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FAILURE OF SMOOTH PASTING PRINCIPLE AND
NONEXISTENCE OF EQUILIBRIUM STOPPING RULES UNDER
TIME-INCONSISTENCY*

KEN SENG TAN', WEI WEIf, AND XUN YU ZHOUS$

Abstract. This paper considers time-inconsistent stopping problems in which the inconsistency
arises from a class of non-exponential discount functions called the weighted discount functions. We
show that the smooth pasting (SP) principle, the main approach that is used to construct explicit so-
lutions for the classical time-consistent optimal stopping problems, may fail under time-inconsistency.
Specifically, a mere change of the discount function from exponential to non-exponential (everything
else being the same) will fail the SP approach. In general, we prove that the SP solves a time-
inconsistent problem, within the intra-personal game theoretic framework with a general nonlinear
cost functional and a geometric Brownian motion, if and only if certain inequalities on the model
primitives are satisfied. In the special case of a real options problem, we show that while these in-
equalities hold trivially for the exponential discount function, they may not hold even for very simple
non-exponential discount functions. Moreover, we show that the real options problem actually does
not admit any equilibrium whenever the SP fails. The negative results in this paper caution blindly
extending the classical approach for time-consistent stopping problems to their time-inconsistent
counterparts.

Key words. optimal stopping, weighted discount function, time inconsistency, equilibrium
stopping, intra-personal game, smooth pasting, real options.

AMS subject classifications. 91G80, 60G40, 91B52

1. Introduction. A crucial assumption imposed on classical optimal stopping
models is that an agent has a constant time preference rate and hence discounts her
future payoff exponentially. When this assumption is violated, an optimal stopping
problem becomes generally time-inconsistent in that any optimal stopping rule ob-
tained today may no longer be optimal from the perspective of a future date. The
problem then becomes largely descriptive rather than normative because there is gen-
erally no dynamically optimal solution that can be used to guide the agent’s decisions.
Different agents may react differently to a same time-inconsistent problem, and a goal
of the study is to describe the different behaviors. [34] is the first to observe that non-
constant time preference rates result in time-inconsistency, and to categorize three
types of agents when facing such time-inconsistency. One of the types is called a
“non-committed, sophisticated agent” who, at any given time, optimizes the underly-
ing objective taking as constraints the stopping decisions chosen by her future selves.
Such a problem has been formulated within an intra-personal game theoretic frame-
work and the corresponding equilibria are used to describe the behaviors of this type
of agents; see, for example, [31]; [26]; [30]; [24] and [29]. An extended dynamic pro-
gramming equation for continuous-time deterministic equilibrium controls is derived
n [11], followed by a stochastic version in [2] and application to a mean—variance
portfolio model in [3].

This paper studies a time-inconsistent stopping problem in continuous time within
the intra-personal game framework, in which the source of time-inconsistency is the
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2 K. TAN, W. WEI, AND X. ZHOU

so-called weighted discount function (WDF), a very general class of non-exponential
discount functions.! We make two main contributions. First, we demonstrate that
the smooth pasting (SP) principle, which is almost the ezclusive approach in solving
classical optimal stopping problems, may fail simply because time-consistency is lost.
Second, for a stopping model whose time-consistent counterpart is the well-studied
real options problem, we establish a condition under which no equilibrium stopping
rule exists. These results are constructive and they caution blindly extending the SP
principle to time-inconsistent stopping problems.

Let us now elaborate on the first contribution. Recall that the SP is an Ansatz
used to derive (often explicit) solutions to conventional, time-consistent optimal stop-
ping problems. It conjectures a candidate solution to the underlying Bellman equation
(or variational inequalities), which is a free boundary PDE, based on the C! smooth
pasting around the free boundary, and then checks that it solves the PDE under some
standard regularity/convexity conditions on the model primitives. Finally it verifies
that the first hitting time of the free boundary indeed solves the optimal stopping
problem using the standard verification technique. Recently, [14] and [17], among
others, extend the application of the SP principle to solving time-inconsistent stop-
ping problems. While the SP happened to work in the specific settings of these papers,
it is more a lucky exception than a rule. Indeed, in the present paper we show that, for
a geometric Brownian motion with a nonlinear cost functional, while the SP always
yields a candidate solution, the latter actually gives rise to an equilibrium stopping
rule if and only if certain inequalities on the model primitives are satisfied. These
inequalities hold trivially for the time-consistent exponential discount case, but does
not in general for its time-inconsistent non-exponential counterpart, even if all the
other parameters and assumptions (state dynamics, running cost, etc.) are identical.
Indeed, the violation of such inequalities is not rare even in very simple cases. For
example, we show that in the special case of a real options problem with some WDF's
including the pseudo-exponential discount function ([11]; [23]; [16]), the inequalities
do not hold for plausible sets of parameter values of the chosen discount functions.
The bottom line is that one cannot blindly apply the SP to any stopping model
when time-inconsistency is present, even if the SP does work for its time-consistent
counterpart.

The second contribution is on the nonexistence of an intra-personal equilibrium.
For a time-consistent stopping problem, optimal stopping rules exist when the cost
functional and the underlying process satisfy some mild regularity conditions (see,
e.g., [33]). However, this is no longer the case for the time-inconsistent counterpart.
To demonstrate this, we again take the real options problem with a WDF. For such
a problem, we prove that there simply does not exist any equilibrium stopping rule
whenever the aforementioned inequalities are violated and hence the SP principle fails.
Our result therefore reveals that equilibrium stopping rules within the intra-personal
game theoretic framework may not exist no matter what regularity conditions are
imposed on the underlying models.

There are studies in the literature on time-inconsistent stopping including nonex-
istence results, albeit in considerably different settings especially in terms of the source
of time-inconsistency. [5] and [6] study continuous-time stopping problems where the

IThe WDF, proposed in [10], is a weighted average of a set of exponential discount functions. Tt
has been shown in [10] that it can be used to model the time preference of a group of individuals as
well as that of behavioral agents, and that most commonly used non-exponential discount functions
are WDFs.
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FAILURE OF SMOOTH PASTING PRINCIPLE 3

time-inconsistency follows from the types of payoff functions (mean-variance or en-
dogenous habit formation). In particular, [5] shows that the candidate solution derived
from the SP may not lead to an equilibrium stopping for some range of parameters for
a mean—variance stopping problem. However, apart from being a different model, the
reason for the failure of the SP therein does not seem to be the time-inconsistency;
see Remark 3.7 for a detailed discussion. [6] and[5] also consider mixed strategies as
opposed to the pure strategies studied in our paper and many other papers. Time-
inconsistent problems using mixed strategies are interesting, and it is possible that no
equilibrium may be found even in the class of mixed strategies. However, the main
point of this paper is to show that a mere change of discounting factor from expo-
nential to non-exponential may cause a stopping problem that has an equilibrium to
one that does not, even though both are using pure strategies. [18] and [19] investi-
gate continuous-time stopping problems with non-exponential discount functions and
with probability distortion respectively. They define equilibria via a fixed point of a
mapping, which is essentially based on a zeroth-order condition and hence is different
from our definition. Under their settings, immediately stopping is always a (trivial)
equilibrium (so there is no issue of nonexistence), which is not the case according to
our definition.

The remainder of the paper is organized as follows. In section 2, we recall the
definition and some important properties of the WDF introduced by [10], formulate a
general time-inconsistent stopping problem within the intra-personal game theoretic
framework, and characterize the equilibrium stopping rules by a Bellman system and
provide the verification theorem. In section 3 we consider the case when the state
process is a geometric Brownian motion, apply the SP principle to derive a candidate
solution and establish certain equivalent conditions for the derived candidate solution
to actually solve the Bellman system. Then we present a real options problem, in
which the aforementioned equivalent conditions reduce to a single inequality, failing
when there is simply no equilibrium at all. Finally, section 4 concludes the paper.
Appendix A contains proofs of some results.

2. The Model .
2.1. Time preferences. Throughout this paper we consider weighted discount
functions defined as follows.

DEFINITION 2.1 ([10]). Let h: [0,00) — (0,1] be strictly decreasing with h(0) =
1. We call h a weighted discount function (WDF) if there exists a distribution function
F' concentrated on [0,00) such that

(2.1) h(t) = /0 )

Moreover, we call F the weighting distribution of h.

Many commonly used discount functions can be represented in weighted form. For
example, exponential function h(t) = ™", r > 0 ([32]) and pseudo-exponential func-
tion h(t) = de " 4+ (1 = 8)e~"tNL 0 < § < 1,7 > 0, A > 0 ([11]; [23]) are WDFs with
degenerate and binary distributions respectively. A more complicated example is the
generalized hyperbolic discount function ([28]) with parameters v > 0,8 > 0, which
can be represented as

(2.2) h(t) = (1_’_1%)5 = /000 e "t f <r; 5,7) dr
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4 K. TAN, W. WEI, AND X. ZHOU

r

where f(r;k,0) = 7“’;;;7?;)?
parameters k and 6, and I'(k) = [~ #*~'e~®dx the Gamma function evaluated at k.
See [10] for more examples and discussions about the types of discount functions that
are of weighted form.

The following result is a restatement of the well-known Bernstein’s theorem in

terms of WDFs, which actually provides a characterization of the latter.

THEOREM 2.2 ([1]). A discount function h is a WDF if and only if it is contin-
uous on [0,00), infinitely differentiable on (0,00), and satisfies (—1)"h(™ (t) > 0, for
all non-negative integers n and for all t > 0.

is the density function of the Gamma distribution with

Bernstein’s theorem can be used to examine if a given function is a WDF without
necessarily representing it in the form of (2.1). For example, it follows from this
theorem that the constant sensitivity discount function ([9]) h(t) = et 0> 0,0 <
k < 1, and the constant absolute decreasing impatience discount function ([4]) h(t) =
e¢ =1, ¢> 0, are both WDFs.

2.2. Stopping rules and equilibria. On a complete filtered probability space
(Q, F,F = {Fi}i>0, P) there lives a one dimensional Brownian motion W, and a family
of Markov diffusion processes X = X* parameterized by the initial state Xg = x € R
and governed by the following stochastic differential equation (SDE)

(23) dXt = b(Xt)dt + O'(Xt)Wt, Xo =X,

where b, o are Lipschitz continuous functions, i.e., there exists an L > 0 such that for
any r # y

(2.4) [b(z) = b(y)| + lo(z) —o(y)] < Llz —yl.

We assume that F is the P-augmentation of the natural filtration generated by X. To
avoid an uninteresting case we also assume that |o(z)| > ¢ > 0 Vo € R so that X is
non-degenerate.?

For any fixed = € R, an agent monitors the process X = X7 and aims to minimize
the following cost functional

(2.5) J(wir) = E [ / " h()F(X)ds + h(r)g(X,)

Xo_x:|

by choosing 7 € T, the set of all F-stopping times. Here h is a WDF with a weighting
distribution F', ¢g is continuous and bounded, and f is continuous with polynomial
growth, i.e., there exists m > 1 and C' > 0 such that

(2.6) [f(2)] < O™ + 1)

Moreover, we assume that there exists n > 1,C(r) > 0 satisfying [~ C(r)dF(r) +
JS rC(r)dF(r) < oo such that

2.7)

sup E [/ e | f(Xs)|ds + e‘”\g(XT)WXO = x} < O(r)(Jz|" + 1), Vr € supp(F).
TET 0

2Here we assume that the Brownian motion is one dimensional just for notational simplicity.
There is no essential difficulty with a multi-dimensional Brownian motion.
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FAILURE OF SMOOTH PASTING PRINCIPLE 5

This is a (weak) assumption to ensure that the optimal value of the stopping problem
is finite, and hence the problem is well-posed.

We now define stopping rules which are essentially binary feedback controls.
These stopping rules induce Markovian stopping times for any given Markov process.

DEFINITION 2.3 (Stopping rule). A stopping rule is a measurable function u :
R — {0,1} where 0 indicates “continue” and 1 indicates “stop”. For any given Markov
process X = {X; }i>0, a stopping rule u defines a Markovian stopping time

(2.8) T = Inf{t > 0,u(X;) = 1}.

Given a stopping rule u, we can define the stopping region S, = {z € (0,00) :
u(x) = 1}. For any x € S,, since the underlying process X is non-degenerate, a
standard result (e.g., Chapter 3 of [22]) yields that P(7, = 0| Xy = z) = 1, and hence
J(z;7,) = g(x). This means that the agent stops immediately once the process reaches
at any point in S,. As a result, in the setting of this paper, the continuation region
isC, = S,.°.

As discussed earlier the non-exponential discount function A in the cost functional
(2.5) renders the underlying optimal stopping problem generally time-inconsistent. In
this paper we consider a sophisticated and non-committed agent who is aware of the
time-inconsistency but unable to control her future actions. In this case, she seeks
to find the so-called equilibrium strategies within the intra-personal game theoretic
framework, in which the individual is represented by different players at different
dates.?

We now give the precise definition of an equilibrium stopping rule @, which es-
sentially entails a solution to a game in which no self at any time (or, equivalently in
the current setting, at any state) is willing to deviate from 4.

DEFINITION 2.4 (Equilibrium stopping rule). The stopping rule 4 is an equilib-
rium stopping rule if
J ) J . €0
(2.9) lim sup (3 7a) (5 7)
e—0+ €

<0, Vx € R, Va € {0,1},
where

(2.10) 0 a1

with {X;}1>0 being the solution to (2.3).

This definition of an equilibrium is consistent with the majority of definition for time-
inconsistent control problems in the literature (see, e.g., [2]; [12]; and [3]) when a
stopping rule is interpreted as a binary control. Indeed, 7% is a stopping time that
might be different from 7; only in the very small initial time interval [0, €); hence it
is a “perturbation” of the latter.*

Lea _ { inf{t > e, u(X;) = 1} if a =0,

3Given the infiniteness of the time horizon, the stationarity of the process X as well the time-
homogeneity of the running objective function f, each self at any given time ¢ faces exactly the same
decision problem as the others, which only depends on the current state X = x, but not on time ¢
directly. We can thus identify self ¢ by the current state X; = x. That is why we need to consider
only stationary stopping rules u, which are functions of the state variable x only. For details on this
convention, see, e.g. [14]; [12]; [16] and, in particular, Section 3.2 of [10].

4This definition is based on the first-order condition with respect to the perturbation. [21] calls it
a weak equilibrium, and proposes a strong equilibrium via a direct comparison of objective functional
values for a time-homogeneous, continuous-time, finite-state Markov chain. [20] further extends the
notion of strong equilibria to a general diffusion framework, and shows that a strong equilibrium is
very restrictive leading to nonexistence for a number of problems; see Proposition 4.9 therein.
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6 K. TAN, W. WEI, AND X. ZHOU

2.3. Equilibrium characterization. The following result, Theorem 2.5, for-
mally establishes the Bellman system and provides the verification theorem for veri-
fying equilibrium stoppings.

THEOREM 2.5 (Equilibrium characterization).  Consider cost functional (2.5)

with WDF h(t) = / e " dF(r), a stopping rule 4, an underlying process X de-
0

fined by (2.3), functions w(z;r) = E [/ e " f(Xy)dt + e g(Xry)
0

Xy = x} and
V(z) = / w(z; r)dF(r). Suppose that w is continuous in x and V is continuously

0
differentiable with its first-order derivative being absolutely continuous. If (V,w, )
solves the following differential equation problem defined on R,

(2.11)
min {;02(x)vm(x) +b(@)Val(z) + f(z) - /O vz 1)dF (1), g(x) — V(m)} _o,

(2.12)
i(z) = { 1 if V(z) = g(z),

U .
0 otherwise,

then 4 is an equilibrium stopping rule and V' is the value function of the problem, i.e.,

V(z) = J(z;714) Vo € R.
A proof to the above proposition is relegated to the appendix.®

3. Failure of SP and Nonexistence of Equilibrium. In the classical liter-
ature on (time-consistent) stopping, optimal solutions are often obtained by the SP,
because the candidate solution obtained from the SP must solve the Bellman system
(and hence the optimal stopping problem) under some mild conditions, such as the
smoothness and convexity/concavity of the cost functions. In economics terms, the
SP principle amounts to the matching of the marginal cost at the stopped state (see,
e.g., [8] and [7]); hence some economists apply the SP principle without even explic-
itly introducing the Bellman system. However, as we will show in this section, the
SP approach in the presence of time-inconsistency may not yield a solution to the
Bellman system (and therefore not to the stopping problem within the game theoretic
framework), no matter how smooth and convex/concave the cost functions might be.

3.1. A time-consistent benchmark. Let us start with a time-consistent op-
timal stopping problem which we use as a benchmark for comparison purpose and
outline the way to use the SP principle in constructing explicit solutions. Consider
the following classical optimal stopping problem

(3.1) inf E [/ e " f(Xs)ds + e*”K‘Xo = m] ,
TET 0

where the underlying process X is a geometric Brownian motion
(3.2) dX; = bXdt + o XedWy, x > 0,

and T is the set of all stopping times with respect to F.

5A proof of this result in a different setting was provided in [10]. Here we supply a proof for

reader’s convenience.
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FAILURE OF SMOOTH PASTING PRINCIPLE 7

In what follows we assume that the running cost f is continuously differentiable,
increasing and concave. Moreover, to rule out the “trivial cases” where either imme-
diately stopping or never stopping is optimal for this time consistent benchmark, we
assume that f(0) < rK,b < r, and lim, e fo(2)z = 00.5

Define L(z;r) = E[f;~ e " f(X,)ds|Xo = z]. Noting that X is a geometric
Brownian motion, we have after straightforward manipulations

(3.3) L(z;r) = /000 /000 flyx)e "Gy, s)dyds,

_ (ny—(b=15%)5)2
where G(y, s) = \/%Uyl\/ge 2075 . To ensure L and L, are well defined, we

further assume that f has linear growth and f,(0+) < occ.
We now characterize the optimal stopping rule as follows.

PROPOSITION 3.1. There exists xp > 0 such that the stopping rule up(x) =
1,52, (x) solves optimal stopping problem (3.1). Moreover, xp is the unique solution
of the following algebraic equation in y:

(3.4) a(r)[K — L(y;m)] + La(y;m)y = 0

where

—(b—1o?)+ \/(b — 102)2 4 202y

(3.5) ar) = 5

o
The key to proving this theorem is to make use of the SP; see Appendix A.2.

3.2. Equivalent conditions under time-inconsistency. We now consider ex-
actly the same stopping problem as the above time-consistent benchmark except that

the exponential discount function is replaced by a WDF, namely, the cost functional
is changed to

(3.6) J(z:7) = E { / h(s)f(X.)ds + h(r) K| Xo = x] ,
0
where h is a WDF with a weighting distribution F.

As in the case of exponential discounting, we need to impose the following regu-
larity conditions on the parameters of the problem:

b <r, Vr € supp(F); and max{/ dF(r)7/ de(r)7/ rdF(r)} < 00.
o r—=b o T 0

SIn this formulation the final cost is assumed to be a constant lump sum K without loss of

generality. In fact, by properly modifying the running cost, we are able to reduce the stopping
problem with a final cost function g to one with a final cost being any given constant K > 0. To see
this, applying Ito’s formula to e~"¢(g(X:) — K), we get

]E|:/0 e " f(Xs)ds + e TTg(Xr)

Xo = z]
—F UT e (X )ds + e TTK + e (g(Xy) — K)‘XO = x]
0

—E {/OT e f(Xo)ds + e TTK + /OT e’”f(Xs)ds‘Xo = x} ,
where f(z) := %UQmng(x) +bzge(z) — r(g9(z) — K). With f(z) := f(z) + f(z), the cost functional

now becomes the one in problem (3.1) with running cost f We certainly would need to impose
conditions on g so that f satisfies all the assumptions on f specified in this paragraph.
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8 K. TAN, W. WEI, AND X. ZHOU

These conditions either hold automatically or reduce to the respective counterparts
when the discount function degenerates into the exponential one. On the other hand,
they hold valid with many genuine WDFs, including the generalized hyperbolic dis-
count function (2.2) when v < 8 and the pseudo-exponential discount function.

We now attempt to use the SP principle to solve the Bellman system in Theo-
rem 2.5 with the cost functional (3.6). We start by conjecturing that the equilibrium
stopping region is [z,,00) for some z, > 0. (As in the time-consistent case, x, is
called the triggering boundary or the stopping threshold.)

It follows from the Feynman—Kac formula that w in the Bellman system is given
by

w(x;r):{ (k2 (£)" + L), 2 <o,

K, T > Ty,

where L(x;r) is defined by (3.3) and «(r) by (3.5). Recall we have defined V' by
IS w(x;r)dF(r), then we have
vy = { S = L) ()0 + Lasn)dF (o), o <o,
K’ x Z SL’*

and

i(z) = 0 T < Ty,
11 otherwise.
The SP applied to V (not to w) yields V,(z«) = 0, implying that z, is the solution
to the following algebraic equation in y

(3.7) / " 00 — L) + Lo(ys vl dE(r) = 0.

Clearly, this equation is a generalization of its time-consistent counterpart, (3.4). The
following proposition stipulates that it has a unique solution.

PROPOSITION 3.2. Equation (3.7) admits a unique solution in (0, 00).

Proof. Following the same lines of proof of Proposition 3.1 (Appendix A.2), we
have that Q(z) := [~ (a(r)(K — L(z;r)) 4+ Lg(x;7)x)dF (r) is strictly decreasing in
x >0, with Q(0) > 0 and Q(c0) < 0. This completes the proof. d

Proposition 3.2 indicates that following the conventional SP line of argument
does indeed give rise to a candidate solution to the Bellman system, even under time
inconsistency. Whether this candidate solution indeed solves the Bellman system
in Theorem 2.5 and hence the corresponding stopping rule @ solves the equilibrium
stopping problem boils down to the validity of an additional condition, as shown in
the following result.

THEOREM 3.3. Assume that a(r)[a(r) — 1][K — L(z.; )] is increasing in r €
supp(F), and let z. be the unique solution to (3.7). Then the triplet (V,w, @) solves
the Bellman system in Theorem 2.5 and in particular @ is an equilibrium stopping
rule if and only if

(3.8) fla) > /0 S AR,
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FAILURE OF SMOOTH PASTING PRINCIPLE 9

and
(3.9) /0 am)a(r) — [K — L{zw:r)dF(r) + /0 2L (20 1)AF(r) < 0.

As the proof to the above theorem is lengthy, we defer it to Appendix A.3. The
above theorem presents characterizing conditions (on the model primitives) for the
SP to work for stopping problems with general WDFs. These conditions are satisfied
automatically in the classical time-consistent case, but not in the time-inconsistent
case in general. We will demonstrate this with a classical real options problem in the
next subsection.

3.3. A real options problem: failure of SP and nonexistence of equi-
librium. In this subsection we consider a special case of the model studied in the
previous subsection, which is a time-inconsistent counterpart of the well-studied (time-
consistent) problem of real options. Such a problem can be used to model, among
others, when to start a new project or to abandon an ongoing project; see [7] for a
systematic account on the classical real options theory.

The problem is to minimize

(3.10) E [ /0 " h(s) Xods + h(r) KXo = x]

by choosing 7 € T, where X = {X,}+>0 is governed by

(311) dXt = O'Xtth.

We now apply Theorem 3.3 to this problem, and see what the equivalent condi-
tions (3.8) and (3.9) boil down to.
First of all,

L(z;r) = E[/ e‘”Xtdt‘Xo =] = %
0

Hence
T x 06(7') x
wmn ={ E=3)(£) +5 o<
K, T > X,
S x T a(r) X gz
K, T > Ty,
and
i(z) = 0 T < Ty,
11 otherwise,
where
%02 + \/ia‘* + 202y
(3.12) a(r) = 5 .
o

This manuscript is for review purposes only.
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10 K. TAN, W. WEI, AND X. ZHOU

Moreover, it follows from (3.7) that z, is the solution to the following equation in y:

/OOO (K - g) a(r)dF(r) + /oo %dF(r) = 0.

r 0

Thus

(3.13) Ty =

Next, it is easy to verify that a(r)[a(r) — 1][K — L(z.;r)] = 2 (Kr —x,); hence it
is an increasing function in r > 0. Moreover, substituting the explicit representation
of x, in (3.13) into (3.8) and (3.9) we find that the latter two inequalities are both

identical to the following single inequality

(3.14) /0 " a(r)dF () > /0 ~ rdF(r) /O o) =g,

r
Remark 3.4. Here we assume that the geometric Brownian motion is driftless
without loss of generality. Indeed, for a drifted geometric Brownian motion
dXt = bXtdt + O'Xtth, x > O,

a completely analogous analysis shows that the inequality (3.14) needs to be revised
to

/O " a(r)dF(r) > /O "~ b)aF() /0 h %dm«),

—(b=1062)++/(b—102)24202
where a(r) = (b=377) (2 20%)* 200

We have proved the following.

PROPOSITION 3.5. The triplet (V,w, @) solves the Bellman system of the real op-
tions problem if and only if (3.14) holds.

Inequality (3.14) is a critical condition on the model primitives we must verify
before we can be sure that the solution constructed through the SP is indeed an
equilibrium solution to the time-inconsistent real options problem. It is immediate
to see that the strict inequality of (3.14) is satisfied trivially when the distribution
function F' is degenerate corresponding to the classical time-consistent case with an
exponential discount function. In this case, z, defined by (3.13) coincides with the
stopping threshold derived in subsection 3.1. This reconciles with the time-consistent
setting.

The condition (3.14) may hold for some non-exponential discount functions. Con-
sider a generalized hyperbolic discount function

o B_q1 _r
1
h(t) = —— E/ efrt%#dr, v>0,8>0.
(L4~t)7 o

)
2|
=3

2@
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/154 2
We assume that v < 8 < & Notlng that a(r) — 1 = —% + %W is a concave
function in r, we have

a(r) =1 < (a(r) = 1) |,=or + a(0) — 1 = %r_

Moreover, it is easy to see that

/000 rdF(r) = and a(r) > 1.

Therefore,

| o= Rare) [Crare) <55 <1< [T amiaro)

r

which is (3.14). So, in this case the SP works and the stopping threshold x, is given

by
00 % 1 %
a(r)r ° " ar
B
0 Yo I(2)

Ty = ;' —K.
o0 P
/ a(r) r eﬁ dr
r S1(8
0 B

y°T

However, it is also possible that (3.14) fails, which is the case even with the sim-
plest class of non-exponential WDFs — the pseudo-exponential discount functions. To
see this, let h(t) = de " 4 (1—8)e” "NVt 0 < § < 1,7 > 0, X > 0. Tt is straightforward
to obtain that

/0 ~ a(r)dF(r) = Sa(r) + (1 — da(r + A)

and

/OOO rdF(r) /OOO A =L ipey > (1= 0)(r + 23 (O‘(’")_l) .

r r

Since (1—9) (r+)\)5(o‘(T7) grows faster than da(r)+ (1 —0)a(r+A) when X becomes
large, we conclude that (3 14) is violated when r, d are fixed and A is sufficiently large.

What we have discussed so far shows that the solution constructed through the SP
does not solve the time-inconsistent real options problem whenever inequality (3.14)
fails. A natural question in this case is whether there might exist equilibrium solutions
that cannot be obtained by the SP or even by the Bellman system. The answer is
resoundingly negative.

PROPOSITION 3.6. For the real options problem (3.10)—(3.11), if (3.14) does not
hold, then no equilibrium stopping rule exists.

Proof. We prove by contradiction. Suppose 4 is an equilibrium stopping rule.
We first note that CA = {z > 0 : 4(x) = 0} # (0,00); otherwise & = 0, leading
to J(z;7a) = [ L(z;r)dF(r) = [~ £dF(r), and hence J(z;73) — 00 as & — o0
contradicting Lemma A.2 in Appendlx A 2.

This manuscript is for review purposes only.
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Define z, = inf{z : 2 € S3}. It follows from Lemma A.3 in Appendix A.2 that
Zx € (0,00). A standard argument then leads to

J(x;73) = /OOO (K - ”i) (“"”)a(r) dF (r) + /OOO LaF(r), =€ (0,2.).

r Ty r

Because J(x;73) < K (Lemma A.2) and J(x4;75) = K, we have J(z.—;74) > 0, i.e.,

/Ooo (k-2) a(r) = dF(r) + /Ooo %dF(r) >0,

T

which in turn gives

I OIS

Combining with the failure of condition (3.14), we derive

T </ rdF(r),
0

which contradicts Lemma A.3. This completes the proof. O

The above is a stronger result. It suggests that for the problem to have any equilibrium
stopping rule at all (not necessarily the one obtainable by the SP principle), condition
(3.14) must hold. So, when it comes to a time-inconsistent stopping problem with non-
exponential discounting, it is highly likely that no equilibrium stopping rule exists,
even if the SP principle does generate a “solution”, or even if the time-consistent coun-
terpart (in which everything else is identical except the discount function) is indeed
solvable by the SP. Applying these conclusions to the pseudo-exponential discount
functions discussed above, we deduce that there is no equilibrium stopping when A is
sufficiently large.

Having said this, a logical conclusion from Proposition 3.5 and Proposition 3.6
is that when equilibria do exist, one of them must be a solution generated by the
SP. In general if there exists an equilibrium then there may be multiple ones; see, for
example, [24] and [13] for multiple equilibria in time-inconsistent control problems. In
this case, the SP can only generate one of them, but not necessarily all of them. (This
statement is true even for a classical time-consistent stopping problem.) So, after all,
the SP is still a useful, proper method for time-inconsistent problems; we can simply
apply it to generate a candidate solution. If the solution is an equilibrium (which we
must verify), then we have found one (but not necessarily other equilibria); if it is not
an equilibrium, then we know there is no equilibrium at all. All these conclusions,
however, are drawn on the special real option problem in this subsection. It remains
an interesting problem to extend them to more general settings.

Remark 3.7. A result of non-existence of equilibrium stopping is presented in [5],
Theorem 4.6, for the following mean—variance stopping problem:

(3.15) max E[X,; —yVar(X;)],
where
(316) dXt == ,LLXtdt + (J')(thVt7 XO =X Z O,

This manuscript is for review purposes only.
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with v > 0 and 02/4 < p < 02/2. The main differences between that result and the
ones presented in this paper are as follows. First, mean—variance and non-exponential
discounting are two different sources of time-inconsistency. While the definition of
an equilibrium can be the same,” the approaches to characterize and derive it can
be remarkably different. Likewise, a result that is valid for one problem is not au-
tomatically valid for the other. That is why in the literature the two problems have
been studied separately. Second, and indeed more importantly, in the present paper
we have painstakingly demonstrated that the reason for the negative results in our
setting is the time-inconsistency: they occur when we simply change the exponential
discounting to a non-exponential one while keeping everything else the same. We pre-
sented the time-consistent benchmark (Subsection 3.1) for comparison purpose: the
benchmark case is time-consistent, and can be solved completely by SP (see Appendix
A.2). However, the SP may fail for its time-inconsistent counterpart. In contrast, in
[5], time-inconsistency does not seem to be responsible for the failure of SP nor for
the non-existence of an equilibrium. Indeed, although no time-consistent benchmark
is discussed in [5], because the variance term is what solely causes time-inconsistency,
the natural benchmark is the case when the variance vanishes (i.e. v = 0), in which
case the Bellman equation is

(3.17) max {;U2x2vm(x) + paVi(z), x — V(x)} =0, V(0)=0.

The equation in the continuation region is

1
502x2vm(m) + uxVy(x) =0, V(0)=0
whose solution is

V(z) = Caz?
where A = ‘720%2“ € (0,1/2). Now, the smooth pasting at a free boundary a yields
Ca* =a, Cha* ' =1.

The two equations imply that A = 1 which is a contradiction. This means the SP fails
even for the time-consistent case, suggesting it is not time-inconsistency that causes
the negative result in [5].%

4. Conclusions. While the SP principle has been widely used to study time-
inconsistent stopping problems, our results indicate the risk of using this principle
on such problems. We have shown that the SP principle solves the time-inconsistent
problem if and only if certain inequalities are satisfied.

By a simple model of the classical real options problem, we have found that these
inequalities may be violated even for simple and commonly used non-exponential
discount functions. When the SP principle fails, we have shown the intra-personal
equilibrium does not exist. The nonexistence result and the failure of the SP principle

"The definition of equilibrium in [5] is from the state (space), instead of time, point of view, due
to the time-homogeneity of the model. This definition is inspired by [10], as noted in [5], Remark
2.7.

8Tnterestingly, Theorem 4.6 in [5] also states that when 0 < p < 02/4, the SP works for the
time-inconsistent problem (where v > 0) and an equilibrium is explicitly found, whereas the SP fails
for the time-consistent benchmark (where v = 0) based on exactly the same argument as above. So
in this case time-inconsistency actually helps the SP work, quite contrary to the finding in our paper.

This manuscript is for review purposes only.
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suggest that it is imperative that the techniques for conventional optimal stopping
problems be used more carefully when extended to solving time-inconsistent stopping

problems.
Appendix A. Proofs.
A.1. Proof of Theorem 2.5. For the stopping time 7

J(x;79%) = g(z). The Bellman equation (2.11) implies that g(z ) > Vi(x)

This yields (2.9).
If a =0, then

+E (h(s) — h(s — e))f(Xs)ds‘Xo —z

+E[(A(T5) = h(79" — €))g(X7ea)| Xy = 2] + E[V

It follows from the weighted form of h(t) that

Tz %) = E U h(s)f(Xs)ds’Xo - 4

+E

+1E[/0 e T (e — 1)dF (r)g(X o)

X():CE:|

if a = 1, then
= J(x;74)-
(Xe)[Xo = 2]

/ / ~r(s=) (gmer _ 1)dF(r)f(Xs)d5’X0 _ x]

+ ]E[V(Xe)|X0 = 1‘}

Combine the second and the third terms in the above representation, then we have

that

J(z;74%) = E UO h(s)f(Xs)ds‘Xo - x] +E Uooo(e" - 1)w(X5;r)dF(r)‘X0 - :17]

(A1) +E[V(X.)|X, = .

Define 7, = inf{s > 0 : o(X;)Vz(Xs) > n} Ae. Then it follows from Ito’s formula

([25]) that
L o

E[V(X, )Xo =2] =E UOT"(U (X,)WVaa (Xs) + b(Xs)Vm(XS))ds’XO - x} V().

2
By (2.11), we conclude

™ 1
(=

372 (X)Va (X,) + B(X Vil

EIV(X,) X0 =] =B | [

ds‘XO _ x] + V()

>E [/OT"(_f(XS) + /Ooo (X r)AF (r))ds| Xo = x] + V().

Note that conditions (2.6) and (2.7) ensure that — f(z)+ [~ r
nomial growth, i.e., there exist C' > 0,m > 1 such that

’ — f(z) + /000 rw(z;r)dF (r)

This manuscript is for review purposes only.
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which leads to

sup
0<t<e

— f(X,) + /000 rw(Xg;r)dF(r)| < C(sup | X¢™ +1).

0<t<e

Moreover, under condition (2.4), it follows from standard SDE theory (see, for ex-
ample, Chapter 1 of [35]) that equation (2.3) admits a unique strong solution X
satisfying

E[ sup [X,|"|Xo = 2] < Ke(ja|™ +1)
0<t<e

with K. > 0.
Then letting n — oo, we conclude by the dominated convergence theorem that

E[V(X.)[Xo = 2] > E M;(—f(xs) + /OOO (X r)AF(r))ds| Xo = x} V().

Consequently,
lim inf 7 — J (@3 7a)
e—0+ €
. ‘ et —1
> liminfE h(s)f(XS)ds‘Xo =z|+E —w(X; r)dF(r)’Xo =z
e—0+ 0 0 €

e—=0+ €

+ liminf L [/O /Ooo(rw(Xt;r)dF(r) - f(Xt))dt‘Xo - x] .

The continuity of f and w along with the polynomial growth conditions (2.6) and
(2.7) allow the use of the dominated convergence theorem, yielding

lim inf E [/0 h(s)f(Xs)ds‘Xo - x} +E [/Ooo ?w(XG;T)dF(T)‘XO - x}

+ liﬁrgérif %E {/06 /Ooo(rw(Xt;r)dF(r) - f(Xt))dt‘Xo = x]
= f(x) — /000 rw(x;r)dF(r) + /Ooo(rw(ac;r) — f(x))dF(r)
—0.

This leads to

lim inf 275 — J (@3 70)
e—0+ €

>0

b

completing the proof.

A.2. Proof of Proposition 3.1. Let VZ be the value function of the optimal
stopping problem. It follows from the standard argument (see, for example, Chapter 6
of [25]) that V' is continuously differentiable and its first-order derivative is absolutely
continuous. Moreover, V7 solves the following Bellman equation

(A2)  min {;a%l‘vg(ag) bV (@) + f(z) — VB (@), K — VB(x)} 0.

This manuscript is for review purposes only.



16 K. TAN, W. WEI, AND X. ZHOU

Define the continuation region C® = {z > 0: VB(z) < K} and the stopping region
SE={z>0:VB(x)=K}.

We claim that S® # (0, 00). If not, then V® = K. Thus 10222V (2)+bz V.2 (z)+
f(z)—rVEB(x) < 0 whenever x € {x > 0: f(x) —rK < 0}. However, since f(0) < rK,
the continuity of f implies {z > 0: f(z) —rK < 0} # 0. This contradicts the Bellman
equation (A.2).

We now show that C® # (0, 00). If it is false, then we have VP (x) = L(x;r), with
L defined by (3.3). Since f is increasing and bounded from below by 0, we have

VB(00) = lim VB(x / / lim f(yx)e” "Gy, s)dyds.
Tr—r00 x—>oo

The concavity of f yields f(z) > zf,(x)+ f(0). It then follows from lim, o z fz(x) =
oo that lim, o f(x) = oo, which yields that VZ(c0) = co. This contradicts the fact
that VZ(z) < K.

Next, since X is a geometric Brownian motion and f is increasing, it is clear that
V' is increasing too. Now, we derive the value of the triggering boundary, =g, via the
SP principle. Specifically, it follows from (A.2) that

Vi(z) = (K — L(zB;r))(—; 0 4 L(z:r), = <ap
B
Vi(z) =K,z >zp,

where a(r) is defined by (3.5). Then the SP implies that V.Z(xp) = 0 which after
some calculations yields that xp is the solution of the equation (3.4).

To prove the unique existence of the solution of (3.4), define Q(z) := a(r)(K —
L(xz;7))+ Ly (x;r)x. Then Qq(x) = (—a(r)+1) Ly (a; 1)+ Ly (x;r)x. As L is strictly in-
creasing and concave and a(r) > 1, we deduce that @ is strictly decreasing. It remains
to show Q(0) > 0 and Q(o0) < 0. It is easy to see that Q( ) =a(r)(K — L(0;7)) =
alr) (K — f(O)) >0 and Q(x ) a(r)(K — L(0;r) — [ La(s;r)ds) + Ly (2; 7). Since
L is concave, we have [ Ly(s;7)ds > xLy(x;r). Thus Q( ) < a(r)(K — L(0;7)) +
(—a(r) + 1):1:L (x;7). Recalhng that limg oo 2L (2;7) = 00 and a(r) > 1, we have
Q(00) = —00. This completes the proof.

A.3. Proof of Theorem 3.3. We need to present a series of lemmas before
giving a proof of Theorem 3.3.

LEMMA A.1. Given a stopping rule uw and a discount rate v > 0, the function
E(x;7y,7) = E[[)" e " f(X;)dt + e7"™ K| Xy = 2] is continuous in x € (0,00).

Proof. We prove the right continuity of E(-;7,,7) at a given zy > 0; the left
continuity can be discussed in the same way.

If there exists 6 > 0 such that (xg,z9 + d) € S,, then the right continuity of
E(:;74,7) at o is obtained immediately. If there exists § > 0 such that (xg,z¢+9) €
Cu, then it follows from the Feynman-Kac formula that E(-; 7, ) is the solution to the
differential equation $0%2?E,, +brE, —rE+ f = 0 on (z9, 2o +06). This in particular
implies that E(-;7,,7) € C%((x0, 20+6))NC([z0, 20 +7]) due to the regularity of f and
the coefficients of the differential equations; hence the right continuity of E(-;7y,7)
at xg.

Otherwise, we first assume that f(z¢) > 7K and consider the set C, N (zg, 00).
Since it is an open set, we have C,,N(xg, 00) = Uyp>1(an, by), where ap, b, € Sy, Vn > 1.
It is then easy to see that z( is an accumulation point of {a,}»>1 and hence zy € Su-
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FAILURE OF SMOOTH PASTING PRINCIPLE 17

Define I(x) := E(z;7,,7) — K for « € (an,by). It is easy to see that I solves the
following differential equation

1
(A.3) 502362[9”@) +bal(x) —rl(z) 4+ f(x) —rK =0.
with the boundary conditions
I(an) = I(by) = 0.

Consider an auxiliary function H that solves the following differential equation

%UQxQHm(x) +bxH,(z) —rH(x) + f(x) — rK =0,

with the boundary conditions
H(xo) = H(by) = 0.

Since f(z) > rK on (xg,00), the comparison principle shows that H(xz) > 0,Vz €
[0, b1]. Applying the comparison principle again on any (ay,b,) N (zo,b1),Vn € NT,
we have 0 < I(z) < H(z). Noting that H(z) — H(x¢) = 0 as * — xo+, we conclude
that I(-) is right continuous at x¢ and so is E(+; 7y, 7).

For the case f(xzg) < rK, a similar argument applies. Indeed, consider an auxil-
iary function H; satisfying the differential equation (A.3) on (zg, f~1(rK)) with the
boundary condition Hj(zo) = Hi(f~'(rK)) = 0. The comparison principle yields
that Hy(x) < I(z) <0 on (an,b,) N (zo, f71(rK)),¥n € NT. The right continuity of
I(-) and E(-;7y,7) then follows immediately. d

LEMMA A.2. If @ is an equilibrium stopping rule, then J(x;75) < K Va € (0, 00).
Proof. If there exists xy € (0,00) such that J(xo; ;) > K, then we have

J (o5 7a) — J(w0; 791)

lim sup = 00,
e—0 €
where 7! is given by (2.10). This contradicts the definition of an equilibrium stopping
rule. 0

LEMMA A.3. If 4 is an equilibrium stopping rule, then we have {x > 0: f(z) <
Jo S rdF(r)K} C Cq.

Proof. Suppose that there exists z € {x > 0: f(z) < [~ rdF(r)K} N Sq, then it
follows from Lemma A.2 that E[J(X;; 74)|Xo = z] < K. Consider the stopping time
740, Equation (A.1) and the fact that J(z;75) = K give

J(z;76%) — J(z;70)

€

<28 [ ["horct)asx =
+E [/ooo (6__1) w(Xe;r)dF(r)’Xo - x} :

€

As w(-,r) is continuous (Lemma A.1) and w(z;r) = K, we have

. 6,0\ _ S oo
lim inf s ) = J (@i ma) < f(x) —/ rKdF(r) < 0.
e—0 € 0
This contradicts the definition of an equilibrium stopping rule. 0
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We now turn to the proof of Theorem 3.3. We begin with the sufficiency. To this
end it suffices to show that V(z) < K,z € (0,z,) and f(z) — [~ rdF(r)K > 0,z €
(4, 00).

We first show that V,, <0,z € (0, z.). By simple algebra, we have

Verlo) = [ a(r)(ar) = D = L) ()0 5P @)+ [ Laalain)aF ().
As L is concave, we only need to prove [;° a(r)(a(r)—1)(K — L(a; r))(%)o‘(r)dF(r) <

0. Tt is easy to see that (2)2(") is decreasing in r given that a(r) is increasing in r

z
X

and & < .. Then the rearrangement inequality (e.g., Chapter 10 of [15]; [27]) yields®

/OOO a(r)(alr) = 1)(K — L(x;r))(i)a(?”)dF(r)

Ly

ay < " a(r) (o) — V(K — L{e;r)dF(r) / T (E ) dE ().

Ty
Therefore it follows from (3.9) that V. (z) <0, = € (0,z,). Now, V,(z.) = 0. Thus
Vz(2) > 0 and consequently V(z) < K Vz € (0,z.), due to V(z,) = K.
Next, the inequality f(z) — [, rdF(r)K Va € (x.,00) follows from f being
increasing along with inequality (3.8). This completes the proof of the sufficiency.
We now turn to the necessity part. Since (3.8) is an immediate corollary of
Lemma A.3, we only need to prove (3.9). Suppose (3.9) does not hold. Then by a
simple calculation, we have

Vw(2ae) = /OOO a(r)(a(r) — 1)(K — L(z.: r))%dF(r) n /Ooo Low(e: 1)AF(r) > 0.

However, V,(z.) = 0, implying that there exists z; € (0,z,) such that Vy(z) < 0
on z € (x1,2,). Then it follows from V(z,) = K that V(z) > K when z € (21, z.),
which contradicts Lemma A.2.
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