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The Curse of Optimality, and How to Break it?b

Xun Yu Zhoua

Abstract
We strive to seek optimality, but often find ourselves trapped in bad “optimal”
solutions that are either local optimizers, or are too rigid to leave any room for
errors, or are simply based on wrong models or erroneously estimated parame-
ters. A way to break this “curse of optimality” is to engage exploration through
randomization. Exploration broadens search space, provides flexibility, and fac-
ilitates learning via trial and error. We review some of the latest development in
this exploratory approach in the stochastic control setting with continuous time
and spaces.

19.1 Introduction
Optimal solutions derived from various optimization theories are often bad traps
that hinder practical use. An example that immediately comes to mind is a local
optimizer out of the first-order condition. Another example is the bang–bang
control in optimal control theory: an optimal control takes only extreme values
when the control variable appears linearly in the Hamiltonian. Such a control is
too sensitive to estimation errors and thus tends to be very unstable and hardly
usable.

Classical theories also often take the “separation principle” between estimation
and optimization; see Wonham (1968) for example. One typically assumes a
model, estimates model parameters based on past data, and then optimizes as if
the underlying model was correct. Think of a gambler at an array of slot machines
(“one-armed bandits”) that have different but unknown probabilities of winning.
He has to decide how many times to play each machine and in what order so
as to maximize the expected gains. The classical estimation-and-optimization
approach will tackle the problem in the following way: playing each machine
for n rounds, where n is sufficiently and judiciously large, and observing the
outcomes. If, say, Machine 1 has returned the most gains, then the gambler will
believe it is indeed the best machine and he will henceforth play this machine
only.
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The flaw of this approach is evident: Machine 1 may well be a sub-optimal
machine and sticking to it subsequently may result in falling into a bad trap.
This example is a precursor of what is now widely known as a reinforcement
learning (RL) problem. The RL approach would take the bandits problem in a
different way and formulate it as one that trades off near-term and long-term gains.
Specifically, the gambler carefully balances between greedily exploiting what has
been learned so far to choose the machine that yields near-term higher rewards,
and continuously exploring the rest of the machines to acquire more information
to potentially achieve long-term benefits. The so-called ε-greedy strategy (Sutton
and Barto, 2018) exemplifies this idea: at the nth play the gambler tosses a biased
coin with heads occurring with a probability 1−εn and tails with a probability εn.
He then plays the current best machine if heads appears and the other machines
at random (with uniform probability) if tails appears. Here εn > 0 is a small
number and ought to get smaller as n becomes larger.

The ε-greedy strategy is a randomized strategy: at each play, instead of deter-
ministically and definitely playing a particular machine, the gambler lets a coin
flip decide which machine to play. The problem now becomes one of designing
the scheme for {εn}n∈N to achieve a good balance between exploration (learning)
and exploitation (optimizing). A notable feature, and indeed one that is essentially
different from the classical approach, is that the gambler is no longer interested
in estimating the winning probabilities of the machines; rather he is focusing on
learning the best sequence {εn}n∈N. In other words, he learns his best strategies
instead of learning a model. This underpins the basic tenet in RL: An agent does
not pre-assume a structural model nor attempt to estimate an existing model’s pa-
rameters but, instead, gradually learns the best (or near-best) strategies based on
trial and error, through interactions with the black-box environment and incorpo-
ration of the responses of these interactions.1 This learning approach addresses to
large extent the problem of “curse of optimality” that is due to engaging a wrong
model.

The exploration through randomization approach may also be employed to
break the curse of optimality even in problems where learning is not necessary.
Take for example a non-convex optimization problem where the function to be
minimized is completely known. Still, the first-order condition and the associated
algorithms such as the gradient descent (GD) give only local minima. Simulated
annealing, independently proposed byKirkpatrick et al. (1983) andCerny (1985),
performs randomization at each iteration of the GD algorithm to get the iterates
out of any possible trap of a local minimum. Specifically, at each iteration, the
algorithm randomly samples a solution close to the current one and moves to it
according to a probability distribution. This scheme facilitates a broader search
or exploration for the global optimum with the risk of moving to worse solutions

1 This sounds strikingly different from the model-based approach; but a careful reflection would reveal
that it is exactly how people, especially babies and young children, learn things. Take learning a new
language for example. Adults usually start with learning the grammar (the model) before actually
speaking, whereas babies directly learn to speak (strategies) through interactions and trial-and-error.
It is widely held that the latter learn a language much faster and more effectively than the former.
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at some iterations. The risk is however controlled by slowly cooling down over
time the “temperature” which is used to characterize the level of exploration.
Another example is to use randomization to smooth out an overly sensitive (and
hence unstable) optimal bang-bang control that takes only extreme actions.

Randomization uses a probability distribution (measure) to replace a deter-
ministic action. However, the latter can be embedded into the former as a Dirac
measure. To avoid the situation in which the optimal distribution turns out to
be a Dirac measure, one can force a minimal level of exploration. In the RL
literature, entropy has been used to measure the level of exploration and the
entropy-regularized (also termed as “softmax”) exploratory formulation has been
proposed, mostly in the discrete-time and discrete-space Markov Decision Pro-
cesses (MDPs) setting. In this formulation, exploration enters explicitly into
the optimization objective as a regularization term, with a trade-off weight (the
temperature parameter) imposed on the entropy of the exploration strategy; see
Ziebart et al. (2008), Nachum et al. (2017), and Neu et al. (2017) and the ref-
erences therein. Wang et al. (2020) was the first to extend this formulation to
the setting of stochastic control with continuous time and continuous state and
action (control) spaces. They derived a stochastic relaxed control formulation to
model the repetitive learning in RL, and used the differential entropy to regular-
ize the exploration. They showed that the optimal distribution for exploration is
a Gibbs measure or a Boltzmann distribution of the form π(u) ∝ e

1
λH(u) where

λ is the temperature and H is the Hamiltonian. When the state depends on the
action u linearly and the reward is quadratic in u, the Hamiltonian is quadratic
in u and hence the Gibbs measure specializes to a Gaussian distribution (under
some technical assumptions), which in turn justifies the widely used Gaussian
exploration (Haarnoja et al., 2017). Wang and Zhou (2020) further applied this
result to a continuous-time Markowitz mean–variance portfolio selection prob-
lem, and devised an RL algorithm to learn the efficient investment strategies
without any knowledge about the key parameters such as the stocks’ mean returns
and volatility rates.

Motivated by considerations other than RL, Gao et al. (2022) applied the
general framework and results of Wang et al. (2020) to the temperature control
problem for Langevin diffusions. A Langevin diffusion is a continuous-time ver-
sion of a simulated annealing algorithm – the Langevin algorithm – to find the
global minimum of a non-convex function. The temperature process controls the
level of random noises injected into the algorithm. The selection of this process
can be formulated as a classical stochastic control problem, whose optimal solu-
tion is nevertheless bang–bang and hence extremely prone to mis-specifications
in the model. Gao et al. (2022) took the entropy-regularized framework of Wang
et al. (2020) by randomizing this temperature process, and concluded that a trun-
cated exponential distribution is optimal for sampling temperatures and in turn
sampling the noises to be injected into the Langevin algorithm.

This chapter reviews the approaches and main results in Wang et al. (2020),
Wang and Zhou (2020), and Gao et al. (2022), albeit in a finite-time horizon
instead of the infinite one, argues that exploration through randomization can
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effectively address the curse of optimality in settings including but not limited to
RL, and suggests some open research questions.

The remainder of this chapter proceeds as follows. In Section 19.2 we present
the entropy-regularized exploratory stochastic control problem based on the no-
tion of exploration through randomization. Section 19.3 derives the optimal dis-
tributions for sampling actions to control the dynamics. Section 19.4 gives a con-
crete application of the general theory to the sampling problem of the Langevin
algorithm. In Section 19.5 we discuss the algorithmic aspects of the general
theory in the RL context. Finally, Section 19.6 concludes.

19.2 Entropy-Regularized Exploratory Formulation
19.2.1 Classical stochastic control

Let T > 0, b : [0,T] × Rd × U 7→ Rd and σ : [0,T] × Rd × U 7→ Rd×n be
given. The classical stochastic control problem is to control the state (or feature)
dynamics, a stochastic differential equation (SDE):

dxu
s = b(s, xu

s ,us)ds + σ(s, xu
s ,us)dWs, s ∈ [0,T]. (19.1)

The process u = {us,0 ≤ s ≤ T}, defined on a filtered probability space
(Ω,F ,P; {Fs}s≥0) along with a standard {Fs}s≥0-adapted, n-dimensional Brown-
ian motion W = {Ws, s ≥ 0}, is an admissible (open-loop) control, denoted by
u ∈ Acl, if

(i) it is an {FW
s }s≥0-adapted measurable process taking values in U, where

{FW
s }s≥0 ⊂ {Fs}s≥0 is the natural filtration generated by the Brownian

motion, and U ⊂ Rm is the action space representing the constraints on an
agent’s decisions (controls or actions); and

(ii) for any given initial condition xu
0 = x0 ∈ R

d, the SDE (19.1) admits solu-
tions xu = {xu

s ,0 ≤ s ≤ T} on the same filtered probability space, whose
distributions are all identical.2

Given xu
0 = x0 ∈ R

d at time t = 0, the objective of the control problem is to
find u ∈ Acl so that the total reward

J(u) := E
[∫ T

0
r
(
s, xu

s ,us

)
ds + h(xu

T )

]
→ max (19.2)

where r : [0,T] × Rd × U 7→ R and h : Rd 7→ R are the running and terminal
reward functions respectively.

In the classical setting where the model is fully known (namely, when the
functions b, σ, r and h are fully specified), one can solve this problembyBellman’s

2 Throughout this chapter, admissible controls are defined in the weak sense, namely, the filtered
probability space and the Brownian motion are also part of the control. This is to ensure, among other
things, that dynamic programming works; see Yong and Zhou (1999, Chapter 4). For simplicity,
however, we will refer to, for example, only the process u as a control.
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dynamic programming in the following manner; see e.g. Yong and Zhou (1999)
for a systematic account of the method. Define the optimal value function

V cl (t, x) := sup
u∈Acl

E

[∫ T

t

r
(
s, xu

s ,us

)
ds + h(xu

T )

���xu
t = x

]
, (t, x) ∈ [0,T] × Rd,

(19.3)
where (and throughout this chapter) t and x are generic variables representing
respectively the current time and state of the system dynamics.3

IfV cl ∈ C1,2([0,T]×Rd), then it satisfies theHamilton–Jacobi–Bellman (HJB)
equation{

vt(t, x) + supu∈U H(t, x,u, vx(t, x), vxx(t, x)) = 0, (t, x) ∈ [0,T) × Rd;
v(T, x) = h(x)

(19.4)

where H is the (generalized) Hamiltonian (Yong and Zhou, 1999, Chapters 3 &
4)

H(t, x,u, p,P) = 1
2 tr [σ(t, x,u)

′Pσ(t, x,u)] + p · b(t, x,u) + f (t, x,u),

(t, x,u, p,P) ∈ [0,T] × Rd ×U × Rd × Rd×d,
(19.5)

where tr(A) denotes the trace of a square matrix A.
Let

u∗(t, x) := argmaxu∈UH(t, x,u, vx(t, x), vxx(t, x)), (t, x) ∈ [0,T) × Rd . (19.6)

This is a deterministicmapping from the current time and state to the action space
U, which is an instance of a feedback policy (or feedback law). It is important
to understand the differences and relationship between an open-loop control and
a feedback policy. The former is a stochastic process – so it is a function of the
time t and the state of nature ω; and the latter is a deterministic function of the
time t and the state of the system x. Throughout this chapter we call the former a
control and the latter a policy. A policy u can generate a control by substituting
u into the system dynamics (19.1) starting from any present time–state pair
(t, x) ∈ [0,T) × Rd.

The verification theorem dictates that u∗ is an optimal policy in the sense that
it generates an optimal control for the problem (19.3) with any (t, x) ∈ [0,T)×Rd

via u∗s = u∗(s, x∗s ) where x∗ is the solution to (19.1) upon substituting us with
u∗(s, x∗s ).
Equation (19.6) stipulates that at any give time and state, the optimal action is

guided by the Hamiltonian, deterministically and rigidly. Moreover, this action
policy is derived off-line at t = 0 and will be carried out throughout, assuming,
that is, the model is completely specified.

3 In the classical control theory literature,V is termed simply the “value function”. However, in what
follows, as is customary in the RL literature, we will also use the term value function for any given
feedback policy. Hence, to avoid confusion, we callV the “optimal value function”.
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19.2.2 Exploratory formulation
As we have discussed in the introduction, there are various reasons why the
agent may be unable or unwilling to execute the “optimal” policy (19.6), and
will instead need to explore through randomization. For example, in the case
when the underlying model is not known, the agent is not able to maximize the
unknown Hamiltonian in (19.6), and hence employs exploration to interact with
and learn the best strategies through trial and error. The exploration ismodelled by
a distribution of controls π = {πs(·), s ≥ 0} over the control space U from which
each trial is sampled. Here π is a density-function-valued stochastic process; i.e.
πs(·,ω) is a probability density function on U for any (s,ω) ∈ [0,T] × Ω. We
therefore extend the notion of controls to distributions when exploration is called
for. A classical control u = {us, s ≥ 0} can be regarded as a Dirac distribution
πs(·) = δus

(·).
This subsection and the next one largely follow the formulation and analysis

in Wang et al. (2020), except that we are in the setting of a finite-time horizon
while Wang et al. (2020) is for the infinite-time horizon. However, all the results
in the current setting can be derived analogously.

Given a distributional control π, the agent repeatedly sample classical controls
from π for N rounds over the same time horizon to control the dynamics and
observe the corresponding values of the total reward. As explained in Wang et al.
(2020), when N →∞, by the law of large numbers the limiting system dynamics
under π becomes

dXπ
s = b̃(s,Xπ

s , πs)ds + σ̃(s,Xπ
s , πs)dWs, s ∈ [0,T], (19.7)

where the coefficients b̃ and σ̃ are defined as

b̃(s, y, π) :=
∫
U

b (s, y,u) π(u)du, y ∈ Rd, π ∈ P (U) , (19.8)

and

σ̃(s, y, π) :=

√∫
U

σ2 (s, y,u) π(u)du, y ∈ Rd, π ∈ P (U) , (19.9)

with P (U) being the set of density functions of probability measures on U that
are absolutely continuous with respect to the Lebesgue measure.

We call (19.7) the exploratory formulation of the controlled state dynamics,
and b̃(·, ·) and σ̃(·, ·) in (19.8) and (19.9), respectively, the exploratory drift and
the exploratory volatility.

Similarly, the reward function r in (19.2) is modified to the exploratory reward

r̃ (s, y, π) :=
∫
U

r (s, y,u) π(u)du, y ∈ Rd, π ∈ P (U) . (19.10)
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19.2.3 Entropy regularization
Given the exploratory formulation, it seems natural to set the objective to maxi-
mize

E

[∫ T

0
r̃
(
s,Xπ

s , πs
)

ds + h(Xπ
T )

]
(19.11)

subject to (19.7) under Xπ
0 = x0. However, it is entirely possible that the optimal

distributional control for this problem is just Dirac, and hence we would then
be in the realm of classical stochastic control. Indeed this happens when the so-
called Roxin condition is satisfied; see Yong and Zhou (1999, Chapter 2). Thus,
in order to encourage a genuine exploration, we need to regulate its level. We use
Shannon’s differential entropy to measure the level of exploration:

H(π) := −
∫
U

π(u) ln π(u)du, π ∈ P (U) ,

and require the total expected entropy to maintain a minimum level

−E

∫ T

0

∫
U

πs(u) ln πs(u) du ds ≥ a (19.12)

where a > 0 is given. Taking the Lagrangemultiplier of this exploration constraint
we arrive at the following new objective:

E

[∫ T

0

(
r̃
(
s,Xπ

s , πs
)
− λ

∫
U

πs(u) ln πs(u)du
)

ds + h(Xπ
T )

]
→ max, (19.13)

where λ > 0 is the Lagrange multiplier, which can also be regarded as an exoge-
nous exploration weighting parameter capturing the trade-off between exploita-
tion (the original reward function) and exploration (the entropy). This constant is
also known as the temperature parameter.

Denote by B(U) the Borel algebra on U. A density-function-valued process
π = {πs(·), 0 ≤ s ≤ T}, defined on a filtered probability space (Ω,F ,P; {Fs}s≥0)

along with a standard {Fs}s≥0-adapted, n-dimensional Brownian motion W =

{Ws, s ≥ 0}, is an admissible distributional control, denoted by π ∈ A, if

(i) for each 0 ≤ s ≤ T , πs(·) ∈ P(U) a.s.;

(ii) for each A ∈ B(U), {
∫
A
πs(u)du,0 ≤ s ≤ T} is {FW

s }s≥0-adapted measur-
able process;

(iii) the SDE (19.7) with Xπ
0 = x0 admits solutions xπ = {xπs ,0 ≤ s ≤ T} on the

same filtered probability space, whose distributions are all identical.
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19.3 Optimal Distributional Policies
To solve the entropy-regularized exploratory control problem (19.13), we again
apply dynamic programming. Introduce the optimal value function

V (t, x) :=

sup
π∈A

E

[∫ T

0

(∫
U

r
(
s,Xπ

s ,u
)
πs (u) du − λ

∫
U

πs(u) ln πs(u)du
)

ds + h(Xπ
T )

���� Xπ
t = x

]
.

(19.14)

Using standard arguments, we deduce that V satisfies the HJB equation

vt(t, x) + sup
π∈P(U)

∫
U

[H(t, x,u, vx(t, x), vxx(t, x)) − λ ln π(u)] π(u)du = 0

(t, x) ∈ [0,T) × Rd,

(19.15)

with the terminal condition v(T, x) = h(x).
Noting that π ∈ P (U) if and only if∫

U

π(u)du = 1 and π(u) ≥ 0 a.e. on U, (19.16)

we can solve the (constrained) maximization problem on the left hand side of
(19.15) to get a feedback policy:

π∗(u; t, x) =
1

Z(λ, t, x, vx(t, x), vxx(t, x))
exp

(
1
λ

H(t, x,u, vx(t, x), vxx(t, x))
)
,

(19.17)
where u ∈ U, (t, x) ∈ [0,T] × Rd, and

Z(λ, t, x, vx(t, x), vxx(t, x)) :=
∫
U

exp
(

1
λ

H(t, x,u, vx(t, x), vxx(t, x))
)

du (19.18)

is the normalizing factor that makes π∗(·; t, x) a density function.
The optimal policy (19.17) is a deterministic function of the variables u, t

and x. For each given time–state pair (t, x), π∗(·; t, x) is the density function of a
Gibbs measure. When the temperature λ is very high, all the actions are chosen
in largely equal probabilities. When the temperature cools down, i.e., λ → 0,
the distribution increasingly concentrates around the (global) maximizers of the
Hamiltonian, giving rise to something resembling the ε-greedy policies in multi-
armed bandit problems. When λ = 0, the distribution degenerates into the Dirac
measure on the maximizers of the Hamiltonian which is the classical optimal
control.

In the linear–quadratic (LQ) case when b, σ are linear in x and u and r, h
quadratic in x and u, the Hamiltonian is quadratic in u. In the infinite horizon
case, Wang et al. (2020) proved that the Gibbs measure specializes to the Gaus-
sian distribution under some technical assumptions. We expect the same to be
true for the current case of a finite time horizon, although there may be some
technical subtleties. Moreover, Wang and Zhou (2020) applied the LQ results
to a continuous-time mean–variance portfolio selection problem and devised an
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algorithm for solving it without needing to know the parameters of the underlying
stocks.

In RL there is a widely used heuristic exploration strategy called theBoltzmann
exploration, which assigns the following probability to an action a when in state
st at time t:

p(st,a) =
eQt (st ,a)/λ∑m
a=1 eQt (st ,a)/λ

, a = 1,2, . . . ,m, (19.19)

where Qt(s,a) is the Q-function value of a state–action pair (s,a), and λ > 0
is again a temperature parameter that controls the level of exploration; see e.g.
Bridle (1990), Cesa-Bianchi et al. (2017), and Sutton and Barto (2018). There is
a clear resemblance between (19.17) and (19.19). This in turn suggests that the
continuous counterpart of theQ-function is theHamiltonian, given that the former
is not well defined and cannot be used to rank and select actions in the continuous
setting (Tallec et al., 2019). The importance of this observation is twofold: the fact
that we are able to derive a result that reconciles with an eminent heuristic strategy
in the discrete setting, verifies and justifies the entropy-regularized exploratory
formulation for the continuous setting, and, more importantly, the formulation
lays a theoretical underpinning of the Boltzmann exploration, thereby providing
an explaination of a largely heuristic approach.4

Putting (19.17) back into (19.15), we obtain the following (elegant) form of
the HJB equation

vt(t, x) + λ ln Z(λ, t, x, vx(t, x), vxx(t, x)) = 0, (t, x) ∈ [0,T) × Rd; v(T, x) = h(x).
(19.20)

This equation, called the exploratory HJB equation, appears to be a new type
of parabolic partial differential equation (PDE), which would provide a whole
wealth of new research problems. For example, what do we know about its well-
posedness (existence and uniqueness) in both the classical and viscosity senses?
How does its solution, along with its first- and second-order derivatives, depend
on the temperature λ > 0? As a result, how does the optimal policy (19.17), along
with its mean, variance and entropy, depend on λ? Does the solution converge
when λ → 0 and, if yes, what is the convergence rate? Some of these questions
have been answered in Tang et al. (2022).

Another significant direction for research is in the choice of the temperature
λ. In this section, as in Wang et al. (2020), λ is set to be an exogenous constant.
However, the agent is supposed to learn more, and hence need less, exploration
as time goes by. So it seems plausible that λ should depend on time and indeed
decay over time. On the other hand, it seems also reasonable that λ should depend
on the system state to optimize its use. In other words, λ ought to be endogenous.
How can we then formulate the problem to optimize the temperature process?

4 A formula of the type (19.17) was first derived in Wang et al. (2020, eq. (17)), but the connection with
Boltzmann exploration and Gibbs measure was not noted there.
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19.4 Non-Convex Optimization and Langevin Diffusions
While the entropy-regularized exploratory formulation was originally motivated
by RL in Wang et al. (2020), its use may go beyond RL, which this section
will demonstrate. The presentation follows Gao et al. (2022), although we take a
finite-horizon setup as opposed to that of the infinite-horizon in Gao et al. (2022).

Consider a finite-dimensional optimization problem:

min
x∈Rd

f (x), (19.21)

where f : Rd → [0,∞) is a non-convex function. The traditional gradient descent
(GD) algorithm may be trapped in a local optimum. The Langevin algorithm
injects noise into GD in order to get out of the trap:

Xk+1 = Xk − η fx(Xk) +
√

2ηβkξk , k = 0,1,2, . . . , (19.22)

where fx is the gradient of f , η > 0 is the step size, {ξk} is i.i.d Gaussian
noise and {βk} is a sequence of the temperature parameters that typically decays
over time to zero. The continuous-time version of this algorithm is the so-called
overdamped Langevin diffusion:

dXs = − fx(Xs)dt +
√

2βsdWs, X0 = x0, (19.23)

where x0 ∈ R
d is an initialization, W = {Ws : s ≥ 0} is a standard d-dimensional

Brownian motion with W0 = 0, and β = {βs : s ≥ 0} is an adapted, nonnegative
stochastic process, which is also called the temperature process of the Langevin
diffusion.

When βs ≡ β > 0, under some mild assumptions on f , the solution of (19.23)
admits a unique stationary distribution which is the Gibbs measure with density
π(x) = 1

Z(β)
e−

1
β f (x) (Chiang et al., 1987). When β becomes small, this measure

increasingly concentrates on the globalminimum of f . This provides a theoretical
justification of using Langevin diffusion (19.23) to sample noises for the Langevin
algorithm (19.22).

A natural problem is to control the temperature process {βt : t ≥ 0} so
that the performance of the continuous-time version of the Langevin algorithm
(19.23) is optimized. Specifically, given an arbitrary initialization X0 = x0 ∈ R

d,
a computing budget T > 0, and the range of the temperature U = [a, b] where
0 ≤ a < b < ∞, we aim to solve the following stochastic control problem where
the temperature process is taken as the control:

Minimize E[ f (XT )],

subject to


equation (19.23),
{βs : 0 ≤ s ≤ T} is adapted,
βs ∈ U a.e.s ∈ [0,T], a.s.

(19.24)

This is a classical control problem. Its HJB equation is:

vt(t, x) + min
β∈[a,1]

[βtr(vxx(t, x)) − fx(x) · vx(t, x)] = 0, x ∈ Rd; v(T, x) = f (x).

(19.25)
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Then the verification theorem yields that an optimal feedback policy is “bang–
bang”: β∗(t, x) = b if tr(vxx(x)) < 0, and β∗(t, x) = a otherwise. This policy
stipulates that one should, in some time–state pairs, heat at the highest possible
temperature, while in others cool down completely, depending on the sign of
tr(vxx(t, x)). This policy, while theoretically optimal, is clearly too rigid to achieve
good performance in practice as it concentrates on two extreme actions only, and
a computational error of vxx(t, x) may cause drastic change from one extreme
to the other. This motivates us to use the exploratory formulation and entropy
regularization in order to smooth out the temperature processes. Note that here the
motivation is no longer from “learning” per se as we can perfectly well assume
that the functional form f is given and known.

We now present our entropy-regularized exploratory formulation of the prob-
lem. Instead of a classical control {βs : 0 ≤ s ≤ T} where βs ∈ U = [a, b] for
s ∈ [0,T], we consider a distributional control π = {πs(·) : 0 ≤ s ≤ T}, which
represents a randomization of classical controls over the control space U where
a temperature βs ∈ U can be sampled from this distribution whose probability
density function is πs(·) at time s. The optimal value function of the exploratory
problem is

V (t, x) := inf
π∈A

E

[
−λ

∫ T

0

∫
U

πs(u) ln πs(u) du ds + f (Xπ
T )

���Xπ
t = x

]
, (19.26)

where the system dynamic is

dXπ
s = − fx(Xπ

s )dt + σ̃(πs)dWs, (19.27)

with

σ̃(π) :=

√∫
U

2uπ(u)du. (19.28)

This problem is a special case of the general problem formulated in the pre-
vious section (except that we now have a minimization problem instead of a
maximization one). Applying the general results there, we obtain the following
optimal feedback policy:

π∗(u; t, x) =
1

Z(λ, vxx(t, x))
exp

(
−

1
λ
[tr(vxx(t, x))u]

)
, (19.29)

where u ∈ U, (t, x) ∈ [0,T] × Rd, and

Z(λ, vxx(t, x)) :=
∫
U

exp
(
−

1
λ
[tr(vxx(t, x))u]

)
du > 0.

This is a truncated (in U) exponential distribution with the (state-dependent)
parameter c(t, x) := tr(vxx(t, x))/λ, and we do not require either tr(vxx(x)) > 0
(i.e. v is in general non-convex) or c(t, x) > 0 here.

The HJB equation is

vt(t, x) − fx(x) · vx(x) − λ ln(Z(λ, vxx(t, x))) = 0, (t, x) ∈ [0,T) × Rd, (19.30)
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with v(T, x) = f (x).
To apply the obtained results to sample the Langevin algorithm (19.22), we

can take the following steps. First, we solve the HJB equation (19.30) to get v.
Second, with the initialization X0 = x0, and for each k = 0,1,2, . . ., we sample βk
from π∗(·; ηk,Xk)where π∗ is determined by (19.29), Xk is the current iterate, and
ηk is the cumulative step size. Finally we apply (19.22) to move to the next iterate
where ξk is independently sampled from a standard Gaussian distribution. For a
numerical experiment comparing the performance of this method (albeit based
on the infinite-horizon model) with other benchmarks, see Gao et al. (2022).

19.5 Algorithmic Considerations for RL
The previous sections are mainly about the theory of an entropy-regularized ex-
ploratory formulation. We now discuss some aspects of the algorithm design in
the RL context. Specifically, we need to design RL algorithms to learn the opti-
mal solutions of the entropy-regularized problems and to output implementable
policies, without assuming any knowledge about the underlying parameters or
attempting to estimate these parameters.

First thing to note is that some of the theoretical results presented earlier already
have algorithmic implications. For example, if we knowGaussian is optimal, then
we will need to learn only two parameters (mean and variance). If an exponential
distribution is optimal, then there is only one parameter to learn. Making use of
this information could dramatically simplify the corresponding algorithms and
speed up their convergence.

The following discussion, however, is more general without targeting for a
particular distribution. It is a generalization of the algorithm developed in Wang
and Zhou (2020) for the mean–variance portfolio selection problem. The two key
steps involved in our algorithm are policy evaluation and policy improvement, as
standard in RL for MDPs (Sutton and Barto, 2018).

First we define the value function of a given distributional policy π. Note that π
generates an open-loop distributional control through the exploratory dynamics
(19.7) in the same way as in classical control. Specifically, for each given current
time–state pair (t, x) ∈ [0,T) × Rd, π generates an open-loop control

πs(u) := π(u; s,Xπ
s ) (19.31)

where {Xπ
s , t ≤ s ≤ T} solves (19.7) with Xπ

t = x when the policy π is applied
and assuming that {πs(·), t ≤ s ≤ T} ∈ A. Now define the value function of π:

Vπ (t, x) :=E
[ ∫ T

t

( ∫
U

r
(
s,Xπ

s ,u
)
πs

(
u
)
du − λ

∫
U

πs(u) ln πs(u)du
)
ds

+ h(Xπ
T )

���Xπ
t = x

]
. (19.32)

In an RL algorithm, one starts with an initial policy π0.5 For each given πk ,
5 The choice of this initialization can also be guided by the theory. For instance, if the theory stipulates
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k = 0,1,2, . . ., policy evaluation is carried out to obtain its value function Vπk .
Then, a policy improvement theorem specifies the next policy πk+1, and the
iterations go on. We now describe these steps.

For the policy evaluation, we followDoya (2000) for learning the value function
Vπ under any arbitrarily given admissible policy π. By Bellman consistency, we
have

Vπ(t, x) =E
[ ∫ t′

t

( ∫
U

r
(
s,Xπ

s ,u
)
πs (u) du − λ

∫
U

πs(u) ln πs(u)du
)
ds

+ Vπ(t ′,Xπ
t′ )

���Xπ
t = x

]
, (19.33)

for any (t, x) ∈ [0,T)×Rd and t ′ ∈ (t,T]. This is actually analogous to the Bellman
principle of optimality for the optimal value function. Rearranging this equation
and dividing both sides by t ′ − t, we obtain

E

[
Vπ(t ′,Xπ

t′ ) − Vπ(t,Xπ
t )

t ′ − t

+
1

t ′ − t

∫ t′

t

(∫
U

r
(
s,Xπ

s ,u
)
πs (u) du − λ

∫
U

πs(u) ln πs(u)du
)

ds
���Xπ

t = x
]
= 0.

Letting t ′ → t in the left hand side motivates the definition of the temporal
difference (TD) error

δt := ÛVπ
t +

∫
U

r
(
t,Xπ

t ,u
)
πt (u) du − λ

∫
U

πt(u) ln πt(u)du, (19.34)

where ÛVπ
t := d

dt
Vπ(t,Xπ

t ) is the sample-wise total derivative of Vπ along (t,Xπ
t ).

The objective of the policy evaluation procedure is to minimize the expected
total squared TD error in order to find the value function Vπ. In general, this
can be done as follows. Denote by V θ and πφ respectively the parametrized
value function and policy (upon using regressions or neural networks, or taking
advantage of any known parametric forms of them), with θ, φ being the vectors
of suitable dimensions to be learned. We then minimize

C(θ, φ) := 1
2E

[∫ T

0 |δt |
2dt

]
= 1

2E
[∫ T

0

�� ÛV θ
t +

∫
U

r(t,Xφ
t ,u)π

φ
t (u) du − λ

∫
U
π
φ
t (u) ln π

φ
t (u)du

��2dt
]
,

where πφ = {πφt (·), 0 ≤ t ≤ T} is generated from πφ with respect to a given
initial state X0 = x0 at time 0. To approximateC(θ, φ), we first discretize [0,T] into
small intervals [ti, ti+1], i = 0,1, . . . , l, with an equal length ∆t, where t0 = 0 and
tl+1 = T . Then we collect a set of samples D = {(ti, xi), i = 0,1, . . . , l + 1} in the
following way. The initial sample is (0, x0) for i = 0. Now, at each ti, i = 0,1, . . . , l,
we sample πφti to obtain ui ∈ U and then use the constant control ut ≡ ui to control
the (classical) system dynamics (19.1) during [ti, ti+1). We observe the state xi+1

that Gaussian is optimal, then we can choose π0 as Gaussian with some initial values of the mean and
variance.



19: The Curse of Optimality, and How to Break it? 367

at the next time instant ti+1 along with the reward ri collected over [ti, ti+1). We
then approximate ÛV θ

t by

ÛV θ(ti, xi) :=
V θ(ti+1, xi+1) − V θ(ti, xi)

∆t
,

and approximate C(θ, φ) by

C(θ, φ) =
1
2

∑
(ti ,xi )∈D

(
ÛV θ(ti, xi) + ri + λ

∫
U

π
φ
ti
(u) ln πφti (u)du

)2

∆t. (19.35)

Finally, we seek a (θ∗, φ∗)′ that minimizes C(θ, φ) using stochastic gradient
descent algorithms; see, for example, Goodfellow et al. (2016, Chapter 8). This
in turn leads to the value function V θ∗ , concluding the policy evaluation step.6

The policy improvement step is to update the next policy based on the current
policy π along with the corresponding value function Vπ, the latter having been
found by the policy evaluation. AssumingVπ ∈ C1,2([0,T)×Rd)∩C0([0,T]×Rd),
and that the policy π̃ defined by

π̃(u; t, x) =
1

Z(λ, t, x,Vπ
x (t, x),Vπ

xx(t, x))
exp

(
1
λ

H(t, x,u,Vπ
x (t, x),V

π
xx(t, x))

)
(19.36)

generates admissible (open-loop) distributional controls for the exploratory dy-
namics (19.7). Then we can prove that π̃ is better than π in that

V π̃(t, x) ≥ Vπ(t, x), (t, x) ∈ [0,T] × Rd . (19.37)

There is an obvious resemblance between the updating rule (19.36) and the
optimal policy (19.17). Their proofs are also similar: π̃ achieves the supremum
in (19.15) where v is replaced with Vπ. For a proof in the mean–variance setting,
see Wang and Zhou (2020).

19.6 Conclusion
In this chapter, we have put forth the notion of “curse of optimality” to capture the
theoretical and empirical observations that traditional approaches to optimiza-
tion often end with unfavorable solutions that are not globally optimal, or too
extreme to be useful, or outright irrelevant in practice. We find that an entropy-
regularized exploratory reformulation of the problem, originally motivated by
balancing exploration and exploitation for reinforcement learning, may provide
viable solutions to all these setbacks. This is because the randomization involved
in such a formulation helps escape from local traps, broadens search space and
reduces the desire to be “perfect” (extreme) by allowing more flexibility and

6 In a recent paper, Jia and Zhou (2022) consider a general policy evaluation problem with continuous
time and space. Applying a martingale approach, the authors find that the mean-square TD error
method introduced here actually minimizes temporal variations rather than achieving accurate
evaluation. They derive alternative policy evaluation methods based on martingality, some of which
correspond to well-studied TD algorithms such as TD(0) and TD(λ) for disctete-time MDPs.
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accommodation. In the realm of continuous time and state/action spaces, this is
still a largely uncharted research area where open problems abound.
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