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Abstract

We study Arrow–Debreu equilibria for a one-period-two-date pure exchange

economy with rank-dependent utility agents having heterogeneous probability

weighting and outcome utility functions. In particular, we allow the econ-

omy to have a mix of expected utility agents and rank-dependent utility ones,

with non-convex probability weighting functions. The standard approach for

convex economy equilibria fails due to the incompatibility with second-order

stochastic dominance. The representative agent approach devised in Xia and

Zhou (2016) does not work either due to the heterogeneity of the weighting

functions. We overcome these difficulties by considering the comonotone allo-

cations, on which the rank-dependent utilities become concave. Accordingly,

we introduce the notion of comonotone Pareto optima, and derive their char-

acterizing conditions. With the aid of the auxiliary problem of price equilibria

with transfers, we provide a sufficient condition in terms of the model primi-

tives under which an Arrow–Debreu equilibrium exists, along with the explicit

expression of the state-price density in equilibrium. This new, general suf-

ficient condition distinguishes the paper from previous related studies with

homogeneous and/or convex probability weightings.
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1 Introduction

Rank-dependent utility theory (RDUT), proposed by Quiggin (1982/1993) and devel-

oped by many economists [among others Schmeidler (1989) and Abdellaoui (2002)],

is one of the most notable theories on preference and choice that depart from the

classical expected utility theory (EUT). RDUT has two components: a concave out-

come utility function as in EUT, and a probability weighting function that transforms

objective probabilities. The latter captures individuals’ strong preference for improb-

able large gains and dislike for improbable large losses, in the form of overweighing

both tails of the distribution of the future payoff. This theory has successfully ex-

plained many phenomena and paradoxes that are puzzling within the framework

of EUT, such as the Allais paradox, the simultaneous risk-averse and risk-seeking

behavior, and poor diversification and low stock market participation of households.1

Existence of Arrow-Debreu equilibrium for expected utilities was established by

Arrow and Debreu (1954); see also, among many others, Werner (1987), Dana (1993a,

1993b), and Aase (1993, 2010) for more development. Existing literature on non-

EUT equilibria has almost exclusively focused on utilities that are still concave and

hence compatible with the second-order stochastic dominance. This concavity as-

sumption enables one to apply the standard argument as in the EUT case to establish

equilibria. Specifically, by Lansberger and Meilijson (1994) and its extensions, any

Pareto optimal allocation is comonotone and, moreover, Pareto optima can be char-

acterized as maximizing a weighted sum of utilities. As a result, Pareto optima can

be found in the class of comonotone allocations in a more tractable way. Examples

include Carlier and Dana (2008) for a two-agent model with the so-called rank-linear

utilities that generalize rank-dependent utilities but are still concave, Dana (2011)

for a multi-agent economy allowing short-selling with concave law-invariant utilities,

Tsanakas and Christofides (2006) for rank-dependent utilities with convex proba-

bility weighting functions, and Boonen (2015, 2017) for expected utilities and dual

utilities of Yaari (1987) with convex probability weighting functions.

Xia and Zhou (2016) study full Arrow-Debreu equilibria and pricing for a single-

period RDUT economy, without assuming any shape of the probability weighting

1The other important non-EUT theory is Kahneman and Tversky’s cumulative prospect theory

(CPT), which also includes probability weighting as a key component.
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function. Thus, their utilities are generally non concave and do not necessarily pre-

serve the second-order stochastic dominance. Under the homogeneity of the agents’

weighting functions (albeit allowing for heterogeneous outcome utilities), they pro-

vide sufficient conditions under which the Arrow-Debreu equilibrium uniquely exists,

and derive the state-price density explicitly.

Xia and Zhou (2016) further show that, in equilibrium, an RDUT economy is

equivalent to an EUT one where the two components of the rank-dependent utility,

namely the outcome utility function and the probability weighting function, are

merged into a revised outcome utility function for a representative agent. They derive

the explicit form of the Arrow-Pratt relative risk aversion index of the representative

agent in terms of the original outcome utility and probability weighting. Based on

this form, they further derive a consumption-based CAPM, which shows that the

excess return of a security must not only compensate for the risk of mean-preserving

spread, but also account for the “hope and fear” arising from the exaggeration of

tiny probabilities of extremely good and bad states of nature. This, as discussed

in Xia and Zhou (2016), may shed some light on resolving the equity premium and

risk-free rate puzzles.

There is, however, a major assumption in Xia and Zhou (2016) that the agents’

probability weighting is homogeneous. The main approach in that paper depends

crucially on the explicit representation of an (RDUT) representative agent, which

can be provided only under the homogeneity of the weighting function. Nevertheless,

empirical studies (Bruhin, Fehr-Duda and Epper 2010, Conte, Hey and Moffatt 2011)

show that there is a mix of EUT type and RDUT type of risk-taking in a population,

and within the same type of RDUT agents the probability weighting functions are

generally different.

The present paper aims to remove the homogeneity assumption of probability

weighting while still allowing for any shape of the weighting function in the study

of Arrow-Debreu equilibria.2 In particular, the economy under consideration in this

paper allows for the existence of both EUT and RDUT agents.

Under heterogeneity of the weighting function, we have to resort to a different

approach than that of the representative agent. In a classical equilibrium framework,

the monotonicity of the preference implies that equilibrium allocations are Pareto

optimal. If the utilities are concave, which is the case in the classical EUT setting,

the Pareto optima can be characterized as solutions of maximizing a weighted sum

of utilities. The notion of “price equilibria with transfers” is then introduced to

approach the general equilibria; see Mas-Colell et al (1995).

2Permitting an arbitrary shape of the weighting function—in particular, the so-called inverse-S

shaped one—is motivated by economics reasons rather than mathematical generality.
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However, this classical approach for convex economies does not apply to RDUT

directly, as the rank-dependent utility is not concave in future consumption due to

the probability weighting. In this case, unlike the case of concave utilities that are

compatible with the second-order stochastic dominance, a Pareto optimal alloca-

tion is not necessarily comonotone. However, as it turns out, when the equilibrium

state-price density is atomless, the equilibrium future consumptions are increasing

functions3 of the aggregate future endowment (see Lemma 3.2 below); hence (by

Landsberger and Meilijson (1994), Dhaene et al (2002)) must be comonotone. Con-

sequently, we need only consider the comonotone allocations when studying Arrow-

Debreu equilibria. Restricted to comonotone allocations, the rank-dependent utility

becomes concave.

Based on this idea, we introduce the new notion of “comonotone Pareto optima,”

and reformulate the comonotone Parato optimal problem as a convexly weighted

utility optimization problem in terms of quantiles of the future consumptions. This

enables us to follow the classical approach to consider price equilibria with transfers,

and then to give a complete characterization of a comonotone Pareto optimum to

be supported by an atomless state-price density. This characterization is equivalent

to the strict monotonicity of the state-price density with respect to the aggregate

future endowment, a condition that is nonetheless difficult to verify. In this paper,

we manage to find a sufficient condition in terms of the primitives of the model

under which the aforementioned characterizing condition holds true, along with the

explicit expression of the state-price density in equilibrium. This condition reduces to

the familiar sufficient conditions when the probability weightings are homogeneous

and/or convex; yet in the general case it distinguishes this paper from previous

related studies.

The remainder of this paper is organized as follows. In Section 2, we define the

economy under consideration and its Arrow–Debreu equilibria. In Section 3, we

introduce the notion of comonotone Pareto optima and establish the existence and

characterization of the corresponding weighted optimization problem. Section 4 is

devoted to the problem of price equilibria with transfers, where we derive necessary

and sufficient conditions for a comonotone Pareto optimum to be supported by an

atomless state-price density, which is given in explicit form. In Section 5 we discuss

a key sufficient condition via several concrete examples. Finally in Section 6 we

establish the existence of Arrow–Debreu equilibria and suggest a numerical algorithm

for computing the state-price density and equilibrium allocation. Some technical

preliminaries and proofs are placed in Appendices.

3Throughout the paper “increasing” means “nondecreasing” and “decreasing” means “nonin-

creasing.”
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2 The Economy

We consider a one-period-two-date pure exchange economy under uncertainty with

a single perishable consumption good. Agents choose their consumption for today,

say date t = 0, and choose contingent claims on consumption for tomorrow, say

date t = 1. Without loss of generality, the single consumption good is used as the

numeraire throughout the paper. The set of possible states of nature at date 1 is Ω

and the set of events at date 1 is a σ-algebra F of subsets of Ω. There are a finite

number of agents indexed by i = 1, . . . , I. Each agent i has an endowment (e0i, ẽ1i),

where e0i is number of units of the good today and the F -measurable random variable

ẽ1i is the number of units of the good tomorrow. The aggregate endowment is

(e0, ẽ1) ,

(
I∑
i=1

e0i,
I∑
i=1

ẽ1i

)
.

The consumption plan of an agent i is a pair (c0i, c̃1i), where c0i is the number of

units of the good consumed today and the F -measurable random variable c̃1i is the

number of units of the good to be consumed tomorrow. The preference of each agent

i over consumption plans (c0i, c̃0i) is represented by

Vi(c0i, c̃1i) , u0i(c0i) + βi

∫
u1i(c̃1i) d(wi ◦P),

where:

• P is the belief about the states of the nature;

• u0i is the utility function for consumption today;

• βi is the time discount factor representing the time impatience for consumption;

•
∫
u1i(c̃1i) d(wi ◦ P) ,

∫
u1i(c) dw̄i(Fc̃1i(c)) is the rank-dependent utility with

outcome utility function u1i for consumption c̃1i tomorrow and probability

weighting function wi.
4

In the above (and hereafter) Fx̃ denotes the cumulative distribution function (CDF)

of a random variable x̃, and w̄i denotes the dual of a probability weighting function

wi given by

w̄i(p) , 1− wi(1− p) for all p ∈ [0, 1].

We make the following standing assumption on the economy

4 If wi is continuously differentiable, then
∫
u1i(c̃1i) d(wi ◦P) =

∫
u1i(c)w

′
i(1−Fc̃1i(c)) dFc̃1i(c).

Hence, we have here an additional term w′(1−Fc̃1i(c)) serving as the weight on every consumption

level c when calculating the rank-dependent utility. The weight depends on the rank 1− Fc̃1i(c) of

level c over all possible realizations of c̃1i.
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Assumption 2.1.

• The agents have homogeneous beliefs P about the states of the nature. The

probability space (Ω,F ,P) admits no atom.

• For every i, the endowments satisfy that e0i ≥ 0, P(ẽ1i ≥ 0) = 1, and e0i +

P(ẽ1i > 0) > 0. The CDF Fẽ1 of ẽ1 is continuous and P(ẽ1 > 0) = 1.

Moreover, e0 > 0.

• For every i, the functions u0i, u1i : [0,∞) → R are strictly increasing, strictly

concave, continuously differentiable on (0,∞), and satisfy the Inada condition:

u′0i(0+) = u′1i(0+) =∞, u′0i(∞) = u′1i(∞) = 0. Moreover, u1i(0) = 0.

• For every i, the probability weighting function wi : [0, 1] → [0, 1] is strictly

increasing and continuous on [0, 1] and satisfies wi(0) = 0, wi(1) = 1.

• For every i, the discount factor βi ∈ (0, 1].

Under Assumption 2.1, for every i, both wi and w̄i are strictly increasing and

continuous, and so are their inverse functions w−1
i and w̄−1

i . Moreover,

w̄−1
i (p) = 1− w−1

i (p) for all p ∈ [0, 1].

Definition 2.2 (Feasible consumption plans). For every i, a consumption plan

(c0i, c̃1i) is called feasible if c0i ≥ 0 and P(c̃1i ≥ 0) = 1. The set of all feasible

consumption plans is denoted by C .

The above economy is denoted by

E ,
{

(Ω,F ,P), (e0i, ẽ1i)
I
i=1, C ,

(
Vi(·, ·)

)I
i=1

}
.

Definition 2.3 (State-price densities). A state-price density5 is an F-measurable,

atomless random variable ρ̃ such that P(ρ̃ > 0) = 1, E[ρ̃] <∞ and E[ρ̃ẽ1] <∞.

The above definition is standard; see e.g. p. 160 of Föllmer and Schied (2011),

except that as a general definition the atomless condition is not required there.

Definition 2.4 (Arrow-Debreu equilibria). An Arrow-Debreu equilibrium of the

economy E is a collection {
ρ̃, (c∗0i, c̃

∗
1i)

I
i=1

}
consisting of a state-price density ρ̃ and a collection (c∗0i, c̃

∗
1i)

I
i=1 of feasible consump-

tion plans that satisfies the following conditions:

5Also sometimes termed “pricing kernel” or “stochastic discount factor (SDF)” in the literature.
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(i) Individual rationality: For every i, (c∗0i, c̃
∗
1i) is an optimal consumption plan

of agent i subject to her budget constraint; that is, (c∗0i, c̃
∗
1i) solves the following

problem

Maximize Vi(c0i, c̃1i)

subject to

{
(c0i, c̃1i) ∈ C ,

c0i + E[ρ̃c̃1i] ≤ e0i + E[ρ̃ẽ1i].

(2.1)

(ii) Market clearing:
∑I

i=1 c
∗
0i = e0 and

∑I
i=1 c̃

∗
1i = ẽ1.

3 Comonotone Pareto Optima

Definition 3.1 (Feasible allocations). A feasible allocation (c0i, c̃1i)
I
i=1 consists of a

profile of feasible consumption plans (c0i, c̃1i) such that
∑I

i=1 c0i = e0 and
∑I

i=1 c̃1i =

ẽ1.6 The set of all feasible allocations is denoted by A .

In an Arrow-Debreu equilibrium
{
ρ̃, (c∗0i, c̃

∗
1i)

I
i=1

}
of the economy, the equilibrium

allocation (c∗0i, c̃
∗
1i)

I
i=1 must be Pareto optimal over A , if the preferences of all the

agents are strictly monotone (see, e.g., Mas-Colell et al. (1995) Section 16.C).

If the functionals Vi(c0i, c̃1i) were concave in (c0i, c̃1i), then a Pareto optimal

allocation would in turn solve the following optimization problem

Maximize
∑I

i=1 θiVi(c0i, c̃1i)

subject to (c0i, c̃1i)
I
i=1 ∈ A ,

(3.1)

for some θ , (θ1, . . . , θI) ∈ ∆, where

∆ ,

{
(θ1, . . . , θI) : θi ≥ 0 for all i and

I∑
i=1

θi = 1

}
.

The Arrow-Debreu equilibrium thus could be identified from the set of all Pareto

optimal allocations.

Unfortunately, due to the presence of probability weighting functions wi, our

functionals Vi(c0i, c̃1i) are generally not concave in (c0i, c̃1i). So a Pareto optimal

allocation does not necessarily solve the optimization problem (3.1).

6It usually requires in the literature that the total consumption not exceed the total endowment,

namely,
∑I

i=1 c0i ≤ e0 and
∑I

i=1 c̃1i ≤ ẽ1, in defining the feasibility of allocations. By introducing

a dummy agent we can require without loss of generality that the total consumption equals the

total endowment in a feasible allocation.
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However, we can show that when the equilibrium state-price density is atom-

less, the equilibrium future consumptions are necessarily increasing functions of the

aggregate future endowment. To make it precise, let us define

Ac ,

(c0i, c̃1i)
I
i=1 ∈ A

∣∣∣∣∣∣ c̃1i = fi(ẽ1) for some increasing and

continuous function fi for all i = 1, . . . , I

 .

Also, hereafter, Qx̃ (resp. Q−x̃ ) denotes the upper (resp. lower) quantile function of

a random variable x̃.7

Lemma 3.2. Under Assumption 2.1, let
{
ρ̃, (c∗0i, c̃

∗
1i)

I
i=1

}
be an Arrow-Debreu equi-

librium. Then (c∗0i, c̃
∗
1i)

I
i=1 ∈ Ac.

Proof. We use an argument similar to the one in Theorem 5.2 of Xia and Zhou (2016)

to prove this lemma. It has been established in Jin and Zhou (2008) that, when the

state-price density is atomless, an individual agent’s optimal future consumption is

always a decreasing function of the state-price density. As a result, the aggregate

future endowment ẽ1, being the sum of c̃∗1i, is also a decreasing function of ρ̃. Thus

Fẽ1(ẽ1) = g(ρ̃) a.s.

for a decreasing function g. Without loss of generality, we can assume that g is

right-continuous because ρ̃ is atomless. Considering the quantile functions of both

sides in the above, it follows from Assumption 2.1 and the continuity of Fẽ1 that

p = g(Qρ̃(1− p)) ∀p ∈ [0, 1],

implying

1− Fρ̃(ρ̃) = g(Qρ̃(Fρ̃(ρ̃))) = g(ρ̃) = Fẽ1(ẽ1) a.s.

Consequently,

ρ̃ ≡ Qρ̃(Fρ̃(ρ̃)) = Qρ̃(1− Fẽ1(ẽ1)) a.s.

Therefore, ρ̃ is a decreasing function of ẽ1. Recalling that c̃∗1i are decreasing functions

of ρ̃, we conclude that c̃∗1i are increasing functions of ẽ1. Finally, because the sum of

c̃∗1i ≥ 0 is ẽ1, all of c̃∗1i must be continuous functions of ẽ1. �

By p. 99 of Landsberger and Meilijson (1994) and Theorem 2 of Dhaene et al

(2002), Ac is nothing but the set of comonotone allocations. Hence, Lemma 3.2

suggests that it suffices to consider only the comonotone allocations (c0i, c̃1i)
I
i=1 ∈ Ac

when investigating Arrow-Debreu equilibrium.

To summarize, an equilibrium allocation (c∗0i, c̃
∗
1i)

I
i=1 must be comonotone Pareto

optimal in the sense of the following definition.

7See Appendix A.3 of Föllmer and Schied (2011) for definitions and properties of upper/lower

quantile functions.
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Definition 3.3 (Comonotone Pareto optimality). An allocation (c∗0i, c̃
∗
1i)

I
i=1 ∈ Ac is

called comonotone Pareto optimal if there is no (c0i, c̃1i)
I
i=1 ∈ Ac such that{

Vi(c0i, c̃1i) ≥ Vi(c
∗
0i, c̃

∗
1i) for all i,

Vi(c0i, c̃1i) > Vi(c
∗
0i, c̃

∗
1i) for some i.

Let G denote the set of upper quantile functions of nonnegative random variables,

that is,

G , {G : [0, 1)→ [0,∞) nondecreasing and right-continuous}.

Moreover, let

H ,

{
(c0i, Gi)

I
i=1 : c0i ≥ 0 and Gi ∈ G for all i,

I∑
i=1

c0i = e0,
I∑
i=1

Gi = Qẽ1

}
.

The set Ac can be characterized in terms of (upper) quantile functions by the

following lemma, which is straightforward to establish.

Lemma 3.4. Under Assumption 2.1, we have

Ac =
{

(c0i, Gi(Fẽ1(ẽ1))Ii=1 : (c0i, Gi)
I
i=1 ∈H

}
.

If Gi is the upper quantile of c̃1i, then it is not hard to check (see Xia and Zhou

(2016)) that ∫
u1i(c̃1i) d(wi ◦P) =

∫
(0,1)

u1i(Gi(p)) dw̄i(p).

Moreover,

Ui(c0i, Gi) , u0i(c0i) + βi

∫
(0,1)

u1i(Gi(p)) dw̄i(p) = Vi(c0i, c̃1i)

is concave in (c0i, Gi).

Definition 3.5. A (c∗0i, G
∗
i )
I
i=1 ∈ H is called Pareto optimal over H if there is no

(c0i, Gi)
I
i=1 ∈H such that{

Ui(c0i, Gi) ≥ Ui(c
∗
0i, G

∗
i ) for all i,

Ui(c0i, Gi) > Ui(c
∗
0i, G

∗
i ) for some i.

For any allocation (c∗0i, c̃
∗
1i)

I
i=1 ∈ Ac, let G∗i = Qc̃∗1i

for all i. Then it is obvious that

(c∗0i, c̃
∗
1i)

I
i=1 is comonotone Pareto optimal if and only if (c∗0i, G

∗
i )
I
i=1 ∈ H is Pareto
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optimal over H . Moreover, in this case, it follows from the concavity of functional

Ui(c0i, Gi) that (c∗0i, G
∗
i )
I
i=1 must solve the following problem

Maximize
∑I

i=1 θiUi(c0i, Gi)

subject to (c0i, Gi)
I
i=1 ∈H ,

(3.2)

for some θ , (θ1, . . . , θI) ∈ ∆.

Therefore, like in the classical Arrow-Debreu equilibrium literature with mono-

tonicity and concavity of preferences, we can derive an equilibrium from solutions of

Problem (3.2). This problem, in turn, can be divided into two separated problems.

The first one is

Maximize
∑I

i=1 θiu0i(c0i)

subject to
∑I

i=1 c0i = e0 and c0i ≥ 0 for all i,
(3.3)

and the second one is

Maximize
∑I

i=1

∫
(0,1)

θiβiu1i(Gi(p)) dw̄i(p)

subject to (Gi)
I
i=1 ∈ G ,

(3.4)

where

G ,

{
(Gi)

I
i=1 : Gi ∈ G for all i and

I∑
i=1

Gi = Qẽ1

}
.

Obviously, the solution (c∗0i)
I
i=1 of problem (3.3) is given by

c∗0i = (u′0i)
−1

(
µθ
θi

)
(i = 1, . . . , I), (3.5)

where µθ ∈ (0,∞) is uniquely determined by the following equation

I∑
i=1

(u′0i)
−1

(
µθ
θi

)
= e0. (3.6)

In the next part of this section, we investigate the solution of optimization prob-

lem (3.4). First of all, we introduce the following assumption

Assumption 3.6. In addition to Assumption 2.1, for every i = 1, . . . , I, the agent

i’s rank-dependent utility for tomorrow’s total endowment ẽ1 is finite, namely,∫
(0,1)

u1i(Qẽ1(p)) dw̄i(p) <∞. (3.7)
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Notation. For a function G ∈ G, we need to consider the Lebesgue-Stieltjes measure

dG on [0, 1). The measure of point 0 is set to be G(0) by convention. For any Borel

function f : [0, 1) → R, the (Lebesgue-Stieltjes) integration
∫

[0,1)
f(p) dG(p) is then

given by ∫
[0,1)

f(p) dG(p) , f(0)G(0) +

∫
(0,1)

f(p) dG(p).

For every (Gi)
I
i=1 ∈ G , it is easy to see that the measure dGi (i = 1, . . . , I) is

absolutely continuous w.r.t. the measure dQẽ1 . Let gi denotes the density of dGi

w.r.t. dQẽ1 , that is,

gi =
dGi

dQẽ1

for all i = 1, . . . , I.

Then
∑I

i=1 gi(p) = 1 and gi(p) ≥ 0 (i = 1, . . . , I) for dQẽ1-almost-every p ∈ [0, 1).

Thus each gi lies in the closed unit ball in L∞([0, 1), dQẽ1).

Lemma 3.7. Under Assumption 3.6, the optimization problem (3.4) admits a unique

solution for every θ ∈ ∆.

Proof. The uniqueness of the solution obviously follows from the strict concavity

of u1i (i = 1, . . . , I). Now we show the existence. Let v(θ) denote the value of

optimization problem (3.4), that is,

v(θ) , sup
(Gi)Ii=1∈G

I∑
i=1

θiβi

∫
(0,1)

u1i(Gi(p)) dw̄i(p).

Then by (3.7),

v(θ) ≤
I∑
i=1

θiβi

∫
(0,1)

u1i(Qẽ1(p)) dw̄i(p) <∞.

Hence, there exists a sequence {(Gn
i )Ii=1, n ≥ 1} ⊆ G such that

I∑
i=1

θiβi

∫
(0,1)

u1i(G
n
i (p)) dw̄i(p)→ v(θ)

as n→∞. Let gni denote the densities of dGn
i w.r.t. dQẽ1 , that is,

gni =
dGn

i

dQẽ1

.

Each gni lies in the closed unit ball of L∞([0, 1), dQẽ1) for all n ≥ 1 and for all

i = 1, . . . , I. Moreover, it is well known that the closed unit ball is sequentially

compact under the weak* topology σ (L∞([0, 1), dQẽ1), L
1([0, 1), dQẽ1)). Thus there

exists a subsequence of {(gni )Ii=1, n ≥ 1}, which is still denoted by {(gni )Ii=1, n ≥ 1}
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for notational simplicity, such that the subsequence {gni , n ≥ 1} is weak* convergent

to some g∞i ∈ L∞([0, 1), dQẽ1) for every i = 1, . . . , I. Let G∞i be given by

G∞i (p) =

∫
[0,p]

g∞i (q) dQẽ1(q) for all p ∈ [0, 1).

Then by the weak* convergence of {gni , n ≥ 1}, we know

Gn
i (p) =

∫
[0,p]

gni (q) dQẽ1(q)→
∫

[0,p]

g∞i (q) dQẽ1(q) = G∞i (p) for all p ∈ [0, 1)

as n → ∞. It is easy to check that (G∞i )Ii=1 ∈ G . Moreover, by (3.7) and the

dominated convergence theorem, we have

I∑
i=1

θiβi

∫
(0,1)

u1i(G
n
i (p)) dw̄i(p)→

I∑
i=1

θiβi

∫
(0,1)

u1i(G
∞
i (p)) dw̄i(p)

as n → ∞, which implies that v(θ) =
∑I

i=1 θiβi
∫

(0,1)
u1i(G

∞
i (p)) dw̄i(p), that is,

(G∞i )Ii=1 solves problem (3.4). �

Next we are going to derive characterizations of the solution to (3.4) that will

eventually lead to an expression of the pricing kernel. First, the following technical

result is in order.

Lemma 3.8. Under Assumption 3.6, given G ∈ G, if G(p) ≤ Qẽ1(p) for all p ∈
[0, 1), then ∫

(0,1)

u′1i(G(p))G(p) dw̄i(p) <∞ for all i = 1, · · · , I.

Proof. Let G ∈ G with G(p) ≤ Qẽ1(p) for all p. By the concavity of u1i and the

fact that u1i(0) = 0, we have

u′1i(x)x ≤ u1i(x) for all x > 0. (3.8)

Then by (3.7), we have∫
(0,1)

u′1i(G(p))G(p) dw̄i(p) ≤
∫

(0,1)

u1i(G(p)) dw̄i(p)

≤
∫

(0,1)

u1i(Qẽ1(p)) dw̄i(p)

< ∞

for all i. �

12



If (G∗i )
I
i=1 solves problem (3.4) and θj = 0 for an agent j, then it is obvious that

G∗j(p) ≡ 0 and therefore agent j’s consumption for tomorrow is zero. We will thus

focus on those agents i ∈ Iθ, where

Iθ , {i : θi > 0, i = 1, . . . , I}.

The solution of problem (3.4) can be characterized by the following lemma, which

can be proved, in view of Lemma 3.8, similarly to the proof of Proposition 3.2 in Xia

and Zhou (2016).

Proposition 3.9. Under Assumption 3.6, let (G∗i )
I
i=1 ∈ G . Then∑

i∈Iθ

∫
(0,1)

θiβiu
′
1i(G

∗
i (p))G

∗
i (p) dw̄i(p) <∞ (3.9)

and the following statements are equivalent:

(i) (G∗i )
I
i=1 solves problem (3.4);

(ii) For all (Gi)
I
i=1 ∈ G ,∑

i∈Iθ

∫
(0,1)

θiβiu
′
1i(G

∗
i (p))Gi(p) dw̄i(p) ≤

∑
i∈Iθ

∫
(0,1)

θiβiu
′
1i(G

∗
i (p))G

∗
i (p) dw̄i(p).

(3.10)

Lemma 3.10. Under Assumption 3.6, if (G∗i )
I
i=1 ∈ G solves problem (3.4) then

G∗j(p) > 0 for all j ∈ Iθ and for all p ∈ (0, 1).

Proof. It is easy to see that Qẽ1 is strictly increasing as Fẽ1 is continuous. Thus

Qẽ1(p) > 0 for all p ∈ (0, 1). Now assume (G∗i )
I
i=1 ∈ G solves problem (3.4) and

j ∈ Iθ. Consider a (Gi)
I
i=1 ∈ G which is defined as follows

Gi =

{
0, if i /∈ Iθ,
Qẽ1
|Iθ|

, if i ∈ Iθ,

where |Iθ| denotes the cardinality of the set Iθ. By Proposition 3.9, we have∑
i∈Iθ

∫
(0,1)

θiβiu
′
1i(G

∗
i (p))

Qẽ1(p)

|Iθ|
dw̄i(p) <∞.
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Then u′1i(G
∗
i (p)) < ∞ for all p ∈ (0, 1) and for all i ∈ Iθ, by the fact that w̄i is

strictly increasing and u′1i(G
∗(·)) is decreasing. Thus, G∗i (p) > 0 for all p ∈ (0, 1)

and for all i ∈ Iθ, in view of the Inada condition on u1i. �

Based on Lemma 3.10, to find the solution of problem (3.4), we need to consider

only those (G∗i )
I
i=1 ∈ Gθ, where

Gθ ,
{

(Gi)
I
i=1 ∈ G : Gi ≡ 0 for i /∈ Iθ, and Gi(p) > 0 for i ∈ Iθ and p ∈ (0, 1)

}
.

Given a (G∗i )
I
i=1 ∈ Gθ, define

M∗
i (q) , −

∫
(q,1)

θiβiu
′
1i(G

∗
i (p)) dw̄i(p), q ∈ [0, 1), i ∈ Iθ. (3.11)

The function −M∗
i is the marginal utility of agent i in terms of the quantile

function. To see this, consider a perturbed quantile G∗i + ε∆ where ∆(p) = 1p≥q
with the parameter q ∈ [0, 1]. Then the marginal utility is

d

dε

∫ 1

0

θiβiu1i(G
∗
i (p) + ε1p≥q)dw̄i(p)

∣∣∣∣
ε=0

,

whose value is exactly −M∗
i (q).

Obviously, for any i ∈ Iθ, M∗
i (q) ∈ (−∞, 0) for all q ∈ (0, 1) and M∗

i is continuous

and strictly increasing on (0, 1). We now extend the definition of M∗
i by setting

M∗
i (1) , lim

q↑1
M∗

i (q) = 0. (3.12)

With this extension, M∗
i is continuous on [0, 1] when M∗

i (0) > −∞ or extended

continuous otherwise.8 Furthermore, M∗
i is strictly increasing on [0, 1]. Finally,

define

M∗(q) , min
i∈Iθ

M∗
i (q) for all q ∈ [0, 1]. (3.13)

It turns out that the functions M∗
i and M∗ play a critical role in deriving the equi-

libria and the pricing kernels. Important properties of these functions are presented

in Appendix A.

4 Price Equilibria with Transfers

In this section we investigate the relationship between Pareto optima and price equi-

libria with transfers, which generalize the notion of Arrow-Debreu equilibria.9 The

8Function M∗i is called extended continuous at point p = 0 if M∗i (0) = −∞ = limp↓0M
∗
i (p).

9The notion of price equilibria with transfers is well known in microeconomic theory; see, e.g.,

Mas-Colell et al. (1995).
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concept of Arrow-Debreu equilibrium applies to the case of a private ownership econ-

omy, in which an agent’s wealth is derived from the ownership of endowments. The

more general notion of a price equilibrium with transfers allows for an arbitrary dis-

tribution of wealth among agents. The results on equilibria with transfers, while

interesting in their own rights, will help us establish the existence of Arrow-Debreu

equilibria.

Definition 4.1 (Price equilibria with transfers). A price equilibrium with transfers

of the economy E is a collection {
ρ̃, (c∗0i, c̃

∗
1i)

I
i=1

}
consisting of a state-price density ρ̃ and a collection (c∗0i, c̃

∗
1i)

I
i=1 of feasible consump-

tion plans that satisfy the following conditions:

(i) For every i, the feasible consumption plan (c∗0i, c̃
∗
1i) maximizes the preference of

agent i in the budget set

{(c0i, c̃1i) ∈ C : c0i + E[ρ̃c̃1i] ≤ c∗0i + E[ρ̃c̃∗1i]} ;

that is

Vi(c
∗
0i, c̃

∗
1i) = max

(c0i,c̃1i)∈C
Vi(c0i, c̃1i)

subject to c0i + E[ρ̃c̃1i] ≤ c∗0i + E[ρ̃c̃∗1i].
(4.1)

(ii)
∑I

i=1 c
∗
0i = e0 and

∑I
i=1 c̃

∗
1i = ẽ1.

Clearly, an Arrow-Debreu equilibrium is also an equilibrium with transfers, but

not vice versa. On the other hand, it is well known that if
{
ρ̃, (c∗0i, c̃

∗
1i)

I
i=1

}
is a price

equilibrium with transfers, then (c∗0i, c̃
∗
1i)

I
i=1 is Pareto optimal over A ; see, e.g., Mas-

Colell at al. (1995) Section 16.C. Now we consider a somewhat inverse question: what

is the condition under which a Pareto optimal (c∗0i, G
∗
i )
I
i=1 ∈H can be supported by

an atomless state-price density in the sense of the following definition?

Definition 4.2 (Supporting state-price densities). A (c∗0i, G
∗
i )
I
i=1 ∈H is supported

by a state-price density ρ̃ if there exist c̃∗1i ( i = 1, . . . , I) that satisfy the following

conditions:

(i) For every i = 1, . . . , I, G∗i is the upper quantile function of c̃∗1i;

(ii)
{
ρ̃, (c∗0i, c̃

∗
1i)

I
i=1

}
is a price equilibrium with transfers.

15



The following gives a complete characterization for a comonotone Pareto optimum

to be supported by an atomless state-price density. Moreover, it identifies the state-

price density explicitly in terms of the right derivative of the function M∗.

Theorem 4.3. Suppose Qẽ1(0) > 0, wi (i = 1, . . . , I) is continuously differen-

tiable on (0, 1), and Assumption 3.6 holds. Assume (c∗0i, G
∗
i )
I
i=1 ∈H solves problem

(3.2). Let M∗
i (i ∈ Iθ) be given by (3.11)–(3.12) and M∗ be given by (3.13). Then

(c∗0i, G
∗
i )
I
i=1 is supported by an atomless state-price density ρ̃ if and only if M∗ is

strictly concave. Moreover, in this case a supporting state-price density ρ̃ is given by

ρ̃ =
1

µθ
(M∗)′+(Fẽ1(ẽ1)), (4.2)

where (M∗)′+ denotes the right derivative of M∗ and µθ is determined by equation

(3.6).

A proof is placed in Appendix B.

So the strict concavity of M∗ is a characterizing condition for a comonotone

Pareto optimum to be supported by an atomless state-price density. This condition

does not hold automatically, and it requires a certain “alignment” between the agent

preferences and the aggregate random endowment. To see this, let us examine the

special case when there is only one agent with the utility functions u0, u1 and the

probability weighting function w. In this case M∗(q) = −
∫ 1

q
βiu
′
1(Qẽ1(p))dw̄(p), and

M∗ is strictly concave if and only if u′1(Qẽ1(p))w̄
′(p) is strictly decreasing.

In the rest of this section, we focus on the search of some sufficient condition on

the model primitives to guarantee the strict concavity of M∗. To this end, for any

p ∈ (0, 1) and any subset I of {1, · · · , I}, set

Γ(p, I) , sup

{∑
i∈I

−u
′
1i(xi)

u′′1i(xi)

w̄′′i (p)

w̄′i(p)
:
∑
i∈I

xi = Qẽ1(p) and xi > 0 for all i ∈ I

}
,

and

Γ(p) , max
I⊆{1,··· ,I}

Γ(p, I). (4.3)

Notation. Consider a function G ∈ G, a Lebesgue integrable function f : [0, 1) →
(−∞,∞), and a nonnegative Borel function g : [0, 1)→ [0,∞). If∫

B

dG(p) >

∫
B

f(p) dp
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for all non-null Borel set B ⊆ (0, 1),10 then we write dG(p) � f(p) dp. Similarly, if∫
B

g(p) dG(p) ≤
∫
B

f(p) dp

for all Borel set B ⊆ (0, 1), then we write g(p) dG(p) � f(p) dp.

Theorem 4.4. Under Assumption 3.6, assume further that Qẽ1(0) > 0, wi (i =

1, . . . , I) is twice continuously differentiable on (0, 1], Γ is Lebesgue integrable and

dQẽ1(p) � Γ(p) dp, p ∈ (0, 1). (4.4)

For any given θ ∈ ∆, let (c∗0i, G
∗
i )
I
i=1 ∈ H solve problem (3.2). Let M∗

i (i ∈ Iθ) be

given by (3.11)–(3.12) and M∗ be given by (3.13). Then M∗ is strictly concave.

A proof is given in Appendix C.

Assumption (4.4) is an abstract condition to be discussed next.

5 Condition (4.4)

In this section, we discuss the implications of the sufficient condition (4.4) in concrete

examples.

To start, we note that although (4.4) seems to be abstract, it is nothing more

than the strict monotonicity condition of u′1(Qẽ1(p))w̄
′(p) in the single-agent case

generalized to the multi-agent case. To see this, consider a single agent with the

utility functions u0, u1 and the probability weighting function w. Assuming that

Qẽ1(·) is differentiable and both u1 and w are twice differentiable, M∗ is strictly

concave if and only if u′1(Qẽ1(p))w̄
′(p) is strictly decreasing, or

0 >
d

dp
{u′1(Qẽ1(p))w̄

′(p)} = u′′1(Qẽ1(p))Q
′
ẽ1
w̄′(p) + u′1(Qẽ1(p))w̄

′′(p)

⇔ −u
′
1(Qẽ1(p))

u′′1(Qẽ1(p))

w̄′′(p)

w̄′(p)
< Q′ẽ1(p),

where the latter inequality is exactly the condition (4.4). In this case, this condition

reduces to Assumption 5.6 in Xia and Zhou (2016), the key condition there to ensure

the existence of equilibria.

Similarly, (4.4) specializes to Assumption 5.6 in Xia and Zhou (2016) when there

are multiple agents with homogeneous probability weighting functions. Indeed, if

w1 = w2 = · · · = w, then, as discussed in Section 4, Xia and Zhou (2016), the

10A Borel set B is called non-null if its Lebesgue measure is strictly positive.
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equilibrium problem reduces to the one in a representative agent economy in which

the representative agent’s preference is still represented by RDU

u0λ(c0) +

∫
u1λ(c̃1)d(w ◦P).

Then, condition (4.4) in this economy is equivalent to the condition that u′1λ(Qẽ1(p))w̄
′(p)

be strictly decreasing, i.e., that the function Ψλ defined in Section 5, Xia and Zhou

(2016), be strictly increasing.

Next, let us examine a market where there are two types of agents, agent 1 with

an RDUT preference and agent 2 with a classical EUT preference. Then w2(q) =

q, w̄′2(q) = 1, w̄′′2(q) = 0. In this case, we can easily see that

Γ(p, {1}) = −u
′
11(Qẽ1(p))

u′′11(Qẽ1(p))

w̄′′1(p)

w̄′1(p)
,

Γ(p, {2}) = 0,

Γ(p, {1, 2}) = max

{
0, sup

0<x<Qẽ1 (p)

{
−u

′
11(x)

u′′11(x)

w̄′′1(p)

w̄′1(p)

}}
,

Γ(p) = sup
0<x≤Qẽ1 (p)

{
−u

′
11(x)

u′′11(x)

(w̄′′1(p))+

w̄′1(p)

}
.

Hence, given that dQẽ1(p) � 0, condition (4.4) reduces to

dQẽ1(p) � −
u′11(x)

u′′11(x)

w̄′′1(p)

w̄′1(p)
dp, ∀0 < x ≤ Qẽ1(p).

Moreover, if the Arrow–Pratt measure of absolute risk aversion (ARA) of agent 1,

−u′′11(x)

u′11(x)
, is decreasing in x,11 then the above condition is equivalent to

dQẽ1(p) � Γ(p, {1})dp,

which is the same condition (4.4) for a market with only agent 1. In other words,

the existence of the expected utility agent in this case has no bearing on condition

(4.4).

Now consider an economy with two RDUT agents with utility functions ui and

weighting functions wi, i = 1, 2. Denote Ai(x) = −u′′i (x)/u′i(x) as the ARA, and

Bi(p) =
w̄′′i (p)

w̄′i(p)
, i = 1, 2. Then,

Γ(p, {i}) =
Bi(p)

Ai(Qẽ1(p))
, i = 1, 2,

Γ(p, {1, 2}) = sup
x1+x2<Qẽ1 (p),x1>0,x2>0

{
B1(p)

A1(x1)
+
B2(p)

A2(x2)

}
= Γ(p).

11Decreasing ARA, as with a power utility function, is consistent with the common investment

behavior that an individual experiencing an increase in wealth will choose to increase the risky

exposure in his/her portfolios.
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If ui(x) = x1−γi
1−γi for some γi > 0, then Ai(x) = γi

x
. Hence

Γ(p, {i}) =
Qẽ1(p)

γi
Bi(p), i = 1, 2,

Γ(p, {1, 2}) = sup
x1+x2<Qẽ1 (p),x1>0,x2>0

{
x1
B1(p)

γ1

+ x2
B2(p)

γ2

}
= Qẽ1(p) max

i=1,2

Bi(p)
γi

= Γ(p).

In this case, the condition (4.4) reduces to (assuming Qẽ1 is differentiable)

max
i=1,2

Bi(p)
γi

<
Q′ẽ1(p)

Qẽ1(p)

or

max
i=1,2

1

γi

d

dp
ln w̄′i(p) <

d

dp
lnQẽ1(p).

It is easy to verify that the above condition is equivalent to the condition that

u′i(Qẽ1(p))w̄
′
i(p) be strictly decreasing for both agent i. Refer to Example 5.8 of Xia

and Zhou (2016) for a concrete example in which this condition holds with Prelec’s

weighting functions and Pareto distributed ẽ1.

Finally, if the probability weighting functions wi are convex, i = 1, . . . , I, then
w̄′′i (p)

w̄′i(p)
≤ 0 for all p and, therefore, Γ(p) ≤ 0 for all p. In this case, condition (4.4)

holds automatically.

6 Arrow-Debreu Equilibria

We are now ready to present the existence result for the original Arrow–Debreu

equilibria. The main idea is that a price equilibrium with transfers,
{
ρ̃, (c∗0i, c̃

∗
1i)

I
i=1

}
,

is an Arrow-Debreu equilibrium if

e0i + E[ρ̃ẽ1i] = c∗0i + E[ρ̃c̃∗1i], ∀i.

As ρ̃, c∗0i and c̃∗1i correspond to some θ ∈ ∆, the problem becomes to find θ ∈ ∆

such that the previous equalities hold. This can be achieved by using the standard

continuity arguments and a fixed-point theorem, see, e.g., Chapter 6 of Dana and

Jeanblac (2007) and Section 3.6 of Föllmer and Schied (2011). We present the main

existence theorem as follows without a proof, as the arguments are standard based

on Theorems 4.3 and 4.4.

Theorem 6.1. Under Assumption 3.6, assume further that E[ẽ1] <∞, Qẽ1(0) > 0,

wi (i = 1, . . . , I) is twice continuously differentiable on (0, 1], Γ is Lebesgue integrable

and dQẽ1(p) � Γ(p) dp. Then there exists an Arrow-Debreu equilibrium.
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Under the assumptions of Theorem 6.1, we can devise a numerical algorithm

to compute the state-price density along with the equilibrium allocation, with the

following steps:

1. Choose starting weights θ0 ∈ ∆ and a small positive error tolerance ε, and set

θ = θ0;

2. Solve problem (3.4) to get G∗i (·) (this can be done numerically following the

algorithm constructed by Carlier and Lachapelle (2011));

3. Determine M∗(·) via (3.12) and (3.11), µθ via (3.6), c0i via (3.5), and ρ̃ via

(4.2);

4. Evaluate εi = e0i + E[ρ̃ẽ1i]− c0i − E[ρ̃G∗i (Fẽ1(ẽ1))] for i = 1, · · · , I;

5. If
∑
|εi| < ε, go to Step 6; otherwise, follow the standard fixed-point argument

(as in Dana and Jeanblac (2007) and Föllmer and Schied (2011)) to update θ

and go to Step 2;

6. (ρ̃, (G∗i (Fẽ1(ẽ1)))i=1,··· ,I) is the pair of state-price density and equilibrium allo-

cation.

In terms of the numerical computation, the key step is Step 2 above to com-

pute the comonotone Pareto optima, which was proposed by Carlier and Lachapelle

(2011). As the utilities are concave in that paper, the comonotone Pareto optima

are automatically supported by state-price densities; see the discussion in the last

paragraph of Section 5. When utilities are not concave, as in our paper, we need

the additional assumption (4.4) to ensure that the comonotone Pareto optimal al-

locations can be supported by atomless state-price densities, whose computation is

standard.

We now use an example to illustrate the algorithm above. Consider a market

with two agents. Agent 1 has RDUT preference and agent 2 follows EUT. Both

agents have the same utility function at t = 0 and t = 1, which is

u(x) =

 8
√
x− 3x if 0 ≤ x < 1

− 1
x

+ 6 if x > 1,

which is clearly C2 with u(0) = 0. Moreover, agent 1’s weighting function is Prelec’s

w(p) = e−
√
− ln p, p ∈ (0, 1).
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We assume the two agents have exactly the same endowments

e01 = e02 = 1, ẽ11 = ẽ12 = ẽ1/2,

where the distribution function of ẽ1 is

Fẽ1(y) =

 0, if y < 1,

1− y−2, if y ≥ 1.

It is not hard to check that Assumptions 2.1 and 3.6 hold. The condition Qẽ1(0) =

1 > 0 required in Theorem 4.4 is also obvious. We now only need to check condition

(4.4).

With w(p) = e−
√
− ln p, it is straightforward to compute

w̄′′(p)

w̄′(p)
=

1

2

1

1− p

(
2− 1

− ln(1− p)
− 1√

− ln(1− p)

)
, p ∈ (0, 1).

Hence (4.4) is equivalent to

dQẽ1(p) >
Qẽ1(p)

2

1

2

1

1− p

(
2− 1

− ln(1− p)
− 1√

− ln(1− p)

)
dp, p ∈ (0, 1). (6.1)

Noting F ′ẽ1(y) = (1 − Fẽ1(y)) 2
y

for y ≥ 1, we have, for any p = Fẽ1(y) ∈ (0, 1),

F ′ẽ1(Qẽ1(p)) = 2(1−p)
Qẽ1 (p)

. Hence

dQẽ1(p) =
dp

F ′ẽ1(Qẽ1(p))
=

Qẽ1(p)

2(1− p)
dp,

leading immediately to (6.1). Theorem 6.1 then dictates that there exists an Arrow-

Debreu equilibrium.

We have implemented the general algorithm in Matlab for this example with the

initial θ0 = (1
2
, 1

2
) and the error bound ε = 1

100
e0+E[ẽ1]

2
= 0.02. The algorithm stopped

at the end of the 11th iteration when
∑

i |εi| fell below ε for the first time.

The equilibrium consumptions at t = 0 are (c∗01, c
∗
02) = (1.0591, 0.9409). The

other part of the Arrow-Debreu equilibrium, namely (ρ̃, c̃∗11, c̃
∗
12), consists of random

variables. We plot them as functions of z̃ = Fẽ1(ẽ1) in Figure 1.

We have also calculated the optimal weights (θ∗1, θ
∗
2) = (0.5569, 0.4431), and on

average E[c̃∗11] = 0.9698 < E[c̃∗12] = 0.9845.
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Figure 1: Plots of state-price density, total random endowment, and future consump-

tions of the two agents as functions of z̃ = Fẽ1(ẽ1)

7 Concluding Remarks

With the homogeneity of the weighting functions, Xia and Zhou (2016) derive an

explicit formula for the state-price density ρ̃, expressed as a weighted marginal rate

of substitution between initial and end-of-period consumption of the representative

agent. This expression in turn enables them to study the impact of probability

weighting on the equity premium. While (4.2) derived in the present paper is an

analytically explicit formula for ρ̃, it involves the function M∗ that is difficult to

analyze. If it is too hard to have a similar result for all states of nature, we may

instead attempt to derive a formula only in the so-called “tail states”, namely those

states in which the total endowment has extremely large or small values. After all,

in typical inverse-S shaped models, probability weighting becomes impactful only in

the tail states. A study on this aspect and its implications for the equity premium

will be reported in a forthcoming paper.

Appendices

A The Functions M ∗
i and M ∗

The following result characterizes the solution to (3.4) in terms of M∗
i , i ∈ Iθ.
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Lemma A.1. Suppose Assumption 3.6 holds. Let (G∗i )
I
i=1 ∈ Gθ and M∗

i (i ∈ Iθ) be

given by (3.11)–(3.12). Then∑
i∈Iθ

∫
[0,1)

M∗
i (q) dG∗i (q) > −∞ (A.1)

and the following statements are equivalent:

(i) (G∗i )
I
i=1 solves problem (3.4);

(ii) For all (Gi)
I
i=1 ∈ G , we have∑

i∈Iθ

∫
[0,1)

M∗
i (q) dGi(q) ≥

∑
i∈Iθ

∫
[0,1)

M∗
i (q) dG∗i (q). (A.2)

Moreover, in the case when Qẽ1(0) > 0, (A.1)–(A.2) imply that M∗
i (0) > −∞ for all

i ∈ Iθ.

Proof. For all (Gi)
I
i=1 ∈ G and i ∈ Iθ,12∫

(0,1)

θiβiu
′
1i(G

∗
i (p))Gi(p) dw̄i(p)

=

∫
(0,1)

θiβiu
′
1i(G

∗
i (p))

(
Gi(0) +

∫
(0,p]

dGi(q)

)
dw̄i(p)

= −M∗
i (0)Gi(0) +

∫
(0,1)

(∫
[q,1)

θiβiu
′
1i(G

∗
i (p)) dw̄i(p)

)
dGi(q)

= −M∗
i (0)Gi(0)−

∫
(0,1)

M∗
i (q) dGi(q)

= −
∫

[0,1)

M∗
i (q) dGi(q), (A.3)

where the second equality follows from Fubini’s theorem. Thus Proposition 3.9 im-

plies the first part of the lemma.

12As Remark A.2 below shows, it is possible that M∗i (0) = −∞ when Qẽ1(0) = 0. In this case

G∗i (0) = 0; thus the value of M∗i (0)G∗i (0) should be clarified. Indeed,

0 ≥M∗i (0)G∗i (0) = lim
q↓0

(M∗i (q)G∗i (q)) ≥ − lim
q↓0

(∫
(q,1)

θiβiu
′
1i(G

∗
i (q)G∗i (q)) dw̄i(p)

)

≥ − lim
q↓0

(∫
(q,1)

θiβiu1i(G
∗
i (q)) dw̄i(p)

)
= 0

by the concavity of u1i, u1i(0) = 0, and (3.8). Hence M∗i (0)G∗i (0) = 0.
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Now assume (A.1)–(A.2) hold. For any fixed i ∈ Iθ, let Gi = Qẽ1 and Gj ≡ 0 for

all j 6= i. Then (Gj)
I
j=1 ∈ G . By (A.1)–(A.2),

M∗
i (0)Qẽ1(0) +

∫
(0,1)

M∗
i (q) dQẽ1(q) > −∞,

which implies M∗
i (0) > −∞ given that Qẽ1(0) > 0. �

Remark A.2. Consider the case when Qẽ1(0) = 0. On one hand, M∗
i (0) = −∞ is

possible. A simple example is when∫
(0,1)

u′1i(Qẽ1(p))dw̄i(p) = +∞,

which is obviously possible. On the other hand, M∗
i (0) > −∞ is also possible. For

example, if all the agents’ preferences are identical, i.e., ui(·) = u(·), wi(·) = w(·),
and ∫

(0,1)

u′
(
Q 1
|I| ẽ1

(p)
)
dw̄(p) < +∞.

Then for θi = 1
I
, G∗i (·) = 1

I
Qẽ1(·), and M∗

i (0) = −1
I

∫
(0,1)

u′(Q 1
|I| ẽ1

(p)dw̄(p) > −∞.

The case M∗
i (0) = −∞ entails a subtle technical difficulty. As seen in Section

4, M∗
i (0) = −∞ leads to the supporting pricing kernel ρ, if it exists, being not

integrable, and hence not qualified as a pricing kernel.13 This is the reason why we

need to impose the condition Qẽ1(0) > 0 to rule out this case. Note that the last

condition is equivalent to the requirement that tomorrow’s aggregate endowment,

ẽ1, has a positive lower bound almost surely, a plausible assumption.

The following characterizes problem (3.4) in terms of both M∗
i and M∗.

Proposition A.3. Suppose Qẽ1(0) > 0 and Assumption 3.6 holds. Let (G∗i )
I
i=1 ∈ Gθ,

M∗
i (i ∈ Iθ) be given by (3.11)–(3.12), and M∗ be given by (3.13). Then the following

statements are equivalent:

(i) (G∗i )
I
i=1 solves problem (3.4);

(ii) M∗(·) is bounded, continuous and strictly increasing on [0, 1]; for all i ∈ Iθ,
M∗

i (0) = M∗(0) > −∞ and∫
(0,1)

M∗(p) dG∗i (p) =

∫
(0,1)

M∗
i (p) dG∗i (p). (A.4)

Proof.
13Note that −M∗i (0) can be interpreted as agent i’s marginal utility of future consumption (see

Section 3). So if M∗i (0) = −∞, then the marginal utility is infinite, and the agent is infinitely eager

to transfer consumption from time 0 to time 1. In this case, the average state-price for consumption

in the future is infinity and hence non-integrable.
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(i)⇒(ii) Assume (i) holds true. Then M∗
i (0) > −∞ for all i ∈ Iθ, according to

Lemma A.1. Thus M∗(·) is bounded, continuous and strictly increasing on [0, 1].

We now prove (A.4). Suppose, to the contrary of (A.4), that∫
(0,1)

M∗(p) dG∗j(p) <

∫
(0,1)

M∗
j (p) dG∗j(p). (A.5)

for some j ∈ Iθ. Let

A , {p ∈ (0, 1) : M∗(p) < M∗
j (p)}

and

i(p) , min{i ∈ Iθ : M∗
i (p) = M∗(p)}

for all p. Let G◦j be given by

G◦j(0) = G∗j(0), dG◦j(p) = 1p/∈AdG
∗
j(p)

and, for all i 6= j, let G◦i be given by

G◦i (0) = G∗i (0), dG◦i (p) = dG∗i (p) + 1p∈A1i=i(p)dG
∗
j(p).

It is easy to see that (G◦i )
I
i=1 ∈ G and∑

i∈Iθ

∫
[0,1)

M∗
i (p) dG◦i (p)−

∑
i∈Iθ

∫
[0,1)

M∗
i (p) dG∗i (p)

=
∑

i∈Iθ,i 6=j

∫
(0,1)

M∗
i (p)1p∈A1i=i(p) dG

∗
j(p)−

∫
(0,1)

M∗
j (p)1p∈A dG

∗
j(p)

=
∑

i∈Iθ,i 6=j

∫
(0,1)

M∗(p)1p∈A1i=i(p) dG
∗
j(p)−

∫
(0,1)

M∗
j (p)1p∈A dG

∗
j(p)

=

∫
(0,1)

M∗(p)1p∈A dG
∗
j(p)−

∫
(0,1)

M∗
j (p)1p∈A dG

∗
j(p)

=

∫
(0,1)

M∗(p) dG∗j(p)−
∫

(0,1)

M∗
j (p) dG∗j(p)

< 0.

This is impossible, by Lemma A.1. Thus we have proved (A.4).

Now we prove that M∗
i (0) = M∗(0) for any i ∈ Iθ. Otherwise, there exists an

i ∈ Iθ such that M∗
i (0) > M∗(0). By the continuity of M∗

i and M∗, there exists a
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δ ∈ (0, 1) such that M∗
i (p)−M∗(p) >

M∗i (0)−M∗(0)

2
> 0 for all p ∈ [0, δ]. Therefore,

0 =

∫
(0,1)

(M∗
i (p)−M∗(p)) dG∗i (p)

≥
∫

(0,δ]

(M∗
i (p)−M∗(p)) dG∗i (p)

>

∫
(0,δ]

M∗
i (0)−M∗(0)

2
dG∗i (p)

=
M∗

i (0)−M∗(0)

2
(G∗i (δ)−G∗i (0))

≥ 0,

which implies that G∗i (0) = G∗i (δ) > 0. Now take any j ∈ Iθ such that M∗
j (0) =

M∗(0) < M∗
i (0), and consider a (Gε

i )
I
i=1 ∈ G given by

Gε
i (·) = G∗i (·)− ε, Gε

j(·) = G∗j(·) + ε, Gε
k(·) = G∗k(·) for all k /∈ {i, j},

where ε ∈ (0, G∗i (0)). Then∑
k∈Iθ

{∫
[0,1)

M∗
k (p) dGε

k(p)−
∫

[0,1)

M∗
k (p) dG∗k(p)

}
= M∗

j (0)ε−M∗
i (0)ε

< 0,

which contradicts (A.2) in Lemma A.1. Thus we have M∗
i (0) = M∗(0) for all i ∈ Iθ.

(ii)⇒(i) Assume (ii) holds true. For any (Gi)
I
i=1 ∈ G , we have∑

i∈Iθ

∫
[0,1)

M∗
i (p) dGi(p)

=
∑
i∈Iθ

M∗(0)Gi(0) +
∑
i∈Iθ

∫
(0,1)

M∗
i (p) dGi(p)

≥
∑
i∈Iθ

M∗(0)Gi(0) +
∑
i∈Iθ

∫
(0,1)

M∗(p) dGi(p)

=
∑
i∈Iθ

M∗(0)G∗i (0) +
∑
i∈Iθ

∫
(0,1)

M∗(p) dG∗i (p)

=
∑
i∈Iθ

{
M∗

i (0)G∗i (0) +

∫
[0,1)

M∗
i (p) dG∗i (p)

}
=

∑
i∈Iθ

∫
(0,1)

M∗
i (p) dG∗i (p),

which implies (i), by Lemma A.1. �
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Lemma A.4. Suppose Qẽ1(0) > 0 and Assumption 3.6 holds. Let (G∗i )
I
i=1 ∈ G solve

problem (3.4). For any i ∈ Iθ, let M∗
i be given by (3.11)–(3.12) and M∗ be given by

(3.13), and let {
M◦

i (q) = M∗
i (w̄−1

i (q))

M•
i (q) = M∗(w̄−1

i (q))

for all q ∈ [0, 1]. Then M◦
i is the concave envelope of M•

i for all i ∈ Iθ.

Proof. Firstly, for any fixed i ∈ Iθ, both of M◦
i and M•

i are bounded and continuous.

Moreover,

M◦
i (1) = M∗

i (1) = 0 = M∗(1) = M•
i (1),

M◦
i (0) = M∗

i (0) = M∗(0) = M•
i (0) > −∞, (by Proposition A.3)

and M◦
i (q) ≥M•

i (q) for all q ∈ [0, 1].

Secondly,

M◦
i (q) = −

∫
(w̄−1

i (q),1)
θiβiu

′
1i(G

∗
i (p)) dw̄i(p) = −

∫
(q,1)

θiβiu
′
1i(G

∗
i (w̄

−1
i (p))) dp. (A.6)

Thus M◦
i is concave on [0, 1] because u′1i(G

∗
i (w̄

−1
i (·))) is decreasing.

Finally, by Proposition A.3, we have∫
(0,1)

(M◦
i (q)−M•

i (q)) dG∗i (w̄
−1
i (q))

=

∫
(0,1)

(M∗
i (w̄−1

i (q))−M∗(w̄−1
i (q))) dG∗i (w̄

−1
i (q))

=

∫
(0,1)

(M∗
i (p)−M∗(p)) dG∗i (p)

=0,

which implies that G∗i (w̄
−1
i (·)) is flat on {q ∈ (0, 1) : M◦

i (q) > M•
i (q)}. Then by

(A.6), M◦
i is affine on {q ∈ (0, 1) : M◦

i (q) > M•
i (q)}. By definition, M◦

i is the

concave envelope of M•
i . �

Lemma A.5. Suppose Assumption 3.6 holds and wi is continuously differentiable

on (0, 1) for all i = 1, . . . , I. Let (G∗i )
I
i=1 ∈ Gθ and M∗

i (i ∈ Iθ) be given by (3.11)–

(3.12). Then for every i ∈ Iθ and p ∈ (0, 1), both of the right derivative (M∗
i )′+(p)

and the left derivative (M∗
i )′−(p) exist, and they are given by

(M∗
i )′+(p) = θiβiu

′
1i(G

∗
i (p))w̄

′
i(p),

(M∗
i )′−(p) = θiβiu

′
1i(G

∗
i (p−))w̄′i(p).
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Proof. Obvious and omitted. �

The following proposition gives the most important property of M∗ essential for

deriving the Arrow–Debreu equilibria, namely the right and left derivatives of M∗.

Proposition A.6. Assume wi is continuously differentiable on (0, 1) for all i =

1, . . . , I. Then under the conditions of Proposition A.3, we have the following state-

ments:

(i) For all p ∈ (0, 1), the right derivative (M∗)′+(p) exists and

(M∗)′+(p) = min
i∈Iθ(p)

(M∗
i )′+(p), (A.7)

where Iθ(p) , {i ∈ Iθ : M∗
i (p) = M∗(p)};

(ii) For all p ∈ (0, 1), the left derivative (M∗)′−(p) exists and

(M∗)′−(p) = max
i∈Iθ(p)

(M∗
i )′−(p); (A.8)

(iii) (M∗)′+ is right continuous and has left limits on (0, 1) and (M∗)′+(p−) =

(M∗)′−(p) for all p ∈ (0, 1).

Proof.

(i) For any fixed p ∈ (0, 1), by the continuity of M∗
i (i ∈ Iθ) and M∗, there exists a

δ1 ∈ (0, 1−p) such that M∗
i (q) > M∗(q) for all q ∈ (p, p+δ1) and for all i ∈ Iθ\Iθ(p).

This combined with Lemma A.5 yields, for any ε ∈ (0, δ1), that

M∗(p+ ε)−M∗(p)

ε
= min

i∈Iθ(p)

M∗
i (p+ ε)−M∗(p)

ε

= min
i∈Iθ(p)

M∗
i (p+ ε)−M∗

i (p)

ε
ε↓0−−→ min

i∈Iθ(p)
(M∗

i )′+(p).

(ii) For any fixed p ∈ (0, 1), by the continuity of M∗
i (i ∈ Iθ) and M∗, there exists

a δ1 ∈ (0, p) such that M∗
i (q) > M∗(q) for all q ∈ (p− δ1, p) and for all i ∈ Iθ \Iθ(p).

This combined with Lemma A.5 yields, for any ε ∈ (0, δ1), that

M∗(p− ε)−M∗(p)

−ε
= max

i∈Iθ(p)

M∗
i (p− ε)−M∗(p)

−ε

= max
i∈Iθ(p)

M∗
i (p− ε)−M∗

i (p)

−ε
ε↓0−−→ max

i∈Iθ(p)
(M∗

i )′−(p).
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(iii)

(a) We first prove that (M∗)′+ is right continuous at any fixed p ∈ (0, 1).

Let δ1 > 0 be given as in the proof of (i). Then Iθ(q) ⊆ Iθ(p) for all q ∈
(p, p+ δ1).

For any ε > 0, there exists a δ2 ∈ (0, 1− p) such that

|(M∗
i )′+(q)− (M∗

i )′+(p)| < ε for all q ∈ (p, p+ δ2) and i ∈ Iθ.

For any fixed {i, j} ⊆ Iθ(p), if (M∗
j )′+(p) > (M∗

i )′+(p), then by the right con-

tinuity of (M∗
j )′+ and (M∗

i )′+, there exists a δ3(i, j) ∈ (0, 1 − p) such that

(M∗
j )′+(q) > (M∗

i )′+(q) for all q ∈ (p, p + δ3(i, j)). Then by integrating both

(M∗
j )′+ and (M∗

i )′+ on (p, q), we have M∗
j (q) > M∗

i (q) ≥ M∗(q), which implies

j /∈ Iθ(q), for all q ∈ (p, p+ δ3(i, j)). Let

δ3 = min{δ3(i, j) : {i, j} ⊆ Iθ(p) and (M∗
j )′+(p) > (M∗

i )′+(p)}.

If j ∈ Iθ(p)
⋂
Iθ(q) for some q ∈ (p, p+ δ3), then (M∗

j )′+(p) = (M∗)′+(p).

Now let δ = min{δ1, δ2, δ3}. For any q ∈ (p, p + δ), by statement (i), there

exists a j ∈ Iθ(q) ⊆ Iθ(p) such that (M∗
j )′+(q) = (M∗)′+(q). By the above

analysis, we know (M∗
j )′+(p) = (M∗)′+(p). Therefore,

|(M∗)′+(q)− (M∗)′+(p)| = |(M∗
j )′+(q)− (M∗

j )′+(p)| < ε,

implying the right continuity of (M∗)′+ at p.

(b) Now we prove that (M∗)′+(p−) exists and (M∗)′+(p−) = (M∗)′−(p) for any fixed

p ∈ (0, 1).

Let δ1 > 0 be given as in the proof of (ii). Then Iθ(q) ⊆ Iθ(p) for all q ∈
(p− δ1, p).

Obviously, we have (M∗
i )′+(p−) = (M∗

i )′−(p) for all i ∈ Iθ, by Lemma A.5.

Thus, for any ε > 0, there exists a δ4 ∈ (0, p) such that

|(M∗
i )′+(q)− (M∗

i )′−(p)| < ε for all q ∈ (p− δ4, p) and i ∈ Iθ.

For any fixed {i, j} ⊆ Iθ(p), if (M∗
j )′−(p) < (M∗

i )′−(p), then by the left continu-

ity of (M∗
j )′− and (M∗

i )′−, there exists a δ5(i, j) ∈ (0, p) such that (M∗
j )′−(q) <

(M∗
i )′−(q) for all q ∈ (p − δ5(i, j), p). Then by integrating both (M∗

j )′− and

(M∗
i )′− on (q, p), we have M∗

j (q) > M∗
i (q) ≥ M∗(q), which implies j /∈ Iθ(q),

for all q ∈ (p− δ5(i, j), p). Let

δ5 = min{δ5(i, j) : {i, j} ⊆ Iθ(p) and (M∗
j )′−(p) < (M∗

i )′−(p)}.
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If j ∈ Iθ(p)
⋂
Iθ(q) for some q ∈ (p− δ5, p), then (M∗

j )′−(p) = (M∗)′−(p).

Now let δ = min{δ1, δ4, δ5}. For any q ∈ (p−δ, p), by statement (i), there exists

a j ∈ Iθ(q) ⊆ Iθ(p) such that (M∗
j )′+(q) = (M∗)′+(q). By the above analysis,

we know (M∗
j )′−(p) = (M∗)′−(p). Therefore,

|(M∗)′+(q)− (M∗)′−(p)| = |(M∗
j )′+(q)− (M∗

j )′−(p)| < ε

for all q ∈ (p − δ, p), implying that (M∗)′+(p−) exists and (M∗)′+(p−) =

(M∗)′−(p). �

B A Proof of Theorem 4.3

The “if” part. Assume M∗ is strictly concave, then (M∗)′+ is right-continuous

and strictly decreasing on (0, 1). Moreover, M∗ is increasing and therefore (M∗)′+
is strictly positive on (0, 1). So we know that ρ̃ given by (4.2) is atomless and

P(ρ̃ > 0) = 1. In particular, the lower quantile function Q−ρ̃ of ρ̃ is given by

Q−ρ̃ (p) =
1

µθ
(M∗)′+(1− p) for all p ∈ (0, 1).

It is easy to see that

E[ρ̃] =

∫
(0,1)

Q−ρ̃ (p) dp = −M
∗(0)

µθ
<∞.

Furthermore,

E[ρ̃ẽ1] =
1

µθ

∫
(0,1)

(M∗)′+(p)Qẽ1(p) dp

=
1

µθ

∑
i∈Iθ

∫
(0,1)

G∗i (p) dM
∗(p)

=
1

µθ

∑
i∈Iθ

∫
(0,1)

(
G∗i (0) +

∫
(0,p]

dG∗i (q)

)
dM∗(p)

=
1

µθ

∑
i∈Iθ

{
−M∗(0)G∗i (0) +

∫
(0,1)

(∫
[q,1)

dM∗(p)

)
dG∗i (q)

}
=

1

µθ

∑
i∈Iθ

{
−M∗(0)G∗i (0)−

∫
(0,1)

M∗(q) dG∗i (q)

}
= − 1

µθ

∑
i∈Iθ

∫
[0,1)

M∗
i (q) dG∗i (q)

< ∞. (B.1)
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Consequently, we know ρ̃ is a state-price density.

For any i ∈ Iθ, let

Ni(q) = −
∫

(w̄−1
i (q),1)

Q−ρ̃ (1− p) dp for all q ∈ [0, 1).

Then

Ni(q) = −
∫

(w̄−1
i (q),1)

1

µθ
(M∗)′+(p) dp =

1

µθ
M∗(w̄−1

i (q)) for all q ∈ [0, 1).

It is easy to see that Ni is continuous on [0, 1) with Ni(1−) = 0. Let

N̂i(q) =
1

µθ
M∗

i (w̄−1
i (q)) for all q ∈ [0, 1). (B.2)

Then by Lemma A.4, N̂i is the concave envelope of Ni.

Now we are ready to show that (c∗0i, G
∗
i )
I
i=1 is supported by ρ̃. Obviously, N̂i =

1
µθ
M◦

i . Then by (A.6), the right derivative (N̂i)
′
+ of N̂i is given by

(N̂i)
′
+(q) =

θiβi
µθ

u′1i(G
∗
i (w̄

−1
i (q))),

or equivalently,
µθ(N̂i)

′
+(w̄i(q))

θiβi
= u′1i(G

∗
i (q)),

for all q ∈ [0, 1). Let

c̃∗1i = (u′1i)
−1

(
µθ
θiβi

(N̂i)
′
+(w̄i(Fẽ1(ẽ1)))

)
,

then G∗i is the upper quantile function of c̃∗1i. Recall that c∗0i = (u′0i)
−1
(
µθ
θi

)
. It is

not difficult to see that (c∗0i, c̃
∗
1i) solves problem (4.1). Thus (c∗0i, G

∗
i )
I
i=1 is supported

by ρ̃.

The “only if” part. Suppose (c∗0i, G
∗
i )
I
i=1 is supported by an atomless state-price

density ρ̃, then for all i ∈ Iθ,

u′1i(G
∗
i (q)) = λi(N̂i)

′
+(w̄i(q))

for some λi > 0, where N̂i is the concave envelope of the function Ni given by

Ni(p) = −
∫

((w̄i)−1(p),1)

Q−ρ̃ (1− q) dq,
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or equivalently,

Ni(w̄i(q)) = −
∫

(q,1)

Q−ρ̃ (1− p) dp.

By the definitions of M∗
i and M∗, we have

M∗
i (q) = −

∫
(q,1)

θiβiu
′
1i(G

∗
i (p)) dw̄i(p)

= −
∫

(q,1)

θiβiλi(N̂i)
′
+(w̄i(p)) dw̄i(p)

= −θiβiλi
∫

(w̄i(q),1)

(N̂i)
′
+(p) dp

= θiβiλiN̂i(w̄i(q)).

By Proposition A.3, we know M∗
i (0) = M∗

j (0) > −∞ for all i, j ∈ Iθ. Together

with the fact that N̂i(0) = Ni(0) = −E[ρ̃], we know θiβiλi are same for all i ∈ Iθ.
This implies M∗

i (q) = µN̂i(w̄i(q)) for some constant µ > 0 and for all i ∈ Iθ.
By Proposition A.3, we know M∗(q) satisfies∑

i∈Iθ

∫
(0,1)

[M∗(q)−M∗
i (q)] dG∗i (q) = 0.

On the other hand, let K(q) , −µ
∫

(q,1)
Q−ρ̃ (1− p) dp, then for any i ∈ Iθ,

K(q) = µNi(w̄i(q)) ≤ µN̂i(wi(q)) = M∗
i (q) (B.3)

and ∫
(0,1)

[K(q)−M∗
i (q)] dG∗i (q)

= µ

∫
(0,1)

[Ni(w̄i(q))− N̂i(w̄i(q))] dG
∗
i (q)

= µ

∫
(0,1)

[Ni(w̄i(q))− N̂i(w̄i(q))] d(u′1i)
−1(λi(N̂i)

′
+(w̄i(q)))

= 0.

Hence

0 =
∑
i∈Iθ

∫
(0,1)

[M∗(q)−K(q)] dG∗i (q) =

∫
(0,1)

[M∗(q)−K(q)] dQẽ1(q).

From (B.3), we can see that K(·) ≤ M∗(·). Because Qẽ1 is strictly increasing, we

can conclude that

M∗(q) = K(q) = −µ
∫

(q,1)

Q−ρ̃ (1− p) dp.

So M∗ is strictly concave as Q−ρ̃ is strictly increasing. �
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C A Proof of Theorem 4.4

It suffices to show that (M∗)′+ is strictly decreasing on (0, 1). It is easy to see, for any

fixed p ∈ (0, 1), that Qẽ1 is continuous at p if and only if G∗i is continuous at p for

all i ∈ Iθ. Let Qc
ẽ1

and G∗,ci denote the continuous parts of Qẽ1 and G∗i respectively.

Then

dQc
ẽ1

(p) =
∑
i∈Iθ

dG∗,ci (p).

On the other hand, by (A.6), we have (M◦
i )′+(q) = θiβiu

′
1i(G

∗
i (w̄

−1
i (q))) for all i ∈ Iθ

and all q ∈ (0, 1), or equivalently,

(M◦
i )′+(w̄i(p)) = θiβiu

′
1i(G

∗
i (p))

for all p ∈ (0, 1). Thus G∗i is continuous at p if and only if (M◦
i )′+ is continuous at

w̄i(p). For all i ∈ Iθ, let

Ci , {p ∈ (0, 1) : (M◦
i )′+(w̄i(p)) = (M◦

i )′+(w̄i(p)−)}

and

Di , {p ∈ (0, 1) : (M◦
i )(w̄i(p)) = (M•

i )(w̄i(p)}.

Then for all i ∈ Iθ,

dG∗,ci (p) = 1p∈Ci d(u′1i)
−1

(
(M◦

i )′+(w̄i(p))

θiβi

)
= 1p∈Ci∩Di d(u′1i)

−1

(
(M◦

i )′+(w̄i(p))

θiβi

)
,

where the last equality follows from the fact that M◦
i is the concave envelope of M•

i ,

which implies that (M◦
i )′+(w̄i(·)) is flat outside of Di. Moreover, for all i ∈ Iθ, let

Ei , {p ∈ (0, 1) : (M◦
i )′+(w̄i(p)) = (M•

i )′+(w̄i(p))}.

It is easy to see, for all i ∈ Iθ, that

(M◦
i )′+(w̄i(p)) > (M•

i )′+(w̄i(p)) if p ∈ Di \ Ei,

as M◦
i (q) ≥ M•

i (q) for all q ∈ (0, 1). Thus for every p ∈ Di \ Ei, there exists an

interval (p, p + ε) such that (p, p + ε) is outside of Di. In this case, (M◦
i )′+(w̄i(·)) is

flat on (p, p+ ε) because M◦
i is the concave envelope of M•

i , resulting in

dG∗,ci (p) = 1p∈Ci∩Di∩Ei d(u′1i)
−1

(
(M◦

i )′+(w̄i(p))

θiβi

)
.
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From the above analysis, we have

dQc
ẽ1

(p) =
∑
i∈Iθ

1p∈Ci∩Di∩Ei d(u′1i)
−1

(
(M◦

i )′+(w̄i(p))

θiβi

)
=

∑
i∈Iθ

1p∈Ci∩Di∩Ei
(
(u′1i)

−1
)′((M◦

i )′+(w̄i(p))

θiβi

)
d(M◦

i )′+(w̄i(p))

θiβi

=
∑
i∈Iθ

1p∈Ci∩Di∩Ei
1

u′′1i(G
∗
i (p))

d(M◦
i )′+(w̄i(p))

θiβi

=
∑
i∈Iθ

1p∈Ci∩Di∩Ei
1

u′′1i(G
∗
i (p))

d(M•
i )′+(w̄i(p))

θiβi

=
∑
i∈Iθ

1p∈Ci∩Di∩Ei
1

θiβiu′′1i(G
∗
i (p))

d

(
(M∗)′+(p)

w̄′i(p)

)
=

∑
i∈Iθ

1p∈Ci∩Di∩Ei
1

θiβiu′′1i(G
∗
i (p))

w̄′i(p) d(M∗)′+(p)− (M∗)′+(p)w̄′′i (p)dp

(w̄′i(p))
2

.

Suppose on the contrary that (M∗)′+ is not strictly decreasing on (0, 1), then there

exists a non null Borel set A ⊆ (0, 1) such that 1p∈A d(M∗)′+(p) � 0. Thus we have

1p∈A dQ
c
ẽ1

(p) �
∑
i∈Iθ

1p∈A∩Ci∩Di∩Ei
−1

θiβiu′′1i(G
∗
i (p))

(M∗)′+(p)w̄′′i (p)

(w̄′i(p))
2

dp

=
∑
i∈Iθ

1p∈A∩Ci∩Di∩Ei
−1

θiβiu′′1i(G
∗
i (p))

(M•
i )′+(w̄i(p))w̄

′′
i (p)

w̄′i(p)
dp

=
∑
i∈Iθ

1p∈A∩Ci∩Di∩Ei
−1

θiβiu′′1i(G
∗
i (p))

(M◦
i )′+(w̄i(p))w̄

′′
i (p)

w̄′i(p)
dp

=
∑
i∈Iθ

1p∈A∩Ci∩Di∩Ei −
u′1i(G

∗
i (p))

u′′1i(G
∗
i (p))

w̄′′i (p)

w̄′i(p)
dp

� 1p∈A Γ(p) dp. (C.1)

Let C denotes the set of all continuous points of Qẽ1 . Then the Lebesgue measure of

C is one and dQc
ẽ1

(p) = 1p∈C dQẽ1 . By (C.1), we can have

1p∈A∩C dQẽ1(p) � 1p∈A∩C Γ(p) dp,

which contradicts (4.4). �
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