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Abstract. An indefinite stochastic Riccati Equation is a matrix-valued, highly non-

linear backward stochastic differential equation together with an algebraic, matrix

positive definiteness constraint. We introduce a new approach to solve a class of such

equations (including the existence of solutions) driven by one-dimensional Brownian

motion. The idea is to replace the original equation by a system of BSDEs (with-

out involving any algebraic constraint) whose existence of solutions automatically

enforces the original algebraic constraint to be satisfied.
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1 Introduction

Stochastic matrix Riccati equations were first introduced by Bismut [1] in his study of some

stochastic control problems. A very special class of these equations is the so-called quadratic

backward stochastic differential equation (BSDE). The existence and uniqueness of solutions for

such BSDEs remain a largely open problem, particularly for BSDE systems; but see [6], [5], [2]

and the references therein for recent progress. The indefinite stochastic Riccati equations (SRE)

were first formulated in [3], motivated by the introduction of the indefinite stochastic linear–

quadratic control problems. Such an equation is typically matrix-valued, highly nonlinear, and

involves a matrix positive definite constraint in addition to the backward equation. In [4],

the uniqueness of solutions to the SRE was established in the greatest generality based on a

control argument, but the existence was solved only for several very special cases. The general

existence remains to this date a significant open problem.

The SRE is a BSDE over a running time interval [0, T ]:

dP =
k∑

j=1

ΛjdW
j −

[
PA+ A′P +

k∑
j=1

(
ΛjCj + C ′

jΛj + C ′
jPCj

)
+Q

]
dt

+

[
PB +

k∑
j=1

(
C ′

jP + Λj

)
Dj

]
K−1

[
B′P +

k∑
j=1

D′
j (PCj + Λj)

]
dt (1.1)

subject to the constraint that

K = R +
k∑

j=1

D′
jPDj > 0 (1.2)

in the matrix sense, and subject to the terminal condition that P (T ) = H which is FT -

measurable. In this formulation, the time parameter t is omitted for simplicity, the capital

letters A,B,C,D,Λ, Q, R and P are real matrix valued (adapted) processes and D′ means the

transpose of D etc. All the matrix processes are square with the same dimension n, P and Λj,

j = 1, 2, · · · , k, are unknowns and all the other parameters are given, and W = (W 1, · · · ,W k)

is k-dimensional standard Brownian motion.

2



The given matrix R in defining K is called the gauge matrix, which is an adapted process.

The SRE (1.1)–(1.2) is indefinite, if the gauge matrix R is allowed to be indefinite, i.e., R can

have zero or negative eigenvalues.

The problem is to look for square integrable adapted processes P and (Λj) satisfying the

corresponding stochastic integral equations as well as the constraint (1.2). Moreover, in view

of the proved uniqueness of solutions, a solution matrix P must be symmetric as long as the

parameters Q, R and H are symmetric.

The existence for the general SRE (1.1)–(1.2) in high dimensions will remain to be an open

question for some time. The main challenge, apart from the highly nonlinear nature of the

BSDE (1.1) and the fact that the equation is matrix-valued, stems from the presence of an

additional algebraic constraint (1.2). In this note, we develop a new approach to solve a class

of SREs driven by one-dimensional Brownian motion. The main idea is to consider a system of

BSDEs that the pair (K,K−1) satisfies, without any algebraic constraint. It turns out that the

existence of solutions to the equation satisfied by K−1 can be established independently, which

in turn will ensure the validity of the original constraint K > 0.

2 The main result

In this paper we consider the SRE driven by a one-dimensional Brownian motion, with the

matrix process D being invertible.

Therefore, in the remainder of this note, W is a one-dimensional standard Brownian motion

on a complete probability space (Ω,F ,P), and (Ft)t≥0 is the Brownian filtration generated by

W . Without lose of generality, we may assume that D = I, and we study the following BSDE

dP = ΛdW − [PA+ A′P + C ′PC + ΛC + C ′Λ +Q] dt,

+ [PB + C ′P + Λ] (R + P )−1 [B′P + PC + Λ] dt, t ∈ [0, T ],

P (T ) = H,

(2.1)
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where T > 0 is fixed throughout the paper and the random symmetric matrix H is bounded

and FT -measurable, subject to the constraint that

K ≡ R + P > 0. (2.2)

For simplicity we assume that the coefficients A,B,C,Q are bounded, square n× n matrix

valued adapted processes, and in addition Q is symmetric.

We are interested in the indefinite gauge case, that is, R may have zero or negative eigenval-

ues, not necessarily being positive definite. The most interesting case in applications is when

R is a matrix-valued Itô process; so we assume that it has the representation

R(t) = R(0) +

∫ t

0

Fds+

∫ t

0

GdW (2.3)

where F,G are bounded, adapted and measurable symmetric matrix-valued processes.

Definition 2.1 By a solution (P,Λ) to (2.1) we mean a pair of (Ft)-adapted, measurable,

square integrable and matrix-valued processes P = (P (t))t∈[0,T ] and Λ = (Λ(t))t∈[0,T ] such that

K(t) = R(t) + P (t) > 0 in the matrix sense for all t ∈ [0, T ], a.s., and

P (t) = H −
∫ T

t

ΛdW

+

∫ T

t

[PA+ A′P + C ′PC + ΛC + C ′Λ +Q] ds

−
∫ T

t

[PB + C ′P + Λ]K−1 [B′P + PC + Λ] ds (2.4)

for t ∈ [0, T ], a.s., where the stochastic integral is understood in the Itô sense. A solution (P,Λ)

is called bounded if P is bounded.

Clearly, if (P,Λ) is a solution, then P must be a continuous matrix-valued semimartingale.
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Due to the presence of K−1 in (2.1), it is natural to rewrite (2.1) in terms of K = R + P

and Λ̃ = Λ+G. This can be achieved by making substitutions in (2.1): P by K −R and Λ by

Λ̃−G, leading to the following BSDE

dK = Λ̃dW −
[
KÃ+ Ã′K + Q̃

]
dt+

[
KB + Λ̃− R̃

]
K−1

[
B′K + Λ̃− R̃′

]
dt,

K(T ) = R(T ) +H,
(2.5)

where

Q̃ = Q− F + C ′RC +R (BC − A) + (C ′B′ − A′)R (2.6)

and

Ã = A−BC, R̃ = RB + C ′R +G. (2.7)

We are now in a position to state our main result.

Theorem 2.2 Assume

(i)

R̃ = RB + C ′R +G = 0 (2.8)

and

Q̃ = Q− F + C ′RC +R (BC − A) + (C ′B′ − A′)R ≥ 0, (2.9)

(ii) G and F are bounded adapted measurable processes such that R(T )+H > 0, and there is

a constant δ > 0 such that (R(T ) +H)−1 ≥ δI.

Then there is a unique solution (P,Λ) to the SRE (2.1)–(2.2). Moreover, P +R is bounded.

The uniqueness has been established in [4], Theorem 3.2. The existence, on the other hand,

is known in the so-called definite case, namely, when R > 0, Q ≥ 0, H ≥ 0; see [7] (where there

is an additional assumption that D = 0). The existence when all these matrices are allowed to
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be indefinite is investigated in [4] for several special cases. It should be noted that the existence

of (2.1) is by no means unconditional; the problem is to find sufficient conditions under which

the existence holds. One of the conditions, (2.8), of Theorem 2.2 stipulates that R satisfies the

following Itô equation

dR = −(RB + C ′R)dW + Fdt (2.10)

where F can be arbitrary (up to the required Lebesgue integrability). The other condition,

(2.9), requires an “overall” positive semidefiniteness in place of that of individual matrices.

We will make further comments on the conditions of the preceding theorem in Section 5.

3 A linear equation

We need a result about the representation for a linear matrix-valued BSDE. Consider

dY =
k∑

j=1

UjdW
j −

[
Y Â+ Â′Y +

m∑
i=1

Ê ′
iY Êi +

k∑
j=1

(
UjĈj + Ĉ ′

jUj + Ĉ ′
jY Ĉj

)
+ Q̂

]
dt,

YT = Ĥ , (3.1)

where Â, Ĉj, Êi (j = 1, · · · , k, i = 1, · · · ,m) and Q̂ are n × n matrix valued, adapted and

bounded, Ĥ is bounded and FT -measurable, andW is a standard Brownian motion of dimension

k. The BSDE is linear so there is a unique solution. Choose a standard Brownian motion Ŵ of

dimension m, which is independent of W . For any p ∈ Rn and 0 ≤ t < T , let ξ be the solution

to the linear stochastic differential equation

dξ = Âξds+
k∑

j=1

ĈjξdW
j +

m∑
i=1

ÊiξdŴ
i, ξt = p. (3.2)
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Lemma 3.1 Under the above assumptions and notations, we have

p′Y (t)p ≡ ξ′tY (t)ξt = E
[
ξ′T ĤξT +

∫ T

t

ξ′sQ̂ξsds

∣∣∣∣Ft

]
. (3.3)

Proof. Applying Itô’s formula to

J(s) = ξ′sY (s)ξs = (Y (s)ξs, ξs) (3.4)

we obtain

dJ = −ξ′Q̂ξds+ ξ′
k∑

j=1

(
Uj + Ĉ ′

jY + Y Ĉj

)
dW jξ + ξ′

m∑
i=1

(
Y Êi + Ê ′

iY
)
dŴ iξ. (3.5)

Integrating from t to T , and conditional on Ft we obtain (3.3).

Lemma 3.2 If in addition Ĥ ≥ δI for some constant δ > 0 and Q̂ ≥ 0, then the solution Y

to (3.1) satisfies

Y (t) ≥ δe−β(T−t)I ∀t ∈ [0, T ], a.s. (3.6)

where

β = ess sup
ω∈Ω,s≤T

{−2 inf
|v|=1

v′Â(s, ω)v, 0}. (3.7)

Proof. Let p ∈ Rn and ξ solve (3.2). Applying Itô’s formula to eβs|ξ|2 to obtain

d(eβs|ξ|2) = eβs

(
2ξ′Âξ +

k∑
j=1

|Ĉjξ|2 +
m∑
i=1

|Êiξ|2 + β|ξ|2
)
ds

+eβs

(
2

k∑
j=1

ξ′ĈjξdW
j + 2

m∑
i=1

ξ′ÊiξdŴ
i

)
.

Integrating over [t, T ] and taking conditional expectation on Ft we obtain

E
[
|ξT |2

∣∣Ft

]
≥ |p|2e−β(T−t).
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Finally, it follows from Lemma 3.1 that

p′Y (t)p ≥ E
[
ξ′T ĤξT

∣∣∣Ft

]
≥ δ|p|2e−β(T−t)

which implies (3.6).

4 Proof of Theorem 2.2

The remainder of the paper is devoted to the proof of Theorem 2.2.

To handle the positive definiteness constraint (2.2), we couple the BSDE (2.5) together with

another BSDE for X = K−1, and consider the resulting system of BSDEs without the explicit

constraint K > 0. This last constraint will be implied by the existence of solutions to this

system of BSDEs.

Therefore we next derive the BSDE for X = K−1 which can be obtained from the identities

XK = KX = I. In fact, by integrating by parts,

dX = −X(dK)X − ⟨dX, dK⟩X. (4.1)

In particular the martingale part of X is −XΛ̃XdW ; so ⟨dX, dK⟩ = −XΛ̃XΛ̃dt. Substituting

this equation into (4.1) to obtain

dX = −X(dK)X +XΛ̃XΛ̃Xdt . (4.2)

Using (2.5) we obtain a BSDE that X = K−1 must satisfy, that is

dX = −XΛ̃XdW +X
[
KÃ+ Ã′K + Q̃

]
Xdt

−X
[
KB − R̃ + Λ̃

]
X
[
B′K − R̃′ + Λ̃

]
Xdt+XΛ̃XΛ̃Xdt. (4.3)
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Setting Z = −XΛ̃X, and using the fact that KX = XK = I, we obtain its equation

dX = ZdW +
[
ÃX +XÃ′ −BXB′ +BZ + ZB′

]
dt−

[
ZR̃′X +XR̃Z

]
dt

+
[
XQ̃X +BXR̃′X +XR̃XB′ −XR̃XR̃′X

]
dt,

X(T ) = (R(T ) +H)−1.

(4.4)

Notice that all the terms involving Λ̃ have been canceled out thanks to the assumption that

the driving noise W is one dimensional; so (4.4) no longer contains Λ̃. This reveals another

significant feature of the SRE, that is, equation (4.4) for the inverse matrix X = K−1 is

itself closed, in the sense that it does not depend on K or Λ̃. Therefore we can solve (4.4)

independently without the prior knowledge that X is the inverse of K. Let us call (4.4) the

inverse equation associated with the SRE (2.1)–(2.2).

Therefore, if we are able to solve (4.4) to get (X,Z) with X > 0 on [0, T ], then (P,Λ), where

P = X−1−R and Λ = −X−1ZX−G, is a solution to (2.1). In particular, R+P ≡ K ≡ X−1 > 0

is satisfied automatically.

Now we return to the BSDE (2.5) for K and we wish to rewrite it in terms of (Z,X). There

are several ways to do this because of the relations XK = KX = I, and we will choose one

which will serve our propose in this paper. In (2.5) replace K−1 by X and replace XΛ̃ by −ZK

to obtain

dK = Λ̃dW −
[
KÃ+ Ã′K + Q̃

]
dt−

[
KB + Λ̃− R̃

]
XR̃′dt

+
[
KB + Λ̃− R̃

]
(XB′ − Z)Kdt,

K(T ) = R(T ) +H.

(4.5)

We consider (4.4) and (4.5) together as a single system of BSDEs, and ignore the fact that

X is the inverse matrix of K as well as the constraint K > 0. This system can be solved one by

one: we can solve (4.4) first to obtain (X,Z), and then solve (4.5) regarding (X,Z) as known

parameters. This is actually the approach we will follow.
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Under our assumption that R̃ = 0, our basic BSDEs (4.4) and (4.5) are significantly simpli-

fied. In fact

dX = ZdW +
[
ÃX +XÃ′ −BXB′ +BZ + ZB′

]
dt+XQ̃Xdt, X(T ) = (R(T )+H)−1, (4.6)

and

dK = Λ̃dW −
[
KÃ+ Ã′K + Q̃

]
dt+ (KB + Λ̃) (XB′ − Z)Kdt, K(T ) = R(T ) +H. (4.7)

The following lemma will be used in the proof of Lemma 4.4.

Lemma 4.1 Suppose (X,Z) is a solution to (4.6). Then (K, Λ̃) is a solution to (4.7) if and

only if XK = KX = I.

Proof. If K = X−1, then Itô’s formula yields

dK = −K(dX)K +KZKZKdt.

A straightforward computation, noting thatXK = KX = I, deduces that (K, Λ̃) ≡ (K,−KZK)

solves (4.7).

Conversely, suppose (K, Λ̃) is a solution to (4.7). Let Y = KX − I. Then applying Itô’s

formula to (4.6) and (4.7) we obtain

dY = K(dX) + (dK)X + ⟨dK, dX⟩

= UdW + UB′dt+ Y Ã′dt− Ã′Y dt+ Y Q̃Xdt

+(Λ̃XB′ −KBZ − Λ̃Z)Y dt

= UdW + UB′dt+ Y
(
Ã′ + Q̃X

)
dt

+
[
Λ̃XB′ − Ã′ − (KB + Λ̃)Z

]
Y dt,
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where U = KZ+Λ̃X. This is a linear BSDE with the terminal value Y (T ) = K(T )X(T )−I = 0.

The uniqueness of solution to the linear BSDE then yields Y = 0.

BSDE (4.6) is matrix valued with a quadratic term in the drift. If Q̃ > 0, then it is a special

case of a definite SRE whose solvability has been established by Bismut [1] and Peng [7]. In our

case where Q̃ ≥ 0, we use an approximation scheme, adapted from [7], to prove the existence

of (4.6).

Lemma 4.2 Let η be a bounded, n× n symmetric matrix-valued FT -measurable random vari-

able. Then there is a unique adapted bounded solution (X,Z) to the BSDE

dX = ZdW +
(
ÃX +XÃ′ −BXB′ +BZ + ZB′

)
dt+XQ̃Xdt,

X(T ) = η. (4.8)

If in addition η > 0, then X(t) > 0 for all t ∈ [0, T ].

Proof. To show the existence of the BSDE (4.8), we consider the following iteration:

X(0) ≡ η, and

dX(n+1) = Z(n+1)dW +
[
ÃX(n+1) +X(n+1)Ã′ −BX(n+1)B′ +BZ(n+1) + Z(n+1)B′

]
dt

+X(n+1)Q̃X(n)dt+X(n)Q̃X(n+1)dt−X(n)Q̃X(n)dt,

X(n+1)(T ) = η, n = 0, 1, 2, ...

For each n, the above equation is a linear BSDE, whose unique solution defines (X(n+1), Z(n+1)).

Since η > 0, according to Lemma 3.1, each X(n) ≥ 0.

Let Y (n) = X(n) −X(n+1) and U (n) = Z(n) − Z(n+1). Then the pair (Y (n), U (n)) satisfies the
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following stochastic equation:

dY (n) = U (n)dW +
[
ÃY (n) + Y (n)Ã′ −BY (n)B′ +BU (n) + U (n)B′

]
dt

+Y (n)Q̃X(n)dt+X(n)Q̃Y (n)dt

+
[
X(n)Q̃X(n−1) +X(n−1)Q̃X(n) −X(n)Q̃X(n) −X(n−1)Q̃X(n−1)

]
dt

Y (n)(T ) = 0.

Note that, since Q̃ ≥ 0, the symmetric matrix

X(n)Q̃X(n−1)+X(n−1)Q̃X(n)−X(n)Q̃X(n)−X(n−1)Q̃X(n−1) ≡ −(X(n)−X(n−1))Q̃(X(n)−X(n−1)) ≤ 0

for each n, hence Y (n) ≥ 0 (Lemma 3.1). It follows that X(n) is decreasing in n in matrix sense,

and therefore has a unique limit denoted by X. It is then routine to show that {Z(n) : n ≥ 1}

converges as well (in L2([0, T ]× Ω, dt⊗ dP)) to a limit process Z. Then (X,Z) solves (4.8).

Since Q̃ ≥ 0 and η ≥ 0 in matrix sense, X(t) ≥ 0 for all t ∈ [0, T ]. Furthermore, if Q̃ ≥ 0

and η > 0, then X(t) > 0 for any 0 ≤ t ≤ T . To see this, we apply the representation (3.3)

to k = 1, m = 0, Â = −Ã − 1
2
XQ̃ and Ĉ1 = −B. Fix t ≤ T and define ξs by solving the

corresponding SDE (3.2). If p ̸= 0, then, by the uniqueness of linear BSDE for (3.2) with

terminal condition ξT , we can conclude that ξT ̸= 0. As a result, ξ′THξT > 0, and therefore

p′X(t)p > 0 a.s..

Lemma 4.3 Under the same assumption as in Lemma 4.2, and if in addition η ≥ δI for some

δ > 0, then X−1 is bounded.

Proof. Since X is bounded, we conclude that

β0 = ess sup
ω∈Ω,s≤T

{− inf
|v|=1

⟨2Ãv +XQ̃v, v⟩, 0}

is finite. It then follows from Lemma 3.2 that X(t) ≥ δe−β0T I so that X−1 is bounded.
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Lemma 4.4 Let η = (R(T ) +H)−1 ≥ δI in Lemma 4.2 and (X,Z) be the corresponding

solution. Then P = X−1 −R solves the SRE (2.1)–(2.2).

Proof. Let K = X−1 which have been proved to be a bounded matrix valued semimartin-

gale. Let Λ̃ = −KZK. Since KX = XK = I, it follows from Lemma 4.1 that (K, Λ̃) satisfies

(4.5). Therefore (P,Λ), where P = X−1 − R and Λ = Λ̃ − G, in turn solves (2.1). Moreover,

K = X−1 > 0, namely, the constraint (2.2) is satisfied.

The uniqueness for SRE is well known. The proof of Theorem 2.2 is complete.

5 Discussions and Examples

In this section we discuss about the assumptions of Theorem 2.2 and give examples for illus-

tration.

First of all, if R ≡ 0, then condition (2.8) holds automatically, and (2.9) is equivalent to

Q ≥ 0. In addition, assumption (ii) in Theorem 2.2 boils down to H > 0. (The condition

H−1 ≥ δI is implied by H > 0 and the fact that H is bounded.) In this case, our result

improves Theorem 5.2 in [4], since here we do not need to assume C = 0 and H−1 is bounded.

If R is a constant yet indefinite matrix, and B = C = 0, then again (2.8) is satisfied, and

(2.9) reduces to Q − RA − A′R ≥ 0. In this case we recover Theorem 5.3 of [4]. However,

from Theorem 2.2 we immediately realize that the assumption B = C = 0 is far from being

essential. Indeed, in the case when R,B and C are non-random matrices, the essential condition

is RB + C ′R = 0, which can be satisfied easily by infinitely many non-zero matrices B and C

and indefinite matrices R. In this case, the condition Q−RA−A′R ≥ 0 should be replaced by

Q− Ṙ+C ′RC +R (BC − A)+ (C ′B′ − A′)R ≥ 0, where Ṙ denotes the derivative of R, which

is zero if R is a constant matrix.

As a matter of fact, we can “generate” many generally indefinite, adapted processes R

satisfying condition (2.8). To see this, let S be the solution of the following matrix-valued,
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sample-wise ODE

dS =
[
eC

′WFeBW − C ′SB − (C ′2)S − SB2
]
dt

with any given initial state, where F is any given adapted process so that eC
′WFeBW is inte-

grable over t ∈ [0, T ] a.s.. Define R = e−C′WSe−BW . Then Itô’s formula yields that R satisfies

(2.10), namely, (2.8) holds.

If condition (2.8) does not hold (i.e. R̃ ̸= 0), then, we will need to study the general inverse

equation, (4.4). This is a very interesting BSDE, since it is matrix-valued involving a cubic

term of X. In general, its global existence is not guaranteed. For example, suppose that R̃ = I,

Ã = 0, B = 0, and that the terminal and Q are non-random. Then (4.4) becomes

dX =
[
XQ̃X −XXX

]
dt

whose solution may explode in a finite time (and thus the corresponding SRE can not have

a global solution). An interesting and challenging open problem is to identify the “weakest”

condition on R̃ so that the cubic BSDE (4.4) admits a solution.

On the other hand, the condition (R(T ) +H)−1 ≥ δI for some δ > 0 is more technical

than essential. One can weaken this condition at the cost of involving more technicalities

in our analysis. However, the main goal of this note is to introduce and highlight the main

approach, that is to use a system of BSDEs to substitute the original mix of a BSDE and

an algebraic constraint, to solving the indefinite SRE. Therefore, we have preferred not to let

undue technicalities distract the main idea.

Finally, let us remark that the proof of Lemma 4.2, along with Lemma 4.4, has indeed

suggested a numerical scheme to solve the indefinite SRE.
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