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Abstract We study the evolution of the Arrow–Pratt measure of risk-tolerance in the
framework of discrete-time predictable forward utility processes in a complete semi-
martingale financial market. An agent starts with an initial utility function, which is
then sequentially updated forward at discrete times under the guidance of a martin-
gale optimality principle. We mostly consider a one-period framework and first show
that solving the associated inverse investment problem is equivalent to solving some
generalised integral equations for the inverse marginal function or for the conjugate
function, both associated with the forward utility. We then completely characterise the
class of forward utility pairs that can have a time-invariant measure of risk-tolerance
and thus a preservation of preferences in time. Next, we show that in general, pref-
erences vary over time and that whether the agent becomes more or less tolerant to
risk is related to the curvature of the measure of risk-tolerance of the forward utility
pair. Finally, to illustrate the obtained general results, we present an example in a bi-
nomial market model where the initial utility function belongs to the SAHARA class,
and we find that this class is analytically tractable and stable in the sense that all the
subsequent utility functions belong to the same class as the initial one.
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1 Introduction

The Arrow–Pratt measures of risk-aversion and risk-tolerance, introduced by Arrow
[3, Sect. 3] and Pratt [38], have had a lasting impact on the science of decision-
making. They play an important part in the theory on the economics of risk, and
understanding them is crucial in numerous applications. Kenneth Arrow himself rea-
soned that ‘the behaviour of these measures as wealth changes is of the greatest im-
portance for prediction of economic reactions in the presence of uncertainty’ (Arrow
[4, page 96]). We should complement this statement by arguing that not only is the be-
haviour of these measures of greatest importance as wealth changes, but also as time
passes. In this paper, we focus on studying the behaviour of the Arrow–Pratt mea-
sure of risk-tolerance under the evolution of time in the framework of discrete-time
predictable forward utility (or performance) processes (forward processes in short)
as recently introduced in Angoshtari et al. [1].

Forward criteria were introduced in continuous time and thoroughly studied in a
series of papers by Musiela and Zariphopoulou [31, 32, 33, 34, 35]. The related no-
tion of horizon-unbiased utility was developed and studied in Henderson and Hobson
[20]; see also Zariphopoulou and Žitković [47] and El Karoui and Mnif [13]. Nad-
tochiy and Zariphopoulou [37], Choulli and Ma [12] and Liang and Zariphopoulou
[30] focus on homothetic forward performance processes in models for the finan-
cial market which go beyond the original Itô process setting. Shkolnikov et al. [43],
Chong et al. [10] and Geng and Zariphopoulou [14] provide an asymptotic analysis
of forward performance processes. An axiomatic justification and explicit stochas-
tic representation of forward performance criteria were obtained in Nadtochiy and
Tehranchi [36]. Recently, forward processes have been further extended to situations
involving model uncertainty (Källblad et al. [23], Chong and Liang [11]) and proba-
bility distortions (He et al. [19]), and applied to problems arising from pension fund
strategies (Bernard and Kwak [5]) and insurance (Chong [9]).

For the purpose of investigating how preferences change over time, forward
processes offer several advantages over the classical expected utility maximisation
framework. An expected utility maximiser is required to a priori select and commit
to a time horizon and a market model for the entire time period. He/she is also sup-
posed to already know at time zero what his/her preferences (represented by a utility
function) will be at the end of the time horizon. This approach looks at the investment
problem as a closed system and assumes that the problem terminates once the horizon
is reached. Under forward processes, on the other hand, the agent starts with speci-
fying his/her preferences for today. It seems more plausible that one is able to accu-
rately assess one’s present risk-tolerance, rather than that applying at a potentially far
away future time. The agent then updates his/her preferences under the guidance of
a martingale optimality principle, which essentially assures time-consistent decision-
making. Under this framework, preferences, investment strategies and wealth evolve
together endogenously and forward in time.
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While forward processes have so far mostly been studied in a continuous-time
setting, we focus here on discrete-time predictable forward utility processes. The
main advantage of considering a discrete-time setting is that the predictability of
the forward process is explicit, leading to richer economic interpretations, as op-
posed to the continuous-time setting in which predictability is lost at the infinitesimal
level and thus not transparent. We stress that the word discrete-time in the phrase
‘discrete-time predictable forward utility processes’ refers to preference evaluation
times (namely, preferences are evaluated and updated at discrete times) and not nec-
essarily to the trading times or the price process. Trading times and price processes
can be either discrete or continuous in time. This also reflects the fact that in prac-
tice, price changes and trading can take place almost continuously while preference
updates happen much less frequently.

Angoshtari et al. [1] show that when the market is described by a binomial model,
the problem of determining a discrete-time predictable forward process reduces to a
finite-horizon inverse investment problem which needs to be solved in a sequential
manner. They then establish an equivalence between the inverse investment problem
and solving a linear functional equation in the class of inverse marginal functions.
As a first contribution, we generalise this one-period result from the binomial model
to complete semimartingale models for the financial market, where the inverse in-
vestment problem is equivalent to solving a generalised integral equation in the class
of inverse marginal functions or another integral equation in the class of conjugate
functions. Showing the existence of a discrete-time predictable forward process in
the general setting and constructing such processes by sequentially solving the asso-
ciated generalised integral equations and showing that their solutions are predictable
all remain challenging open problems not addressed in this paper. While we consider
a complete semimartingale model for the financial market for most of the paper, we
frequently return to the binomial case in order to connect our results with the previous
work [1] and to build economic intuition.

While a theoretical framework of discrete-time forward processes has been set
up in [1], the only concrete example presented there is the one with an initial isoe-
lastic utility function in a binomial model for the financial market. In that example,
the risk-tolerance of the resulting forward process remains constant over time, even
when the agent updates the model for the financial market. Although such a preser-
vation of preferences might under some circumstances be desirable or realistic, it
is arguably not the most interesting case. In this paper, in a one-period framework,
we first fully characterise the class of initial utility functions leading to a constant
risk-tolerance measure over time in terms of a generalised integral equation for the
inverse marginal function associated with the initial utility function. Inverse marginal
functions associated with isoelastic utility functions always satisfy this equation, and
we thus generalise the above result to the case of complete semimartingale models.
We then turn our attention to the binomial model and find that in this case, preserva-
tion of preferences over time occurs if and only if the initial utility function belongs
to an enlarged class of isoelastic utility functions, where the corresponding inverse
marginal function might be multiplied with a doubly log-periodic factor. This sug-
gests in turn that the preference-preserving case of isoelastic utility functions is the
exception rather than the rule, and preferences do change over time in general. Re-
turning to the one-period complete semimartingale model for the financial market,
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we then investigate how this happens qualitatively. We find that whether the agent
becomes more or less tolerant to risk as time passes is related to the curvature of the
measure of risk-tolerance corresponding to the forward utility. The result is consis-
tent with a similar result in the context of (classical) expected utility maximisation of
Gollier and Zeckhauser [16], namely that the younger of two agents who are identical
except for the length of their time horizons is more (less) risk-averse if and only if the
measure of risk-tolerance associated with his/her utility function is concave (convex).

In the last part of the paper, we study in detail one example, the class of symmetric
asymptotic hyperbolic absolute risk aversion (SAHARA) utility functions in the bi-
nomial market model. The name SAHARA utility was coined by Chen et al. [8] in the
context of a classical (backward) utility maximisation problem. A special instance of
SAHARA functions was extensively studied for continuous-time forward criteria in
Zariphopoulou and Zhou [46]; see also the examples in Musiela and Zariphopoulou
[31, 33]. We show that this class of utility functions is analytically tractable and sta-
ble under the framework of predictable forward utility processes, in the sense that if
the initial utility function is of the SAHARA class, then so are the members of the
entire forward process. Moreover, only the scale parameter, but not the risk-aversion
parameter and the threshold wealth, are updated over time in a forward process. As
time passes, the risk-tolerance of the corresponding predictable forward utility pro-
cess converges to a linear function, conforming to an HARA utility. The class of
SAHARA utility functions thus truly deserves its name: An SAHARA utility is an
HARA utility not only asymptotically in wealth, but also asymptotically in time.

The remainder of this paper is organised as follows. We review the definition and
extend some of the main results on discrete-time predictable forward utility pairs to
complete semimartingale market models in Sect. 2. In Sect. 3, we provide a complete
characterisation of initial utility functions leading to time-invariant risk-tolerance of
the corresponding forward pairs. The general study in a one-period framework of
time-varying preferences and the relation to the curvature of the measure of risk-
tolerance takes place in Sect. 4. In Sect. 5, we study the example of predictable for-
ward utility processes when the initial utility is an SAHARA utility function. We
conclude in Sect. 6.

2 Discrete-time predictable forward utility processes

In this section, we review the definition of discrete-time predictable forward utility
processes and extend some of the main results of Angoshtari et al. [1] from a binomial
model to complete semimartingale models for the financial market.

We fix a probability space (�,F ,P) with a filtration F = (Ft )t≥0 satisfying the
usual conditions. On this probability space, there is a sequence of performance
(or preference) evaluation times (τn)n∈N0 , where N0 denotes the nonnegative inte-
gers. The performance evaluation times are stopping times such that τ0 = 0, τn+1 is
Fτn -measurable, and they satisfy τn < τn+1 for every n ∈ N0.

The discounted price processes of d risky assets is represented by a d-dimensional
semimartingale S = (St )t≥0. The market further contains a risk-free asset with a con-
stant discounted price process 1.
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Trading strategies are described by means of d-dimensional, predictable and
S-integrable processes ϑ = (ϑt )t≥0, where ϑi

t denotes the number of shares of the
ith risky asset held at time t ≥ 0. Given an initial wealth x > 0 and trading strat-
egy ϑ , the wealth process Xϑ = (Xϑ

t )t≥0 evolves according to Xϑ
t = x + ∫ t

0 ϑudSu,
t ≥ 0. A trading strategy ϑ as well as the associated wealth process Xϑ are called
admissible if Xϑ is nonnegative. We denote by A(t, x) and X (t, x) the set of trading
strategies (ϑs)s≥t and associated wealth processes (Xϑ

s )s≥t starting from Xϑ
t = x,

t ≥ 0, and abbreviate A(x) = A(0, x) and X (x) = X (0, x).
Throughout this paper, a utility function is a function U : R+ → R which is

twice continuously differentiable, strictly increasing, strictly concave and satisfies the
Inada conditions U ′(0) := limx→0+ U ′(x) = ∞ and U ′(∞) := limx→∞ U ′(x) = 0.
We also recall that an inverse marginal function is a function I :R+ →R+, which
is continuously differentiable, strictly decreasing and satisfies limy→0+ I (y) = ∞
and limy→∞ I (y) = 0. It is well known that if two functions U,I : R+ → R sat-
isfy I = (U ′)−1, then U is a utility function if and only if I is an inverse marginal
function.

We further recall that the conjugate function of a utility function U is given by

V (y) = sup
x>0

(
U(x) − xy

)

for y > 0. The function V is C2, strictly decreasing, strictly convex with V ′(0) = −∞,
V ′(∞) = 0, V (0) = U(∞), V (∞) = U(0), and we have the bidual relation

U(x) = inf
y>0

(
V (y) + xy

)

for x > 0. A utility function, its inverse marginal function and its conjugate func-
tion are related by (U ′)−1(x) = −V ′(x) = I (x), x > 0. We denote the set of utility
functions by U , the set of inverse marginal functions by I , and the set of conjugate
functions by V .

Definition 2.1 A sequence of random functions Un :R+ × � → R, n ∈ N0, is called
a discrete-time predictable forward utility process (a forward process in short) with
respect to the performance evaluation times (τn)n∈N0 and filtration F if the following
conditions hold:

(i) U0(x, ·) is constant and Un(x, ·) is Fτn−1 -measurable for every x ∈ R+ and
n ∈N.

(ii) Un(·,ω) ∈ U for almost all ω ∈ � and all n ∈ N0.
(iii) For any initial wealth x > 0, n ∈ N and admissible wealth process X ∈ X (x),

Un−1(Xτn−1) ≥ E[Un(Xτn)|Fτn−1 ].
(iv) For any initial wealth x > 0, there exists an admissible wealth process

X∗ ∈X (x) such that for any n ∈N,

Un−1(X
∗
τn−1

) = E[Un(X
∗
τn

)|Fτn−1 ].
We stress again that the word discrete-time in the phrase ‘discrete-time predictable

forward utility processes’ refers to performance evaluation times, and not necessarily
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to the trading times or the price process. The above general formulation allows both
continuous-time and, by means of the standard embedding of discrete-time markets
into a continuous-time framework, discrete-time financial markets.

Definition 2.1 is analogous to that in the continuous-time setting (Musiela and
Zariphopoulou [31]), except for point (i) which explicitly spells out the predictability
feature unique to the discrete-time setting. Points (iii) and (iv) constitute a martingale
optimality principle (see e.g. Korn [26]) that guides the evolution of preferences.

According to Angoshtari et al. [1], the general scheme for constructing discrete-
time forward processes is as follows. Starting with an initial utility function U0, one
iteratively discovers Un from Un−1 together with an optimal strategy (ϑt )τn−1≤t≤τn

and wealth process (X∗
t )τn−1≤t≤τn over the investment interval �τn−1, τn� by solving

Un−1(X
∗
τn−1

) = ess sup
ϑ∈A(τn−1,X

∗
τn−1

)

E

[

Un

(

X∗
τn−1

+
∫ τn

τn−1

ϑudSu

)∣
∣
∣
∣Fτn−1

]

. (2.1)

Recall that both Un and τn are Fτn−1 -measurable and thus known at time τn−1.
So while it is conceptually important to regard discrete-time forward processes in
a dynamic setting evolving forward in time, mathematically the construction of
such a process reduces to the following inverse investment problem over a finite
horizon: Given an initial utility function U0 and a model for the financial market
S = (St )0≤t≤1, we look for a utility function U1 such that for any x > 0,

U0(x) = max
ϑ∈A(x)

E

[

U1

(

x +
∫ 1

0
ϑudSu

)]

. (2.2)

Remark 2.2 Recall that for P-almost all ω0 ∈ �,

1 = P
[{

ω ∈ � : Un−1
(
X∗

τn−1
(ω),ω

) = Un−1
(
X∗

τn−1
(ω0),ω0

)
,

X∗
τn−1

(ω) = X∗
τn−1

(ω0),

τn−1(ω) = τn−1(ω0), τn(ω) = τn(ω0)
}∣∣Fτn−1

]
(ω0);

cf. for example Yong and Zhou [45, Proposition 2.13]. The Inverse investment
problem (2.1) therefore reduces to (2.2) under a regular conditional distribution
P[·|Fτn−1 ](ω0) for P-almost all ω0 ∈ �. However, if one wants to construct a forward
process by iteratively solving (2.2) forward in time, one not only needs to determine
a solution Un(·,ω0) to (2.2) with P replaced by P[·|Fτn−1 ](ω0) for P-almost all fixed
ω0 ∈ �, but also must argue that the resulting Un(x, ·) is Fτn−1 -measurable for any
fixed x > 0. In this paper, we neither derive results on existence and uniqueness
of solutions to (2.2), nor do we provide conditions for the required measurability
of the solution in case it exists. These issues can be addressed on an ad hoc basis
for special cases for the financial market or the initial utility function. For example,
Angoshtari et al. [1] provide conditions for existence and uniqueness in the binomial
model for the financial market, and in that setting, the required measurability is nat-
urally satisfied. For isoelastic initial utility functions, we provide an explicit solution
in Proposition 3.1 and note that this solution also satisfies the required measurability
condition.
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Since we only consider the inverse investment problem (2.2) in studying a forward
process, we henceforth limit the analysis to the one-period problem (2.2) and refer to
(U0,U1) as a forward pair. Occasionally, we call U0 the initial utility (function) and
U1 the forward utility (function). We also drop the generic subscript n from all the
variables and parameters in the model.

One of the main results in [1] is that in a binomial market, the inverse investment
problem (2.2) is equivalent to a functional equation for the inverse marginal func-
tions I0 = (U ′

0)
−1 and I1 = (U ′

1)
−1 of the initial and forward utility function. As a

first contribution of this paper, we generalise this one-period result to any complete
semimartingale market model. For the remainder of this paper, we in particular
make the following assumption ensuring absence of arbitrage and market complete-
ness.

Standing Assumption 2.3 There exists a unique equivalent local martingale mea-
sure Q for S.

We denote the Radon–Nikodým derivative of Q with respect to P on (�,F1) by ρ.

Theorem 2.4 Let U0,U1 ∈ U be utility functions with inverse marginals I0, I1 ∈ I
and conjugate functions V0,V1 ∈ V . The following are equivalent:

i) The utility functions U0 and U1 solve the inverse investment problem (2.2).
ii) I0 and I1 satisfy the generalised integral equation

I0(y) = E[I1(yρ)ρ], y > 0, (2.3)

and the utility functions are normalised to

U0(1) = E

[
U1

(
I1

(
U ′

0(1)ρ
))]

. (2.4)

iii) The conjugate functions satisfy the generalised integral equation

V0(y) = E[V1(yρ)], y > 0. (2.5)

Moreover, if one and thus all of the above statements hold true, the unique optimal
wealth solving (2.2) is given by X∗

1(x) = I1(ρU ′
0(x)) and the corresponding wealth

process X∗(x) is a uniformly integrable martingale under Q on [0,1].
Proof We first show that i) implies ii). According to Kramkov and Schachermayer
[27, 28], the optimal wealth solving (2.2) exists and is given by X∗

1(x) = I1(yρ) with
y = U ′

0(x). Indeed, because U0 is a utility function and V0 its conjugate function,
inf{y > 0 : V0(y) < ∞} = 0. This in particular implies that

U0(x) = E

[
U1

(
I1

(
U ′

0(x)ρ
))]

for any x > 0 and thus in particular for x = 1 yielding (2.4). By [27, Theorem 2.0],
we further have that

U ′
0(x) = E

[
X1(x)U ′

1(X1(x))

x

]

= 1

x
E

[
I1

(
U ′

0(x)ρ
)
U ′

0(x)ρ
]
.
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Thus

x = E
[
I1

(
U ′

0(x)ρ
)
ρ
]

and the change of variable x = I0(y) yields (2.3).
Next, we show that ii) implies iii). Let Ũ0 : (0,∞) → R∪ {∞} be the value func-

tion of the expected utility maximisation problem with respect to U1,

Ũ0(x) = sup
X∈Z(x)

E[U1(X)],

where Z(x) = {x + ∫ 1
0 ϑudSu : ϑ ∈ A(x)} is the set of all admissible wealths at

time 1. Let x1 = E[ρI1(U
′
0(1)ρ)] which is positive and finite by (2.3). Because

U1(x) ≤ U1(y) + U ′
1(y)(x − y) for any x, y ∈ (0,∞),

E[U1(X)] ≤ E

[
U1

(
I1

(
U ′

0(1)ρ
))]

+ U ′
0(1)

(
E[ρX] −E

[
ρI1

(
U ′

0(1)ρ
)]) ≤ U0(1)

for any X ∈ Z(x1), where the second inequality follows from (2.4) and the fact that
E[ρX] ≤ x1 which holds because

∫
ϑdS is bounded below and thus a Q-local mar-

tingale and then a Q-supermartingale by the lemma of Ansel and Stricker [2]. We
therefore have Ũ0(x1) < ∞ and then, again by [27], that there exists a y0 > 0 such
that E[V1(yρ)] < ∞ for y ≥ y0. For y < y0, we have

E[V1(yρ)] = E

[

−
∫ y0

y

(
d

dz
V1(zρ)

)

dz + V1(y0ρ)

]

= E

[∫ y0

y

ρI1(zρ)dz

]

+E[V1(y0ρ)]

=
∫ y0

y

I0(z)dz +E[V1(y0ρ)]

≤ (y0 − y)I0(y) +E[V1(y0ρ)],
where the third equality follows from Tonelli’s theorem and (2.3). We in particular
have that E[V1(yρ)] < ∞ for any y > 0. By [28] and with the same arguments as
above, we thus have that

Ĩ0(y) = E[I1(yρ)ρ] = I0(y),

where Ĩ0(y) = (Ũ ′
0)

−1(y), y > 0. Hence, it holds that Ũ0(x) = U0(x) + c for some
c ∈R. By (2.4), we have c = 0 and can in particular conclude for any y > 0 that
U0(y) = Ũ0(y) = E[U1(I1(ρU ′

0(y)))]. Now recall that Vi(y) = Ui(Ii(z)) − zIi(z),
z > 0, i ∈ {0,1}; see e.g. Rockafellar [40, Theorem 26.4]. Equation (2.3) thus be-
comes

1

y

(
U0

(
I0(y)

) − V0(y)
)

= E

[
(yρ)−1

(
U1

(
I1(yρ) − V1(yρ)

)
ρ
)]

which simplifies to (2.5) because U0(y) = E[U1(I1(ρU ′
0(y)))].
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Finally, we show that iii) implies i). For any x > 0 and ϑ ∈A(x),

E

[

U1

(

x +
∫ 1

0
ϑudSu

)]

= E

[

inf
y>0

V1(y) +
(

x +
∫ 1

0
ϑudSu

)

y

]

≤ E

[

V1(ρ) +
(

x +
∫ 1

0
ϑudSu

)

ρ

]

≤ V0(1) + x,

where the last inequality follows from (2.5) and the fact that wealth processes are
Q-supermartingales as argued above. Therefore, the function Ũ0 : (0,∞) → R de-
fined as before by Ũ0(x) := supX∈Z(x)E[U1(X)] is finite everywhere. By [27, Theo-
rems 2.0 and 2.2],

Ũ0(x) = inf
y≥0

(
V0(y) + xy

) = U0(x),

and we conclude that U0 and U1 solve (2.2) and the maximum in (2.2) is attained.
The facts that the optimal wealth solving (2.2) is given by X∗

1(x) = I1(ρU ′
0(x))

and that the corresponding wealth process is a uniformly integrable martingale under
Q on [0,1] follow directly from [27, 28]. �

Theorem 2.4 provides a method to construct a forward pair in complete financial
markets. One starts with a utility function U0 and defines the corresponding inverse
marginal function I0(y) = (U ′

0)
−1(y), y > 0, or, alternatively, the corresponding con-

jugate function V0(y) = supx>0(U0(x) − xy), y > 0. If one is able to solve the gen-
eralised integral equation (2.3) and show that the solution I1 is in I , one can define
U1 : R+ →R by

U1(x) = U0(1) +E

[∫ x

I1(ρU ′
0(1))

I−1
1 (ξ)dξ

]

.

Then U1 satisfies (U ′
1)

−1 = I1 and (2.4) by construction and we can thus conclude
that (U0,U1) is a forward pair. We point out again that in order to generalise this
construction method to the dynamic setting, one would also have to argue the pre-
dictability of the forward utility as we highlighted in Remark 2.2. Analogously, if
one can find a solution V1 to the generalised integral equation (2.5) and show that V1

is in V , one can define U1 : R+ →R by U1(x) = infy>0(V1(y) + xy) and conclude
that (U0,U1) is a forward pair.

Remark 2.5 There is no one-to-one relationship between utility functions and their
inverse marginal functions since an inverse marginal function only determines the
corresponding utility function up to a constant. It is thus not surprising that we need
some kind of normalisation in (2.4), since for (U0,U1) to be a forward pair, we need
U0 to be the value function of the expected utility maximisation problem with utility
function U1.
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Remark 2.6 Theorem 2.4 provides characterisations of a forward pair (U0,U1).
These also turn out to be useful to study the properties of forward processes in terms
of implied risk attitudes, which is the main topic of this paper. However, the theo-
rem itself does not provide conditions under which forward processes exist and are
unique. While this question has been addressed for the binomial setting in [1], the
general case remains a challenging open problem. Theorem 2.4 implies that the ques-
tion is related to the existence and uniqueness of a solution to the generalised integral
equations (2.3) or (2.5), given an initial utility function U0. This latter problem is
nonetheless challenging since inverse marginal functions and conjugate functions are
typically not Lebesgue-summable, i.e., the Lebesgue integral of their absolute value
is not finite, and thus standard approaches via Fourier transforms cannot be directly
applied. Moreover, even if solutions to the generalised integral equations exist, one
furthermore has to argue that the corresponding forward utility has the required mea-
surability properties; cf. Remark 2.2.

The case of a binomial model for the financial market was extensively studied
in Angoshtari et al. [1], where discrete-time predictable forward utility processes
have been introduced. We point out that the term binomial model in the context of
discrete-time predictable forward processes always refers to the setting where trading
times coincide with performance evaluation times. To the best of our knowledge,
there are so far no results on this framework going beyond the binomial setting. We
thus frequently return to the binomial model, on the one hand to connect our results
with the previous work of [1], and on the other to illustrate our findings in a more
tractable and explicit setting.

Under the binomial model and in a one-period framework, the financial market
consists of a single stock whose price follows a Bernoulli distribution. Specifically,
we suppose that S0 = 1 and that S1 = u with probability p and S1 = d with prob-
ability 1 − p, where d < 1 < u and 0 < p < 1. For this market, there is a unique
equivalent martingale measure Q given by q = Q[S1 = u] = 1−d

u−d
and with pricing

kernel ρ = q
p

1{S1=u} + 1−q
1−p

1{S1=d}. The following straightforward corollary to The-
orem 2.4 restates some of the main results in [1, Theorems 5.1 and 5.2]. We remark
that the functional equation for the conjugate functions has not been established in
[1] and is new to the best of our knowledge.

Corollary 2.7 Consider the one-period binomial model for the financial market, and
let U0,U1 ∈ U be utility functions with inverse marginals I0, I1 ∈ I and conjugate
functions V0,V1 ∈ V . Then the following are equivalent:

i) The utility functions U0 and U1 solve the inverse investment problem (2.2).
ii) I0 and I1 satisfy the linear functional equation

I0(y) = qI1

(

y
q

p

)

+ (1 − q)I1

(

y
1 − q

1 − p

)

, y > 0, (2.6)

and the utility functions are normalised to

U0(1) = pU1

(

I1

(
U ′

0(1)
q

p

)
+ (1 − p)U1

(
I1

(
U ′

0(1)
1 − q

1 − p

))
)

. (2.7)



Evolution of the Arrow–Pratt measure of risk-tolerance

iii) The conjugate functions satisfy the generalised integral equation

V0(y) = pV1

(

y
q

p

)

+ (1 − p)V1

(

y
1 − q

1 − p

)

, y > 0.

Moreover, if one and thus all of the above statements hold true, the unique optimal
wealth solving (2.2) is given by X∗

1(x) = I1(ρU ′
0(x)).

Remark 2.8 It is straightforward to show that (2.6) is equivalent to the linear func-
tional equation reported in [1], namely

I1(ay) + bI1(y) = (1 + b)I0(cy), y > 0, (2.8)

where

a = 1 − p

p

q

1 − q
, b = 1 − q

q
, c = 1 − p

1 − q
. (2.9)

3 Time invariant risk-tolerance of forward pairs

In this section, we characterise the set of initial utility functions under which the
measure of risk-tolerance can be preserved over time along a forward pair.

Recall that the Arrow–Pratt measure of (absolute) risk-aversion of a utility func-
tion U is defined by

A(x) = −U ′′(x)

U ′(x)
,

and its reciprocal, the Arrow–Pratt measure of (absolute) risk-tolerance, is given by

T (x) = 1

A(x)
= − U ′(x)

U ′′(x)
.

These equivalent measures fully characterise the preferences of the agent. Indeed, if
A0 and A1 denote the measures of risk-aversion of two utility functions U0 and U1,
then it follows from A(x) = − d

dx
log(U ′(x)) that A0(x) = A1(x) for all x > 0 if and

only if there are constants C > 0 and D ∈ R such that

U1(x) = CU0(x) + D.

In this case, the preferences represented by the two utility functions are identical as
they are related by an affine transformation.

It is our goal to investigate, within the framework of predictable forward utility,
how preferences evolve when time passes and wealth changes. To this end, we first
characterise initial utility functions U0 under which preferences can be preserved
over time and are thus a function of wealth alone. If (U0,U1) is a predictable forward
utility pair, this is the case if and only if the corresponding measures of risk-tolerance
coincide, i.e., T0(x) = T1(x) for all x > 0. In the binomial market, one such example
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is the case of an isoelastic initial utility function exhibiting constant relative risk-
aversion, U0(x) = 1

γ
xγ with γ ∈ (−∞,1) \ {0}. As shown in Angoshtari et al. [1],

we then have U1(x) = δU0(x) with δ = 1+b

c1/(1−γ )(a−1/(1−γ )+b)
, where a, b, c are given

by (2.9). Since the market parameters enter only into the factor δ, preferences in this
example remain constant over time even if market parameters were to be updated.
The following proposition extends this result to general one-period complete financial
markets.

Proposition 3.1 If the initial utility is U0(x) = 1
γ
xγ for some γ ∈ (−∞,1) \ {0},

then a forward utility is given by U1(x) = δU0(x), where

δ = (
E

[
ρ

γ
γ−1

])γ−1
.

If U0(x) = logx, then a forward utility is given by U1(x) = logx +E[logρ].

Proof Let γ ∈ (−∞,1) \ {0}. The conjugate of U0(x) = 1
γ
xγ is clearly given by

V0(y) = ( 1
γ

− 1)y
γ

γ−1 . Hence we need to find V1 ∈ V such that (2.5) holds, i.e., such
that

(
1

γ
− 1

)

y
γ

γ−1 = E[V1(yρ)]. (3.1)

A natural candidate is given by V1(ξ) = cξ
γ

γ−1 , which solves (3.1) if and only if

c = ( 1
γ

− 1)/E[ρ γ
γ−1 ]. We obtain the corresponding forward utility as

U1(x) = inf
y>0

( 1
γ

− 1

E[ρ γ
γ−1 ]

y
γ

γ−1 + xy

)

=
1
γ

− 1

E[ρ γ
γ−1 ]

((
E

[
ρ

γ
γ−1

]
x
)γ−1

) γ
γ−1 + x

(
E

[
ρ

γ
γ−1

]
x
)γ−1

= 1

γ

(
E

[
ρ

γ
γ−1

])γ−1
xγ .

The case U0(x) = logx is proved similarly. �

Remark 3.2 Proposition 3.1 resembles a result of Choulli and Ma [12] which shows
that the measure of risk-tolerance of isoelastic utility functions is independent of both
the time and state in a continuous-time forward setting with a general locally bounded
semimartingale market model.

Proposition 3.1 shows that preferences can be preserved when the initial utility
belongs to the class of isoelastic utility functions. It is natural to ask whether this
is the only class under which preferences are preserved. To this end, we consider a
forward pair (U0,U1) with T0(x) = T1(x) for all x > 0. Then U ′

1(x) = CU ′
0(x) for

some constant C > 0, and the inverse marginal functions corresponding to the utility
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functions U0 and U1 therefore satisfy the relationship I1(y) = I0(
y
C

). The generalised
integral equation for the inverse marginal function (2.3) thus becomes a necessary and
sufficient condition on the inverse marginal function associated with the initial utility
function,

I0(y) = E

[

I0

(
y

C
ρ

)

ρ

]

, y > 0. (3.2)

Whether (3.2) allows solutions going beyond the class of inverse marginal func-
tions corresponding to isoelastic utility functions depends on the financial market un-
der consideration. We illustrate this in the case of the one-period binomial model for
the financial market, which we consider for the remainder of this section. Study-
ing this question for other important models for the financial market is left as an open
problem for future research. For the one-period binomial setting, (3.2) becomes

I0

(
a

C
y

)

+ bI0

(
1

C
y

)

= (1 + b)I0(cy), y > 0. (3.3)

The following lemma determines all inverse marginal functions solving (3.3) for a
given C > 0.

Lemma 3.3 Let C > 0. We consider the following three cases:
(i) If p = q , then every inverse marginal function I0 satisfies (3.3) when C = 1,

and no inverse marginal function I0 satisfies (3.3) otherwise.
(ii) If p 
= q and either C ≤ min(

q
p
,

1−q
1−p

) or C ≥ (
q
p
)q(

1−q
1−p

)1−q , then there is no
inverse marginal function I0 satisfying (3.3).

(iii) Let p 
= q and min(
q
p
,

1−q
1−p

) < C < (
q
p
)q(

1−q
1−p

)1−q . Then there is a unique
negative solution β1 to

1 = 1

1 + b

(
a

Cc

)β

+ b

1 + b

(
1

Cc

)β

(3.4)

and we have:
(a) If log a

Cc
and log 1

Cc
are not commensurable, i.e., log a

Cc
/ log 1

Cc
is not

rational, then I0 is an inverse marginal function satisfying (3.3) if and only if there is
a k > 0 such that I0(x) = kxβ1 .

(b) If log a
Cc

and log 1
Cc

are commensurable, then I0 is an inverse marginal
function satisfying (3.3) if and only if there is a positive, continuously differentiable
function k(x) satisfying k(x) = k( a

Cc
x) = k( 1

Cc
x) and xk′(x) < −β1k(x) for all

x > 0 such that I0(x) = k(x)xβ1 .

Proof Case (i) is trivial because a = c = 1 when p = q . For the remainder of this
proof, we thus assume that p 
= q . Note that a strictly decreasing solution to (3.3)
can only exist when a < Cc < 1 if p > q or a > Cc > 1 if p < q . A solution
to (3.3) within the class of inverse marginal functions can thus only exist when
min(

q
p
,

1−q
1−p

) < C < max(
q
p
,

1−q
1−p

), which we assume from now on. This shows that

there is no inverse marginal function satisfying (3.3) when C > min(
q
p
,

1−q
1−p

), but
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because (
q
p
)q(

1−q
1−p

)1−q < max(
q
p
,

1−q
1−p

) not yet that C < (
q
p
)q(

1−q
1−p

)1−q is also nec-
essary for the existence of an inverse marginal function satisfying (3.3). To investigate
(3.4), we define f :R → R by

f (β) := 1

1 + b

(
a

Cc

)β

+ b

1 + b

(
1

Cc

)β

− 1.

Clearly, f is strictly convex, f (0) = 0 and

f ′(0) = 1

1 + b
log

a

Cc
+ b

1 + b
log

1

Cc

= q log
q

p
+ (1 − q) log

1 − q

1 − p
− logC.

Hence f ′(0) is positive when C < (
q
p
)q(

1−q
1−p

)1−q , zero when C = (
q
p
)q(

1−q
1−p

)1−q

and negative when C > (
q
p
)q(

1−q
1−p

)1−q . Since min(
q
p
,

1−q
1−p

) < C < max(
q
p
,

1−q
1−p

),

we either have a
Cc

< 1 < 1
Cc

or 1
Cc

< 1 < a
Cc

, and f thus converges to infinity
when β goes to plus or minus infinity. Hence, the solutions of (3.4) are β0 = 0
and a unique negative β1 when C < (

q
p
)q(

1−q
1−p

)1−q . When C = (
q
p
)q(

1−q
1−p

)1−q ,
f is nonnegative and β0 = 0 is the only solution to (3.4). In the case where
max(

q
p
,

1−q
1−p

) > C > (
q
p
)q(

1−q
1−p

)1−q , the solutions to (3.4) are given by β0 = 0 and
a unique positive β1. Now note that equation (3.3) is equivalent to

I0(y) = 1

1 + b
I0

(
a

Cc
y

)

+ b

1 + b
I0

(
1

Cc
y

)

.

As β0 = 0 and β1 are the only solutions to the characteristic equation (3.4) of the
above functional equation, according to Laczkovich [29], if I0 is a nonnegative and
measurable solution of (3.3), then there are nonnegative measurable functions k0 and
k with k0(x) = k0(

a
Cc

x) = k0(
1

Cc
x), respectively k(x) = k( a

Cc
x) = k( 1

Cc
x), for all

x > 0, and k0, k are constant whenever log a
Cc

and log 1
Cc

are not commensurable,
such that

I0(x) = k0(x) + k(x)xβ1 .

When we require I0 to be an inverse marginal function, we have limx→∞ I0(x) = 0
which implies that k0(x) = 0. Moreover, I0 also must be strictly decreasing, and β1
thus must be negative because of the double log-periodicity of k. We conclude (ii).
The properties of an inverse marginal function further require that k is continuously
differentiable and that

0 > I ′
0(x) = (

k′(x)x + β1k(x)
)
xβ1−1

which results in the requirement that xk′(x) < −β1k(x) for all x > 0. On the other
hand, it is easy to verify that when I0(x) = k(x)xβ1 , where k satisfies the properties
as above and β1 solves (3.4), then I0 satisfies (3.3). �
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Remark 3.4 It is straightforward to show that min(
q
p
,

1−q
1−p

) ≤ 1 ≤ (
q
p
)q(

1−q
1−p

)1−q for
any 0 ≤ p, q ≤ 1 and that both inequalities are strict if and only if p 
= q . When
p 
= q and C = 1, we are thus in case (iii) of Lemma 3.3, and (3.4) becomes

1 = q

(
q

p

)β

+ (1 − q)

(
1 − q

1 − p

)β

.

This equation is obviously solved by β0 = 0 and β1 = −1. The unique negative so-
lution to (3.4) is thus given by β1 = −1, which corresponds to the extended class
of logarithmic utility functions. Because the function f defined in the proof of
Lemma 3.3 is increasing in the parameter C for a fixed negative β , we conclude
that min(

q
p
,

1−q
1−p

) < C < 1 corresponds to β1 < −1 and thus to utility functions with

U(+∞) = +∞, whereas 1 < C < (
q
p
)q(

1−q
1−p

)1−q corresponds to −1 < β1 < 0 and
thus to utility functions with U(+∞) < +∞.

The following example shows the existence of functions k having the properties
as described in part (iii) (b) of Lemma 3.3.

Example 3.5 We here give an example showing that there exist positive, continu-
ously differentiable functions k : R+ → R such that k(x) = k( a

Cc
x) = k( 1

Cc
x) and

xk′(x) < −β1k(x) for all x > 0 when log a
Cc

/ log 1
Cc

= −n/m for some n,m ∈ N.
Indeed, it is easy to see that

k(x) = K + sin

(
2πm

| log 1
Cc

| logx

)

satisfies the above properties for large enough K > 0.

The following theorem provides a full characterisation of all initial utility func-
tions leading to time-invariance of preferences under the framework of discrete-time
predictable forward utility processes in a one-period binomial model for the financial
market.

Theorem 3.6 Suppose p 
= q and let U0 be a utility function with risk-tolerance T0
and inverse marginal I0. Preferences are time-invariant, i.e., there is a forward utility
U1 for U0 with risk-tolerance T1 satisfying T0(x) = T1(x) for all x > 0, if and only if
I0 has one of the following two forms: either I0(x) = kxβ1 for some constants k > 0
and β1 < 0, or I0(x) = k(x)xβ1 where the function k : (0,∞) → (0,∞) is contin-
uously differentiable and satisfies k(x) = k( a

Cc
x) = k( 1

Cc
x) and xk′(x) < −β1k(x)

for all x > 0 for some constants C > 0 and β1 < 0 satisfying (3.4).

Proof For the ‘only if’ direction, let U1 be a forward utility for U0 with risk-tolerance
T1(x) = T0(x) for all x > 0 and inverse marginal I1. As we have seen at the begin-
ning of Sect. 3, T1(x) = T0(x) for all x > 0 implies that there exists a C > 0 such that
I1(y) = I0(

y
C

). Since U1 is a forward utility for U0, I0 satisfies (3.3). It follows from

Lemma 3.3 that min(
q
p
,

1−q
1−p

) < C < (
q
p
)q(

1−q
1−p

)1−q and there exist a β1 < 0 solv-
ing (3.4) as well as a function k : (0,∞) → (0,∞) which is constant when log a

Cc
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and log 1
Cc

are not commensurable, and continuously differentiable as well as satis-
fying k(x) = k( a

Cc
x) = k( 1

Cc
x) for all x > 0 and xk′(x) < −β1k(x) when log a

Cc
and

log 1
Cc

are commensurable such that I0(x) = k(x)xβ1 .
We next show the ‘if’ direction. In the first case where I0(x) = kxβ1 for some

k > 0 and β1 < 0, let

C =
(

1

1 + b

(a

c

)β1 + b

1 + b

(1

c

)β1
)1/β1

.

Then I0 satisfies (3.3). In the second case, I0 satisfying (3.3) is implied by the as-
sumptions and Lemma 3.3. Set I1(y) := I0(

y
C

). Then I1 satisfies (2.8) and according
to Theorem 2.4 is thus the inverse marginal function corresponding to the forward
utility for U0. Moreover, I1(y) = I0(

y
C

) yields U ′
1(x) = CU ′

0(x) which in turn im-
plies T1(x) = T0(x). �

Theorem 3.6 shows that for the case of a one-period binomial market, prefer-
ences can be preserved over time if and only if the initial utility function belongs to
an extended class of isoelastic utility functions. Indeed, an inverse marginal of the
form I (x) = kxβ with constants k > 0 and β < 0 corresponds to a utility function
U(x) = k1/|β|x1−1/|β| + D for some constant D ∈ R. This case thus coincides with
the example studied in Angoshtari et al. [1]. The case where k is a doubly log-periodic
function can only occur when log a

Cc
and log 1

Cc
are commensurable. We emphasise

here that C and β1 depend on one another as well as on the market parameters via
(3.4). Hence, C is not free once one fixes a preference parameter β1 and the market
parameters. Since the rational numbers are a Lebesgue nullset, the extended class
of isoelastic utility functions where the inverse marginal might be multiplied with
a doubly log-periodic factor actually reduces to the standard class of isoelastic util-
ity functions for almost all values of the preference and market parameters. This in
particular implies that the preference-preserving power utility functions are the ex-
ception rather than the rule: In general, preferences described by predictable forward
processes will indeed change as time evolves, and this change potentially depends on
the dynamically evolving conditions of the market.

4 Time varying risk-tolerance of forward pairs

We have seen in the previous section that initial utility functions belonging to the class
of isoelastic utility functions lead to a preservation of preferences in a one-period
framework, and that at least in the binomial market model, any initial utility function
under which preferences can be preserved as time evolves must belong to an extended
class of isoelastic utility functions. It is the objective of this section to study how risk-
tolerance is updated under the framework of forward pairs once one goes beyond this
extended class of isoelastic utility functions, and thus to understand how preferences
evolve over time in general. We again denote the risk-tolerance corresponding to U0
(resp. U1) by T0 (resp. T1). The following theorem shows that for the general one-
period complete semimartingale market model, how risk-tolerance changes as time
passes depends on the curvature of the risk-tolerance measure.
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Theorem 4.1 Let (U0,U1) be a forward pair such that E[ρT1(X
∗
1(x))] < ∞ for any

x > 0. The following hold:
(i) If T1 is (strictly) concave, then T0(x) ≤ T1(x) (T0(x) < T1(x)) for all x ∈ R.
(ii) If T1 is (strictly) convex, then T0(x) ≥ T1(x) (T0(x) > T1(x)) for all x ∈R.

Proof Let x > 0 be fixed. According to Kramkov and Schachermayer [27, Theo-
rem 2.0], we have

U ′
0(x) = E

[
I1(U

′
0(x)ρ)U ′

0(x)ρ

x

]

.

The above equality implies that

x = E
[
I1

(
U ′

0(x)ρ
)
ρ
]
. (4.1)

Differentiating with respect to x yields

1 = lim
h→0

1

h

(
E

[
I1

(
U ′

0(x + h)ρ
)
ρ
] −E

[
I1

(
U ′

0(x)ρ
)
ρ
])

= lim
h→0

E

[

ρ
I1(U

′
0(x + h)ρ) − I1(U

′
0(x)ρ)

h

]

= lim
h→0

E

[

ρ2 U ′′
0 (ξ(h))

U ′′
1 (I1(U

′
0(ξ(h))ρ))

]

= lim
h→0

E

[

ρ2 U ′′
0 (ξ(h))

U ′′
1 (I1(U

′
0(ξ(h))ρ))

U ′
1(I1(U

′
0(ξ(h))ρ))

U ′
0(ξ(h))ρ

]

= lim
h→0

E

[

ρ
T1(I1(U

′
0(ξ(h))ρ))

T0(ξ(h))

]

= E

[

ρ
T1(I1(U

′
0(x)ρ))

T0(x)

]

,

where ξ(h) ∈ (x, x + h) exists by the mean-value theorem, the fourth equality holds
because U ′

1 ◦ I1 = id, and the last step follows from the dominated convergence theo-
rem because E[ρT1(X

∗
1(x))] < ∞ (recall that X∗

1(x) = I1(ρU ′
0(x)) by Theorem 2.4),

along with the continuity of T1, I1,U
′
0 and T0.

We obtain between the risk-tolerance of the original utility function and the risk-
tolerance of the forward utility the relationship

T0(x) = E

[
ρT1

(
I1

(
U ′

0(x)ρ
))]

. (4.2)

In Case (i), (4.1), (4.2) and Jensen’s inequality imply that T0(x) ≤ T1(x) for any
x > 0 and the inequality is strict when T1 is strictly concave. Case (ii) is analogous
with the opposite inequality. �

Remark 4.2 The measure of risk-tolerance of isoelastic utility functions is linear and
thus in particular both convex and concave. Theorem 4.1 then implies that its risk-
tolerance will remain constant, consistent with our earlier results in Proposition 3.1.
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It is natural to ask whether the conclusion of Theorem 4.1 still holds when one
starts from the assumption that T0 is concave or convex. When T0 is concave, using
first (4.2) and then Jensen’s inequality together with (4.1) yields for any x > 0 that

E

[
ρT1

(
I1

(
U ′

0(x)ρ
))]

= T0(x) ≥ E

[
ρT0

(
I1

(
U ′

0(x)ρ
))]

. (4.3)

Since U ′
0 : (0,∞) → (0,∞) is a bijection by the Inada conditions, (4.3) gives a gen-

eral direction for the future behaviour of the agent. Nonetheless, (4.3) does not ex-
clude the possibility that T1(ξ) < T0(ξ) at some particular ξ > 0, and so the general
answer is no. The reason is that the local behaviour of T0 at a given point ξ > 0 is
not related to T1 at the same point, but instead to the risk-neutral average over the
risk-tolerance evaluated on the optimal wealth corresponding to the initial wealth ξ ;
cf. also Example 4.4 below. In the case where T0 is convex, one obtains the opposite
inequality in (4.3).

On the other hand, if we have convexity/concavity in risk-tolerance of each utility
function in a forward pair, Theorem 4.1 dictates whether the agent becomes more risk
tolerant or otherwise as he/she grows older. Turning this observation around, given
an agent exhibiting monotonicity in time for his/her risk-tolerance, Theorem 4.1 may
help choose a suitable parametrised family of utility functions to model his/her risk
preferences. In the next section, we present a forward utility process with consistently
convex risk-tolerance measures.

Remark 4.3 Gollier and Zeckhauser [16] study the implication of the curvature of
the measure of risk-tolerance on the relation between horizon length and willingness
to take risk in a model of a fixed time horizon. They compute the risk-tolerance
of the intermediate value function in a two-step setting, and show that convexity of
the absolute risk-tolerance is necessary and sufficient for a younger agent to take
more risk than an older one. Clearly, our result in Theorem 4.1 (ii) is consistent with
their finding. A similar result relating the risk-tolerance to the curvature of the utility
function applied at the end of a fixed time horizon was obtained by Källblad and
Zariphopoulou [24] for classical expected utility maximisation in a continuous-time
lognormal market.

There is no consensus in the literature as to whether absolute risk-tolerance should
be concave or convex. Hennessy and Lapan [21] show that a concave risk-tolerance
implies the notion of standard risk-aversion of Kimball [25], which in turn implies
proper risk-aversion (Pratt and Zeckhauser [39]) and risk vulnerability (Gollier and
Pratt [15]). However, none of these concepts conversely implies concavity of the
risk-tolerance. Gollier and Zeckhauser [16] point out that there are equally appeal-
ing arguments for both a concave or a convex risk-tolerance. Guiso and Paiella [18]
suggest a concave measure of risk-tolerance through an empirical study and find that
quite contrary to conventional wisdom, the portfolio share of risky assets is increasing
in age (see also Guiso et al. [17] for an earlier result in this direction). This is consis-
tent with our finding in Theorem 4.1, which implies an increasing risk-tolerance of
the forward pair when the risk-tolerance is concave.
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Fig. 1 Counterexample against time-monotonicity of the measure of risk-tolerance. This figure shows
the measure of risk-tolerance of the initial and forward utility when the risk-tolerance of the former is
oscillating in a market with p = 0.6, u = 1.1 and d = 0.9. It illustrates that the risk-tolerance is not
necessarily monotonic in time.

Example 4.4 This example serves to explicate that in general, there need not be a
uniform order of elevation between the risk-tolerance measures of the two neigh-
bouring utility functions (U0,U1) in a forward pair. We again work in the one-
period binomial model for the financial market. Intuitively, U0 and U1 are related by
U0(x) = pU1(x + π∗(u − 1)) + (1 − p)U1(x + π∗(d − 1)). So the local behaviour
of U0 at a wealth level x is not related to that of U1 at the same wealth level x, but
instead to U1 evaluated at two different wealth levels, one above and the other below
x. If the risk-tolerance of U1 is fluctuating in some region of the state, then that of U0

might be fluctuating in a completely different region. We illustrate this phenomenon
numerically. We take

U1(x) = − (1 + δ)

2
x2 + Kx − cosx,

for x ∈ (a, b), parametrised by δ,K > 0, where 0 < a < b < +∞ is such that U1 is
increasing in that interval. The function U1 can be extended to be a globally increas-
ing and strictly concave utility on the whole real line satisfying the Inada conditions,
but it is not important for our purpose to specify exactly how this is done as the lo-
cal behaviour of the utility function in a sufficiently large region fully specifies an
expected utility maximisation problem in a binomial market within some smaller re-
gion. For the numerical example, we consider p = 0.6, u = 1.1, d = 0.9, δ = 0.15
and K = 20. Then U1 is strictly increasing between a = 1 and b = 17. The absolute
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risk-tolerance for U1 is given by

T1(x) = −(1 + δ)x + sinx + K

1 + δ − cosx
.

We then solve the classical expected utility maximisation problem to obtain the
value function U0(x). Clearly, U0 and U1 are two neighbouring utility functions in
a forward pair. Since it is difficult to compute the inverse marginal utility function
I1 explicitly and thus to obtain analytical results for the measure of risk-tolerance
of the initial utility function U0, we solve the expected utility maximisation prob-
lem numerically using MATLAB and then compute a central difference of sec-
ond order accuracy to estimate the risk-tolerance of the initial utility. We do so
for initial wealth levels between 4 and 12 so that the resulting terminal wealth
under the optimal strategy remains between a and b. Figure 1 compares the risk-
tolerance of the two utility functions. As expected, the risk-tolerance of U0 is lower
than that of U1 at some wealth levels, but the opposite is the case at other wealth
levels.

5 An example with SAHARA utility functions in a binomial market

In this section, we study and solve a case where the initial utility function U0 belongs
to the class of symmetric asymptotic hyperbolic absolute risk aversion (SAHARA)
utility functions in the binomial model for the financial market. The term was coined
by Chen et al. [8] for the classical, backward framework. A variant of this class first
appeared in Musiela and Zariphopoulou [31, Example 1] and has been extensively
studied in Zariphopoulou and Zhou [46] for continuous-time forward criteria; see
also Musiela and Zariphopoulou [33, Example 12].

We work in the binomial model for the financial market because there, it is
straightforward to extend the results of Sect. 2, and in particular Corollary 2.7, to
utility functions defined on the whole real line, i.e., utility functions U : R → R

which satisfy the Inada condition limx→−∞ U ′(x) = +∞ at minus infinity instead
of zero and otherwise have the same properties as the utility functions we stud-
ied before. For the example studied in this section, we do not require the termi-
nal wealth to be nonnegative, nor do we impose any restriction on the set of ad-
missible strategies. Studying discrete-time predictable forward utility processes for
utility functions defined on the whole real line in general market models would be
much more intricate. When wealth is allowed to become negative, it is often not
clear how to define a suitable class of admissible strategies. For (backward) util-
ity maximisation with utility functions defined on the whole real line, it is typi-
cally the case that even when the solution exists and is representable as a stochas-
tic integral, the integrand is not within the class of admissible strategies, or that
the class of admissible strategies depends on the utility function (Schachermayer
[41, 42], Biagini and Frittelli [7], Biagini and Černý [6]). However, for the forward
framework, the existence of an admissible optimal strategy is required by defini-
tion.
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Definition 5.1 A utility function U : R → R is of the SAHARA class with risk-
aversion parameter α > 0, scale parameter β > 0 and threshold wealth ξ ∈ R if
its absolute risk-tolerance is given by

T (x) = 1

α

√
β2 + (x − ξ)2 > 0.

When wealth is far above or below the threshold wealth, the risk-tolerance be-
haves like a linear function of wealth, giving rise to the name of its class. When the
threshold level is approached from above, the risk-tolerance decreases. Consequently,
the agent would invest a smaller proportion of his/her wealth in the risky asset, re-
flecting his/her reluctance to fall below the threshold. However, unlike in the case
where wealth is restricted to remain nonnegative, this reluctance is not absolute and
the agent thus allows the possibility of falling below the threshold. Once below the
threshold, the agent becomes more tolerant to risk the further away he/she gets from
the threshold. Preferences reflected by an SAHARA utility function are thus resem-
bling those by the so-called value function in the prospect theory of Kahneman and
Tversky [22] and Tversky and Kahneman [44] in behavioural finance, where there is
a reference point dividing absolute wealths into a gain region in which the agent is
risk-averse and a loss region in which the agent is risk-seeking.

It is straightforward to compute that SAHARA utility functions are up to affine
transformations of the form

U(x) = − 1

α2 − 1

(x − ξ) + α
√

β2 + (x − ξ)2

((x − ξ) + √
β2 + (x − ξ)2)α

(5.1)

if α 
= 1 and

U(x) = log((x − ξ) + √
β2 + (x − ξ)2)

2
+ x − ξ

2β2

(√
β2 + (x − ξ)2 − (x − ξ)

)

(5.2)

if α = 1. The corresponding inverse marginal function is given by

I (y) = ξ + 1

2
(y−1/α − β2y1/α), y > 0.

Note that Chen et al. [8] assume for simplicity that the threshold wealth is zero.
Here we allow an arbitrary threshold wealth ξ because we are interested in under-
standing how this threshold evolves when we go forward in time.

The following theorem provides a complete solution for discrete-time predictable
forward utility processes in a binomial market when the initial utility function belongs
to the SAHARA class. It constitutes in particular the discrete-time analogue to the
results established in Zariphopoulou and Zhou [46].

Theorem 5.2 Let the initial utility function U0 be of the SAHARA class with risk-
aversion parameter α > 0, scale parameter β > 0 and threshold wealth ξ ∈ R. Then
the forward utility is of the form U1(x) = ε + λαÛ(x), where λ is given by
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λ = (1 + b)c−1/α

a−1/α + b
, (5.3)

Û is of the form (5.1) respectively (5.2) with risk-aversion parameter α1, scale pa-
rameter β1 and threshold wealth ξ1 updated according to

α1 = α, β1 = β(1 + b)
√

1 + b(a−1/α + a1/α) + b2
, ξ1 = ξ, (5.4)

and ε is given by

ε = U0(1) − pλαÛ

(

I1

(p

q
U ′

0(1)
))

− (1 − p)λαÛ

(

I1

(1 − p

1 − q
U ′

0(1)
))

. (5.5)

Moreover, the optimal terminal wealth is given by

X∗
1(x) = X

∗,u
1 (x)1{S1=u} + X

∗,d
1 (x)1{S1=d}

with

X
∗,u
1 (x) = ξ + λ

2

(( q

p

)−1/α(
x − ξ +

√
β2 + (x − ξ)2

)

− (
β1
λ

)2(
q
p
)1/α

x − ξ + √
β2 + (x − ξ)2

)

and

X
∗,d
1 (x) = ξ + λ

2

(( 1 − q

1 − p

)−1/α(
x − ξ +

√
β2 + (x − ξ)2

)

− (
β1
λ

)2(
1−q
1−p

)1/α

x − ξ + √
β2 + (x − ξ)2

)

.

Finally, the corresponding optimal strategy is given by

π∗(x) = 1

u − d

(
X∗,u(x) − X∗,d (x)

)
.

Proof A careful reading of the proofs of Theorems 5.1 and 5.2 in Angoshtari et al. [1]
shows that Corollary 2.7 extends to utility functions defined on the whole real line.
We thus need to find an inverse marginal function I1 solving the functional equation

I1(ay) + bI1(y) = (1 + b)ξ + 1

2
(1 + b)

(
c−1/αy−1/α − β2c1/αy1/α

)
(5.6)

for all y > 0. Making the ansatz I1(y) = ξ1 + λ
2 (y−1/α1 − β2

1y1/α1), one easily finds
that I1 satisfies (5.6) when the parameters are given by λ = (1+b)c−1/α/(a−1/α +b),

α1 = α, β̃1 = βc1/α
√

a−1/α+b

a1/α+b
and ξ1 = ξ . We therefore have
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U ′
1(x) =

(
x − ξ1

λ
+

√

β̃2
1 +

(x − ξ1

λ

)2
)−α1

= λα1

(

x − ξ1 +
√

(λβ̃1)2 + (x − ξ1)2

)−α1

.

Since λβ̃1 = β1 and ε in (5.5) is chosen such that (2.7) is satisfied, the form of the
forward utility follows. The optimal terminal wealth and optimal strategy can be de-
duced using Corollary 2.7 and noting that

U ′
0(x) = (

x − ξ +
√

β2 + (x − ξ)2
)−α

. �

It follows from Theorem 5.2 that the forward utility remains within the class
of SAHARA utility functions and, more surprisingly, only the scale parameter β

changes over time. In particular, the risk parameter α and the threshold wealth ξ

remain constant independently of any changes in the prevailing market conditions.
Let us now turn our attention to the updating of the scale parameter β . It follows

from the general fact x + 1/x ≥ 2 for x > 0, with equality if and only if x = 1, that
β1 ≤ β , with equality if and only if a = 1, i.e., if the expected return of the risky
asset equals the risk-free return. Since b depends only on q , the reduction of the scale
parameter is increasing in the difference between the physical and the risk-neutral
probability measure for any fixed values u and d of the risky asset. Note that the
risk-tolerance

T (x) = 1

α

√
β2 + (x − ξ)2 > 0

of an SAHARA utility function is convex as a function of wealth and increasing in
the parameter β . That the scale parameter β1 of the forward utility is smaller than the
scale parameter β0 of the initial utility function is thus consistent with Theorem 4.1.
As long as the expected excess return offered by the market remains larger than a
positive, time-independent constant, the scale parameter β will converge to zero as
time passes. This implies that the risk-tolerance of the forward process approximates
a linear function corresponding to an HARA utility. An SAHARA utility is thus an
HARA utility not only asymptotically in wealth, but also asymptotically in time.

To conclude the study of this case, we compare the optimal terminal wealth for
the SAHARA preferences with the optimal terminal wealth for an isoelastic utility
function. For better comparability, we suppose that the threshold wealth ξ is zero
and consider an isoelastic utility function with the same risk-aversion parameter α,
i.e., U iso(x) = 1

1−α
x1−α . For this initial utility function, the optimal terminal wealth

and optimal strategy are given by Xiso
1 (x) = X

iso,u
1 (x)1{S1=u} + X

iso,d
1 (x)1{S1=d} and

π iso(x) = (Xiso,u(x) − Xiso,d (x))/(u − d), respectively, where

X
iso,u
1 = λ

(
q

p

)−1/α

x, X
iso,d
1 = λ

(
1 − q

1 − p

)−1/α

x,

with λ as in (5.3).
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Proposition 5.3 Suppose that the expected excess return of the market is positive,
i.e., p > q . For x > 0, let π∗(x) denote the optimal strategy for a forward utility
when the initial utility is an SAHARA utility function with risk-aversion parameter
α > 0, scale parameter β > 0 and threshold wealth ξ = 0, and let π iso(x) denote
the strategy for a forward utility when the initial utility is an isoelastic utility func-
tion with risk-aversion parameter α. Then the difference between the two strategies,
Dπ(x) = π∗(x) − π iso(x), is positive, strictly decreasing in x and converges to zero
as x goes to infinity.

Proof Denote by

Du(x) = X
∗,u
1 (x) − X

iso,u
1

= λ

2

(( q

p

)−1/α(√
β2 + x2 − x

) −
(β1

λ

)2( q

p

)1/α 1

x + √
β2 + x2

)

the difference between the terminal wealth levels in the state {S1 = u}. Differentiating
with respect to x yields

d

dx
Du(x) = λ

2

(( q

p

)−1/α( x
√

β2 + x2
− 1

)
+

(β1

λ

)2( q

p

)1/α
1 + x√

β2+x2

(x + √
β2 + x2)2

)

.

Hence d
dx

Du(x) is negative if and only if

x +
(

β1

λ

)2(
q

p

)2/α 1

x + √
β2 + x2

<

√
β2 + x2,

which can be further simplified to

(
β1

λ

)2(
q

p

)2/α

< β2. (5.7)

Using the explicit form of λ and β1 given in (5.3) and (5.4), we have (5.7) if and
only if

1 >

(
q

p

)2/α

c2/α a−1/α + b

a1/α + b
= a1/α + ba2/α

a1/α + b
.

Because a < 1 when p > q , we can conclude that Du is strictly decreasing. More-
over, it is easy to see that Du converges to zero when x goes to infinity and
Du is thus positive. One can similarly show that Dd(x) = X

∗,d
1 (x) − X

iso,d
1 is

negative and strictly increasing to zero. The conclusion follows because we have
Dπ(x) = (Du(x) − Dd(x))/(u − d). �

Proposition 5.3 is further illustrated in Fig. 2 which shows the optimal terminal
wealth in both states for the SAHARA and isoelastic forward utility function. The two
agents behave similarly for large wealth levels, but the agent with an isoelastic initial
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Fig. 2 This figure compares the optimal terminal wealth in both states for an SAHARA and an isoelastic
utility function. The market parameters are u = 1.1, d = 0.95 and p = 0.6, and the preference parameters
α = 0.8, β = 1 and ξ = 0.

utility reduces his/her exposure to the risky asset to zero, whereas the agent with an
SAHARA initial utility function keeps the exposure above a non-zero constant as the
initial wealth goes to zero.

6 Conclusion

This paper is an immediate follow-up of Angoshtari et al. [1] in which the framework
of discrete-time predictable forward utility processes was first introduced. One of the
major results there is the reduction of a single-period inverse investment problem to
a linear functional equation for the inverse marginal function when the market fol-
lows a binomial model. As a first contribution, we extend this one-period result from
the binomial case to complete semimartingale models for the financial market and
establish the equivalence between solutions to the inverse investment problem over
a finite investment interval and generalised integral equations for either the inverse
marginal function or the conjugate function. We then turn our attention to the main
theme of this paper and investigate how the Arrow–Pratt measure of risk-tolerance
evolves within the framework of discrete-time predictable forward utility pairs. We
first investigate in a one-period framework under what conditions risk preferences can
be preserved over time. We find that such a preservation holds for isoelastic utility
functions in the general complete market, and we establish a complete characterisa-
tion of all initial utility functions leading to a time-constant measure of risk-tolerance
for the binomial case. Moreover, for the binomial case, a preservation of preferences
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happens if and only if the initial utility function belongs to an enlarged class of isoe-
lastic utility functions. Our next focus, again in a one-period framework, is on how
preferences are updated qualitatively. We find that whether an agent becomes more or
less tolerant to risk as time passes is related to whether the measure of risk-tolerance
is concave or convex. Finally, we study an example with SAHARA utility functions
in the binomial market model. This class of utility functions is found to be analyti-
cally tractable under the framework of discrete-time predictable forward utility pro-
cesses. The results derived in this paper appear to be intuitively and economically
interpretable, and consistent with some of the conclusions from the existing works in
classical (backward) utility theory. This in turn suggests that discrete-time predictable
forward utility processes may constitute a viable framework to study the dynamics of
risk preferences and the associated decision-making problems.

There are several interesting directions for future research. Firstly, the question
of existence and uniqueness of a forward process given an initial utility and general
complete semimartingale model for the financial market remains open. This ques-
tion is linked to the study of the related generalised integral equations for the in-
verse marginal or the conjugate function. Since it cannot be addressed by standard
approaches, solving this problem will contribute to the field of integral equations
in addition to the theory of forward performance processes. Secondly, the evolution
of the Arrow–Pratt risk measures can be investigated in greater detail for financial
markets other than the binomial model. Last but not least, studying discrete-time pre-
dictable forward processes in incomplete models remains an open and challenging
research problem. In the complete market case, the convex duality approach reduces
the inverse investment problem involved in the construction of forward processes to a
generalised integral equation. However, this approach would lead to another inverse
problem which needs to be solved over the space of equivalent supermartingale defla-
tors if the market is incomplete. It is thus not clear whether the same approach would
lead to a tractable problem, and very different techniques might be required to solve
this case.
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