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Abstract. For optimal controls of stochastic partial differential equations, the relationship between the maximum principle and 
dynamic programming is given in terms of Crandall and Lions' super- and sub-differential, without assuming the smoothness of the 
value function. A comparison between the super-, sub-differential and Clarke's generalized gradient is also discussed. 
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1. Introduction 

In this paper we will consider the following kind of stochastic control problems. For s ~ [0, 1], by 
admissible controls Uaa[S, 1] we mean the collection of (1) a standard probability space (12, o ~ ,  P )  and a 
d'-dimensional Brownian motion {W(t): s ~< t ~< 1} with W(s) = 0; (2) a /"-valued KS-adapted measura- 
ble process (U(t) :  s ~< t ~< 1}, where o~ s -'= o{W(r): s <~ r <~ t} and F is a given Borel set in some R m. We 
denote (~2, o~-, p, W, U ) ~  Uaa[S, 1], but sometimes we will only write U ~  Uad[S, 1] if no ambiguity 
arises. 

Let (s, ~) ~ [0, 1] × H ° ( H  ° := L2(Rd)) be fixed. For each (f2, 5 ,  P, W, U) ~ U~a[S, 1], there is a cost 
functional 

J(s, , ;  U):= E F(r, q(r, .), U(r))dr  + G (q (1 ) )  , 

where q is the solution (the precise meaning of the 'solution' will be given later on) of the following 
stochastic partial differential equation (SPDE in short) on the space (~,  o~, p; ~ ' ) :  

dq(t, x )=  [~i(aiJ(t, x, U(t)) ~jq(t, x)) + bi(t, x, U(t)) ~iq(t, x) 

+ c ( t ,  x, U(t))q(t,  x ) + f ( t ,  x, U( t ) ) ]  dt  

+ [oik(t, X, U(t)) 3iq(t, x )+hk( t ,  x, U(t))q(t,  x )+gl ' ( t ,  x, U(t ) ) ]  dWk(t), 

x ~ R d, t ~ [s, 11, (1.1a) 

q(s, x)=q~(x), x ~ R  a, ( lAb)  

where (W 1, W e .. . . .  Wd, ) := W, ~i := O/3xi, i = 1, 2 . . . . .  d. Note here and in the sequel we always use the 
conventional repeated indices for summation. 

The optimal control problem is to minimize J(s, cO; U) over Uad[S, 1]. The problem is denoted by Cs,q, 
to recall the dependence on the initial time s and initial state 0. The value function is defined as 

V(s, q S ) : = i n f ( J ( s ,  O; U) :  (12, ~ ,  P, W, U ) ~  U~d[S,1]}. (1.2) 
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As is well known, there are two important approaches to study the optimal control problems: 
Pontryagin's maximum principle [10] and Bellman's dynamic programming [1], which have been developed 
separately in the literature. The classical result on the relationship between these two approaches is that 
the partial differential of the value function in the state variable along the optimal path turns out the 
adjoint function/process involved in the maximum principle. Recently, Clarke and Vinter [3] obtained a 
nonsmooth version of this result, for the controls of ODE, by employing the notion of Clarke's generalized 
gradient [2]. On the other hand, Zhou also interpreted the above classical result in the language of Crandall 
and Lions' super- and sub-differential [5], for both ODE cases [11] and SDE cases [12]. In this paper, we 
shall investigate the SPDE cases, and discuss some relationships between the super-, sub-differential and 
the generalized gradient. 

2. Preliminaries 

Let F be a given Borel set in R m. We define a family of second-order differential operators {A(t, u): 
t ~ [0, 1], u ~ F} and a family of first-order differential operators ( Mk(t, u): t ~ [0, 1], u ~ F, k = 
1 , 2  . . . . .  d ' }  by 

A(t, u)go(x):= ~i(a'J(t, x, u) ~,gO(x))+bi(t, x, u) O/O(x)+ c(t, x, u)eo(x), (2.1) 

Mk(t, u)eo(x):---oik(t, x, u) O, eO(x) +hk(t, x, u)¢(x) ,  x < R  a, (2.2) 

where a u, b ~, c, o ~k and h k are real valued functions, for i, j = 1, 2 . . . . .  d; k = 1, 2 . . . . .  d ' .  
We will also consider the formal adjoints of (2.1), (2.2): 

A*(,, . ) . (x) := a,(a*'(,, x . . )  g . ( x ) ) -  e'(t, x, .) 

+ [ e f t ,  x, u)-Oibi(t, x, u ) ] ¢ f x ) ,  (2.3) 

Mk*(t, u ) ¢ ( x ) : = - o ' k ( t ,  x, u) 8,¢(x)+ [hk(t, x, u ) - ~ ) , o ' / ' ( t ,  x ,  u ) ] , : t , ( x ) ,  x~Ra. (2.4) 

We denote by H r the Sobolev space 

H r : = { ~ :  D~¢~L2(R"),foranyc~, Ici ly<r},  r = 0 , 1 , 2  . . . . .  

with the Sobolev norm 

, 1/2 

II¢l[r:={ Y'. fR]D~eo(x)[~dx} , f o r ¢ ~ H  r. 
i , x l ~ <  r ' 

We denote by H r the dual  space o f  H - r  for  r = - 1, - 2 . . . . .  

In this paper we will consider the triplet (H  1, H 0, H 1) under (H°)  * = H °. We will denote by ( . ,  • ) 
the duality pairing between H -1 and H 1, and by (.,  • ) the inner product in H °. 

For any second-order differential operator L which has the same form as (2.1), when we write (L¢ ,  ~b), 
then L is understood to be an operator from H 1 to H-1 by using formally Green's formula. For example, 
for the operator A(t, u), we have, for ¢, ~ ~ H 1, 

(A ( t , u ) , , ~ ) : = - ( a~J ( t , . , u )a j ¢ , 8~ )+ (b ' ( t , . , u )8 , , , d / )+ ( c ( t ,  .,u)e~,q,). (2.5) 

Remark 2.1. We have obviously (A(t, u)~, +)  = (~, A*(t, u)q~) and (Mk(t, u)ep, 4) = (~, Mk*(t, u)Og) 
for ¢, + ~ H 1. 
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For a, fl ~ ( -  ~ ,  + oe) with a < fl, we are given a filtered probability space (~2, o ~ ,  P, .~: a <~ t ~< B) 
and a Hilbert space X. For p ~ [1, + oc], define 

L.P(c~, fl; X)  := (O: 0 is an X-valued o~-adapted process on [a,  fl],  

and q s ~ L P ( [ a ,  fl] ×I2; X)} .  

We identify ~ and O' in L~(t~, fl; X) if Efff II q~(t) - q~'(t)II p dt -- O. 
Given (s, ~) ~ [0, 1] × H ° and (~2, ~ ,  P, W, U) ~ U~o[S, 1], we rewrite (1.1) in the following form, 

omitting to write the variable x: 

d q ( t )  = [A(t ,  U( t ) )q ( t )  + f ( t ,  U( t ) ) ]  dt 

+[Mk( t ,  U( t ) )q ( t )  +gk( t ,  U(t) ) ]  dWk(t ), t~[ s ,  11, (2.6a) 

q(s)  =q~. (2.68) 

A process q = q" ~ LZ(s,  1; H 1) is called a solution of (2.6) or a response for the control U, if for any 
~1 ~ Co ~ (=  smooth function on R d with compact support) and almost all (t, ~0) ~ Is, 1] × fa, 

(q( t ) ,  ~1) = (d~, ~1) + fs'<A( r, U( r ) )q ( r )  + f ( r ,  U(r)) ,  ~) dr 

+ f~ (Mk(r ,  U( r ) )q ( r )  + gk(r,  U(r)) ,  ~) dWk(r ). (2.7) 

Let us fix two positive constants K, 8. We introduce the following conditions on the data appearing in 
our problem: 

(A1) a ~j, b ~, c, o ~k, hk: [0, 1] × RaM F'-* R 1 are measurable in (t, x, u) and continuous in u; the 
functions a °, b ~, c, o ik, h k, Ojo ~k and 3jh k and their derivatives in x up to the second order do not exceed 
K in absolute value. 

(A2) a '1 a ji, i, j 1, 2 . . . . .  d; the matrix (A ij) (a ~j ~vd' oikojk~ . . . . .  7~k=~ ~ >~ 0 is uniformly positive defi- 
nite: 

Ail~i(j>181~[ 2, for a n y ( t ,  x, u ) , a n d a n y ~ R  d. 

(A3) F:[0,  1] × H i ×  f '--*R 1 is continuous; fix (t, u); for each 0 ~  H 1, there is an element in H -1, 
denoted by VF(t, CO, u), such that 

F(t, ~, u) - F(t ,  O, u )=  { V f ( t ,  d~, u), ~- , t , )  + o(11~- ~lh); 

moreover, ~TF(t, -, u):  H 1 ~ H -1 is continuous and II VF(t, ep, u) [I-1 <~ K for any ff ~ H 1. 

(A4) G : H ° --* R 1 is continuously Fr6chet differentiable; its Fr6chet differential VG satisfies ]1 VG(qS) IL0 
~<K for a n y 0 ~ H  °. 

(A5) f ,  gk: [0, 1] × Rd)I ' --)R 1 are measurable in (t, x, u) and continuous in u, for k = 1, 2 . . . . .  d ' ;  
f ( t , . ,  u) ~ H -1, g k ( t , . ,  U) ~ H °, and 

I f ( t ,  x, u) l + l g k (  t, x, u) l + l [ f ( t ,  . ,  u)[1_1 + [Igk( t, ", u)l]o~<K, k = 1 , 2  . . . . .  d ' .  

Remark 2.2. (A3) is satisfied if F(t, •, u) is continuously Fr6chet differentiable on H ° and if the H°-norm 
of the Fr6chet differential is bounded by K; on the other hand, (A3) also includes the following kind of 
functional which appears frequently in some explicit problems: 

F(t,  ~, u):= (F°( t ,  u), ep) + (Fi( t ,  u), ai~ ) 

where F i is H°-valued, i = 0, 1, 2 . . . . .  d. 
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Finally let us recall the notion of first-order super- and sub-differential of a functional on Hilbert space 
(Lions [8]). 

Definitions 2.1, Let v ~ C(H°; Ra). The first-order super- (resp. sub-) differential of v at ~ ~ H °, denoted 
by D+v(ff) (resp. D-lv(~))  is the set defined as 

D+v(e~):= { p~ H°: limsup[v( + )-v(e~) - (p, +-~)] / [ [~b-q,[[o~<0 } 
q~-,¢ 

(resp. D v ( ~ ) : = { p ~ H ° : l i m i n f ¢ ~ , ~ [ . . . ] > t 0 } ) .  

3. Value function and adjoint process 

In this section, we suppose ,~ ~ H ° is fixed and ((2, ~-, P, W, 0 ) ~  Uad[0,1 ] IS an optimal control of 
the problem Co. ~ and ~ is the corresponding state. We will denote A(t):=A(t ,  0(0) ,  if( t) := 
F(t, ~(t), U(t)), ~TF(t):= WE(t, ~(t), l~(t)), etc. to simplify the notations. We also denote o~t :=o~ ° for 
t e [0, 1]. 

According to Zhou [13, Theorem 4.1], there exists uniquely a pair (X, r)~L2(O,  1; H1)× 
[L2(0, 1; H°)] a' such that 

d X ( t ) =  - A * ( t ) X ( t ) +  2 3Ylk*(t)rk(t)+V'P(t)  d t +  ~ rk(t) dWk(t), t e [ 0 , 1  ], 
k = l  k = l  

(3.1a) 

X(1) = ~G(~(1)) .  (3.1b) 

Remark 3.1. The above result was proved in [13] when the given X(1) is deterministic. But the proof adapts 
easily to the present case. Equation (3.1) is called the adjoint equation of the controlled system (2.6), and 
the o~-adapted process X is called the adjoint process. 

On the other hand, it is routine to prove that 

[V( t ,+)-V( t ,~) l~<NllLq~-q ,[ Io ,  for a n y + , ~ H  °, (3.2) 

where N~ depends only on K, 8. Hence the super- and sub-differential of V(t, • ), which are denoted by 
D +- V(t, • ), are well defined according to Definition 2.1. 

Theorem 3.1. Assume (A1)-(A5); then for a.e. t ~ [0, 1], 

D-V( t ,  O ( t ) ) c  {X(t))  c D + V ( t ,  0( t ) ) ,  P-a.s. (3.3) 

Proof. To avoid notational complexity, we will prove the Theorem for d ' =  1 (there is no essential 
difficulty when d ' >  1). Thus the index k will be dropped. Appealing to Krylov and Rozovskii [7], 

~ L2(O, 1; H 1) n L2(~2; C(0, 1; H°)). Hence for a.e. t ~ [0, 1], 

Itc)(t)th2+ ILX(t)l[2< +~c, P-a.s. (3.4) 

Fix a t ~ [0, 1) such that (3.4) holds. For any q~ ~ H °, let q(.; ~b) satisfy the following SPDE on [t, 1]: 

q(s; + ) = + +  f tS[A(p)q(p;  q~)+f(p)] dp 

+ )q (p ;  *)  + ~ ( p ) ]  dW(p) ,  s ~ [ t ,  1]. (3.5) 
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Define ~(s; ~):= q(s; q~) - q(s) for s E [t, 1]. Then ~ satisfies the following SPDE: 

d~(s; ~b)=d(s)~(s ;  + ) d s + M ( s ) f ( s ;  ~b)dW(s), s ~ [ t , l ] ,  

,~(t;  + )  = ~ - q(t). 

469 

(3.6a) 

(3.6b) 

be regarded as an SPDE on the probability space (f2, ,,~, P( ' I  ~) (w);  ~'.,. t ~< s ~< 1) for 

where 

E ( f t l f o l ( l T F ( s  , q (s )q- -p~(s;  ~n), /Q(s))-  ~TP(s), ~(s; ~dn) / d e ds] .~ t )(o)0), £1n := 

e2 :=E(foa(WG(O(1)+p'(1; tk,))-XTG(0(1)), 4(1; ~k , ) )dp l~ ,  )(Wo). 

In view of (3.7) and the assumption (A3), (A4), it is easy to derive that 

[lea~l+lez, I]/ff~p -4 ( t ,  ~o)llo---,0 as~p, o 4 ( t ,  O~o) i n n  °. 

Since (3.6) may 
P-a.s. o~, so [7, Corollary 2.2] yields 

E( sup II~(s; +)llz+sftall~(s; +)lla 2 d s l ~  ) ~Nzl l~k-q( / ) l lo  ~, P-a.s., (3.7) 
\ t<.<s<~l 

where N 2 depends only on K, 3. 
Applying Ito's formula to (3.1) and (3.6), we get 

d(X(s), ~(s: +)) 

= - ( , 4* ( s )X( s )  +l~l*(s)r(s) + vF(s) ,  ~(s; ~))  d s+  (r(s), ~(s; +)) dW(s) 

+ (X(s), fi(s)~(s; ~))  d s +  (h(s) ,  M(s)~(s;  ~)) dW(s) + (r(s) , )~(s)~(s;  ff))ds, 

= - (Vf f ( s ) ,  ~(s; + ) ) d s +  (r(s)+ )~r*(s)X(s), ~(s; ~b))dW(s). 

Consequently, 

E (WF(s),~(s; ~b))ds+(WG(q(1)) ,~(1;  ~b))]~ = ( h ( t ) , + - ~ ( t ) ) ,  P-a.s. 

Since H ° is separable, we may choose qq, +2 . . . . .  qJ . . . . .  which is dense in H °. Choose an ~2 o c ~2 with 
P(~20) = 1 such that for any o~ o ~ $2o, (3.4), (3.7) and (3.8) are satisfied for any ~,, ($2, o~, p(. } o~tt)(~Oo) , 
W(s) - W(t), t) lit.q) e Uad[t, 1], and 

V(t, ~(t, o~o))=E(f 'P(s)as  + G(O(1))Io~ )(~o). (3.9) 

(The above (3.9) is called Bellman's principle of optimality. It was proved in Zhou [12] for the systems 
governed by SDE, and is extended trivally to the SPDE cases.) 

Let ~0 E I2 o be fixed; then for any ~b,, we have 

v(t, v(t, O(t, 

E( f l [F(s ,  q(s; ~,), 0 ( s ) ) -  ff(s)l ds + G(q(1; ~b,))-  G(O(1))I-~ )(w0) 
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Thus, noting (3.8), we may rewrite (3.10) as 

v( t ,  +o1 - v ( t ,  O(t, ~o)) ~< (x(t ,  ~o), + , - O ( t ,  ~o)) + o( l l~n-  0(t, ~o)11o). (3.11) 

Hence for any e > 0, there exists an B > 0 such that if [[ ~bn - ~(t, ¢Oo) I[o ~< 7, then 

v( t ,  +o) - v ( t ,  0(t, ,Oo)) ~ (x(t ,  ,Oo), +. - O(t, ,Oo)) + ~., 

where [e, I/L] t), - O(t, ¢Oo)11o ~< ½e. Now choose 7' := min{1, 7, e/[3(Nl + ]1X(t, ¢oo)I[o)]} where N1 is 
the constant in (3.2); then for any q, ~ H ° with 0 < I[ @-  ~(t, ¢%)1[o < 7' find a fixed @x such that 
II +N - q( t, Wo)I[o ~< 11 ~b - ~(t, ¢%)IIo and I1 +u -- + 110 ~< 11 + -- ~(t, ¢00)I[02. Thus we get 

V(I ,  * )  -- V ( t ,  q(t ,  ¢Oo) ) ~ (~k(t, 030) , + -  q( / ,  030) ) -t- N 3 [1 @ -  @N [[0-t- (~k(t, (.o0) , @N-- @) q- EN" 

Moreover, it is easy to compute that 

IN3 I + - # ' N  I + (X(t, ¢%), +,~-- *)  + ~ul/ll+- O(t, '~o) IIo ~ ~. 

This means (3.11) holds with ~/, replaced by any + ~ H °, which immediately leads to the fact that 
X(t, ¢%) ~ D + V(t, 0(t, ~%)). On the other hand, suppose p ~ D V(t, O(t, ¢%)). Then by the definition, 

0~< lim inf Iv(t ,  + ) -  V(t, O(t, ~ o ) ) - ( P ,  +-O( t ,  ~Oo)) ] / l l+-0( t ,  , o)11o 

~< l iminf  (?,(t,  % ) - p ,  + - 4 ( t ,  ,Oo))/1[~-4(t, ,~o)1[o 

Hence p = X(t, coo), which is the left part of (3.3). This concludes the proof. [] 

Remark 3.2. Using a dynamic programing approach, it can be proved that the value function V is a 
viscosity solution of the HJB equation on H ° (cf. Nisio [9]). On the other hand, under some additional 
assumptions, the necessary conditions of optimal controls of the system (2.6) is derived in Zhou [13] in the 
form of a maximum principle which involves the adjoint process X. 

Remark 3.3. Now let us explain what (3.3) means. It is known in the classical PDE theory that the method 
of characteristics is effective in obtaining solutions of first-order nonlinear PDE. Its main idea is that if 
there is a C 2 solution of the PDE, then the solution can be constructed from a family of solutions of some 
ordinary differential equations for curves called characteristic strips (cf. Courant and Hilbert [4]). The 
interesting point is that, for optimal controls of ODE, the differential equations of the characteristic strips 
for the HJB equation are just the adjoint equations involved in the maximum principle (cf. Fleming and 
Rishel [6]). But this theory is very unsatisfactory, because it assumes that the value function is C z, which is 
not true even in the simplest cases (cf. [11] for an example). Now (3.3) gives a relationship between the 
value function and the adjoint process, without assuming any smoothness of the value function. It suggests 
that the viscosity solution (not necessarily smooth!) of a second-order HJB equation might be constructed 
through a family of SDEs like (3.1). 

Finally let us briefly compare the super-, sub-differential with Clarke's generalized gradient. First we 
recall the following definition. 

Definition 3.1 (Clarke [2]). Let v : H  °--, R 1 be Lipschitz continuous. The generalized gradient of v at 
q~ ~ H °, denoted by 0v(q)), is the set defined as 

0v(qS) := { p ~ H°:  (p ,  q~) ~< v°(#); +) ,  for any qJ E H °}, 

where v°(qs; q~):-= = lim s u p ~ , , ~ o [ V ( ~  + eq~) - v(~)l/e. 
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Remark 3.4. Ov(q~) is a nonempty convex set and 3 ( -  v)(qS) = - 3v(~) .  See [2] for a thorough treatment of 

the generalized gradient. 

Lemma 3.1. Let v" H ° --* R 1 be Lipschitz continuous. Then 

D + v ( q S ) U D  v ( ~ ) c ~ v ( ~ ) ,  f o r a n y q ~ H  °. (3.12) 

Proof.  Let p ~ D-v(qs) .  Then (p ,  ~)  < lim in f ,~o[V(~  + e l )  - v(ep)]/e <~ v°(~; } ) ,  and hence p E Ov(q). 
On the other hand, we have D +v = - D - ( - v )  c - 3 ( - v )  = ~ v. This yields the result. [] 

Remark  3.5. The strict inclusion in (3.12) may  occur. To see this, take 

v ( x )  := ( x2sin(1/x)'O, x ~  R',x=O. x • 0 ,  

v is differentiable at 0, hence D+v(0)  = D - v ( 0 )  = (0).  But Or(0) equals the convex hull of the set of  limits 
of  the form lim v ' (h i ) ,  where hi--* 0 (cf. [2]). So 3 v ( 0 ) =  [ - 1 ,  1]. Through  this example, we may catch 
some sense about  the difference between the super-, sub-differential and the generalized gradient: if the 
former is a nonsmooth  not ion of  'differentiabili ty ' ,  then the latter may be regarded as a nonsmooth  notion 
of  ' cont inuous  differentiability'. 

Lemma 3.2. Let v : H ° ~ R ~ be Lipschitz continuous and semiconcave, i.e., there exists constant I(  such that 

v ( q ~ + + ) + v ( q ~ - ~ ) - Z v ( ~ ) ~ < R [ l + [ [ 0 2 ,  foranyq~,  q J ~ H  °. 

Then D + o ( ¢ )  = ~v( ¢ ), for  any q~ ~ H °. 

Proof.  First let us note that if ~ is concave, then p ~ 3tT(q~) iff ~ (~)  - 6(q~) ~ (p ,  q, - qs), for all ~ ~ H ° 
(see [2]). Hence D+6(q,)  = ~ ( ~ )  by not ing Lemma 3.1. 

N o w  v is semiconcave, and it can be decomposed  as v(q,) = 6(ff) + ½/£ [I ~ 1[ 2, where t7 is concave. If  
p ~ 0v(q~), then p - / ( ~  ~ 06(~)  = D+tT(ff), which yields p ~ D + o ( ~ ) .  The proof  is completed. [] 

Remark 3.6. If  we assume in addit ion that F ( t , . ,  u) and G are twice Fr6chet differentiable on H °, and 
the norms of their Fr6chet differentials up to second order  are bounded  uniformly,  then V ( t , .  ) is 
semiconcave on H ° (cf. Nisio [9]). Thus in view of Lemma 3.2, Theorem 3.1 may  be expressed equivalently 
in the language of  generalized gradient as X(t)  ~ OV(t, q(t)) .  This is an analogous result to that of O D E  
cases by Clarke and Vinter [3]. 
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