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A B S T R A C T

We aim to cluster financial assets in order to identify a small set of stocks to approximate the level of
diversification of the whole universe of stocks. We develop a data-driven approach to clustering based on
a correlation blockmodel, in which assets in the same cluster are highly correlated with each other and, at the
same time, have the same correlations with all other assets. We devise an algorithm to detect the clusters, with
theoretical analysis and practical guidance. Finally, we conduct an empirical analysis to verify the performance
of the algorithm.
1. Introduction

The modern portfolio theory was pioneered by Markowitz (1952,
1959), in which the key insights are diversification and risk–return
tradeoff. One drawback of applying Markowitz’s mean–variance port-
folio selection approach naïvely is to include all the available assets
for allocation. So in the case of S&P 500, for example, an investor
would need to invest in all these 500 stocks in her portfolio. This is
simply impossible for small investors or small fund managers.1 Sea-
soned investors such as Warren Buffet do not hold many stocks either.2
Even gigantic funds such as Vanguard and BlackRock do not include,
even though they could, all the stocks in their portfolios. Practically,
managing too many stocks is costly and prone to mismanagement.
According to a Morningstar article, ‘‘when you lose your focus and
move outside your circle of competence, you lose your competitive
advantage’’.3 Technically, including too many stocks increases both the
odds of overfitting and the difficulty in computing efficient allocation
strategies (e.g., DeMiguel, Garlappi, & Uppal, 2009). One way to ad-
dress this issue is to add a regularization term or a cardinality constraint
in the Markowitz mean–variance optimization model (Brodie et al.,
2009; DeMiguel, Garlappi, Nogales, & Uppal, 2009; Faaland, 1974; Gao
& Li, 2013; Ho et al., 2015). This approach imposes sparsity on the
number of assets in the portfolio; however, the regularization itself does

∗ Corresponding author.
E-mail addresses: wt2319@columbia.edu (W. Tang), xx2167@columbia.edu (X. Xu), xz2574@columbia.edu (X.Y. Zhou).

1 Some investment experts suggest that 30 stocks be the maximum number of stocks in a retail investor’s stock portfolio (‘‘How Many Stocks Should Be in a
Portfolio?’’, Zacks, 2019, Accessed January 5, 2021. https://finance.zacks.com/many-stocks-should-portfolio-4782.html).

2 Between Berkshire Hathaway and New England Asset Management, Buffet holds 49 stocks in total, with about 92% of the portfolio concentrating in 15
stocks, and 78% in just five stocks (based on holdings as of September 30, 2020, reported in Berkshire Hathaway and New England Asset Management’s 13F
filings on November 16, 2020).

3 ‘‘How Many Stocks Diversify Unsystematic Risk?’’, Morningstar, Accessed January 5th, 2021. http://news.morningstar.com/classroom2/course.asp?docId=
145385&page=4.

4 If this question can be satisfactorily answered, we can then apply Markowitz’s mean–variance model to this small set of stocks to get an efficient portfolio.
In other words, we can decompose the Markowitz model into two stages: asset selection and asset allocation.

not take diversification into account, and thus the set of stocks selected
may contain concentration risk.

Since the main reason to include all the stocks is to diversify, we
have the following natural question: How can we select a much smaller
subset of the whole universe of stocks that achieves a sufficient level
of diversification?4 Reilly and Brown (2012) states that ‘‘about 90% of
the maximum benefit of diversification was derived from portfolios of
12 to 18 stocks’’. Markowitz (1952) suggests a simple rule of thumb
for selecting stocks that one should try to ‘‘diversify across industries
because firms in different industries, especially industries with different
economic characteristics, have lower covariances than firms within an
industry’’. In practice, stock selection is often based on factors such as
sector rotation and macroeconomic indicators and is subjective to each
investor. However, this approach relies on the taxonomy of sectors and
macroeconomic analysis published by certain organizations, which may
be subject to different interpretations and may contain biases. If, as
noted above, the primary goal of stock selection is to achieve sufficient
diversification to which asset correlations are the key, approaches
focusing directly on asset correlations are more appropriate and more
innately fitting for the subsequent asset allocation. A promising such
approach is clustering based on correlation networks. Specifically, one
first groups or clusters all the assets in a correlation network and then
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selects one or a few ‘‘representative’’ assets in each group, resulting in
a subset of a much smaller number of assets.

Since the seminal work of Mantegna (1999), correlation networks
have been widely used as a tool to study the correlation structure of
financial assets. In a correlation network, financial assets are modeled
as nodes, connected by edges representing the correlations between
their returns. Clustering analysis is conducted on correlation networks,
and clusters are often compared with traditional industry classifica-
tions (Musmeci et al., 2015; Rosén, 2006). One line of the clustering
research is simply to understand the market structure without involving
portfolio selection; see Das (2003), Marathe and Shawky (1999) with
𝑘-means algorithm, Gavrilov et al. (2000) with hierarchical clustering,
and Mantegna (1999), Tumminello et al. (2005) with network filtering.
Another line of research is to utilize the revealed market structure to
construct portfolios. For instance, Ren (2005) creates clusters based
on a simple threshold rule and constructs an optimal portfolio of sub-
portfolios, each of which is an equally-weighted portfolio of all stocks
in the same cluster. Based on just the structure of the correlation
networks, Pozzi et al. (2013) build portfolios consisting of stocks in
the center and on the periphery of the networks. For various studies
applying the same idea of ‘‘clustering analysis and portfolio construc-
tion using representative sub-portfolios’’, see, e.g., De Prado (2016),
Korzeniewski (2018), León et al. (2017), Marvin (2015), Nanda et al.
(2010), Raffinot (2017), Zhan et al. (2015). Most recently, Puerto et al.
(2020) propose a unified framework that pursues high within-cluster
correlations while at the same time optimizing the allocations of the
representative stocks.

Despite their popularity in the machine learning community, the 𝑘-
means algorithm (Lloyd, 1982) and the similar 𝑘-medoids algorithm (or
Partitioning Around Medoids, ‘‘PAM’’, Kaufman & Rousseeuw, 1990)
have found only limited applications to finance. Marvin (2015) applies
𝑘-medoids to cluster financial assets, albeit based on financial ratios of
companies instead of return time series. Musmeci et al. (2015) compare
𝑘-medoids with other clustering methods along with the industry clas-
sification. He et al. (2007) and Nakagawa et al. (2019) apply 𝑘-means
and 𝑘-medoids to financial time series data for a different purpose: they
group series of returns in order to predict future returns.

Most of the above clustering methods applied to portfolio selec-
tion are heuristics, hence often difficult to interpret. In this paper,
we propose a new, interpretable, data-driven approach to correlation
network clustering and provide a systematic solution for selecting
well-diversified stocks. Our clustering is based on the following two
criteria:

Criterion 1. Financial assets in the same group have high correlations.

Criterion 2. Financial assets in the same group have similar correlations
with all other assets.

Criterion 1 is self-evident. Assets with high correlations may per-
orm well simultaneously at one time and plummet simultaneously
t another time; so we cluster them into the same group. The next
mportant question is how to select the ‘‘representative’’ assets in each
roup of a clustering. Practitioners often choose the best assets in each
roup according to their own performance metrics. However, this does
ot guarantee that the assets selected in each group are ‘‘optimal’’
specially in terms of their relationship with other assets outside of the
roup. Motivated by the mean–variance portfolio theory, we propose
o cluster in such a way that any two assets in the same group have
imilar correlations to all others in the stock universe, which underlines
riterion 2. So any two assets in the same group are interchangeable in
erms of their correlations with other assets. Consequently, one needs
o only choose some idiosyncratic characteristics, such as volatility or
harpe ratio, in selecting which asset to be included in the portfolio.
his makes the choice of representative assets from each cluster simple
nd transparent. The idea, though very natural, seems missing in the
2

iterature. p
The purpose of this paper is to develop a new financial clustering
approach, taking both criteria into account. We propose a correlation
blockmodel to capture Criterion 2. This formulation is inspired by the
problem of community detection in stochastic blockmodel (Abbe, 2017)
and block covariance model (Bunea et al., 2016, 2020). In the model,
the return of any asset in the same group is expressed as the sum of a
common latent factor and an uncorrelated random noise. As such, any
two assets in the same group have the same correlations to all others.
Criterion 1 is then used to calibrate a threshold hyperparameter that
controls how variables are grouped together. We devise an algorithm
– called ACC (Asset Clustering through Correlation) – to recover the
clusters of the blockmodel in polynomial time.

The main contributions of this work are as follows. First, to our
best knowledge, this paper is the first to implement both criteria (es-
pecially Criterion 2) in financial asset clustering to capture the notion
of diversification and the first to utilize the correlation blockmodel
to formalize the implementation. This provides interpretability of our
clustering approach from the portfolio theory point of view. Second,
we lay a rigorous theoretical foundation for the clustering algorithm
from both algorithmic and statistical perspectives. In particular, we
provide a statistical guarantee for the algorithm which can account
for the possible heavy-tailed data intrinsic to financial time series.
This estimate requires a delicate analysis owing to the heavy tails
and is new and interesting in its own right. Moreover, we propose a
hyperparameter tuning procedure in the clustering algorithm, taking
both criteria into account. The information limit of the blockmodel
narrows down the search for the hyperparameter, while Criterion 1
is used to cross-validate. Finally, we conduct an extensive empirical
study on the S&P 500 stocks by selecting 15 to 25 stocks at a time
via clustering and constructing portfolios using the selected stocks. For
comparison, we select stocks from clusters created by the popular 𝑘-

edoids clustering algorithm and clusters based on S&P’s sector and
ndustry classification. We also consider the set of all S&P 500 sector
TFs, each of which represents a different sector in the S&P 500 Index.
or all these groups of stocks, we employ and compare three asset
llocation strategies: risk parity, minimum-variance, and Markowitz’s
ean–variance optimal allocation. The results show that the portfolios

onstructed using our ACC algorithm outperform the benchmark – the
&P 500 ETF – significantly. The portfolios based on ACC clusters also
erform favorably compared to all other portfolios, especially when
ortfolios are readjusted infrequently.

In Bunea et al. (2016) (which is an unpublished, earlier version
f Bunea et al., 2020), an algorithm is presented to recover the clusters
nder the same correlation blockmodel. Our results and algorithm
iffer significantly from Bunea et al. (2016) in the following aspects.
irst, while Bunea et al. (2016) briefly demonstrate their model by
pplying the clustering algorithm to stock data in their numerical
xperiments, we are motivated by the modern portfolio theory to con-
truct and justify the model and offer a theoretical interpretation of the
odel related to diversification based on the two criteria. Second, we

mploy a different tuning procedure in order to incorporate Criterion 1.
hird, the underlying distribution is restricted to Gaussian in Bunea
t al. (2016), while we consider a more general range of distributions
hat encompass the heavy-tails prevalent in financial data. Lastly, we
onduct portfolio construction and extensive backtesting, which is not
he primary focus of Bunea et al. (2016).

The remainder of the paper is organized as follows. In Section 2, we
resent the correlation blockmodel and the ACC algorithm and state the
ain theoretical results. Section 3 provides an empirical analysis. We

onclude with a few remarks in Section 4. All the proofs are contained
n Appendix.

. Correlation blockmodel and clustering algorithm

We first collect some notations that will be used throughout this

aper. All vectors are column vectors unless stated otherwise.
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• We use bold case letters, e.g., 𝑋𝑋𝑋, to denote matrices.
• For a vector 𝑥, |𝑥| is the Euclidean norm of 𝑥.
• For a vector 𝑥 (resp. a matrix 𝑋𝑋𝑋), 𝑥⊤ (resp. 𝑋𝑋𝑋⊤) is the transpose

of 𝑥 (resp. 𝑋𝑋𝑋).
• For a set 𝐴, |𝐴| is the number of elements in 𝐴.
• For a random variable𝑋, E(𝑋) is the expectation of 𝑋, and Var(𝑋)

the variance of 𝑋.
• For two random variables 𝑋 and 𝑌 , Cov(𝑋, 𝑌 ) ∶= E[(𝑋−E(𝑋))(𝑌 −
E(𝑌 ))] is the covariance between 𝑋 and 𝑌 , and

Corr(𝑋, 𝑌 ) ∶=
E[(𝑋 − E(𝑋))(𝑌 − E(𝑌 ))]

√

Var(𝑋) Var(𝑌 )
,

is the Pearson correlation coefficient between 𝑋 and 𝑌 .
• 𝑎 and 𝑏 have the same order of magnitude, denoted by 𝑎 ≍ 𝑏, if

and only if 𝑐 ≤ 𝑎∕𝑏 ≤ 𝐶 for some 𝑐, 𝐶 > 0, as 𝑎, 𝑏→ ∞.

2.1. Model setup

Assume that there are 𝑑 financial assets, indexed by [𝑑] ∶= {1,… , 𝑑}.
For 𝑖 ∈ [𝑑], let 𝑋𝑖 be the return of asset 𝑖, and 𝑋∗

𝑖 ∶= (𝑋𝑖 −
E(𝑋𝑖))∕

√

Var(𝑋𝑖) be the standardized return. Throughout this paper we
assume shorting is not allowed; hence the return of an asset refers to
that of a long position. As mentioned in the introduction, one of our
goals is to cluster the returns 𝑋 = (𝑋1,… , 𝑋𝑑 )⊤ in such a way that 𝑋𝑖
nd 𝑋𝑗 belong to the same group if and only if they have the same
orrelations with all other returns, i.e., Corr(𝑋𝑖, 𝑋𝑙) = Corr(𝑋𝑗 , 𝑋𝑙) for
𝑙 ≠ 𝑖, 𝑗. This amounts to finding a partition 𝐺 = {𝐺1,… , 𝐺𝐾} of [𝑑], or
a map of membership assignment 𝑧 ∶ [𝑑] → [𝐾] so that

𝑖 belongs to group 𝑘⟺ 𝑖 ∈ 𝐺𝑘 ⟺ 𝑧(𝑖) = 𝑘.

The sets 𝐺1,… , 𝐺𝐾 are called the blocks, or the groups of the partition
, which define an equivalence relation 𝑖 𝐺∼ 𝑗 if and only if 𝑖, 𝑗 ∈ 𝐺𝑘 for

some 𝑘 ∈ [𝐾], or simply 𝑧(𝑖) = 𝑧(𝑗). Similarly, 𝑖
𝐺
≁ 𝑗 if and only if there

is no block 𝐺𝑘 that contains both 𝑖 and 𝑗, or 𝑧(𝑖) ≠ 𝑧(𝑗).
We now introduce the correlation blockmodel, in which 𝑋𝑖’s in the

same group can be decomposed as the sum of a common latent factor
and an uncorrelated random fluctuation. Precisely, the standardized
returns are represented as

𝑋∗
𝑖 = 𝐹𝑧(𝑖) + 𝑈𝑖, 𝑖 ∈ [𝑑], (1)

where

• 𝐹 = (𝐹1,… , 𝐹𝐾 ) are the latent factors with E(𝐹𝑘) = 0 for each
𝑘 ∈ [𝐾];

• 𝑈 = (𝑈1,… , 𝑈𝑑 ) are idiosyncratic fluctuations with E(𝑈𝑖) = 0 for
each 𝑖 ∈ [𝑑], Cov(𝑈𝑖, 𝑈𝑗 ) = 0 for 𝑖 ≠ 𝑗, and Cov(𝐹𝑘, 𝑈𝑖) = 0 for each
𝑘, 𝑖.

It is easy to see that for 𝑖 𝐺∼ 𝑗 and 𝑙 ≠ 𝑖, 𝑗, Corr(𝑋𝑖, 𝑋𝑙) = E(𝐹𝑧(𝑖)𝐹𝑧(𝑙)) =
E(𝐹𝑧(𝑗)𝐹𝑧(𝑙)) = Corr(𝑋𝑗 , 𝑋𝑙). Moreover, let 𝜎2𝑘 ∶= Var(𝐹𝑘) be the variance
of the latent factor underlying group 𝑘 ∈ [𝐾]. By definition (1),
Var(𝑈𝑖) = 1 − 𝜎2𝑘 if 𝑖 ∈ 𝐺𝑘. This implies that the signal-to-noise ratios
are the same for all standardized returns belonging to the same group.

Given such a correlation blockmodel, the question is to infer the
block structure – the partition 𝐺 from the correlation matrix 𝜌𝜌𝜌 ∶=
E(𝑋∗𝑋∗⊤), where 𝑋∗ = (𝑋∗

1 ,… , 𝑋∗
𝑑 )
⊤ are standardized returns. Denote

𝛴𝐹 ∶= E(𝐹𝐹⊤) and𝛴𝛴𝛴𝑈 ∶= E(𝑈𝑈⊤) as the covariance matrices of 𝐹 and
𝑈 respectively. Here 𝛴𝛴𝛴𝑈 is diagonal, since Cov(𝑈𝑖, 𝑈𝑗 ) = 0 for 𝑖 ≠ 𝑗. Let
𝑍 ∶= (1{𝑧(𝑖)=𝑘})(𝑖,𝑘)∈[𝑑]×[𝐾] be the membership matrix. The correlation
matrix 𝜌𝜌𝜌 is then expressed as

𝜌 = 𝑍𝑍𝑍𝛴𝛴𝛴𝐹𝑍𝑍𝑍
⊤ +𝛴𝛴𝛴𝑈 . (2)

Note that the partition 𝐺 which satisfies (1) or (2) may not be unique.
This could be due to overly granular partitions splitting the set of
returns with the same latent factor further into smaller groups, or due
3

to different latent factors that share the same covariances with all other
latent factors. A natural way to address this problem is to look for the
coarsest partition, which has the least number of clusters. Since the
partition order is a partial order, the coarsest partition is, in general,
still not necessarily unique. Nevertheless, the following result ensures
a unique coarsest partition 𝐺⋆ for the correlation blockmodel (1).

Theorem 1. Let 𝜌𝜌𝜌 be a correlation matrix. Then there is a unique
coarsest partition 𝐺⋆ such that 𝜌𝜌𝜌 = 𝑍𝑍𝑍𝛱𝛱𝛱𝑍𝑍𝑍⊤ + 𝛤𝛤𝛤 for some membership
matrix 𝑍𝑍𝑍 associated with 𝐺⋆, some matrix 𝛱𝛱𝛱 , and some diagonal matrix
𝛤 . Moreover, the partition 𝐺⋆ is defined by the equivalence relation

𝑖 𝐺
⋆
∼ 𝑗 if and only if max

𝑙≠𝑖,𝑗
|𝜌𝑖𝑙 − 𝜌𝑗𝑙| = 0. (3)

The proof is deferred to Appendix A.1. Theorem 1 shows that the
coarsest partition 𝐺⋆ is well-defined; so the clusters of the correlation
blockmodel (2) are identifiable. We note that the coarsest partition
could potentially group two clusters controlled by different factors as
one, if the factors have the same covariances with all other factors. This
is not a problem for our purposes, as this partition would still satisfy
Criterion 2. In the remainder of this work, we aim to recover or to
estimate the partition 𝐺⋆ from historical data.

2.2. The PARTITION procedure

According to Theorem 1, two financial asset returns 𝑋𝑖 and 𝑋𝑗
belong to different clusters in 𝐺∗ if and only if max𝑙≠𝑖,𝑗 |𝜌𝑖𝑙 − 𝜌𝑗𝑙| > 0.
This observation motivates the definition of a dissimilarity measure
between assets 𝑖 and 𝑗 – correlation difference (CORD, Bunea et al.,
2016):

CORD(𝑖, 𝑗) ∶= max
𝑙≠𝑖,𝑗

|𝜌𝑖𝑙 − 𝜌𝑗𝑙|, 𝑖, 𝑗 ∈ [𝑑]. (4)

This measure quantifies the dissimilarity between two assets in terms
of their respective correlations with all other assets. Consider a set of
financial asset returns that includes 𝑋𝑖 and some other returns 𝑌1, 𝑌2,….
If we position 𝑋𝑖 at the top, the corresponding row in the covariance
matrix of these returns is:

𝛴𝑖 = (Var(𝑋𝑖),Cov(𝑋𝑖, 𝑌1),Cov(𝑋𝑖, 𝑌2),…).

If we have CORD(𝑖, 𝑗) = 0, then Cov(𝑋𝑗 , 𝑌𝑘) = 𝑐 Cov(𝑋𝑖, 𝑌𝑘) for all
𝑘 = 1, 2,…, where 𝑐 =

√

Var(𝑋𝑗 )∕Var(𝑋𝑖) is a constant. So if we replace
𝑋𝑖 with 𝑋𝑗 in the set of asset returns, the first row (and column) of
the covariance matrix will only be rescaled by a constant factor 𝑐,
except for the variance term, which will be scaled by 𝑐2. Then in a
minimum-variance portfolio with no short selling, which optimizes the
weights to minimize the portfolio variance based on the covariance
matrix, the assets 𝑖 and 𝑗 are interchangeable up to a constant factor.5
This interchangeability also leads to the following result, which will be
proved in Appendix A.2.

Theorem 2. Under the correlation blockmodel with a coarsest partition
𝐺∗ = {𝐺1, 𝐺2,… , 𝐺𝐾}, construct a minimum variance portfolio by choosing
one asset from each cluster:

𝑃𝐽 ∶= {𝐽 (1), 𝐽 (2),… , 𝐽 (𝐾)},

5 Recall that a no-short-selling minimum variance portfolio of a set of
ssets with covariance matrix 𝛴𝛴𝛴 is one with asset weights 𝑤 that solves the
ptimization problem:

in 𝑤⊤𝛴𝛴𝛴𝑤

s.t. 𝑤⊤1 = 1

𝑤 ≥ 0.
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where 𝐽 (𝑘) ∈ 𝐺𝑘, for 𝑘 = 1,… , 𝐾. Among all such portfolios 𝑃𝐽 , the
portfolio with the lowest variance is the one consists of the asset with the low-
est variance in each cluster: argmin𝐽 Var(𝑃𝐽 ) = {𝐽 ∗(1), 𝐽 ∗(2),… , 𝐽 ∗(𝐾)}

here
∗(𝑘) = argmin

𝑗∈𝐺𝑘
Var(𝑋𝑗 ), ∀𝑘 = 1,… , 𝐾. (5)

This theorem gives guidance on choosing an asset from each cluster
o attain the minimum variance among all possible minimum variance
ortfolios. Arguably, this selection approach aligns with Markowitz’s
riginal notion that diversification can be measured by variance mini-
ization.

Next, we discuss how to derive clustering from data. Assume that
he financial asset returns are observed over 𝑛 periods. For 𝑟 ∈ [𝑛],
et 𝑋𝑟 = (𝑋𝑟

1,… , 𝑋𝑟
𝑑 )
⊤ be the asset returns in period 𝑟, and 𝑋∗𝑟 =

𝑋∗𝑟
1 ,… , 𝑋∗𝑟

𝑑 )⊤ be the corresponding standardized returns. Denote by
∗ the 𝑛 × 𝑑 matrix whose row 𝑟 is 𝑋∗𝑟. Also, assume that 𝑋1,… , 𝑋𝑛

re independent and identically distributed (i.i.d.) so that 𝑋∗1,… , 𝑋∗𝑛

are i.i.d. copies of 𝑋∗ defined by (1). The goal is to estimate the cluster
partition 𝐺⋆ from the sample correlation matrix 𝜌𝜌𝜌 given by

𝜌 ∶= 1
𝑛 − 1

(𝑋𝑋𝑋∗)⊤𝑋𝑋𝑋∗ = 1
𝑛 − 1

𝑛
∑

𝑟=1
𝑋∗𝑟(𝑋∗𝑟)⊤. (6)

Define the sample correlation difference ĈORD by

ĈORD(𝑖, 𝑗) ∶= max
𝑙≠𝑖,𝑗

|𝜌𝑖𝑙 − 𝜌𝑗𝑙|, 𝑖, 𝑗 ∈ [𝑑]. (7)

Given the sample correlation differences, the clusters can be recov-
ered through an iterative procedure that takes a dissimilarity matrix 𝐷𝐷𝐷
and a threshold parameter 𝜀 as inputs. This procedure, which we call
PARTITION, is a generalization of the CORD algorithm (Bunea et al.,
2016) and is described as Procedure 1. The main idea of the PARTITION
procedure is that two assets 𝑖 and 𝑗 should belong to the same cluster if
their dissimilarity, denoted by 𝐷𝐷𝐷(𝑖, 𝑗), is small, e.g., below a threshold
𝜀 > 0. In each iteration, the procedure identifies a new cluster by
finding the most similar pair of assets, i.e., with the smallest 𝐷𝐷𝐷(𝑖, 𝑗).
If 𝐷𝐷𝐷(𝑖, 𝑗) between these two assets is lower than the predetermined
hreshold 𝜀, then the two assets act as the core of the cluster, and all
ther assets that are similar to either of the core assets are included in
he cluster. Otherwise, any one of the two assets is singled out as its own
luster. Let us note that the PARTITION procedure does not require as
nput the number of clusters 𝐾, which is determined via the threshold
. In our method, we will use the sample correlation difference ĈORD
etween assets as the input to recover the clusters under the correlation
lockmodel. We will explain the method to determine the appropriate
alue for the threshold 𝜀 in the upcoming sections.

Note that the PARTITION procedure bears some similarity to the
lassical single-linkage clustering procedure (Anderberg, 1973; Man-
egna, 1999) in that they are both conglomerative, namely clusters are
uilt by grouping elements together, as opposed to being divisive where
lusters are created through separations. However, the two are different
n more fundamental ways. Single-linkage is a hierarchical algorithm.
t each iteration, it merges two existing (possibly singleton) clusters
y the shortest linkage between nodes in different clusters. If done all
he way to the very end, all nodes will be merged into a single big
luster; so the algorithm creates a hierarchical structure represented
y a tree-like dendrogram. The desired number of clusters is obtained
y stopping the algorithm early, or by observing the dendrogram. In
ontrast, the PARTITION procedure does not create such a hierarchy,
ecause it does not merge clusters together. After an iteration, all
odes are either unclustered or already clustered, and the next iteration
reates a new cluster out of the unclustered elements. PARTITION also
annot explicitly take in the number of clusters as an input parameter:
he number of clusters is endogenously determined by the threshold 𝜀.

We now study the statistical property of the PARTITION procedure
hen applied to the sample correlation difference. To do this, we need

he following assumption on the distribution of the asset returns.
4

t

Procedure 1 Partition.
procedure PARTITION(𝐷𝐷𝐷, 𝜀) ⊳ 𝐷𝐷𝐷 is a given dissimilarity matrix;
𝜀 > 0

Initialization: 𝑆 ⟵ [𝑑], 𝑙 ⟵ 0.
while 𝑆 ≠ ∅ do

𝑙 ⟵ 𝑙 + 1
if |𝑆| = 1 then

𝐺𝑙 ⟵ 𝑆
if |𝑆| > 1 then

(𝑖𝑙 , 𝑗𝑙) ⟵ argmin𝑖,𝑗∈𝑆,𝑖≠𝑗𝐷𝐷𝐷(𝑖, 𝑗)
if 𝐷𝐷𝐷(𝑖𝑙 , 𝑗𝑙) > 𝜀 then

𝐺𝑙 ⟵ {𝑖𝑙}
else

𝐺𝑙 ⟵
{

𝑘 ∈ 𝑆 ∶ min
(

𝐷𝐷𝐷(𝑖𝑙 , 𝑘),𝐷𝐷𝐷(𝑗𝑙 , 𝑘)
)

≤ 𝜀
}

𝑆 ⟵ 𝑆 ⧵ 𝐺𝑙
return 𝐺 = {𝐺1, 𝐺2,…}

Assumption 1. The correlation matrix 𝜌𝜌𝜌 is non-singular, and the
vector 𝜌𝜌𝜌−1∕2𝑋∗ is 𝛼-sub-exponential, 𝛼 ∈ (0, 2]; that is, there exists 𝐿 > 0
such that

‖𝜌𝜌𝜌−1∕2𝑋∗
‖𝜓𝛼 ≤ 𝐿,

where ‖𝑍‖𝜓𝛼 ∶= sup
‖𝜔‖2=1 inf{𝑠 > 0 ∶ E(𝑒(|𝑍⊤𝜔|∕𝑠)𝛼 ) ≤ 2} is the 𝛼-Orlicz

norm of 𝑍 ∈ R𝑑 .

The non-singularity amounts to the non-existence of redundant
securities, i.e., there does not exist any asset whose return is a linear
combination of those of the other assets in the universe. The 𝛼-sub-
exponential distribution was introduced in Krasnoselsky and Rutitsky
(1961) to characterize heavy-tailed random variables. The special cases
𝛼 = 2 and 𝛼 = 1 correspond to the sub-Gaussian and sub-exponential
variables, respectively. The lower 𝛼 is, the more heavy-tailedness is
allowed. Assumption 1 is motivated by the stylized fact that financial
assets often have heavy-tailed returns; see, e.g., Cont (2001).

The following result provides the statistical guarantee for the PAR-
TITION procedure, along with guidance for the choice of the threshold
𝜀.

Theorem 3. Under Assumption 1, there exist numerical constants 𝑐1, 𝑐2 >
0 independent of 𝑛 and 𝑑, such that if min

𝑖
𝐺⋆
≁ 𝑗

CORD(𝑖, 𝑗) > 𝜀 and

𝜀 ≥ 2𝐿2

(

𝑐1

√

log 𝑑
𝑛

+ 𝑐2
(log 𝑑)2∕𝛼

𝑛

)

, (8)

then the PARTITION procedure with inputs ĈORD and 𝜀 outputs 𝐺 = 𝐺⋆

ith probability 1 − 4∕𝑑.

The proof of Theorem 3 is deferred to Appendix A.3. Theorem 3
mplies that under a cluster separation condition and when the num-
er of variables 𝑑 is large, the PARTITION procedure recovers the
lusters with high probability if the threshold 𝜀 is roughly of order
ax(

√

log 𝑑 ∕𝑛, (log 𝑑)2∕𝛼∕𝑛). When 𝑑 = 500 for instance, this probability
is 99.2%.

Notice that
√

log 𝑑 ∕𝑛 dominates (log 𝑑)2∕𝛼∕𝑛 if 𝑛 > (log 𝑑)
4
𝛼 −1. In

ractice, the number of observations 𝑛 is the same order as the number
f assets 𝑑. So as 𝑛 ≍ 𝑑 → ∞, the right hand side of (8) is dominated
y
√

log 𝑑 ∕𝑛. However, the comparison of these two terms is sensitive
to the value of 𝛼 when 𝑛 ≍ 𝑑 and both are finite. For instance, consider
a universe of 𝑑 = 500 financial assets. Table 1 displays the values of
𝑛 above which

√

log 𝑑 ∕𝑛 > (log 𝑑)2∕𝛼∕𝑛 for different 𝛼. Therefore, it is
mportant to accurately estimate 𝛼 in order to determine which of the
wo terms,

√

log 𝑑 ∕𝑛 and (log 𝑑)2∕𝛼∕𝑛, dominates.
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Table 1
Values of 𝑛 above which

√

log 𝑑 ∕𝑛 > (log 𝑑)2∕𝛼∕𝑛 for 𝑑 = 500.

𝛼 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0
𝑛 7.97 × 1011 3.58 × 105 2.74 × 103 240.02 55.66 21.01 10.47 6.21

2.3. Tuning the threshold 𝜀

The effectiveness of the PARTITION procedure depends on the
hreshold 𝜀, which in turn determines the number of clusters 𝐾. For
nstance, a low threshold, e.g., 𝜀 = 0, leads to many singleton clusters
ue to noise in the observations. On the other hand, a high thresh-
ld, e.g., 𝜀 = 2, results in a single cluster because ĈORD, which is
he maximum among differences between sample correlations, has a
aximum value of 2. Theorem 3 provides a part of the guidance for

hoosing a suitable 𝜀. Here, we propose a data-driven approach to tune
he hyperparameter 𝜀 based on the following three rules of thumb.

First of all, according to Theorem 3, the PARTITION procedure
ecovers the partition 𝐺⋆ if 𝜀 is of order 𝐿2 max(

√

log 𝑑 ∕𝑛, (log 𝑑)2∕𝛼∕𝑛).
his criterion gives a reasonable range for the choice of 𝜀.

ule 1. The search range for the threshold 𝜀 is determined as follows:

1. If 𝑛 > (log 𝑑)
4
𝛼 −1, then the range is set to be [𝑎, 𝑏] × 𝐿2

√

log 𝑑
𝑛 ;

2. If 𝑛 ≤ (log 𝑑)
4
𝛼 −1, then the range is set to be [𝑎, 𝑏] × 𝐿2 (log 𝑑)2∕𝛼

𝑛 .

Here 𝑎, 𝑏 are user-defined parameters.

With the sample correlation difference as input, the PARTITION
procedure captures Criterion 2. However, it does not take into account
Criterion 1—financial assets in the same cluster are highly correlated.
To incorporate this criterion, we propose to calibrate the value of 𝜀 by
onsidering the intra-cluster correlations. To be more precise, let 𝐺𝜀

be the output given by the PARTITION procedure with a threshold 𝜀.
Define the intra-cluster correlation 𝜌𝑎𝑣𝑒𝜀 of 𝐺𝜀 by

𝜌𝑎𝑣𝑒𝜀 ∶=

∑

𝑖<𝑗 1
(

𝑖
𝐺𝜀∼ 𝑗

)

𝜌𝑖𝑗

∑

𝑖<𝑗 1
(

𝑖
𝐺𝜀∼ 𝑗

)

, (9)

here 𝜌𝑖𝑗 is the sample correlation between asset returns 𝑖 and 𝑗 given
y (6). The goal is to select the threshold 𝜀 that gives the maximal
ntra-cluster correlation.

ule 2. Let  be the range specified in Rule 1. We choose

 ∶= argmax
𝜀∈

𝜌𝑎𝑣𝑒𝜀 .

One disadvantage of applying Rule 2 naïvely is that it is biased
owards granular partitions with very few but high intra-cluster corre-
ations. Specifically, consider an extreme case where each asset forms
ts own cluster except for two assets 𝑖 and 𝑗 with correlation 𝜌𝑖𝑗 = 1,
hich form one cluster {𝑖, 𝑗}. By definition (9), the average intra-cluster

orrelation under this partition is 𝜌𝑎𝑣𝑒 = 𝜌𝑖𝑗 = 1. However, such
a partition that only groups two assets 𝑖 and 𝑗 together is not very
informative, despite indeed being optimal under Rule 2. To regularize
Rule 2, we propose to put constraints on the number of clusters. That
is, we set a range for the number of clusters. Thresholds resulting in
too many or too few clusters are discarded, and then the one with the
highest intra-cluster correlation is selected. This results in the final rule:

Rule 3. Let  be the range specified in Rule 1, and  be a user-defined
range for the number of clusters. We choose

𝜀  ∶= argmax
𝜀∈ , |𝐺𝜀|∈

𝜌𝑎𝑣𝑒𝜀 .

In solving the above maximization problem, the grid search is
performed on the search range, split into 𝑁 grids, where 𝑁 is a
5

ser-defined parameter for the search.
2.4. Estimation of heavy-tailedness

By Rule 1, the heavy-tailedness 𝛼 together with some constant 𝐿
that depends on 𝛼 determines the range in which we search for the
threshold 𝜀. Thus, we need to estimate the parameter 𝛼 and constant
𝐿, which encode the heavy-tailed nature of the returns 𝑋∗.

First, Vladimirova et al. (2020) prove that Assumption 1 is equiva-
lent to:

∃𝐿 > 0 such that P
(

|

|

|

(

𝜌𝜌𝜌−1∕2𝑋∗)⊤𝑤||
|

> 𝑡
)

≤ 2 exp (−(𝑡∕𝐿)𝛼)

for ∀𝑡 ≥ 0 and ∀𝑤 ∈ R𝑑 , ‖𝑤‖2 = 1,

where the 𝐿 values are the same as in Assumption 1.
In order to facilitate the estimation of the tail parameters 𝐿 and 𝛼,

we further restrict 𝑤 to singleton vectors,6 i.e., vectors with only one
element being 1 while the rest being 0. This transforms the assumption
to, for some 𝛼 ∈ (0, 2]:

∃𝐿 > 0 such that P
(

|

|

|

(

𝜌𝜌𝜌−1∕2𝑋∗)
𝑟
|

|

|

> 𝑡
)

≤ 2 exp (−(𝑡∕𝐿)𝛼)

for ∀𝑡 ≥ 0 and ∀𝑟 ∈ [𝑑],
(10)

where (𝜌𝜌𝜌−1∕2𝑋∗)𝑟 is the 𝑟th coordinate of the random vector 𝜌𝜌𝜌−1∕2𝑋∗.
Recall that the smaller 𝛼 is, the more heavy-tailedness is allowed in the
distribution. So if 𝑋∗ satisfies (10) for some 𝛼 > 0, it also does for all
𝛼′ ∈ (0, 𝛼). Similarly, for any fixed 𝛼, if the inequality in (10) holds for
some 𝐿, it also holds for any 𝐿′ > 𝐿. Thus, we aim to find the largest 𝛼
such that (10) holds for all 𝑟 ∈ [𝑑], and the smallest 𝐿 for such 𝛼. Notice
that (10) is trivially satisfied for small 𝑡, since when 𝑡 < 𝐿(log 2)

1
𝛼 ,

the right hand side is greater than 1. This means that Assumption 1
only controls the tail distribution of |(𝜌𝜌𝜌−1∕2𝑋∗)𝑟|. Given some 𝛼 and 𝐿,
consider the tail distribution characterized by the following survival
function:

P(𝑌 > 𝑡) = 2 exp (−(𝑡∕𝐿)𝛼) for 𝑡 ≥ 𝐿(log 2)
1
𝛼 . (11)

Loosely speaking, this distribution concerns the boundary of the con-
dition (10). If for each coordinate 𝑟 in the random vector, we can
find suitable 𝛼𝑟 and 𝐿𝑟 such that the distribution (11) fits the tail
observations of the vector 𝑌𝑟 ∶= |(𝜌𝜌𝜌−1∕2𝑋∗)𝑟|, then 𝛼∗ ∶= min𝑟∈[𝑑] 𝛼𝑟
and 𝐿∗ ∶= max𝑟∈[𝑑] 𝐿𝑟 estimate the largest 𝛼 and the smallest 𝐿 that
satisfy the inequality (10) for all 𝑟 ∈ [𝑑].

To estimate 𝛼 and 𝐿 in (11), we employ the idea in Gardes and
Girard (2008). The quantile function corresponding to (11) is 𝑞(𝑝) ∶=

inf{𝑠 > 0 ∶ P(𝑌 ≤ 𝑠) > 𝑝} = 𝐿
(

log 2
1−𝑝

)
1
𝛼 . Taking the log on both sides,

we have

log 𝑞(𝑝) = 1
𝛼
log log 2

1 − 𝑝
+ log𝐿, 𝑝 ∈ (0, 1),

which shows an affine relationship between log 𝑞(𝑝) and log log(2∕(1−𝑝))
ith the slope 1∕𝛼 and intersection log𝐿. So we can apply linear

egression to estimate the slope 1∕𝛼 and the corresponding constant
using the tail observations. Specifically, assume that we have 𝑛 i.i.d.

bservations ordered as 𝑌𝑟(1) ≤ 𝑌𝑟(2) ≤ ⋯ ≤ 𝑌𝑟(𝑛). Consider the largest
𝑘 observations 𝑌𝑟(𝑛 − 𝑗) for 1 ≤ 𝑗 ≤ 𝑘. Each of these observations
approximates the quantile (𝑛 − 𝑗)∕𝑛 = 1 − 𝑗∕𝑛 (the largest observation
𝑌𝑟(𝑛) corresponds to 𝑞(1) and is not included). Thus, we use the slope
from the linear regression of log 𝑌𝑟(𝑛 − 𝑗) against log log(2𝑛∕𝑗), for 1 ≤
𝑗 ≤ 𝑘, as an estimate of 1∕𝛼 and use the intersection as an estimate of
log𝐿.

Note that of the two parameters, 𝛼 is much important than 𝐿 from a
financial point of view, for 𝛼 characterizes the heavy-tailedness of the
return distribution. In contrast, 𝐿 is only a multiplicative factor in Rule
1 which can be ‘‘absorbed’’ into the search interval [𝑎, 𝑏], namely, one
can set 𝐿 = 1 and search in the interval [𝐿2𝑎, 𝐿2𝑏] instead of [𝑎, 𝑏].

6 The random variables in 𝜌𝜌𝜌−1∕2𝑋∗ are uncorrelated. If we further assume
that they are independent, then the 𝑤 leading to the heaviest tail should only
select the one variable with the heaviest tail.
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2.5. The ACC algorithm

Summarizing the above, we now describe the complete algorithm
that recovers clusters from the raw input 𝑋𝑋𝑋, which we call the ACC
(Asset Clustering through Correlation) algorithm; see Algorithm 1. We
also illustrate it by a flowchart; see Fig. 1.
Algorithm 1 Asset Clustering through Correlation (ACC)

procedure ACC(𝑋𝑋𝑋, 𝑎, 𝑏, 𝑛𝑔 ,  , 𝑘) ⊳ Input: returns 𝑋𝑋𝑋 ∈ R𝑛×𝑑 ,
search range [𝑎, 𝑏], number of grids 𝑛𝑔 , range of clusters  , number
of large observations 𝑘

𝑋𝑋𝑋∗ ⟵
𝑋𝑋𝑋−mean(𝑋𝑋𝑋)

std(𝑋𝑋𝑋) ⊳ Standardized returns; mean and std are
column-wise

𝜌𝜌𝜌⟵ 1
𝑛−1 (𝑋𝑋𝑋

∗)⊤𝑋𝑋𝑋∗

ĈORD(𝑖, 𝑗) ⟵ max𝑙≠𝑖,𝑗 |𝜌𝑖𝑙 − 𝜌𝑗𝑙|, ∀𝑖, 𝑗 ∈ [𝑑]
for 𝑖 ∈ [𝑑] do

𝑌𝑖 ⟵ |(𝑋𝑋𝑋∗𝜌𝜌𝜌−1∕2)𝑟| ∈ R𝑛
Sort 𝑌𝑖 such that 𝑌𝑖[1] ≤ 𝑌𝑖[2] ≤ … ≤ 𝑌𝑖[𝑛]
Slope 𝑠, intersection 𝑎 ⟵ LinearRegression(log 𝑌𝑖[𝑛 − 𝑘 ∶ 𝑛 −

1] ∼ log log(2𝑛∕[1 ∶ 𝑘]))
𝛼𝑖 ⟵ 1∕𝑠, 𝐿𝑖 ⟵ exp(𝑎)

𝛼 ⟵ min𝑖∈[𝑑] 𝛼𝑖
𝐿⟵ max𝑖∈[𝑑] 𝐿𝑖
if 𝑛 > (log 𝑑)

4
𝛼 −1 then

Range  ⟵ [𝑎, 𝑏] × 𝐿2
√

log 𝑑
𝑛

else
Range  ⟵ [𝑎, 𝑏] × 𝐿2 (log 𝑑)2∕𝛼

𝑛

Uniformly divide range  into 𝑛𝑔 grids
for 𝜀 in the 𝑛𝑔 grids of  do

𝐺𝜀 ⟵ PARTITION(ĈORD, 𝜀)

if |𝐺𝜀| ∈  then 𝜌𝑎𝑣𝑒𝜀 ⟵

∑

𝑖<𝑗 1
(

𝑖
𝐺𝜀∼ 𝑗

)

𝜌𝑖𝑗

∑

𝑖<𝑗 1
(

𝑖
𝐺𝜀∼ 𝑗

)

else
𝜌𝑎𝑣𝑒𝜀 ⟵ −∞.

𝜀 ⟵ argmax𝜀∈ 𝜌𝑎𝑣𝑒𝜀
return PARTITION(ĈORD, 𝜀 )

The algorithmic complexity of ACC is polynomial in both the num-
er of assets 𝑑 and the number of observations 𝑛. Specifically, we have
he following theorem.

heorem 4. The ACC algorithm requires at most (𝑛𝑑2 + 𝑑3) arithmetic
perations.

We prove Theorem 4 in Appendix A.4.

. Empirical analysis

This section reports the results of empirical experiments applying
he ACC algorithm to financial time series data. Specifically, we cluster
he stocks in the S&P 500 universe using our ACC algorithm, together
ith two benchmarks: the 𝑘-medoids algorithm and the single-linkage
6

ierarchical clustering algorithm, and analyze the quality of such clus-
ering results. Then based on the clustering results, we construct stock
ortfolios using three allocation strategies: the risk parity strategy, the
inimum variance strategy, and Markowitz’s mean–variance strategy,

nd compare the performances of these portfolios. We include addi-
ional benchmark portfolios based on the GICS sector and industry
roup classification and also portfolios of S&P 500 sector ETFs. These
enchmarks will be explained in detail in Section 3.3.

.1. Data preparation

We take the constituents of the S&P 500 as the universe. The data
s obtained from Compustat through Wharton Research Data Services
WRDS), which consists of

• the daily closing prices of the constituents;
• the historical constituents data; and
• the daily closing S&P 500 total return index with dividends

reinvested,

etween January 1996 and January 2020.
We conduct clustering and backtesting for the period between

ebruary 2001 and January 2020. Clustering and portfolios are calcu-
ated on the first trading day of each month on the S&P 500 constituent
tocks. Specifically, at the end of the first trading day of each month,
e choose the stocks in the S&P 500 index according to the historical

onstituents data. Of all the current constituents, we discard stocks with
ess than five years of history and those with more than 5% missing data
n the past 𝑛 = 500 days. If the same company has multiple classes of
tocks in the S&P 500 index (e.g., Alphabet Inc’s GOOG and GOOGL),
e only choose the class with the longest history. After the above

iltering, the number of eligible stocks ranges between 465 and 488 over
the backtesting period. For these eligible stocks, any missing prices are
linearly interpolated using the previous and subsequent prices. Then,
clusters are estimated based on the daily returns of the past 𝑛 = 500
trading days. A smaller set of stocks is then selected, and portfolios are
constructed using different allocation strategies. We defer the details of
portfolio construction to Section 3.3.

3.2. Clustering procedure

We now give a detailed description of how we use the ACC algo-
rithm. On the first trading day of each month, the ACC algorithm is
applied to the sample correlation matrix in the backward 500-trading-
day window for valid constituent stocks as described in Section 3.1.
The following highlights more specifics:

• The heavy-tailedness parameter 𝛼 and constant 𝐿 are estimated
by the approach in Section 2.4, where we choose 𝑘 ∶= 𝑛∕4 = 125.

• The search range for the threshold parameter 𝜀 is set by Rule 1
with 𝑎 = 0.1, 𝑏 = 10 and 𝑁 = 100. That is, if 𝑛 > log(𝑑)

4
𝛼 −1, then

the range is  = [0.1, 10] × 𝐿2
√

log(𝑑)
𝑛 ; otherwise  = [0.1, 10] ×

𝐿2 log(𝑑)
2
𝛼

𝑛 . We cap the upper bound of the search range to 2. The
grid search is then performed on the search range with the range
split into 100 grids.
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i

Fig. 2. Estimated 𝛼 values by month via 500-trading-day windows.
Fig. 3. ACC cluster compositions on 2019-02-01 compared with GICS sectors, choosing between 15 and 25 clusters.
• The number of clusters in Rule 3 is restricted between 15 and 25,
i.e.  = [15, 25].

From February 2001 to January 2020, a total of 228 partitions are
constructed, one in each month. The estimated 𝛼 values estimated at
the beginning of each month are plotted in Fig. 2. The S&P 500 data
exhibits notable heavy tails, with 𝛼 values lower than 1. The estimated
value of the constant 𝐿 ranges between 0.6 and 0.8 over time. It is also
worth pointing out that the value of 𝛼 drops significantly between 2008
and 2010, arguably due to more extreme returns observed during the
2008 financial crisis.7

To examine the compositions of the clusters, we compare the clus-
ters with sectors defined by the Global Industry Classification Stan-
dard (GICS).8 Fig. 3 shows the clustering result obtained on Feb 1st,
2019 from the above procedure. We observe that some of the clus-
ters largely overlap with GICS sectors; e.g., Cluster 9 (Industrials,
specifically Aerospace & Defense), 1 (Financials), 6 (Information Tech-
nology), 8 (Consumer Staples), 11 (Health Care), 12 (Real Estate).
However, there are also ample discrepancies between these clusters
and the GICS clusters. For instance, Cluster 6 consists of mostly stocks
classified as information technology by GICS. A few notable stocks
in that cluster not classified as information technology by GICS are
Amazon.com (consumer discretionary), Alphabet, Netflix, Electronic

7 This is consistent with the increased tail risk measured by VaR observed
n stock daily returns during the financial crisis; see, e.g., Chaudhury (2014).

8 Available at https://www.msci.com/gics.
7

(

Arts (communication services), S&P Global (Financials), and Rockwell
Automation (Industrials). Upon closer examination, one may find that
those companies are highly associated with the IT industry in their
business nature. Indeed, Amazon.com, Netflix, and Alphabet are often
perceived as IT companies and usually mentioned together as mem-
bers of ‘‘FAANG’’.9 In fact, four of FAANG are in this cluster, with
the exception being Facebook. Electronic Arts, a software company
that creates video games, is also naturally associated with the IT
industry. S&P Global’s primary business in financial information and
analytics is likely why it is highly related to information technology,
especially in today’s world where finance is largely online and digi-
tal. Although Rockwell Automation, formerly Rockwell International,
was known for manufacturing aircraft and electronic components, its
current business lies in control systems and software applications for
industrial automation. Another two companies in Cluster 6, yet not
classified as information technology by GICS, are in the health care
industry: Intuitive Surgical, which develops robotic surgical products,
and Agilent Technologies, which provides analytical instruments and
technology platforms for laboratories. In these examples, our clustering
appears to gather technology companies in this cluster, not according
to any existing taxonomy, but by discovering the associations of their
business nature through the stock market movements. There is still,
however, one exception that does not quite belong by the business

9 The FAANG includes Facebook, Amazon, Apple, Netflix, and Alphabet
Google).

http://Amazon.com
https://www.msci.com/gics
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Table 2
Performance of non-IT stocks in Cluster 6 between 2019-02-01 and 2020-02-01,
compared with the FAANG stocks.

Ticker Company name Ann. Sharpe ratio Ann. Return

FB Facebook Inc 0.86 21.94%
AMZN Amazon.Com Inc 1.12 23.62%
AAPL Apple Inc 3.81 89.15%
NFLX Netflix Inc 0.05 1.55%
GOOGL Alphabet Inc 1.24 28.21%

EA Electronic Arts Inc 0.52 18.39%
SPGI S&P Global Inc 2.84 53.3%
ROK Rockwell Automation 0.6 16.2%
ISRG Intuitive Surgical Inc 0.26 6.72%
A Agilent Technologies Inc 0.4 9.53%
FBHS Fortune Brands Home & Secur 2.28 55.87%

nature: Fortune Brands Home & Security, which is a manufacturer of
home fixtures and hardware.

The above example demonstrates a characterizing feature of the
correlation blockmodel as opposed to traditional industry classifica-
tions: the ACC algorithm, which is purely data-driven, can identify
stock groups based on correlation similarities rather than relying on
fundamental information or knowledge about the companies’ business.
One advantage of this feature in asset selection and allocation is that
we can uncover those ‘‘under-the-radar’’ stocks that can be used to
replace the ‘‘big name’’ stocks (such as the FAANG) – the latter are often
over-owned and hence tend to be over-priced – in a well-diversified
portfolio.

Indeed, even if we just compare the individual performance of the
ix non-IT stocks in Cluster 6 with the FAANG in the one year after the

clustering on February 1st, 2019, the results are noteworthy.Table 2
shows the results. In particular, Fortune Brands Home & Security and
S&P Global have had decent annualized Sharpe ratios and returns
compared to the IT stocks. This shows the potential of utilizing the
clustering information to identify less-known stocks that have good
performance and provide good diversification in a portfolio.

In addition to Cluster 6, which largely overlaps with a single GICS
sector, we have Cluster 7, consisting of two closely related sectors:
Real Estate and Utilities. There are also clusters that do not show
any apparent theme that aligns with any particular GICS sector. For
example, Clusters 2 and 10 both include stocks in all but a few GICS
sectors. This fact reaffirms that the clustering is providing information
that cannot be reflected in the industrial classification nor by mere
common knowledge or experience.

Next, we compare ACC with two other benchmark clustering meth-
ods. The first is the single-linkage clustering, which is an instance of
the classical hierarchical clustering method (Anderberg, 1973). The
same method is used in Mantegna (1999) to analyze the hierarchical
structure in the financial market. The second method is the 𝑘-medoids
method (Kaufman & Rousseeuw, 1990), which is based on the search
of 𝑘 representative stocks as medoids and the assignment of every
other stock to the closest medoid. These two clustering methods, briefly
reviewed in Appendices B.1 and B.2, are two major unsupervised
clustering approaches; see e.g. Hastie et al. (2009, Section 14.3). The
hierarchical method belongs to connectivity-based clustering while 𝑘-

edoids method to centroid-based clustering. Many newer clustering
ethods are variants of or follows the same spirit as these two methods;

o taking them as benchmarks should be sufficiently representative.
n the other hand, these two methods for asset clustering are purely
euristic, and they are both based on Criterion 1 only, namely to cluster
n a way that assets in the same group have high correlations.

Fig. 4 shows their results obtained on Feb 1st, 2019. We observe
n Fig. 4(a) that the clusters obtained from the hierarchical clustering
re not very useful, with almost all stocks concentrating in one giant
luster, while the other clusters are mostly singletons. This finding is
8

obust across all sliding windows that we tested. Results with similar
haracteristics are also reported in Musmeci et al. (2015). These results
how that hierarchical clustering is very sensitive to the existence of
lobal factors that load on a large number of stocks. When most or all
tocks are sufficiently correlated with one another, those stocks will be
erged with priority by hierarchical clustering and form an oversized

luster.
The clusters from 𝑘-medoids, as shown in Fig. 4(b), also overlap to

ome extent with the GICS sectors; yet the compositions are sufficiently
ifferent from our ACC results. For example, 𝑘-medoids puts Financial
tocks mainly into three clusters: Cluster 3, Cluster 4, and Cluster 8, in
ach of which Financials are the majority, whereas ACC groups most
inancial stocks together in Cluster 1 of Fig. 3. In the ACC partition,
onsumer Discretionary stocks are more concentrated in a single cluster
Cluster 4), while in 𝑘-medoids clustering, they are more scattered
cross different clusters. In ACC, we have observed that four of the
AANG stocks are grouped in the same cluster, together with many
ther IT stocks and six stocks from other sectors. In 𝑘-medoids, all
AANG stocks are grouped together in Cluster 1, which is the largest
luster containing a majority of the IT stocks but also stocks in Utili-
ies, Industrials, Health Care, Financials, Consumer Staples, Consumer
iscretionary, and Communications Services. Visually, it appears that

he 𝑘-medoids clusters are more similar to GICS sectors than ACC. To
uantify this similarity, we calculate the adjusted Rand index 𝑅𝑎𝑑𝑗 (Hu-
ert & Arabie, 1985) between the clustering and the GICS sectors.
𝑎𝑑𝑗 is an index that measures the similarity between two different
artitions on the same set of objects, with the value 0 representing
o similarity and the value 1 representing identical partitions. We
alculate 𝑅𝑎𝑑𝑗 for both ACC and 𝑘-medoids clusterings compared to

GICS sectors for each month. The results are presented in Fig. 5. Indeed,
𝑘-medoids clustering almost always produces more similar results to the
GICS sectors than ACC does. Hence, ACC provides a more distinctive
alternative clustering to the existing GICS classification. In particular,
if one of the benefits of clustering stocks, as discussed earlier, is to
technically unearth less known names whose price movements are
similar to those of the big names, then the one producing results less
similar to the GICS sectors would be advantageous.

3.3. Portfolio construction and backtesting

To construct portfolios based on the ACC clustering results, we first
need to determine which stock(s) to select from each cluster. Theoret-
ically, this selection is hinted by Theorem 2: if the return distribution
follows exactly the correlation blockmodel, then one ought to select
the stock(s) with the lowest volatility from each cluster. However,
the real data do not follow exactly the correlation blockmodel; so
empirically and practically it matters how one selects stock(s) in each
cluster. There are two natural criteria for this selection: Sharpe ratio
(i.e. risk-adjusted return) and volatility. In this paper, we choose the
latter for the following reasons. First, low volatility as a criterion does
not involve the estimation of the mean returns. ACC and the 𝑘-medoids
algorithm tested do not cluster stocks based on their mean returns but
only their correlations. So it would be inconsistent if we selected stocks
from the clusters based on return-related criteria including Sharpe
ratio. Second, although estimations of mean and variance based on
historical data are both biased, it is well known that errors in estimated
mean (a.k.a the ‘‘mean-blur’’ problem; see e.g. Merton, 1980) are of
much greater significance than those in estimated variance. Thus, using
volatility instead of Sharpe ratio (which has two source errors involving
both estimated mean and variance) appears to be more reasonable.
Finally, stocks with low volatility have been observed empirically to
outperform the benchmarks over time, which is contrary to CAPM and
is documented as the ‘‘low-risk anomaly’’ (e.g., Zaremba & Shemer,
2017).

In our experiments, the volatility is computed using the sample
variance of daily returns in the past 500 trading days. We only choose

one stock from each cluster, so the number of stocks in the portfolio
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Fig. 4. Hierarchical and 𝑘-medoids cluster compositions on 2019-02-01 compared with GICS sectors.
Fig. 5. The adjusted Rand index 𝑅𝑎𝑑𝑗 of ACC and 𝑘-medoids clusterings compared with GICS sectors.
equals the number of clusters discovered by the ACC algorithm. For
comparison, we select stocks using the same criterion on the results
of 𝑘-medoids clustering, where we select 20 stocks from 20 clusters,
and also from GICS sectors and industry groups, where we select one
stock from each sector and each industry group, respectively. The
GICS sectors and industry groups are ‘‘point-in-time’’, meaning that
stocks selected on a given date are based on their GICS classifications
on that date in history. There are 10 GICS sectors before September
2016 and 11 afterward. Similarly, there are 22 GICS industry groups
before December 2001, 23 before April 2003, and 24 afterward. These
numbers determine the numbers of stocks selected in history based on
the GICS sectors and industry groups.

Once a set of stocks is determined by the above procedure, three as-
set allocation strategies are employed and compared. The first strategy
is the risk parity strategy, which, since the 2008 crisis, has become one
of the most popular approaches among portfolio managers. The second
strategy is the minimum variance allocation strategy. The third strategy
is Markowitz’s mean–variance strategy without short-selling, where we
set the target annualized return to 10%. We briefly review these three
allocation strategies in Appendices B.3 and B.4.

Recall that for ACC, the number of the clusters in Rule 3 is set
between 15 and 25, yielding 15 to 25 stocks. The exact number of
clusters discovered by ACC over time, reported in Fig. 6, fluctuates
wildly, and hence the resulting clusters are likely very different be-
9

tween months. If we were to construct a portfolio using the clustering
results every month, we would be in and out of positions very fre-
quently as the stocks in the portfolio will likely be changing from month
to month, which is practically not desirable, especially considering
transaction costs and tax implications. Therefore, we will only readjust
the portfolios once every year. Specifically, for each of the clustering
methods, on the first trading day of each February, a new set of stocks is
selected according to the clustering result, and their allocations under
the three aforementioned strategies are respectively calculated using
all daily returns in the past 500 trading days, starting with the first
day when all stocks are available. The positions are then held until
the first trading day of the following February. Any dividends are
immediately reinvested in the same stock. We assume no transaction
cost for simplicity.

As benchmarks, we first take the S&P 500 ETF (NYSE ticker: SPY),
which is the world’s largest ETF and is designed to track the S&P 500
stock market index. We also create portfolios consisting of all S&P 500
sector ETFs10 using the above three allocation strategies, all rebalanced
annually. Each of these ETFs consists of companies in a specific GICS
sector in the S&P 500 Index. Investing in these ETFs represents a simple
method of diversifying among sectors while maintaining the ability to
decide the weight of each sector optimally. Finally, as an ‘‘extreme’’

10 https://www.ssga.com/us/en/individual/etfs/capabilities/invest-with-
sector-etfs/sector-and-industry-etfs.

https://www.ssga.com/us/en/individual/etfs/capabilities/invest-with-sector-etfs/sector-and-industry-etfs
https://www.ssga.com/us/en/individual/etfs/capabilities/invest-with-sector-etfs/sector-and-industry-etfs
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Fig. 6. Number of clusters discovered by ACC over time.
Table 3
Performance metrics of the risk parity portfolios. ACC chooses between 15 and 25 stocks, and 𝑘-medoids chooses 20 stocks. Rebalanced annually.

ACC GICS sector GICS ind.
group

k-medoids Sector ETFs All stocks SPY

Ending VAMI 8206.92 6439.89 5931.68 6305.41 4334.0 5874.65 3442.53
Max Drawdown 44.08% 36.89% 42.6% 47.26% 49.56% 54.69% 55.25%
Peak-To-Valley 2007-06-01–

2009-03-05
2007-12-10–
2009-03-09

2007-10-12–
2009-03-09

2007-06-04–
2009-03-09

2007-10-12–
2009-03-09

2007-07-13–
2009-03-09

2007-10-09–
2009-03-09

Recovery 261 Days 445 Days 485 Days 445 Days 492 Days 467 Days 774 Days
Sharpe Ratio 0.79 0.74 0.68 0.7 0.49 0.56 0.36
Sortino Ratio 1.29 1.2 1.09 1.14 0.77 0.89 0.57
Calmar Ratio 0.27 0.28 0.23 0.22 0.16 0.18 0.12
Ann. Volatility 14.83% 13.98% 14.48% 14.48% 16.34% 17.41% 18.63%
Ann. Downside Volatility 9.1% 8.63% 9.04% 8.95% 10.39% 11.04% 11.83%
Correlation 0.9 0.89 0.94 0.93 0.98 0.98 1.0
Beta 0.72 0.67 0.73 0.72 0.86 0.92 1.0
Ann. Return 11.75% 10.33% 9.85% 10.21% 8.05% 9.8% 6.74%
Ann. Turnover Ratio 80.59% 51.03% 42.91% 67.09% 6.01% 14.52% –
Positive Periods 2631

(55.11%)
2554
(53.50%)

2568
(53.79%)

2575
(53.94%)

2626
(55.01%)

2613
(54.73%)

2600
(54.46%)

Negative Periods 2143
(44.89%)

2220
(46.50%)

2206
(46.21%)

2199
(46.06%)

2148
(44.99%)

2161
(45.27%)

2174
(45.54%)
benchmark, we include portfolios consisting of all eligible stocks (after
filtering out those with missing data and insufficient history) in our
comparisons with the three annually rebalanced allocation strategies.

Fig. 7 shows the daily values of these portfolios along with SPY, and
Tables 3–5 report results based on performance metrics commonly used
in the wealth management industry. ACC outperforms SPY significantly
in the most important return and risk metrics (including the Sharpe,
Sortino, and Calmar ratios, annual volatility, and annualized return)
under all three strategies. ACC also has a much smaller maximum
drawdown than SPY. It also significantly outperforms the portfolios of
sector ETFs under all allocation strategies. This observation shows the
advantage of asset selection using clustering over simply constructing
portfolios using the sector ETFs. Between ACC and the portfolios based
on GICS classifications, ACC portfolios offer better return–risk ratios
and faster recovery from the maximum drawdown. The ‘‘all-stock’’
portfolios, on the other hand, do indeed beat SPY significantly, but they
still generally underperform the corresponding ACC portfolios while the
underperformance is substantial with the risk parity strategy. Between
ACC and 𝑘-medoids, ACC is also superior when employing the risk
parity and the mean–variance allocation strategies. With the minimum-
variance strategy, ACC still offers a better annualized return, a smaller
maximum drawdown, and faster recovery than 𝑘-medoids while main-
taining a similar overall Sharpe ratio. Moreover, as discussed earlier,
ACC has the advantage of having a theoretical foundation, whereas
10

𝑘-medoids is a pure heuristic for financial time series.
The above results compare the overall performance of the portfo-
lios throughout the entire 19-year period. For a more comprehensive
comparison, we break down the 19-year periods into small sub-periods
using a rolling window approach and compare the returns among all
sub-periods. We first set the length of the rolling window to be one
calendar year and capture the returns of the portfolios within all 1-year
sub-periods, e.g., from 2001-02-01 to 2002-02-01 and from 2001-02-02
to 2002-02-02. We compare the annualized return and the annualized
Sharpe ratio between the ACC portfolios and the benchmarks in each
sub-period. Then we repeat the analysis for different lengths of the
rolling window. Fig. 8 shows the percentage of sub-periods of different
lengths where ACC has a higher return than the benchmarks, with
the three allocation strategies, respectively. Fig. 9 reports the same
comparison for Sharpe ratios.11

As the window length approaches ten years and longer, all three
portfolios from ACC clustering almost always outperform SPY, in both
return and Sharpe ratio. This observation shows that the ACC portfolios
are very suitable for investors with long investment horizons. Even
for investors with short investment horizons like 1 to 2 years, ACC
is still more likely to achieve better returns and Sharpe ratios than
SPY. Compared with the other benchmarks, ACC is superior in the
long run to all but the 𝑘-medoids portfolio with the minimum variance

11 As comparing negative Sharpe ratios is meaningless, we exclude windows
in which both ACC and the benchmark have negative Sharpe ratios.
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Fig. 7. Daily value comparison among the portfolios. ACC chooses between 15 and 25 stocks, and 𝑘-medoids chooses 20 stocks. Rebalanced annually.
allocation strategy. ACC seems to underperform the portfolio of sector
ETFs in annualized returns for a large range of window lengths when
employing the mean–variance strategy. Still, ACC’s Sharpe ratio tends
to be superior in the long run compared to the sector ETF portfolio.

In addition to rebalancing the portfolios once every year (i.e., an-
nual rebalancing), we also test semi-annual and quarterly rebalancing
(i.e., every 6 and 3 months, respectively). Table 6 reports the results.
ACC appears to lose some advantage when the portfolios are rebalanced
more frequently. This is consistent with the previous observation that
ACC clustering changes frequently, and hence, intuitively, portfolios
updated frequently based on the ACC clusters might not perform well.
Still, ACC portfolios consistently outperform the SPY and the portfolios
of sector ETFs. Furthermore, with annual rebalancing, ACC not only
achieves the highest Sharpe ratio with the risk parity and the mean–
variance strategies among all annually rebalanced portfolios, but its
Sharpe ratios are also the highest among all portfolios with the same
allocation strategies regardless of rebalancing frequencies. With the
11

minimum variance allocation, ACC with annual rebalancing ranks third
among all minimum variance portfolios with different rebalancing
frequencies and only slightly lags behind the top two. Overall, we
can conclude that ACC is a consistent and robust performer with
different rebalancing frequencies and strategies, and its performance
stands out for slow portfolios that do not require frequent rebalanc-
ing. It is particularly suitable for investors/funds whose investment
philosophy is for less trading, if not completely ‘‘buy and hold’’. This
characteristic of ACC has practical significance, since rebalancing more
frequently than annually has unfavorable tax implications, and indeed
investment experts have found no significant advantage of rebalancing
portfolios more frequently once transaction costs and taxes are taken
into consideration (McNamee et al., 2019; Zilbering et al., 2015).

We also observe from all these experiments that the outperformance
of ACC when combined with the risk-parity allocation is overall more
significant than when combined with the mean–variance or minimum
variance allocations. This may be intuitively explained as follows.
Numerical experiments (Maillard et al., 2010) show that risk parity

often provides more balanced allocations, mitigating the problem of
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Table 4
Performance metrics of the minimum variance portfolios. ACC chooses between 15 and 25 stocks, and 𝑘-medoids chooses 20 stocks. Rebalanced annually.

ACC GICS sector GICS ind.
group

k-medoids Sector ETFs All stocks SPY

Ending VAMI 7299.02 6912.71 6715.02 7159.2 4455.71 6239.42 3442.53
Max Drawdown 32.45% 30.56% 34.04% 34.06% 37.65% 32.64% 55.25%
Peak-To-Valley 2007-12-10–

2009-03-09
2007-12-10–
2009-03-09

2007-12-10–
2009-03-09

2007-12-10–
2009-03-09

2001-05-21–
2002-07-23

2007-06-04–
2009-03-09

2007-10-09–
2009-03-09

Recovery 250 Days 380 Days 516 Days 377 Days 747 Days 393 Days 774 Days
Sharpe Ratio 0.84 0.81 0.82 0.85 0.61 0.85 0.36
Sortino Ratio 1.38 1.35 1.34 1.4 0.98 1.38 0.57
Calmar Ratio 0.34 0.35 0.31 0.32 0.22 0.31 0.12
Ann. Volatility 13.19% 13.21% 12.95% 12.81% 13.36% 11.97% 18.63%
Ann. Downside Volatility 8.0% 7.97% 7.9% 7.82% 8.39% 7.35% 11.83%
Correlation 0.78 0.77 0.8 0.79 0.85 0.83 1.0
Beta 0.55 0.55 0.56 0.54 0.61 0.53 1.0
Ann. Return 11.06% 10.74% 10.57% 10.95% 8.21% 10.15% 6.74%
Ann. Turnover Ratio 77.78% 56.17% 58.56% 62.22% 20.78% 64.31% –
Positive Periods 2597

(54.40%)
2567
(53.77%)

2580
(54.04%)

2579
(54.02%)

2600
(54.46%)

2614
(54.75%)

2600
(54.46%)

Negative Periods 2177
(45.60%)

2207
(46.23%)

2194
(45.96%)

2195
(45.98%)

2174
(45.54%)

2160
(45.25%)

2174
(45.54%)
Table 5
Performance metrics of the single period mean–variance portfolios. ACC chooses between 15 and 25 stocks, and 𝑘-medoids chooses 20 stocks. Rebalanced annually.

ACC GICS sector GICS ind.
group

k-medoids Sector ETFs All stocks SPY

Ending VAMI 7575.26 7019.87 6762.27 6180.35 6257.01 5885.41 3442.53
Max Drawdown 31.16% 29.51% 33.21% 32.64% 37.55% 32.7% 55.25%
Peak-To-Valley 2007-12-10–

2009-03-05
2007-12-10–
2009-03-11

2007-12-10–
2009-03-11

2007-12-10–
2009-03-05

2007-12-10–
2009-03-02

2007-06-04–
2009-03-11

2007-10-09–
2009-03-09

Recovery 241 Days 374 Days 517 Days 600 Days 215 Days 448 Days 774 Days
Sharpe Ratio 0.86 0.82 0.82 0.77 0.64 0.82 0.36
Sortino Ratio 1.42 1.36 1.34 1.26 1.03 1.33 0.57
Calmar Ratio 0.36 0.37 0.32 0.31 0.27 0.3 0.12
Ann. Volatility 13.18% 13.27% 12.99% 13.13% 15.8% 11.98% 18.63%
Ann. Downside Volatility 7.97% 8.0% 7.92% 8.03% 9.85% 7.36% 11.83%
Correlation 0.76 0.77 0.79 0.8 0.84 0.82 1.0
Beta 0.54 0.55 0.55 0.56 0.72 0.53 1.0
Ann. Return 11.28% 10.83% 10.62% 10.09% 10.16% 9.81% 6.74%
Ann. Turnover Ratio 78.07% 59.01% 60.41% 65.16% 51.14% 66.44% –
Positive Periods 2585

(54.15%)
2557
(53.56%)

2591
(54.27%)

2552
(53.46%)

2590
(54.25%)

2618
(54.84%)

2600
(54.46%)

Negative Periods 2189
(45.85%)

2217
(46.44%)

2183
(45.73%)

2222
(46.54%)

2184
(45.75%)

2156
(45.16%)

2174
(45.54%)
Table 6
Sharpe ratio comparisons with different rebalancing frequencies.

(a) Annual rebalancing

ACC GICS Sector GICS Ind. Grp. 𝑘-medoids SPY All stocks Sector ETF

risk parity 0.79 0.74 0.68 0.7 0.36 0.58 0.49
min-variance 0.84 0.81 0.82 0.85 0.36 0.85 0.61
mean variance 0.86 0.82 0.82 0.77 0.36 0.82 0.64

(b) Semi-annual rebalancing

ACC GICS Sector GICS Ind. Grp. 𝑘-medoids SPY All stocks Sector ETF

risk parity 0.72 0.79 0.69 0.66 0.36 0.54 0.48
min-variance 0.79 0.86 0.82 0.75 0.36 0.87 0.59
mean variance 0.78 0.83 0.81 0.71 0.36 0.84 0.56

(c) Quarterly rebalancing

ACC GICS Sector GICS Ind. Grp. 𝑘-medoids SPY All stocks Sector ETF

risk parity 0.72 0.76 0.69 0.65 0.36 0.54 0.48
min-variance 0.81 0.83 0.82 0.83 0.36 0.89 0.59
mean variance 0.78 0.78 0.81 0.8 0.36 0.86 0.5
extreme portfolios in the mean–variance approach (including minimum
variance) while providing better returns–risk tradeoff than equally-
weighted portfolios. It is therefore natural to expect that combining
two better approaches (i.e. ACC and risk parity) would produce better
results, as our experiments show empirically. However, we do not yet
have a formal theory to explain why combining ACC with risk parity
12
should be better than other possible combinations, and consider it a
challenging open question that warrants a full study.

Seeing that the ACC portfolio consistently outperforms the bench-
mark SPY, it is intriguing to test a market-neutral portfolio that only
captures the difference between the ACC portfolio and SPY. We con-
struct a market-neutral portfolio using each of the annually rebalanced
ACC portfolios that employ the three different allocation strategies.
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Fig. 8. Percentage of sub-periods in which ACC has a higher return than benchmarks under different allocation strategies.
t each rebalancing point (the end of the first trading day of each
ebruary) and for each stock 𝑖 in the portfolio, we calculate its beta
y linear regression of its return against the market return:

𝑖 = 𝛼𝑖 + 𝛽𝑖𝑅𝑚 + 𝜀.

The beta has a closed-form solution,

𝛽𝑖 =
Cov(𝑋𝑖, 𝑅𝑚)
Var(𝑅𝑚)

,

nd is estimated using the sample covariance between stock returns
nd SPY returns and the sample variance of SPY returns, both of the
ast 500 trading days. Then, given a set of weights 𝐰 = (𝑤1, 𝑤2,… , 𝑤𝑑 )

determined by one of the three allocation strategies, we calculate the
total beta of the portfolio:

𝛽 =
𝑑
∑

𝑖
𝑤𝑖𝛽𝑖.

Then, if we add a short position on SPY of weight −𝛽, the portfolio
will have zero exposure to SPY and hence become market neutral.
13

However, now the portfolio has a leverage ratio of 1 + 𝛽, so we scale
the position down by dividing all positions by 1 + 𝛽. The final weights
of the market-neutral portfolio are
(

𝑤1
1 + 𝛽

,… ,
𝑤𝑑
1 + 𝛽

,−
𝛽

1 + 𝛽

)

,

corresponding to the 𝑑 stocks in the portfolio and the SPY. Fig. 10 and
Table 7 show the net values and the performance metrics of the market-
neutral portfolios based on the ACC clusters. Though the market-neutral
portfolios have lower annualized returns, the risk parity market-neutral
portfolio has a much higher Sharpe ratio than the original risk parity
portfolio. This provides an alternative application of the ACC clustering
results. If we zoom in on the period of the financial crisis (Dec 2007–
Jul 2009), we can see in Table 8 that the market-neutral portfolios are
very resilient to market downturns. All three portfolios obtain positive
returns and have much lower drawdowns than the benchmark SPY.

We have also repeated the same experiment for the constituents of
the Russell 2000 Index, which, in contrast to S&P 500, consists of stocks
with smaller market-caps. The outperformance of our ACC algorithm is
more prominent. The results are reported in Appendix C.
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Fig. 9. Percentage of sub-periods in which ACC has a higher Sharpe ratio than benchmarks under different allocation strategies.
Fig. 10. Performance of ACC market neutral portfolios.
4. Conclusion

This paper aims to identify a smaller set of stocks that attains an
adequate level of diversification compared to the whole universe of
stocks. We achieve this by clustering financial assets via exploring
14
the correlation structure. We cluster the assets in a group according
to the joint correlation with all other assets. The idea is formalized
by the correlation blockmodel, and the ACC algorithm is devised to
cluster the model. We provide rigorous analysis of the ACC algorithm
and give practical guidance based on the theoretical results. Numerical
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Table 7
Performance of ACC market neutral portfolios.

Risk parity Min. variance Mean–variance

Ending VAMI 2066.03 2379.17 2429.93
Max Drawdown 9.91% 13.78% 13.79%
Peak-To-Valley 2002-06-20–2002-07-23 2002-05-23–2002-07-23 2002-05-23–2002-07-23
Recovery 345 Days 254 Days 257 Days
Sharpe Ratio 0.93 0.77 0.77
Sortino Ratio 1.58 1.27 1.27
Calmar Ratio 0.39 0.34 0.35
Ann. Volatility 4.21% 6.05% 6.26%
Ann. Downside Volatility 2.47% 3.68% 3.78%
Correlation 0.3 0.26 0.22
Beta 0.07 0.08 0.07
Annualized Return 3.9% 4.68% 4.8%
Annualized Turnover Ratio 50.91% 54.42% 54.62%
Positive Periods 2522 (52.83%) 2508 (52.53%) 2505 (52.47%)
Negative Periods 2252 (47.17%) 2266 (47.47%) 2269 (47.53%)
Table 8
Performance of ACC market neutral portfolios between December 2007 and July 2009.

Risk parity Min. variance Mean–variance SPY

Ending VAMI 1056.22 1015.46 1023.28 652.15
Max Drawdown 4.85% 9.68% 7.81% 53.96%
Peak-To-Valley 2008-09-15–2008-10-10 2008-09-18–2009-06-01 2008-09-18–2009-06-01 2007-12-10–2009-03-09
Recovery 123 Days – – –
Sharpe Ratio 0.67 0.11 0.14 −0.62
Sortino Ratio 1.17 0.18 0.24 −1.0
Calmar Ratio 0.73 0.1 0.19 −0.44
Ann. Volatility 5.25% 9.13% 10.38% 38.22%
Ann. Downside Volatility 3.03% 5.52% 6.24% 23.8%
Correlation 0.27 0.27 0.14 1.0
Beta 0.04 0.06 0.04 1.0
Annualized Return 3.53% 0.98% 1.47% −23.77%
Annualized Turnover Ratio 49.69% 60.41% 60.15% –
Positive Periods 197 (49.62%) 188 (47.36%) 185 (46.60%) 204 (51.39%)
Negative Periods 200 (50.38%) 209 (52.64%) 212 (53.40%) 193 (48.61%)
𝜌𝜌

𝛴𝛴
experiments show that portfolios constructed based on the ACC clus-
tering algorithm achieve good performance compared to the market
benchmark and also other portfolios consisting of similar numbers of
assets.

Our work can be extended in several directions. One is to fur-
ther improve the ACC algorithm. For instance, how to recover the
clusters of the correlation blockmodel when the minimal separation
min

𝑖
𝐺⋆
≁ 𝑗

CORD(𝑖, 𝑗) is below max(
√

log 𝑑 ∕𝑛, (log 𝑑)2∕𝛼∕𝑛)? The other is to
make use of the past return information to embed Criteria 1 & 2 directly
into mean–variance optimization algorithms.
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Appendix A. Proofs of theoretical results

In this section, we prove the main results—Theorems 1–4.

A.1. Proof of Theorem 1

Assume that 𝜌𝜌𝜌 = 𝑍𝑍𝑍𝛱𝛱𝛱𝑍𝑍𝑍⊤ + 𝛤𝛤𝛤 holds for a membership matrix 𝑍𝑍𝑍
associated with some partition 𝐺 = {𝐺1, 𝐺2,…}. Then

max
𝑙≠𝑖,𝑗

|𝜌𝑖𝑙 − 𝜌𝑗𝑙| = 0 for any 𝑖, 𝑗 ∈ 𝐺𝑘.

So each group 𝐺𝑘 of 𝐺 is included in one of the equivalence classes 𝐺⋆∼
defined by (3). As a result, the partition 𝐺 is finer than 𝐺⋆. This implies
that 𝐺⋆ is the unique coarsest partition such that the decomposition
𝜌 = 𝑍𝑍𝑍𝛱𝛱𝛱𝑍𝑍𝑍⊤ +𝛤𝛤𝛤 holds.

A.2. Proof of Theorem 2

We first notice that for any portfolio 𝑃𝐽 chosen by selecting one
asset from each cluster in the coarsest partition 𝐺∗, the portfolio cor-
relation matrix will be the same due to the block structure in the large
correlation matrix among all assets. Denote this portfolio correlation
matrix by 𝜌𝜌𝜌𝑃 . Then the portfolio covariance matrix is

𝛴 = 𝑉𝑉𝑉 𝜌𝜌𝜌 𝑉𝑉𝑉 ,
𝑃𝐽 𝑃𝐽 𝑃 𝑃𝐽
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where 𝑉𝑉𝑉 𝑃𝐽 ∶= diag
(√

Var(𝑋𝐽 (1)),… ,
√

Var(𝑋𝐽 (𝐾))
)

is the diagonal
matrix containing the standard deviation of all stocks in the portfo-
lio. Because we do not allow short selling in the minimum variance
portfolio, the optimal weights 𝑤∗ fall into either of the following two
cases.

1. All weights in 𝑤∗ are positive, and 𝑤∗ = 𝛴𝛴𝛴−1
𝑃𝐽
1∕

(

1⊤𝛴𝛴𝛴−1
𝑃𝐽
1
)

.

2. Some weights in 𝑤∗ are zero, and the remaining weights are
positive and satisfy 𝑤∗+ = (𝛴𝛴𝛴+

𝑃𝐽
)−11∕

(

1⊤(𝛴𝛴𝛴+
𝑃𝐽
)−11

)

, where 𝛴𝛴𝛴+
𝑃𝐽

represents the covariance matrix of stocks with positive weights
in the optimal portfolio.

We now show that, in both cases, the variance of the minimum variance
portfolio is non-decreasing in all elements of 𝑉𝑉𝑉 𝑃𝐽 .

In Case (1), where 𝑤∗ = 𝛴𝛴𝛴−1
𝑃𝐽
1∕

(

1⊤𝛴𝛴𝛴−1
𝑃𝐽
1
)

, the variance of the
portfolio is

Varmin(𝑃𝐽 ) =
1

21⊤𝛴𝛴𝛴−1
𝑃𝐽
1
= 1

21⊤𝑉𝑉𝑉 −1
𝑃𝐽
𝜌𝜌𝜌−1𝑃 𝑉𝑉𝑉

−1
𝑃𝐽
1
. (12)

Let us disregard the 1∕2 scaling and focus on the denominator, which
can be rewritten as
𝐾
∑

𝑖=1

𝐾
∑

𝑗=1
𝜌−1𝑃 (𝑖, 𝑗)𝑎𝑖𝑎𝑗 ,

where 𝜌−1𝑃 (𝑖, 𝑗) is the 𝑗th element of the 𝑖th row of 𝜌𝜌𝜌−1𝑃 , and 𝑎𝑖 ∶=
1∕

√

Var(𝑋𝐽 (𝑖)). The derivative w.r.t. 𝑎𝑖 is

𝜌−1𝑃 (𝑖, 𝑖)𝑎𝑖 + 2
∑

𝑗≠𝑖
𝜌−1𝑃 (𝑖, 𝑗)𝑎𝑗 . (13)

ecause 𝑤∗ = 𝛴𝛴𝛴−1
𝑃𝐽
1∕

(

1⊤𝛴𝛴𝛴−1
𝑃𝐽
1
)

= 𝑉𝑉𝑉 −1
𝑃𝐽
𝜌𝜌𝜌−1𝑃 𝑉𝑉𝑉

−1
𝑃𝐽
1∕

(

1⊤𝛴𝛴𝛴−1
𝑃𝐽
1
)

≥ 0, we
ave for any 𝑖 ∈ [𝐾],

−1
𝑃 (𝑖, 𝑖)𝑎2𝑖 +

∑

𝑗≠𝑖
𝜌−1𝑃 (𝑖, 𝑗)𝑎𝑖𝑎𝑗 ≥ 0.

ividing both sides by 𝑎𝑖 > 0, we have

−1
𝑃 (𝑖, 𝑖)𝑎𝑖 +

∑

𝑗≠𝑖
𝜌−1𝑃 (𝑖, 𝑗)𝑎𝑗 ≥ 0.

his means that the derivative (13) is non-negative. In other words, the
enominator of (12) is non-decreasing in 𝑎𝑖 for any 𝑖 ∈ [𝐾], thus (12)
s non-decreasing in Var(𝑋𝐽 (𝑖)) for any 𝑖 ∈ [𝐾].

Now let us consider Case (2). If the optimal weight for a stock 𝑋𝑖
s positive, then, as we have shown in case (1), increasing Var(𝑋𝑖) will
ecrease 𝑎𝑖 and thus increase the variance of the optimal portfolio. This
lso decreases its optimal weight 𝑤∗+

𝑖 , up to the point where 𝑤∗+
𝑖 = 0. If

he optimal weight for a stock 𝑋𝑖 is zero, it means that, in the optimal
inimum variance portfolio where short selling is allowed, the weight

f 𝑋𝑖 is non-positive. In other words,

−1
𝑃 (𝑖, 𝑖)𝑎2𝑖 +

∑

𝑗≠𝑖
𝜌−1𝑃 (𝑖, 𝑗)𝑎𝑖𝑎𝑗 ≤ 0. (14)

otice that the left-hand side of (14) is quadratic in 𝑎𝑖, with one root
t 𝑎𝑖 = 0 and another at some 𝑎𝑖 > 0. Because the 𝜌−1𝑃 (𝑖, 𝑖), being the

diagonal of the inverse correlation matrix, is larger than 1, increasing
the variance of 𝑋𝑖 thus decreasing 𝑎𝑖 toward 0 will only make (14)
stay negative. Hence the optimal weight of the no-short-selling problem
will not change. This shows that the variance of the minimum-variance
portfolio is also non-decreasing in Var(𝑋𝐽 (𝑖)) for any 𝑖 ∈ [𝐾] in case (2).

A.3. Proof of Theorem 3

We start with the following lemma, which provides a sufficient
condition under which the PARTITION algorithm recovers the partition
⋆

16

𝐺 .
Lemma 1. Let 𝜏 ∶= max𝑖,𝑗,𝑙∈[𝑑] |(𝜌𝑖𝑙 − 𝜌𝑗𝑙) − (𝜌𝑖𝑙 − 𝜌𝑗𝑙)|, and 𝛥 ∶=
min

𝑖
𝐺⋆
≁ 𝑗

CORD(𝑖, 𝑗). If 𝜏 ≤ 𝜀 < 𝛥 − 𝜏, then the PARTITION algorithm with

nputs ĈORD and 𝜀 outputs 𝐺 = 𝐺⋆.

Proof of Lemma 1. By the definition of 𝜏, we have ĈORD(𝑖, 𝑗) − 𝜏 ≤
CORD(𝑖, 𝑗) ≤ ĈORD(𝑖, 𝑗) + 𝜏. If 𝑖 𝐺

⋆
∼ 𝑗, we have CORD(𝑖, 𝑗) = 0, and thus

ÔRD(𝑖, 𝑗) ≤ 𝜏. Similarly, if 𝑖
𝐺⋆
≁ 𝑗, we have CORD(𝑖, 𝑗) ≥ 𝛥, and thus

ÔRD(𝑖, 𝑗) ≥ 𝛥 − 𝜏. Consequently, if 𝜏 ≤ 𝜀 < 𝛥 − 𝜏, then

𝐺⋆∼ 𝑗 if and only if ĈORD(𝑖, 𝑗) ≤ 𝜀.

Now we prove that the PARTITION algorithm recovers the partition
⋆. We argue by induction. Assume that the algorithm is correct in the

irst 𝑡 − 1 steps:

̂𝑠 = 𝐺⋆𝑘(𝑖𝑙 ) for 𝑙 = 1,… , 𝑡 − 1,

here 𝑘(𝑖𝑙) is the index of the group that contains 𝑖𝑙. At step 𝑡, if |𝑆| = 1,
the algorithm terminates after this step and outputs 𝐺 = 𝐺⋆. If |𝑆| > 1,
there are two cases:

1. If ĈORD(𝑖𝑡, 𝑗𝑡) > 𝜀, then ĈORD(𝑖𝑡, 𝑗) > 𝜀 and thus 𝑖𝑡
𝐺⋆
≁ 𝑗 for any

𝑗 ∈ 𝑆. Since the algorithm is correct up to step 𝑡 − 1, 𝑖𝑡
𝐺⋆
≁ 𝑗

for any 𝑗 ∉ 𝑆. Thus, 𝑖𝑡 must be a singleton, and the algorithm
outputs 𝐺𝑡 = 𝐺⋆𝑘(𝑖𝑡) = {𝑖𝑡}.

2. If ĈORD(𝑖𝑡, 𝑗𝑡) ≤ 𝜀, then 𝑖𝑡
𝐺⋆∼ 𝑗𝑡. The new cluster is 𝐺𝑡 = 𝑆∩𝐺𝑘(𝑖𝑡).

Since the algorithm is correct in the first 𝑡 − 1 steps, 𝐺𝑘(𝑖𝑡) ⊂ 𝑆.
Thus, 𝐺𝑡 = 𝐺𝑘(𝑖𝑡).

The PARTITION algorithm is correct in both cases at step 𝑡, which
completes the induction. □

The quantity 𝜏 is the sampling error of correlation differences.
Lemma 1 implies that if 𝜏 is small enough, the PARTITION algorithm re-
covers the partition 𝐺⋆ with a properly chosen 𝜀. To prove Theorem 3,
we also need the following lemma, which gives an estimate of 𝜏.

Lemma 2. Under Assumption 1, there exist numerical constants 𝑐1, 𝑐2 > 0
such that

𝜏 ≤ 2𝐿2
⎛

⎜

⎜

⎝

𝑐1

√

log 𝑑
𝑛

+ 𝑐2
(log 𝑑)

2
𝛼

𝑛

⎞

⎟

⎟

⎠

,

with probability at least 1 − 4∕𝑑.

The proof of Lemma 2 is based on the following result on the
oncentration of quadratic forms in i.i.d. random variables with 𝛼-sub-
xponential distribution. Recall that 𝑋𝑋𝑋∗ is the 𝑛 × 𝑑 matrix whose row
is 𝑋∗𝑟 = (𝑋∗𝑟

1 ,… , 𝑋∗𝑟
𝑑 ), the standardized returns in period 𝑟 ∈ [𝑛].

emma 3. Under Assumption 1, there exists 𝑐 > 0 such that for any 𝑡 > 0
nd 𝑢, 𝑣 ∈ R𝑑 , we have

1
𝑛
𝑢⊤𝑋𝑋𝑋∗⊤𝑋𝑋𝑋∗𝑣 − 𝑢⊤𝜌𝜌𝜌𝑣

|

|

|

|

≤ (ln 2)−2∕𝛼𝐿2
√

𝑢⊤𝜌𝜌𝜌𝑢
√

𝑣⊤𝜌𝜌𝜌𝑣

(

𝑐
√

𝑡
𝑛
+ 𝑐

4
𝛼
𝑡
2
𝛼

𝑛

)

,

with probability at least 1 − 4𝑒−𝑡.

The proof of Lemma 3 relies on the following concentration inequal-
ity of quadratic forms in i.i.d. random variables with 𝛼-sub-exponential
distribution.

Lemma 4. (Götze et al., 2021; Sambale, 2020) For 𝛼 ∈ (0, 2], let
𝑌 = (𝑌1,… , 𝑌𝑛) be centered and independent random variables such that

𝐴
‖𝑌𝑟‖𝜓𝛼 ≤ 𝐿 for each 𝑟 ∈ [𝑛]. Let 𝐴𝐴 = (𝑎𝑖𝑗 )𝑖,𝑗∈[𝑛]×[𝑛] be a symmetric matrix.
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Fig. 11. Daily value comparison among the portfolios. ACC chooses between 15 and 25 stocks, and 𝑘-medoids chooses 20 stocks. Rebalanced annually.
B

B

hen there exists a constant 𝐶 = 𝐶(𝛼) such that for any 𝑡 > 0,

(

|𝑌 ⊤𝐴𝐴𝐴𝑌 − E(𝑌 ⊤𝐴𝐴𝐴𝑌 )| > 𝑡
)

≤ 2 exp
⎛

⎜

⎜

⎝

−𝐶 min
⎛

⎜

⎜

⎝

𝑡2

𝐿4
‖𝐴𝐴𝐴‖22

,

(

𝑡
𝐿2

‖𝐴𝐴𝐴‖𝑜𝑝

)
𝛼
2 ⎞
⎟

⎟

⎠

⎞

⎟

⎟

⎠

,

(15)

here ‖𝐴𝐴𝐴‖2 ∶=
√

∑𝑛
𝑖,𝑗=1 𝑎

2
𝑖𝑗 is the 2-norm, and ‖𝐴𝐴𝐴‖𝑜𝑝 ∶= sup{|𝐴𝐴𝐴𝑥| ∶ |𝑥| =

1} is the operator norm.

See also Adamczak (2015), Jeong et al. (2020), Rudelson and Ver-
shynin (2013), Vu and Wang (2015) for related results on concentration
inequalities of quadratic forms in i.i.d. random variables. Now we
proceed to prove Lemma 3.

Proof of Lemma 3. First, we express the inequality (15) in a slightly
different way. By replacing 𝑡 with 𝑠 ∶= 𝑐𝐿2(‖𝐴𝐴𝐴‖

√

𝑡 + 𝑐
4
𝛼 −1

‖𝐴𝐴𝐴‖ 𝑡
2
𝛼 )
17

2 𝑜𝑝 ‖
where 𝑐 > 0 is some constant and 𝑡 is any positive number, we have

P(|𝑌 ⊤𝐴𝐴𝐴𝑌 − E(𝑌 ⊤𝐴𝐴𝐴𝑌 )| ≥ 𝑠)

≤ 2 exp
⎛

⎜

⎜

⎝

−𝐶 min
⎛

⎜

⎜

⎝

𝑠2

𝐿4
‖𝐴𝐴𝐴‖22

,

(

𝑠
𝐿2

‖𝐴𝐴𝐴‖𝑜𝑝

)
𝛼
2 ⎞
⎟

⎟

⎠

⎞

⎟

⎟

⎠

≤ 2 exp

⎛

⎜

⎜

⎜

⎝

−𝐶 min

⎛

⎜

⎜

⎜

⎝

(𝑐𝐿2
‖𝐴𝐴𝐴‖2

√

𝑡)2

𝐿4
‖𝐴𝐴𝐴‖22

,
⎛

⎜

⎜

⎝

𝑐𝐿2𝑐
4
𝛼 −1

‖𝐴𝐴𝐴‖𝑜𝑝𝑡
2
𝛼

𝐿2
‖𝐴𝐴𝐴‖𝑜𝑝

⎞

⎟

⎟

⎠

𝛼
2 ⎞
⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

= 2 exp(−𝐶𝑐2𝑡).

y taking 𝑐 =
√

1∕𝐶, we get, for any 𝑡 > 0,

P
(

|

|

|

𝑌 ⊤𝐴𝐴𝐴𝑌 − E
(

𝑌 ⊤𝐴𝐴𝐴𝑌
)

|

|

|

≥ 𝑐𝐿2
(

‖𝐴𝐴𝐴‖2
√

𝑡 + 𝑐
4
𝛼 −1

‖𝐴𝐴𝐴‖𝑜𝑝𝑡
2
𝛼
))

≤ 2𝑒−𝑡. (16)

y Assumption 1, for any 𝜔 ∈ R𝑑 and 𝑟 ∈ [𝑛], we have ‖(𝑋∗𝑟)⊤𝜔‖𝜓𝛼 =
(𝜌𝜌𝜌−1∕2𝑋∗𝑟)⊤(𝜌𝜌𝜌1∕2𝜔)‖ ≤ ‖𝜌𝜌𝜌−1∕2𝑋∗𝑟

‖ ‖𝜌𝜌𝜌1∕2𝜔‖ ≤ 𝐿(ln 2)−1∕𝛼
√

𝜔⊤𝜌𝜌𝜌𝜔.
𝜓𝛼 𝜓𝛼 𝜓𝛼
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Fig. 12. Percentage of sub-periods in which ACC has a higher return than benchmarks under different allocation strategies.
I

f

y applying (16) to 𝑌 = 𝑋𝑋𝑋∗⊤𝜔 and 𝐴𝐴𝐴 = 𝐼𝐼𝐼𝑛 with 𝜔 = 𝜆𝑢 + 𝜆−1𝑣 and
𝜔 = 𝜆𝑢 − 𝜆−1𝑣 for some 𝜆 > 0, respectively, we get
|

|

|

|𝜆𝑋𝑋𝑋∗𝑢 ± 𝜆−1𝑋𝑋𝑋∗𝑣|2 − E
[

|𝜆𝑋𝑋𝑋∗𝑢 ± 𝜆−1𝑋𝑋𝑋∗𝑣|2
]

|

|

|

≤(ln 2)−2∕𝛼𝑐𝐿2(𝜆𝑢 ± 𝜆−1𝑣)⊤𝜌𝜌𝜌(𝜆𝑢 ± 𝜆−1𝑣)(
√

𝑛𝑡 + 𝑐
4
𝛼 −1𝑡

2
𝛼 ),

with probability at least 1 − 4𝑒−𝑡. Notice that 𝑢⊤𝑋𝑋𝑋∗⊤𝑋𝑋𝑋∗𝑣 = 1
4 (|𝜆𝑋𝑋𝑋

∗𝑢
𝜆−1𝑋𝑋𝑋∗𝑣|2 − |𝜆𝑋𝑋𝑋∗𝑢 − 𝜆−1𝑋𝑋𝑋∗𝑣|2). As a consequence,

1
𝑛
𝑢⊤𝑋𝑋𝑋∗⊤𝑋𝑋𝑋∗𝑣 − 𝑢⊤𝜌𝜌𝜌𝑣

|

|

|

|

≤ 1
4𝑛

(

|

|

|

|𝜆𝑋𝑋𝑋∗𝑢 + 𝜆−1𝑋𝑋𝑋∗𝑣|2 − E
[

|𝜆𝑋𝑋𝑋∗𝑢 + 𝜆−1𝑋𝑋𝑋∗𝑣|2
]

|

|

|

+ |

|

|

|𝜆𝑋𝑋𝑋∗𝑢 − 𝜆−1𝑋𝑋𝑋∗𝑣|2 − E
[

|𝜆𝑋𝑋𝑋∗𝑢 − 𝜆−1𝑋𝑋𝑋∗𝑣|2
]

|

|

|

)

≤ 1
4𝑛

(ln 2)−2∕𝛼𝑐𝐿2(
√

𝑛𝑡 + 𝑐
4
𝛼 −1𝑡

2
𝛼 )
[

2𝜆2𝑢⊤𝜌𝜌𝜌𝑢 + 2𝜆−2𝑣⊤𝜌𝜌𝜌𝑣
]

.

y taking 𝜆 = (𝑣⊤𝜌𝜌𝜌𝑣∕𝑢⊤𝜌𝜌𝜌𝑢)1∕4, we get the desired result. □

Now we prove Lemma 2.

roof of Lemma 2. For 𝑖, 𝑗, 𝑙 ∈ [𝑑], let 𝑢 = 𝑒𝑖 − 𝑒𝑗 and 𝑣 = 𝑒𝑙, where
18

𝑖 = (0,… , 0, 1, 0,… , 0) with the 𝑖th coordinate one and all others zeros.
t is easy to see that

𝜌𝑖𝑙 − 𝜌𝑗𝑙 =
1
𝑛
𝑢⊤𝑋𝑋𝑋∗⊤𝑋𝑋𝑋∗𝑣 and 𝜌𝑖𝑙 − 𝜌𝑗𝑙 = 𝑢⊤𝜌𝜌𝜌𝑣.

By Lemma 3, we have for any 𝑡 > 0,

|(𝜌𝑖𝑙 − 𝜌𝑗𝑙) − (𝜌𝑖𝑙 − 𝜌𝑗𝑙)| ≤ (ln 2)−2∕𝛼𝐿2
√

2 − 2𝜌𝑖𝑗

(

𝑐
√

𝑡
𝑛
+ 𝑐

4
𝛼
𝑡
2
𝛼

𝑛

)

≤ 2(ln 2)−2∕𝛼𝐿2

(

𝑐
√

𝑡
𝑛
+ 𝑐

4
𝛼
𝑡
2
𝛼

𝑛

)

,

with probability at least 1−4𝑒−𝑡. Notice that the above inequality holds

or any 1 ≤ 𝑖 < 𝑗 ≤ 𝑑 and 𝑙 ≠ 𝑖, 𝑗. Taking 𝑡 = log(𝑑), we have

|(𝜌𝑖𝑙 − 𝜌𝑗𝑙) − (𝜌𝑖𝑙 − 𝜌𝑗𝑙)| ≤ 2(ln 2)−2∕𝛼𝐿2
⎛

⎜

⎜

𝑐

√

log 𝑑
𝑛

+ 𝑐
4
𝛼
(log 𝑑)

2
𝛼

𝑛

⎞

⎟

⎟

,

⎝ ⎠
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Fig. 13. Percentage of sub-periods in which ACC has a higher Sharpe ratio than benchmarks under different allocation strategies.
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for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑑 and 𝑙 ≠ 𝑖, 𝑗, with probability at least 1 − 4∕𝑑. Let
𝑐1 = (ln 2)−2∕𝛼𝑐 and 𝑐2 = (ln 2)−2∕𝛼𝑐4∕𝛼 , we have

𝜏 = max
𝑖,𝑗,𝑙∈[𝑑]

|(𝜌𝑖𝑙 − 𝜌𝑗𝑙) − (𝜌𝑖𝑙 − 𝜌𝑗𝑙)| ≤ 2𝐿2
⎛

⎜

⎜

⎝

𝑐1

√

log 𝑑
𝑛

+ 𝑐2
(log 𝑑)

2
𝛼

𝑛

⎞

⎟

⎟

⎠

ith probability at least 1 − 4∕𝑑. □

Finally, Theorem 3 follows easily from Lemma 1 and Lemma 2.

.4. Proof of Theorem 4

The ACC algorithm is decomposed into two stages.
The first is the preparation stage, where the sample correlation

atrix and the ĈORD matrix are computed, and the tail parameters
re estimated. The standardization step takes (𝑛𝑑). The complexity of
omputing 𝜌𝜌𝜌 is (𝑛𝑑2). For any 𝑖, 𝑗 ∈ [𝑑], the complexity of computing
ÔRD(𝑖, 𝑗) is (𝑑). So computing the entire ĈORD matrix at most
2 ⋅ (𝑑) = (𝑑3) operations. Calculating 𝜌𝜌𝜌−1∕2 can be done through

3

19

igenvalue decomposition, which has complexity (𝑑 ). Sorting 𝑌𝑖 takes s
(𝑛 log(𝑛)), and each linear regression takes (𝑛). Therefore, the overall
omplexity of the preparation stage is (𝑑2(𝑛 + 𝑑)).

The second stage is the grid search stage, where an appropriate 𝜀 is
hosen based on the results of the PARTITION procedure using different
alues for 𝜀. In the PARTITION procedure, the while loop has at most
iterations. In each iteration, finding argmin𝑖,𝑗∈𝑆,𝑖≠𝑗 ĈORD(𝑖, 𝑗) would

ake (𝑑3), but it can be simplified by keeping a sorted list of all values
n ĈORD, since the same ĈORD is passed to PARTITION every time.

ith this sorted list, finding argmin𝑖,𝑗∈𝑆,𝑖≠𝑗 ĈORD(𝑖, 𝑗) is at most (𝑑).
inding the set

{

𝑘 ∈ 𝑆 ∶ min
(

𝐷𝐷𝐷(𝑖𝑙 , 𝑘),𝐷𝐷𝐷(𝑗𝑙 , 𝑘)
)

≤ 𝜀
}

is at most (𝑑), and
ll other steps are constant. Overall, each PARTITION call takes (𝑑2).
orting all entrees in ĈORD in advance takes (𝑑2 log(𝑑2)) = (𝑑3).
ecause the number of grids 𝑛𝑔 in the grid search is a constant and
oes not grow with 𝑑 or 𝑛, the grid search stage has complexity (𝑑3).

Therefore, the overall complexity of Algorithm 1 is (𝑛𝑑2 + 𝑑3).

ppendix B. Experimental details

In this section, we recall some algorithms used in our empirical

tudy.
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Table 9
Performance metrics of the risk parity portfolios. ACC chooses between 15 and 25 stocks, and 𝑘-medoids chooses 20 stocks.
Rebalanced annually.

ACC k-medoids All stocks Russel 2000
Total Return
Index

Ending VAMI 9823.57 5965.45 8799.78 6720.99
Max Drawdown 54.68% 50.31% 60.68% 58.89%
Peak-To-Valley 2007-06-04–

2009-03-09
2007-02-07–
2009-03-09

2007-06-04–
2009-03-09

2007-07-13–
2009-03-09

Recovery 252 Days 964 Days 449 Days 488 Days
Sharpe Ratio 0.55 0.47 0.48 0.39
Sortino Ratio 0.88 0.74 0.77 0.63
Calmar Ratio 0.21 0.18 0.18 0.16
Ann. Volatility 21.17% 19.07% 22.89% 24.32%
Ann. Downside Volatility 13.13% 12.14% 14.29% 15.24%
Correlation 0.91 0.9 0.99 1.0
Beta 0.79 0.71 0.93 1.0
Ann. Return 11.61% 8.97% 11.02% 9.59%
Ann. Turnover Ratio 70.25% 70.09% 27.16% –
Positive Periods 2778

(53.01%)
2756
(52.59%)

2814
(53.69%)

2800
(53.42%)

Negative Periods 2463
(46.99%)

2485
(47.41%)

2427
(46.31%)

2441
(46.58%)
Table 10
Performance metrics of the minimum variance portfolios. ACC chooses between 15 and 25 stocks, and 𝑘-medoids chooses 20
stocks. Rebalanced annually.

ACC k-medoids All stocks Russel 2000
Total Return
Index

Ending VAMI 8679.42 5978.93 4826.0 6720.99
Max Drawdown 47.99% 45.25% 51.71% 58.89%
Peak-To-Valley 2017-11-29–

2020-03-23
2007-02-07–
2009-03-09

2007-06-04–
2009-03-09

2007-07-13–
2009-03-09

Recovery – 867 Days 1085 Days 488 Days
Sharpe Ratio 0.56 0.48 0.42 0.39
Sortino Ratio 0.88 0.74 0.66 0.63
Calmar Ratio 0.23 0.2 0.15 0.16
Ann. Volatility 19.65% 18.86% 18.69% 24.32%
Ann. Downside Volatility 12.43% 12.1% 11.93% 15.24%
Correlation 0.81 0.83 0.88 1.0
Beta 0.65 0.64 0.68 1.0
Ann. Return 10.95% 8.98% 7.86% 9.59%
Ann. Turnover Ratio 62.09% 64.81% 63.63% –
Positive Periods 2774

(52.93%)
2757
(52.60%)

2777
(52.99%)

2800
(53.42%)

Negative Periods 2467
(47.07%)

2484
(47.40%)

2464
(47.01%)

2441
(46.58%)
Table 11
Performance metrics of the single period mean–variance portfolios. ACC chooses between 15 and 25 stocks, and 𝑘-medoids
chooses 20 stocks. Rebalanced annually.

ACC k-medoids All stocks Russel 2000
Total Return
Index

Ending VAMI 8369.0 5973.96 4830.79 6720.99
Max Drawdown 48.0% 45.25% 51.72% 58.89%
Peak-To-Valley 2017-11-29–

2020-03-23
2007-02-07–
2009-03-09

2007-06-04–
2009-03-09

2007-07-13–
2009-03-09

Recovery – 867 Days 1085 Days 488 Days
Sharpe Ratio 0.55 0.48 0.42 0.39
Sortino Ratio 0.87 0.74 0.66 0.63
Calmar Ratio 0.22 0.2 0.15 0.16
Ann. Volatility 19.64% 18.86% 18.67% 24.32%
Ann. Downside Volatility 12.43% 12.1% 11.92% 15.24%
Correlation 0.81 0.83 0.88 1.0
Beta 0.65 0.64 0.68 1.0
Ann. Return 10.76% 8.97% 7.87% 9.59%
Ann. Turnover Ratio 62.31% 64.77% 63.54% –
Positive Periods 2781

(53.06%)
2756
(52.59%)

2777
(52.99%)

2800
(53.42%)

Negative Periods 2460
(46.94%)

2485
(47.41%)

2464
(47.01%)

2441
(46.58%)
20
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B.1. Single-linkage clustering

Single-linkage is an agglomerative hierarchical clustering method
and follows the following general procedure on a given distance matrix:

1. Begin with 𝑑 clusters, each consisting of exactly one entity. Label
the clusters with the numbers 1,… , 𝑑.

2. Search the distance matrix for the closest pair of clusters. Let
the chosen clusters be labeled 𝐴 and 𝐵, and their distance be
𝑑𝐴,𝐵 . This distance 𝑑𝐴,𝐵 is usually based on distances between
members of clusters 𝐴 and 𝐵.

3. Merge clusters 𝐴 and 𝐵, thus reducing the total number of
clusters by 1. Relabel the merged cluster as 𝐴, and update the
distance matrix to reflect the revised distance between cluster 𝐴
and all other existing clusters. Delete the row and column in the
distance matrix pertaining to cluster 𝐵.

4. Repeat Steps 2 and 3 until the desired number of clusters are
obtained.

Different agglomerative hierarchical clustering algorithms have been
proposed with different definitions of the distance measure 𝑑𝐴,𝐵 . In
the single-linkage, the distance between two clusters is defined as the
distance between the two closest members of clusters 𝑖 and 𝑗:

𝑑𝐴,𝐵 ∶= min
𝑎∈𝐴,𝑏∈𝐵

𝐷(𝑎, 𝑏),

where 𝐷(𝑎, 𝑏) is a given distance between entities 𝑎 and 𝑏.12 In Man-
tegna (1999), Steps 2 and 3 in the single-linkage clustering is repeated
until only one cluster remains. By recording argmin𝑎∈𝐴,𝑏∈𝐵 𝐷(𝑎, 𝑏) in
each merge, a maximum spanning tree is obtained, together with a
hierarchical organization among all entities.

B.2. 𝑘-medoids clustering

The 𝑘-medoids clustering method (Kaufman & Rousseeuw, 1990)
aims to find clusters of similar entities by first identifying a set of 𝑘
representative entities. Then, 𝑘 clusters are constructed by assigning
each entity to the nearest representative object. Such representative
objects are called medoids of the clusters, hence the name 𝑘-medoids.
The 𝑘-medoids method can be formulated as the following optimization
problem:

min
𝑀

(

∑

𝑖∈[𝑑],𝑖∉𝑀
min
𝑚∈𝑀

𝐷(𝑖, 𝑚)
)

subject to 𝑀 ⊂ [𝑑]
|𝑀| = 𝑘.

Here, 𝑀 denotes the set of medoids, which must be a subset of all
entities [𝑑] and must have cardinality 𝑘. 𝐷(𝑎, 𝑏) is a given distance
between entities 𝑎 and 𝑏. For any given set of medoids 𝑀 , we assign
each non-medoid entity to its closest medoid 𝑚, and the optimization
finds such a set of medoids that minimizes the shortest total distance
between non-medoid entities and their corresponding medoids.

The 𝑘-medoid is implemented as an iterative algorithm that gradu-
ally improves the quality of 𝑀 . First, a set of initial medoids is chosen.
Different initialization methods can be applied here. Kaufman and
Rousseeuw (1990) propose their own initialization, where 𝑘 medoids
are selected in sequence such that the first medoid is the most centered
entity, and each subsequent medoid decreases the objective function
as much as possible. In practice, random initialization is often used
for simplicity. In our implementation, the first medoid is randomly
selected, and then each subsequent medoid is the entity with the largest
distance from its closest existing medoid.13

12 Similar agglomerative hierarchical clustering algorithms include
omplete-linkage: 𝑑𝐴,𝐵 ∶= max𝑎∈𝐴,𝑏∈𝐵 𝐷(𝑎, 𝑏), and average-linkage:
𝑑𝐴,𝐵 ∶= 1

|𝐴∥𝐵|

∑

𝑎∈𝐴,𝑏∈𝐵 𝐷(𝑎, 𝑏). For a more detailed discussion we refer
to Anderberg (1973).

13 We use the python package pyclustering for this initialization and
the subsequent 𝑘-medoid clustering.
21
After initialization, the algorithm improves the medoids by consid-
ering all possible swaps, i.e., replacing a medoid ℎ with a non-medoid
entity 𝑖, and carrying out the swap that decreases the objective function
as much as possible. The algorithm stops when no swap can decrease
the objective function anymore.

In our experiments, the distance measure between stocks 𝑎 and 𝑏
used in both the hierarchical clustering method and the 𝑘-medoids
method is 𝐷(𝑎, 𝑏) ∶=

√

2(1 − 𝜌𝑎𝑏), the same as in Mantegna (1999), and
the desired number of clusters 𝑘 is set to be 20 for those two methods.

B.3. Risk parity

The concept of risk parity was pioneered by Bridgewater in its All
Weather strategy launched in 1996.14 In our experiments, we apply
the version of risk parity that equalizes weighted marginal risk con-
tribution, also adopted by Maillard et al. (2010), of every asset in the
portfolio. To be more precise, define the volatility of a portfolio

𝜎(𝑤) =
√

𝑤𝑇𝛴𝛴𝛴𝑤, (17)

where 𝛴𝛴𝛴 is the covariance matrix, and 𝑤 is the vector of allocation
weights of 𝑑 assets of the portfolio. Hence, the risk contribution of asset
𝑖 is

𝜎𝑖(𝑤) = 𝑤𝑖
𝜕𝜎(𝑤)
𝜕𝑤𝑖

=
𝑤𝑖(𝛴𝛴𝛴𝑤)𝑖
𝜎(𝑤)

. (18)

Observe that 𝜎(𝑤) = ∑𝑑
𝑖=1 𝜎𝑖(𝑤). We now construct a portfolio in such

a way that the risk contribution of each asset is equal, namely

𝜎𝑖(𝑤) =
𝜎(𝑤)
𝑑

⟺ 𝑤𝑖 =
𝜎(𝑤)2

𝑑 ⋅ (𝛴𝛴𝛴𝑤)𝑖
. (19)

It is easy to see that the problem (19) is equivalent to the non-linear
optimization problem

min
𝑤

𝑑
∑

𝑖=1

(

𝑤𝑖 −
𝜎(𝑤)2

𝑑 ⋅ (𝛴𝛴𝛴𝑤)𝑖

)2

subject to
𝑑
∑

𝑖=1
𝑤𝑖 = 1, 𝑤𝑖 > 0.

(20)

B.4. Markowitz’s mean–variance strategy and minimum variance strategy

Markowitz’s original mean–variance strategy without short-selling:

min 𝑤⊤𝛴𝛴𝛴𝑤 (21)

s.t. 𝑤⊤𝜇 ≥ 𝛼

𝑤⊤1 = 1, 𝑤 ≥ 0,

here 𝜇 ∈ R𝑑 contains the mean returns of the stocks, which is esti-
mated using the average of the daily returns in the backward-looking
window, and 𝛼 is the target return, which we set to 10%.

The minimum variance strategy is similar to Markowitz’s mean–
variance optimization but without the expected return constraint:

min 𝑤⊤𝛴𝛴𝛴𝑤 (22)

s.t. 𝑤⊤1 = 1, 𝑤 ≥ 0.

14 ‘‘The All Weather Story’’, Bridgewater, Accessed February 25, 2021.
https://www.bridgewater.com//_document?id=00000171-8623-d7de-affd-
feaf4ee20000.

https://www.bridgewater.com//_document?id=00000171-8623-d7de-affd-feaf4ee20000
https://www.bridgewater.com//_document?id=00000171-8623-d7de-affd-feaf4ee20000
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Appendix C. Backtesting on Russell 2000

Here, we report our backtesting results on the constituents of the
Russell 2000 Index. On the first trading day of each year, we collect the
point-in-time constituents, select stocks with at least 7 years of history
and no more than 5% of missing data in the past 1750 trading days, and
then compute clustering and asset allocations using data in the same
1750-day window. The increase in the length of the backward-looking
window compared to the S&P 500 experiments is to accommodate for
the larger number of eligible stocks, which ranges from 951 to 1408
in the years between 2001 and 2021. We still let ACC recover between
15 and 25 clusters and let 𝑘-medoids recover 20 stocks, thus keeping
he size of the final portfolios small. We create portfolios consisting
f the lowest-variance stock from each cluster, based on the results
f ACC and 𝑘-medoids algorithms. For comparison, we also create a
ortfolio consisting of all eligible stocks and include the Russell 2000
otal Return Index (shortened as RUT) as benchmarks.

Fig. 11 compares the daily performance of these portfolios, and
ables 9–11 display some detailed metrics. Our ACC algorithm consis-
ently produces higher Sharpe ratios than the Russell 2000 Index, the
ortfolio consisting of all eligible stocks, as well as the portfolio based
n the 𝑘-medoids clustering results. In more comprehensive compar-
sons shown in Figs. 12 and 13, ACC has a consistent outperformance
gainst 𝑘-medoids, all-stock portfolio, and the benchmark index in
ifferent sub-periods, in terms of both the total return and the Sharpe
atio.
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