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1. Introduction. A crucial assumption imposed on classical optimal stopping22

models is that an agent has a constant time preference rate and hence discounts her23

future payoff exponentially. When this assumption is violated, an optimal stopping24

problem becomes generally time-inconsistent in that any optimal stopping rule ob-25

tained today may no longer be optimal from the perspective of a future date. The26

problem then becomes largely descriptive rather than normative because there is gen-27

erally no dynamically optimal solution that can be used to guide the agent’s decisions.28

Different agents may react differently to a same time-inconsistent problem, and a goal29

of the study is to describe the different behaviors. [34] is the first to observe that non-30

constant time preference rates result in time-inconsistency, and to categorize three31

types of agents when facing such time-inconsistency. One of the types is called a32

“non-committed, sophisticated agent” who, at any given time, optimizes the underly-33

ing objective taking as constraints the stopping decisions chosen by her future selves.34

Such a problem has been formulated within an intra-personal game theoretic frame-35

work and the corresponding equilibria are used to describe the behaviors of this type36

of agents; see, for example, [31]; [26]; [30]; [24] and [29]. An extended dynamic pro-37

gramming equation for continuous-time deterministic equilibrium controls is derived38

in [11], followed by a stochastic version in [2] and application to a mean–variance39

portfolio model in [3].40

This paper studies a time-inconsistent stopping problem in continuous time within41

the intra-personal game framework, in which the source of time-inconsistency is the42
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2 K. TAN, W. WEI, AND X. ZHOU

so-called weighted discount function (WDF), a very general class of non-exponential43

discount functions.1 We make two main contributions. First, we demonstrate that44

the smooth pasting (SP) principle, which is almost the exclusive approach in solving45

classical optimal stopping problems, may fail simply because time-consistency is lost.46

Second, for a stopping model whose time-consistent counterpart is the well-studied47

real options problem, we establish a condition under which no equilibrium stopping48

rule exists. These results are constructive and they caution blindly extending the SP49

principle to time-inconsistent stopping problems.50

Let us now elaborate on the first contribution. Recall that the SP is an Ansatz51

used to derive (often explicit) solutions to conventional, time-consistent optimal stop-52

ping problems. It conjectures a candidate solution to the underlying Bellman equation53

(or variational inequalities), which is a free boundary PDE, based on the C1 smooth54

pasting around the free boundary, and then checks that it solves the PDE under some55

standard regularity/convexity conditions on the model primitives. Finally it verifies56

that the first hitting time of the free boundary indeed solves the optimal stopping57

problem using the standard verification technique. Recently, [14] and [17], among58

others, extend the application of the SP principle to solving time-inconsistent stop-59

ping problems. While the SP happened to work in the specific settings of these papers,60

it is more a lucky exception than a rule. Indeed, in the present paper we show that, for61

a geometric Brownian motion with a nonlinear cost functional, while the SP always62

yields a candidate solution, the latter actually gives rise to an equilibrium stopping63

rule if and only if certain inequalities on the model primitives are satisfied. These64

inequalities hold trivially for the time-consistent exponential discount case, but does65

not in general for its time-inconsistent non-exponential counterpart, even if all the66

other parameters and assumptions (state dynamics, running cost, etc.) are identical.67

Indeed, the violation of such inequalities is not rare even in very simple cases. For68

example, we show that in the special case of a real options problem with some WDFs69

including the pseudo-exponential discount function ([11]; [23]; [16]), the inequalities70

do not hold for plausible sets of parameter values of the chosen discount functions.71

The bottom line is that one cannot blindly apply the SP to any stopping model72

when time-inconsistency is present, even if the SP does work for its time-consistent73

counterpart.74

The second contribution is on the nonexistence of an intra-personal equilibrium.75

For a time-consistent stopping problem, optimal stopping rules exist when the cost76

functional and the underlying process satisfy some mild regularity conditions (see,77

e.g., [33]). However, this is no longer the case for the time-inconsistent counterpart.78

To demonstrate this, we again take the real options problem with a WDF. For such79

a problem, we prove that there simply does not exist any equilibrium stopping rule80

whenever the aforementioned inequalities are violated and hence the SP principle fails.81

Our result therefore reveals that equilibrium stopping rules within the intra-personal82

game theoretic framework may not exist no matter what regularity conditions are83

imposed on the underlying models.84

There are studies in the literature on time-inconsistent stopping including nonex-85

istence results, albeit in considerably different settings especially in terms of the source86

of time-inconsistency. [5] and [6] study continuous-time stopping problems where the87

1The WDF, proposed in [10], is a weighted average of a set of exponential discount functions. It
has been shown in [10] that it can be used to model the time preference of a group of individuals as
well as that of behavioral agents, and that most commonly used non-exponential discount functions
are WDFs.
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FAILURE OF SMOOTH PASTING PRINCIPLE 3

time-inconsistency follows from the types of payoff functions (mean-variance or en-88

dogenous habit formation). In particular, [5] shows that the candidate solution derived89

from the SP may not lead to an equilibrium stopping for some range of parameters for90

a mean–variance stopping problem. However, apart from being a different model, the91

reason for the failure of the SP therein does not seem to be the time-inconsistency;92

see Remark 3.7 for a detailed discussion. [6] and[5] also consider mixed strategies as93

opposed to the pure strategies studied in our paper and many other papers. Time-94

inconsistent problems using mixed strategies are interesting, and it is possible that no95

equilibrium may be found even in the class of mixed strategies. However, the main96

point of this paper is to show that a mere change of discounting factor from expo-97

nential to non-exponential may cause a stopping problem that has an equilibrium to98

one that does not, even though both are using pure strategies. [18] and [19] investi-99

gate continuous-time stopping problems with non-exponential discount functions and100

with probability distortion respectively. They define equilibria via a fixed point of a101

mapping, which is essentially based on a zeroth-order condition and hence is different102

from our definition. Under their settings, immediately stopping is always a (trivial)103

equilibrium (so there is no issue of nonexistence), which is not the case according to104

our definition.105

The remainder of the paper is organized as follows. In section 2, we recall the106

definition and some important properties of the WDF introduced by [10], formulate a107

general time-inconsistent stopping problem within the intra-personal game theoretic108

framework, and characterize the equilibrium stopping rules by a Bellman system and109

provide the verification theorem. In section 3 we consider the case when the state110

process is a geometric Brownian motion, apply the SP principle to derive a candidate111

solution and establish certain equivalent conditions for the derived candidate solution112

to actually solve the Bellman system. Then we present a real options problem, in113

which the aforementioned equivalent conditions reduce to a single inequality, failing114

when there is simply no equilibrium at all. Finally, section 4 concludes the paper.115

Appendix A contains proofs of some results.116

2. The Model .117

2.1. Time preferences. Throughout this paper we consider weighted discount118

functions defined as follows.119

Definition 2.1 ([10]). Let h : [0,∞)→ (0, 1] be strictly decreasing with h(0) =120

1. We call h a weighted discount function (WDF) if there exists a distribution function121

F concentrated on [0,∞) such that122

h(t) =

∫ ∞
0

e−rtdF (r).(2.1)123
124

Moreover, we call F the weighting distribution of h.125

Many commonly used discount functions can be represented in weighted form. For126

example, exponential function h(t) = e−rt, r > 0 ([32]) and pseudo-exponential func-127

tion h(t) = δe−rt + (1− δ)e−(r+λ)t, 0 < δ < 1, r > 0, λ > 0 ([11]; [23]) are WDFs with128

degenerate and binary distributions respectively. A more complicated example is the129

generalized hyperbolic discount function ([28]) with parameters γ > 0, β > 0, which130

can be represented as131

h(t) =
1

(1 + γt)
β
γ

≡
∫ ∞

0

e−rtf

(
r;
β

γ
, γ

)
dr(2.2)132

133
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4 K. TAN, W. WEI, AND X. ZHOU

where f(r; k, θ) = rk−1e−
r
θ

θkΓ(k)
is the density function of the Gamma distribution with134

parameters k and θ, and Γ(k) =
∫∞

0
xk−1e−xdx the Gamma function evaluated at k.135

See [10] for more examples and discussions about the types of discount functions that136

are of weighted form.137

The following result is a restatement of the well-known Bernstein’s theorem in138

terms of WDFs, which actually provides a characterization of the latter.139

Theorem 2.2 ([1]). A discount function h is a WDF if and only if it is contin-140

uous on [0,∞), infinitely differentiable on (0,∞), and satisfies (−1)nh(n)(t) ≥ 0, for141

all non-negative integers n and for all t > 0.142

Bernstein’s theorem can be used to examine if a given function is a WDF without143

necessarily representing it in the form of (2.1). For example, it follows from this144

theorem that the constant sensitivity discount function ([9]) h(t) = e−at
k

, a > 0, 0 <145

k < 1, and the constant absolute decreasing impatience discount function ([4]) h(t) =146

ee
−ct−1, c > 0, are both WDFs.147

2.2. Stopping rules and equilibria. On a complete filtered probability space148

(Ω,F ,F = {Ft}t≥0, P ) there lives a one dimensional Brownian motionW , and a family149

of Markov diffusion processes X = Xx parameterized by the initial state X0 = x ∈ R150

and governed by the following stochastic differential equation (SDE)151

dXt = b(Xt)dt+ σ(Xt)Wt, X0 = x,(2.3)152153

where b, σ are Lipschitz continuous functions, i.e., there exists an L > 0 such that for154

any x 6= y155

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ L|x− y|.(2.4)156157

We assume that F is the P -augmentation of the natural filtration generated by X. To158

avoid an uninteresting case we also assume that |σ(x)| ≥ c > 0 ∀x ∈ R so that X is159

non-degenerate.2160

For any fixed x ∈ R, an agent monitors the process X = Xx and aims to minimize161

the following cost functional162

J(x; τ) = E
[∫ τ

0

h(s)f(Xs)ds+ h(τ)g(Xτ )
∣∣∣X0 = x

]
(2.5)163

164

by choosing τ ∈ T , the set of all F-stopping times. Here h is a WDF with a weighting165

distribution F , g is continuous and bounded, and f is continuous with polynomial166

growth, i.e., there exists m ≥ 1 and C > 0 such that167

|f(x)| ≤ C(|x|m + 1).(2.6)168169

Moreover, we assume that there exists n ≥ 1, C(r) > 0 satisfying
∫∞

0
C(r)dF (r) +170 ∫∞

0
rC(r)dF (r) <∞ such that171

sup
τ∈T

E
[∫ τ

0

e−rs|f(Xs)|ds+ e−rτ |g(Xτ )|
∣∣∣X0 = x

]
≤ C(r)(|x|n + 1), ∀r ∈ supp(F ).

(2.7)

172
173

2Here we assume that the Brownian motion is one dimensional just for notational simplicity.
There is no essential difficulty with a multi-dimensional Brownian motion.
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FAILURE OF SMOOTH PASTING PRINCIPLE 5

This is a (weak) assumption to ensure that the optimal value of the stopping problem174

is finite, and hence the problem is well-posed.175

We now define stopping rules which are essentially binary feedback controls.176

These stopping rules induce Markovian stopping times for any given Markov process.177

Definition 2.3 (Stopping rule). A stopping rule is a measurable function u :178

R→ {0, 1} where 0 indicates “continue” and 1 indicates “stop”. For any given Markov179

process X = {Xt}t≥0, a stopping rule u defines a Markovian stopping time180

(2.8) τu = inf{t ≥ 0, u(Xt) = 1}.181

Given a stopping rule u, we can define the stopping region Su = {x ∈ (0,∞) :182

u(x) = 1}. For any x ∈ S̄u, since the underlying process X is non-degenerate, a183

standard result (e.g., Chapter 3 of [22]) yields that P(τu = 0|X0 = x) = 1, and hence184

J(x; τu) = g(x). This means that the agent stops immediately once the process reaches185

at any point in S̄u. As a result, in the setting of this paper, the continuation region186

is Cu = S̄u
c
.187

As discussed earlier the non-exponential discount function h in the cost functional188

(2.5) renders the underlying optimal stopping problem generally time-inconsistent. In189

this paper we consider a sophisticated and non-committed agent who is aware of the190

time-inconsistency but unable to control her future actions. In this case, she seeks191

to find the so-called equilibrium strategies within the intra-personal game theoretic192

framework, in which the individual is represented by different players at different193

dates.3194

We now give the precise definition of an equilibrium stopping rule û, which es-195

sentially entails a solution to a game in which no self at any time (or, equivalently in196

the current setting, at any state) is willing to deviate from û.197

Definition 2.4 (Equilibrium stopping rule). The stopping rule û is an equilib-198

rium stopping rule if199

(2.9) lim sup
ε→0+

J(x; τû)− J(x; τ ε,a)

ε
≤ 0, ∀x ∈ R, ∀a ∈ {0, 1},200

where201

(2.10) τ ε,a =

{
inf{t ≥ ε, û(Xt) = 1} if a = 0,

0 if a = 1
202

with {Xt}t≥0 being the solution to (2.3).203

This definition of an equilibrium is consistent with the majority of definition for time-204

inconsistent control problems in the literature (see, e.g., [2]; [12]; and [3]) when a205

stopping rule is interpreted as a binary control. Indeed, τ ε,a is a stopping time that206

might be different from τû only in the very small initial time interval [0, ε); hence it207

is a “perturbation” of the latter.4208

3Given the infiniteness of the time horizon, the stationarity of the process X as well the time-
homogeneity of the running objective function f , each self at any given time t faces exactly the same
decision problem as the others, which only depends on the current state Xt = x, but not on time t
directly. We can thus identify self t by the current state Xt = x. That is why we need to consider
only stationary stopping rules u, which are functions of the state variable x only. For details on this
convention, see, e.g. [14]; [12]; [16] and, in particular, Section 3.2 of [10].

4This definition is based on the first-order condition with respect to the perturbation. [21] calls it
a weak equilibrium, and proposes a strong equilibrium via a direct comparison of objective functional
values for a time-homogeneous, continuous-time, finite-state Markov chain. [20] further extends the
notion of strong equilibria to a general diffusion framework, and shows that a strong equilibrium is
very restrictive leading to nonexistence for a number of problems; see Proposition 4.9 therein.
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6 K. TAN, W. WEI, AND X. ZHOU

2.3. Equilibrium characterization. The following result, Theorem 2.5, for-209

mally establishes the Bellman system and provides the verification theorem for veri-210

fying equilibrium stoppings.211

Theorem 2.5 (Equilibrium characterization). Consider cost functional (2.5)212

with WDF h(t) =

∫ ∞
0

e−rtdF (r), a stopping rule û, an underlying process X de-213

fined by (2.3), functions w(x; r) = E
[∫ τû

0

e−rtf(Xt)dt+ e−rτûg(Xτû)
∣∣∣X0 = x

]
and214

V (x) =

∫ ∞
0

w(x; r)dF (r). Suppose that w is continuous in x and V is continuously215

differentiable with its first-order derivative being absolutely continuous. If (V,w, û)216

solves the following differential equation problem defined on R,217

min

{
1

2
σ2(x)Vxx(x) + b(x)Vx(x) + f(x)−

∫ ∞
0

rw(x; r)dF (r), g(x)− V (x)

}
= 0,

(2.11)

218

û(x) =

{
1 if V (x) = g(x),
0 otherwise,

(2.12)

219
220

then û is an equilibrium stopping rule and V is the value function of the problem, i.e.,221

V (x) = J(x; τû) ∀x ∈ R.222

A proof to the above proposition is relegated to the appendix.5223

3. Failure of SP and Nonexistence of Equilibrium. In the classical liter-224

ature on (time-consistent) stopping, optimal solutions are often obtained by the SP,225

because the candidate solution obtained from the SP must solve the Bellman system226

(and hence the optimal stopping problem) under some mild conditions, such as the227

smoothness and convexity/concavity of the cost functions. In economics terms, the228

SP principle amounts to the matching of the marginal cost at the stopped state (see,229

e.g., [8] and [7]); hence some economists apply the SP principle without even explic-230

itly introducing the Bellman system. However, as we will show in this section, the231

SP approach in the presence of time-inconsistency may not yield a solution to the232

Bellman system (and therefore not to the stopping problem within the game theoretic233

framework), no matter how smooth and convex/concave the cost functions might be.234

3.1. A time-consistent benchmark. Let us start with a time-consistent op-235

timal stopping problem which we use as a benchmark for comparison purpose and236

outline the way to use the SP principle in constructing explicit solutions. Consider237

the following classical optimal stopping problem238

inf
τ∈T

E
[∫ τ

0

e−rsf(Xs)ds+ e−rτK
∣∣∣X0 = x

]
,(3.1)239

240

where the underlying process X is a geometric Brownian motion241

dXt = bXtdt+ σXtdWt, x > 0,(3.2)242243

and T is the set of all stopping times with respect to F.244

5A proof of this result in a different setting was provided in [10]. Here we supply a proof for
reader’s convenience.
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FAILURE OF SMOOTH PASTING PRINCIPLE 7

In what follows we assume that the running cost f is continuously differentiable,245

increasing and concave. Moreover, to rule out the “trivial cases” where either imme-246

diately stopping or never stopping is optimal for this time consistent benchmark, we247

assume that f(0) < rK, b < r, and limx→∞ fx(x)x =∞.6248

Define L(x; r) = E[
∫∞

0
e−rsf(Xs)ds|X0 = x]. Noting that X is a geometric249

Brownian motion, we have after straightforward manipulations250

L(x; r) =

∫ ∞
0

∫ ∞
0

f(yx)e−rsG(y, s)dyds,(3.3)251
252

where G(y, s) = 1√
2π

1
σy
√
s
e−

(ln y−(b− 1
2
σ2)s)2

2σ2s . To ensure L and Lx are well defined, we253

further assume that f has linear growth and fx(0+) <∞.254

We now characterize the optimal stopping rule as follows.255

Proposition 3.1. There exists xB > 0 such that the stopping rule uB(x) =256

1x≥xB (x) solves optimal stopping problem (3.1). Moreover, xB is the unique solution257

of the following algebraic equation in y:258

α(r)[K − L(y; r)] + Lx(y; r)y = 0(3.4)259260

where261

α(r) =
−(b− 1

2σ
2) +

√
(b− 1

2σ
2)2 + 2σ2r

σ2
.(3.5)262

263

The key to proving this theorem is to make use of the SP; see Appendix A.2.264

3.2. Equivalent conditions under time-inconsistency. We now consider ex-265

actly the same stopping problem as the above time-consistent benchmark except that266

the exponential discount function is replaced by a WDF, namely, the cost functional267

is changed to268

J(x; τ) = E
[∫ τ

0

h(s)f(Xs)ds+ h(τ)K
∣∣∣X0 = x

]
,(3.6)269

270

where h is a WDF with a weighting distribution F .271

As in the case of exponential discounting, we need to impose the following regu-272

larity conditions on the parameters of the problem:273

b < r, ∀r ∈ supp(F ); and max

{∫ ∞
0

1

r − b
dF (r),

∫ ∞
0

1

r
dF (r),

∫ ∞
0

rdF (r)

}
<∞.274

6In this formulation the final cost is assumed to be a constant lump sum K without loss of
generality. In fact, by properly modifying the running cost, we are able to reduce the stopping
problem with a final cost function g to one with a final cost being any given constant K > 0. To see
this, applying Ito’s formula to e−rt(g(Xt) −K), we get

E
[∫ τ

0
e−rsf(Xs)ds+ e−rτg(Xτ )

∣∣∣X0 = x

]
=E
[∫ τ

0
e−rsf(Xs)ds+ e−rτK + e−rτ (g(Xτ ) −K)

∣∣∣X0 = x

]
=E
{∫ τ

0
e−rsf(Xs)ds+ e−rτK +

∫ τ

0
e−rsf̂(Xs)ds

∣∣∣X0 = x

}
,

where f̂(x) := 1
2
σ2x2gxx(x) + bxgx(x) − r(g(x) −K). With f̃(x) := f(x) + f̂(x), the cost functional

now becomes the one in problem (3.1) with running cost f̃ . We certainly would need to impose
conditions on g so that f̃ satisfies all the assumptions on f specified in this paragraph.

This manuscript is for review purposes only.
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These conditions either hold automatically or reduce to the respective counterparts275

when the discount function degenerates into the exponential one. On the other hand,276

they hold valid with many genuine WDFs, including the generalized hyperbolic dis-277

count function (2.2) when γ < β and the pseudo-exponential discount function.278

We now attempt to use the SP principle to solve the Bellman system in Theo-279

rem 2.5 with the cost functional (3.6). We start by conjecturing that the equilibrium280

stopping region is [x∗,∞) for some x∗ > 0. (As in the time-consistent case, x∗ is281

called the triggering boundary or the stopping threshold.)282

It follows from the Feynman–Kac formula that w in the Bellman system is given283

by284

w(x; r) =

{
(K − L(x∗; r))

(
x
x∗

)α(r)

+ L(x; r), x < x∗,

K, x ≥ x∗,
285

where L(x; r) is defined by (3.3) and α(r) by (3.5). Recall we have defined V by286 ∫∞
0
w(x; r)dF (r), then we have287

V (x) =

{ ∫∞
0

((K − L(x∗; r))(
x
x∗

)α(r) + L(x; r))dF (r), x < x∗,

K, x ≥ x∗
288

and289

û(x) =

{
0 x < x∗,
1 otherwise.

290
291

The SP applied to V (not to w) yields Vx(x∗) = 0, implying that x∗ is the solution292

to the following algebraic equation in y293 ∫ ∞
0

[α(r)(K − L(y; r)) + Lx(y; r)y] dF (r) = 0.(3.7)294
295

Clearly, this equation is a generalization of its time-consistent counterpart, (3.4). The296

following proposition stipulates that it has a unique solution.297

Proposition 3.2. Equation (3.7) admits a unique solution in (0,∞).298

Proof. Following the same lines of proof of Proposition 3.1 (Appendix A.2), we299

have that Q(x) :=
∫∞

0
(α(r)(K − L(x; r)) + Lx(x; r)x)dF (r) is strictly decreasing in300

x > 0, with Q(0) > 0 and Q(∞) < 0. This completes the proof.301

Proposition 3.2 indicates that following the conventional SP line of argument302

does indeed give rise to a candidate solution to the Bellman system, even under time303

inconsistency. Whether this candidate solution indeed solves the Bellman system304

in Theorem 2.5 and hence the corresponding stopping rule û solves the equilibrium305

stopping problem boils down to the validity of an additional condition, as shown in306

the following result.307

Theorem 3.3. Assume that α(r)[α(r) − 1][K − L(x∗; r)] is increasing in r ∈308

supp(F ), and let x∗ be the unique solution to (3.7). Then the triplet (V,w, û) solves309

the Bellman system in Theorem 2.5 and in particular û is an equilibrium stopping310

rule if and only if311

f(x∗) ≥
∫ ∞

0

rdF (r)K,(3.8)312
313
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FAILURE OF SMOOTH PASTING PRINCIPLE 9

and314 ∫ ∞
0

α(r)[α(r)− 1][K − L(x∗; r)]dF (r) +

∫ ∞
0

x2
∗Lxx(x∗; r)dF (r) ≤ 0.(3.9)315

316

As the proof to the above theorem is lengthy, we defer it to Appendix A.3. The317

above theorem presents characterizing conditions (on the model primitives) for the318

SP to work for stopping problems with general WDFs. These conditions are satisfied319

automatically in the classical time-consistent case, but not in the time-inconsistent320

case in general. We will demonstrate this with a classical real options problem in the321

next subsection.322

3.3. A real options problem: failure of SP and nonexistence of equi-323

librium. In this subsection we consider a special case of the model studied in the324

previous subsection, which is a time-inconsistent counterpart of the well-studied (time-325

consistent) problem of real options. Such a problem can be used to model, among326

others, when to start a new project or to abandon an ongoing project; see [7] for a327

systematic account on the classical real options theory.328

The problem is to minimize329

E
[∫ τ

0

h(s)Xsds+ h(τ)K
∣∣∣X0 = x

]
(3.10)330

331

by choosing τ ∈ T , where X = {Xt}t≥0 is governed by332

dXt = σXtdWt.(3.11)333334

We now apply Theorem 3.3 to this problem, and see what the equivalent condi-335

tions (3.8) and (3.9) boil down to.336

First of all,

L(x; r) = E[

∫ ∞
0

e−rtXtdt
∣∣∣X0 = x] =

x

r
.

Hence337

w(x; r) =

{ (
K − x∗

r

) (
x
x∗

)α(r)

+ x
r , x < x∗,

K, x ≥ x∗,
338

339

V (x) =

{ ∫∞
0

(
K − x∗

r

) (
x
x∗

)α(r)

dF (r) +
∫∞

0
x
r dF (r), x < x∗,

K, x ≥ x∗,
340

and341

û(x) =

{
0 x < x∗,
1 otherwise,

342
343

where344

α(r) =

1
2σ

2 +
√

1
4σ

4 + 2σ2r

σ2
.(3.12)345

346
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10 K. TAN, W. WEI, AND X. ZHOU

Moreover, it follows from (3.7) that x∗ is the solution to the following equation in y:347 ∫ ∞
0

(
K − y

r

)
α(r)dF (r) +

∫ ∞
0

y

r
dF (r) = 0.348

349

Thus350

x∗ =

∫ ∞
0

α(r)dF (r)∫ ∞
0

α(r)− 1

r
dF (r)

K.(3.13)351

352

Next, it is easy to verify that α(r)[α(r)−1][K−L(x∗; r)] = 2
σ2 (Kr−x∗); hence it353

is an increasing function in r ≥ 0. Moreover, substituting the explicit representation354

of x∗ in (3.13) into (3.8) and (3.9) we find that the latter two inequalities are both355

identical to the following single inequality356 ∫ ∞
0

α(r)dF (r) ≥
∫ ∞

0

rdF (r)

∫ ∞
0

α(r)− 1

r
dF (r).(3.14)357

358

359

Remark 3.4. Here we assume that the geometric Brownian motion is driftless360

without loss of generality. Indeed, for a drifted geometric Brownian motion361

dXt = bXtdt+ σXtdWt, x > 0,362363

a completely analogous analysis shows that the inequality (3.14) needs to be revised364

to365 ∫ ∞
0

α(r)dF (r) ≥
∫ ∞

0

(r − b)dF (r)

∫ ∞
0

α(r)− 1

r − b
dF (r),366

367

where α(r) =
−(b− 1

2σ
2)+
√

(b− 1
2σ

2)2+2σ2r

σ2 .368

We have proved the following.369

Proposition 3.5. The triplet (V,w, û) solves the Bellman system of the real op-370

tions problem if and only if (3.14) holds.371

Inequality (3.14) is a critical condition on the model primitives we must verify372

before we can be sure that the solution constructed through the SP is indeed an373

equilibrium solution to the time-inconsistent real options problem. It is immediate374

to see that the strict inequality of (3.14) is satisfied trivially when the distribution375

function F is degenerate corresponding to the classical time-consistent case with an376

exponential discount function. In this case, x∗ defined by (3.13) coincides with the377

stopping threshold derived in subsection 3.1. This reconciles with the time-consistent378

setting.379

The condition (3.14) may hold for some non-exponential discount functions. Con-380

sider a generalized hyperbolic discount function381

h(t) =
1

(1 + γt)
β
γ

≡
∫ ∞

0

e−rt
r
β
γ−1e−

r
γ

γ
β
γ Γ(βγ )

dr, γ > 0, β > 0.382
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FAILURE OF SMOOTH PASTING PRINCIPLE 11

We assume that γ < β ≤ σ2

2 . Noting that α(r) − 1 = − 1
2 +

√
1
4σ

4+2σ2r

σ2 is a concave383

function in r, we have384

α(r)− 1 ≤ (α(r)− 1)′|r=0r + α(0)− 1 =
2

σ2
r.385

386

Moreover, it is easy to see that387 ∫ ∞
0

rdF (r) = β and α(r) ≥ 1.388
389

Therefore,390 ∫ ∞
0

α(r)− 1

r
dF (r)

∫ ∞
0

rdF (r) ≤ β 2

σ2
≤ 1 ≤

∫ ∞
0

α(r)dF (r)391
392

which is (3.14). So, in this case the SP works and the stopping threshold x∗ is given393

by394

x∗ =

∫ ∞
0

α(r)
r
β
γ−1e−

r
γ

γ
β
γ Γ(βγ )

dr

∫ ∞
0

α(r)− 1

r

r
β
γ−1e−

r
γ

γ
β
γ Γ(βγ )

dr

K.395

396

However, it is also possible that (3.14) fails, which is the case even with the sim-397

plest class of non-exponential WDFs – the pseudo-exponential discount functions. To398

see this, let h(t) = δe−rt+(1−δ)e−(r+λ)t, 0 < δ < 1, r > 0, λ > 0. It is straightforward399

to obtain that400 ∫ ∞
0

α(r)dF (r) = δα(r) + (1− δ)α(r + λ)401
402

and403 ∫ ∞
0

rdF (r)

∫ ∞
0

α(r)− 1

r
dF (r) > (1− δ)(r + λ)δ

(
α(r)− 1

r

)
.404

405

Since (1−δ)(r+λ)δ(α(r)−1
r ) grows faster than δα(r)+(1−δ)α(r+λ) when λ becomes406

large, we conclude that (3.14) is violated when r, δ are fixed and λ is sufficiently large.407

What we have discussed so far shows that the solution constructed through the SP408

does not solve the time-inconsistent real options problem whenever inequality (3.14)409

fails. A natural question in this case is whether there might exist equilibrium solutions410

that cannot be obtained by the SP or even by the Bellman system. The answer is411

resoundingly negative.412

Proposition 3.6. For the real options problem (3.10)–(3.11), if (3.14) does not413

hold, then no equilibrium stopping rule exists.414

Proof. We prove by contradiction. Suppose û is an equilibrium stopping rule.415

We first note that Cû ≡ {x > 0 : û(x) = 0} 6= (0,∞); otherwise û ≡ 0, leading416

to J(x; τû) =
∫∞

0
L(x; r)dF (r) =

∫∞
0

x
r dF (r), and hence J(x; τû) → ∞ as x → ∞417

contradicting Lemma A.2 in Appendix A.2.418
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12 K. TAN, W. WEI, AND X. ZHOU

Define x∗ = inf{x : x ∈ S̄û}. It follows from Lemma A.3 in Appendix A.2 that419

x∗ ∈ (0,∞). A standard argument then leads to420

J(x; τû) =

∫ ∞
0

(
K − x∗

r

)( x

x∗

)α(r)

dF (r) +

∫ ∞
0

x

r
dF (r), x ∈ (0, x∗].421

422

Because J(x; τû) ≤ K (Lemma A.2) and J(x∗; τû) = K, we have Jx(x∗−; τû) ≥ 0, i.e.,423 ∫ ∞
0

(
K − x∗

r

)
α(r)

1

x∗
dF (r) +

∫ ∞
0

1

r
dF (r) ≥ 0,424

425

which in turn gives426

x∗ ≤
∫∞

0
α(r)dF (r)∫∞

0
α(r)−1

r dF (r)
K.427

428

Combining with the failure of condition (3.14), we derive429

x∗ <

∫ ∞
0

rdF (r),430
431

which contradicts Lemma A.3. This completes the proof.432

The above is a stronger result. It suggests that for the problem to have any equilibrium433

stopping rule at all (not necessarily the one obtainable by the SP principle), condition434

(3.14) must hold. So, when it comes to a time-inconsistent stopping problem with non-435

exponential discounting, it is highly likely that no equilibrium stopping rule exists,436

even if the SP principle does generate a “solution”, or even if the time-consistent coun-437

terpart (in which everything else is identical except the discount function) is indeed438

solvable by the SP. Applying these conclusions to the pseudo-exponential discount439

functions discussed above, we deduce that there is no equilibrium stopping when λ is440

sufficiently large.441

Having said this, a logical conclusion from Proposition 3.5 and Proposition 3.6442

is that when equilibria do exist, one of them must be a solution generated by the443

SP. In general if there exists an equilibrium then there may be multiple ones; see, for444

example, [24] and [13] for multiple equilibria in time-inconsistent control problems. In445

this case, the SP can only generate one of them, but not necessarily all of them. (This446

statement is true even for a classical time-consistent stopping problem.) So, after all,447

the SP is still a useful, proper method for time-inconsistent problems; we can simply448

apply it to generate a candidate solution. If the solution is an equilibrium (which we449

must verify), then we have found one (but not necessarily other equilibria); if it is not450

an equilibrium, then we know there is no equilibrium at all. All these conclusions,451

however, are drawn on the special real option problem in this subsection. It remains452

an interesting problem to extend them to more general settings.453

Remark 3.7. A result of non-existence of equilibrium stopping is presented in [5],454

Theorem 4.6, for the following mean–variance stopping problem:455

max
τ∈T

E[Xτ − γVar(Xτ )],(3.15)456
457

where458

dXt = µXtdt+ σXtdWt, X0 = x ≥ 0,(3.16)459460
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with γ > 0 and σ2/4 < µ < σ2/2. The main differences between that result and the461

ones presented in this paper are as follows. First, mean–variance and non-exponential462

discounting are two different sources of time-inconsistency. While the definition of463

an equilibrium can be the same,7 the approaches to characterize and derive it can464

be remarkably different. Likewise, a result that is valid for one problem is not au-465

tomatically valid for the other. That is why in the literature the two problems have466

been studied separately. Second, and indeed more importantly, in the present paper467

we have painstakingly demonstrated that the reason for the negative results in our468

setting is the time-inconsistency: they occur when we simply change the exponential469

discounting to a non-exponential one while keeping everything else the same. We pre-470

sented the time-consistent benchmark (Subsection 3.1) for comparison purpose: the471

benchmark case is time-consistent, and can be solved completely by SP (see Appendix472

A.2). However, the SP may fail for its time-inconsistent counterpart. In contrast, in473

[5], time-inconsistency does not seem to be responsible for the failure of SP nor for474

the non-existence of an equilibrium. Indeed, although no time-consistent benchmark475

is discussed in [5], because the variance term is what solely causes time-inconsistency,476

the natural benchmark is the case when the variance vanishes (i.e. γ = 0), in which477

case the Bellman equation is478

(3.17) max

{
1

2
σ2x2Vxx(x) + µxVx(x), x− V (x)

}
= 0, V (0) = 0.479

The equation in the continuation region is480

1

2
σ2x2Vxx(x) + µxVx(x) = 0, V (0) = 0481

whose solution is482

V (x) = Cxλ483

where λ = σ2−2µ
σ2 ∈ (0, 1/2). Now, the smooth pasting at a free boundary a yields484

Caλ = a, Cλaλ−1 = 1.485

The two equations imply that λ = 1 which is a contradiction. This means the SP fails486

even for the time-consistent case, suggesting it is not time-inconsistency that causes487

the negative result in [5].8488

4. Conclusions. While the SP principle has been widely used to study time-489

inconsistent stopping problems, our results indicate the risk of using this principle490

on such problems. We have shown that the SP principle solves the time-inconsistent491

problem if and only if certain inequalities are satisfied.492

By a simple model of the classical real options problem, we have found that these493

inequalities may be violated even for simple and commonly used non-exponential494

discount functions. When the SP principle fails, we have shown the intra-personal495

equilibrium does not exist. The nonexistence result and the failure of the SP principle496

7The definition of equilibrium in [5] is from the state (space), instead of time, point of view, due
to the time-homogeneity of the model. This definition is inspired by [10], as noted in [5], Remark
2.7.

8Interestingly, Theorem 4.6 in [5] also states that when 0 < µ ≤ σ2/4, the SP works for the
time-inconsistent problem (where γ > 0) and an equilibrium is explicitly found, whereas the SP fails
for the time-consistent benchmark (where γ = 0) based on exactly the same argument as above. So
in this case time-inconsistency actually helps the SP work, quite contrary to the finding in our paper.
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14 K. TAN, W. WEI, AND X. ZHOU

suggest that it is imperative that the techniques for conventional optimal stopping497

problems be used more carefully when extended to solving time-inconsistent stopping498

problems.499

Appendix A. Proofs.500

A.1. Proof of Theorem 2.5. For the stopping time τ ε,a, if a = 1, then501

J(x; τ ε,a) = g(x). The Bellman equation (2.11) implies that g(x) ≥ V (x) ≡ J(x; τû).502

This yields (2.9).503

If a = 0, then504

J(x; τ ε,a) = E
[∫ ε

0

h(s)f(Xs)ds
∣∣∣X0 = x

]
505

+ E

[∫ τε,a

ε

(h(s)− h(s− ε))f(Xs)ds
∣∣∣X0 = x

]
506

+ E[(h(τ ε,a)− h(τ ε,a − ε))g(Xτε,a)|Xt = x] + E[V (Xε)|X0 = x]507508

It follows from the weighted form of h(t) that509

J(x; τ ε,a) = E
[∫ ε

0

h(s)f(Xs)ds
∣∣∣X0 = x

]
510

+ E

[∫ τε,a

ε

∫ ∞
0

e−r(s−ε)(e−εr − 1)dF (r)f(Xs)ds
∣∣∣X0 = x

]
511

+ E
[∫ ∞

0

e−r(τ
ε,a−ε)(e−εr − 1)dF (r)g(Xτε,a)

∣∣∣X0 = x

]
+ E[V (Xε)|X0 = x]512

513

Combine the second and the third terms in the above representation, then we have514

that515

J(x; τ ε,a) = E
[∫ ε

0

h(s)f(Xs)ds
∣∣∣X0 = x

]
+ E

[∫ ∞
0

(e−εr − 1)w(Xε; r)dF (r)
∣∣∣X0 = x

]
516

+ E[V (Xε)|X0 = x].(A.1)517518

Define τn = inf{s ≥ 0 : σ(Xs)Vx(Xs) > n} ∧ ε. Then it follows from Ito’s formula519

([25]) that520

E [V (Xτn)|X0 = x] = E
[∫ τn

0

(
1

2
σ2(Xs)Vxx(Xs) + b(Xs)Vx(Xs))ds

∣∣∣X0 = x

]
+ V (x).521

522

By (2.11), we conclude523

E [V (Xτn)|X0 = x] = E
[∫ τn

0

(
1

2
σ2(Xs)Vxx(Xs) + b(Xs)Vx(Xs))ds

∣∣∣X0 = x

]
+ V (x)524

≥ E
[∫ τn

0

(−f(Xs) +

∫ ∞
0

rw(Xs; r)dF (r))ds
∣∣∣X0 = x

]
+ V (x).525

526

Note that conditions (2.6) and (2.7) ensure that −f(x) +
∫∞

0
rw(x; r)dF (r) has poly-527

nomial growth, i.e., there exist C > 0,m ≥ 1 such that528 ∣∣∣− f(x) +

∫ ∞
0

rw(x; r)dF (r)
∣∣∣ ≤ C(|x|m + 1),529

530
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FAILURE OF SMOOTH PASTING PRINCIPLE 15

which leads to531

sup
0≤t≤ε

∣∣∣− f(Xs) +

∫ ∞
0

rw(Xs; r)dF (r)
∣∣∣ ≤ C( sup

0≤t≤ε
|Xt|m + 1).532

533

Moreover, under condition (2.4), it follows from standard SDE theory (see, for ex-534

ample, Chapter 1 of [35]) that equation (2.3) admits a unique strong solution X535

satisfying536

E[ sup
0≤t≤ε

|Xt|m|X0 = x] ≤ Kε(|x|m + 1)537

538

with Kε > 0.539

Then letting n→∞, we conclude by the dominated convergence theorem that540

E [V (Xε)|X0 = x] ≥ E
[∫ ε

0

(−f(Xs) +

∫ ∞
0

rw(Xs; r)dF (r))ds
∣∣∣X0 = x

]
+ V (x).541

542

Consequently,543

lim inf
ε→0+

J(x; τ ε,a)− J(x; τû)

ε
544

≥ lim inf
ε→0+

E
[∫ ε

0

h(s)f(Xs)ds
∣∣∣X0 = x

]
+ E

[∫ ∞
0

e−εr − 1

ε
w(Xε; r)dF (r)

∣∣∣X0 = x

]
545

+ lim inf
ε→0+

1

ε
E
[∫ ε

0

∫ ∞
0

(rw(Xt; r)dF (r)− f(Xt))dt
∣∣∣X0 = x

]
.546

547

The continuity of f and w along with the polynomial growth conditions (2.6) and548

(2.7) allow the use of the dominated convergence theorem, yielding549

lim inf
ε→0+

E
[∫ ε

0

h(s)f(Xs)ds
∣∣∣X0 = x

]
+ E

[∫ ∞
0

e−εr − 1

ε
w(Xε; r)dF (r)

∣∣∣X0 = x

]
550

+ lim inf
ε→0+

1

ε
E
[∫ ε

0

∫ ∞
0

(rw(Xt; r)dF (r)− f(Xt))dt
∣∣∣X0 = x

]
551

= f(x)−
∫ ∞

0

rw(x; r)dF (r) +

∫ ∞
0

(rw(x; r)− f(x))dF (r)552

= 0.553554

This leads to555

lim inf
ε→0+

J(x; τ ε,a)− J(x; τû)

ε
≥ 0,556

557

completing the proof.558

A.2. Proof of Proposition 3.1. Let V B be the value function of the optimal559

stopping problem. It follows from the standard argument (see, for example, Chapter 6560

of [25]) that V B is continuously differentiable and its first-order derivative is absolutely561

continuous. Moreover, V B solves the following Bellman equation562

(A.2) min

{
1

2
σ2x2V Bxx(x) + bxV Bx (x) + f(x)− rV B(x),K − V B(x)

}
= 0.563
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Define the continuation region CB = {x > 0 : V B(x) < K} and the stopping region564

SB = {x > 0 : V B(x) = K}.565

We claim that SB 6= (0,∞). If not, then V B ≡ K. Thus 1
2σ

2x2V Bxx(x)+bxV Bx (x)+566

f(x)−rV B(x) < 0 whenever x ∈ {x > 0 : f(x)−rK < 0}. However, since f(0) < rK,567

the continuity of f implies {x > 0 : f(x)−rK < 0} 6= ∅. This contradicts the Bellman568

equation (A.2).569

We now show that Cb 6= (0,∞). If it is false, then we have V B(x) = L(x; r), with
L defined by (3.3). Since f is increasing and bounded from below by 0, we have

V B(∞) ≡ lim
x→∞

V B(x) =

∫ ∞
0

∫ ∞
0

lim
x→∞

f(yx)e−rsG(y, s)dyds.

The concavity of f yields f(x) ≥ xfx(x)+f(0). It then follows from limx→∞ xfx(x) =570

∞ that limx→∞ f(x) =∞, which yields that V B(∞) =∞. This contradicts the fact571

that V B(x) ≤ K.572

Next, since X is a geometric Brownian motion and f is increasing, it is clear that573

V is increasing too. Now, we derive the value of the triggering boundary, xB , via the574

SP principle. Specifically, it follows from (A.2) that575

V b(x) = (K − L(xB ; r))(
x

xB
)α(r) + L(x; r), x < xB576

V b(x) = K,x ≥ xB ,577578

where α(r) is defined by (3.5). Then the SP implies that V Bx (xB) = 0 which after579

some calculations yields that xB is the solution of the equation (3.4).580

To prove the unique existence of the solution of (3.4), define Q(x) := α(r)(K −581

L(x; r))+Lx(x; r)x. ThenQx(x) = (−α(r)+1)Lx(x; r)+Lxx(x; r)x. As L is strictly in-582

creasing and concave and α(r) > 1, we deduce that Q is strictly decreasing. It remains583

to show Q(0) > 0 and Q(∞) < 0. It is easy to see that Q(0) = α(r)(K − L(0; r)) =584

α(r)(K − f(0)
r ) > 0 and Q(x) = α(r)(K − L(0; r)−

∫ x
0
Lx(s; r)ds) + Lx(x; r)x. Since585

L is concave, we have
∫ x

0
Lx(s; r)ds ≥ xLx(x; r). Thus Q(x) ≤ α(r)(K − L(0; r)) +586

(−α(r) + 1)xLx(x; r). Recalling that limx→∞ xLx(x; r) = ∞ and α(r) > 1, we have587

Q(∞) = −∞. This completes the proof.588

A.3. Proof of Theorem 3.3. We need to present a series of lemmas before589

giving a proof of Theorem 3.3.590

Lemma A.1. Given a stopping rule u and a discount rate r > 0, the function591

E(x; τu, r) := E[
∫ τu

0
e−rtf(Xt)dt+ e−rτuK|X0 = x] is continuous in x ∈ (0,∞).592

Proof. We prove the right continuity of E(·; τu, r) at a given x0 > 0; the left593

continuity can be discussed in the same way.594

If there exists δ > 0 such that (x0, x0 + δ) ∈ Su, then the right continuity of595

E(·; τu, r) at x0 is obtained immediately. If there exists δ > 0 such that (x0, x0 + δ) ∈596

Cu, then it follows from the Feynman-Kac formula that E(·; τu, r) is the solution to the597

differential equation 1
2σ

2x2Exx+bxEx−rE+f = 0 on (x0, x0 +δ). This in particular598

implies that E(·; τu, r) ∈ C2((x0, x0+δ))∩C([x0, x0+δ]) due to the regularity of f and599

the coefficients of the differential equations; hence the right continuity of E(·; τu, r)600

at x0.601

Otherwise, we first assume that f(x0) ≥ rK and consider the set Cu ∩ (x0,∞).602

Since it is an open set, we have Cu∩(x0,∞) = ∪n≥1(an, bn), where an, bn ∈ S̄u,∀n ≥ 1.603

It is then easy to see that x0 is an accumulation point of {an}n≥1 and hence x0 ∈ S̄u.604
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Define I(x) := E(x; τu, r)−K for x ∈ (an, bn). It is easy to see that I solves the605

following differential equation606

1

2
σ2x2Ixx(x) + bxIx(x)− rI(x) + f(x)− rK = 0.(A.3)607

608

with the boundary conditions609

I(an) = I(bn) = 0.610611

Consider an auxiliary function H that solves the following differential equation612

1

2
σ2x2Hxx(x) + bxHx(x)− rH(x) + f(x)− rK = 0,613

614

with the boundary conditions615

H(x0) = H(b1) = 0.616617

Since f(x) > rK on (x0,∞), the comparison principle shows that H(x) ≥ 0,∀x ∈618

[x0, b1]. Applying the comparison principle again on any (an, bn) ∩ (x0, b1),∀n ∈ N+,619

we have 0 ≤ I(x) ≤ H(x). Noting that H(x)→ H(x0) = 0 as x→ x0+, we conclude620

that I(·) is right continuous at x0 and so is E(·; τu, r).621

For the case f(x0) < rK, a similar argument applies. Indeed, consider an auxil-622

iary function H1 satisfying the differential equation (A.3) on (x0, f
−1(rK)) with the623

boundary condition H1(x0) = H1(f−1(rK)) = 0. The comparison principle yields624

that H1(x) ≤ I(x) ≤ 0 on (an, bn) ∩ (x0, f
−1(rK)),∀n ∈ N+. The right continuity of625

I(·) and E(·; τu, r) then follows immediately.626

Lemma A.2. If û is an equilibrium stopping rule, then J(x; τû) ≤ K ∀x ∈ (0,∞).627

Proof. If there exists x0 ∈ (0,∞) such that J(x0; τû) > K, then we have628

lim sup
ε→0

J(x0; τû)− J(x0; τ ε,1)

ε
=∞,629

630

where τ ε,1 is given by (2.10). This contradicts the definition of an equilibrium stopping631

rule.632

Lemma A.3. If û is an equilibrium stopping rule, then we have {x > 0 : f(x) <633 ∫∞
0
rdF (r)K} ⊂ Cû.634

Proof. Suppose that there exists x ∈ {x > 0 : f(x) <
∫∞

0
rdF (r)K} ∩ S̄û, then it635

follows from Lemma A.2 that E[J(Xt; τû)|X0 = x] ≤ K. Consider the stopping time636

τ ε,0. Equation (A.1) and the fact that J(x; τû) = K give637

J(x; τ ε,0)− J(x; τû)

ε
≤ 1

ε
E
[∫ ε

0

h(s)f(Xs)ds
∣∣∣X0 = x

]
638

+ E
[∫ ∞

0

(
e−εr − 1

ε

)
w(Xε; r)dF (r)

∣∣∣X0 = x

]
.639

640

As w(·, r) is continuous (Lemma A.1) and w(x; r) = K, we have641

lim inf
ε→0

J(x; τ ε,0)− J(x; τû)

ε
≤ f(x)−

∫ ∞
0

rKdF (r) < 0.642
643

This contradicts the definition of an equilibrium stopping rule.644
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We now turn to the proof of Theorem 3.3. We begin with the sufficiency. To this645

end it suffices to show that V (x) ≤ K,x ∈ (0, x∗) and f(x) −
∫∞

0
rdF (r)K ≥ 0, x ∈646

(x∗,∞).647

We first show that Vxx ≤ 0, x ∈ (0, x∗). By simple algebra, we have648

Vxx(x) =

∫ ∞
0

α(r)(α(r)− 1)(K − L(x; r))(
x

x∗
)α(r) 1

x2
dF (r) +

∫ ∞
0

Lxx(x; r)dF (r).649
650

As L is concave, we only need to prove
∫∞

0
α(r)(α(r)−1)(K−L(x; r))( xx∗

)α(r)dF (r) ≤651

0. It is easy to see that ( xx∗
)α(r) is decreasing in r given that α(r) is increasing in r652

and x < x∗. Then the rearrangement inequality (e.g., Chapter 10 of [15]; [27]) yields9653 ∫ ∞
0

α(r)(α(r)− 1)(K − L(x; r))(
x

x∗
)α(r)dF (r)654

≤
∫ ∞

0

α(r)(α(r)− 1)(K − L(x; r))dF (r)

∫ ∞
0

(
x

x∗
)α(r)dF (r).(A.4)655

656

Therefore it follows from (3.9) that Vxx(x) ≤ 0, x ∈ (0, x∗). Now, Vx(x∗) = 0. Thus657

Vx(x) ≥ 0 and consequently V (x) ≤ K ∀x ∈ (0, x∗), due to V (x∗) = K.658

Next, the inequality f(x) −
∫∞

0
rdF (r)K ∀x ∈ (x∗,∞) follows from f being659

increasing along with inequality (3.8). This completes the proof of the sufficiency.660

We now turn to the necessity part. Since (3.8) is an immediate corollary of
Lemma A.3, we only need to prove (3.9). Suppose (3.9) does not hold. Then by a
simple calculation, we have

Vxx(x∗−) =

∫ ∞
0

α(r)(α(r)− 1)(K − L(x∗; r))
1

x2
∗
dF (r) +

∫ ∞
0

Lxx(x∗; r)dF (r) > 0.

However, Vx(x∗) = 0, implying that there exists x1 ∈ (0, x∗) such that Vx(x) < 0661

on x ∈ (x1, x∗). Then it follows from V (x∗) = K that V (x) > K when x ∈ (x1, x∗),662

which contradicts Lemma A.2.663
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[5] S. Christensen and K. Lindensjö, On time-inconsistent stopping problems and mixed strategy682
stopping times, Stochastic Processes and their Applications, 130 (2020), pp. 2886–2917.683

[6] S. Christensen and K. Lindensj, On finding equilibrium stopping times for time-inconsistent684
markovian problems, SIAM Journal on Control and Optimization, 56 (2018), pp. 4228–685
4255.686

[7] A. Dixit, The art of smooth pasting, Routledge, 1993.687
[8] A. Dixit and R. Pindyck, Investment under Uncertainty, vol. 15, Princeton University Press,688

1994.689
[9] J. Ebert and D. Prelec, The fragility of time: Time-insensitivity and valuation of the near690

and far future, Management Science, 53 (2007), pp. 1423–1438.691
[10] S. Ebert, W. Wei, and X. Zhou, Weighted discounting–on group diversity, time-692

inconsistency, and consequences for investment, Journal of Economic Theory, 189 (2020).693
[11] I. Ekeland and A. Lazrak, Being serious about non-commitment: Subgame perfect equilib-694

rium in continuous time. Working Paper, 2006.695
[12] I. Ekeland, O. Mbodji, and T. A. Pirvu, Time-consistent portfolio management, SIAM696

Journal on Financial Mathematics, 3 (2012), pp. 1–32.697
[13] I. Ekeland and T. Pirvu, Investment and consumption without commitment, Mathematics698

and Financial Economics, 2 (2008), pp. 57–86.699
[14] S. Grenadier and N. Wang, Investment under uncertainty and time inconsistent preferences,700

Journal of Financial Economics, 84 (2007), pp. 2–39.701
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