case
	Extension to non-Markovian setting
	Option-like payoff
	Infinite time horizon linear-quadratic problem

	Some Algorithmic Aspects
	Choice of test functions
	Function approximation: global vs sectional

	Conclusions

