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We strive to seek optimality, but often find ourselves trapped in bad
“optimal” solutions that are either local optimizers, or are too rigid
to leave any room for errors, or are simply based on wrong models or
erroneously estimated parameters. A way to break this “curse of opti-
mality” is to engage exploration through randomization. Exploration
broadens search space, provides flexibility, and facilitates learning via
trial and error. We review some of the latest development in this
exploratory approach in the stochastic control setting with continuous
time and spaces.

1.1.1 Introduction

Optimal solutions derived from various optimization theories are often bad traps
that hinder practical use. An example immediately coming to mind is a local
optimizer out of the first-order condition. Another example is the bang–bang
control in optimal control theory: an optimal control takes only extreme values
when the control variable appears linearly in the Hamiltonian. Such a control is
too sensitive to estimation errors and thus tend to be very unstable and hardly
usable.

Classical theories also often take the “separation principle” between estimation
and optimization; see (Wonham, 1968) for example. One typically assumes a
model, estimates model parameters based on past data, and then optimizes as if
the underlying model was correct. Think of a gambler at an array of slot machines
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(“one-armed bandits”) that have different but unknown probabilities of winning.
He has to decide how many times to play each machine and in what order so as to
maximize the expected gains. The classical estimation-and-optimization approach
will tackle the problem in the following way: playing each machine for n rounds,
where n is sufficiently and judiciously large, and observing the outcomes. If, say,
Machine 1 has returned the most gains, then the gambler will believe it is indeed
the best machine and he will henceforth play this machine only.

The flaw of this approach is evident: Machine 1 may well be a sub-optimal
machine and sticking to it subsequently may then be a bad trap. This example
is a precursor of what is now widely known as a reinforcement learning (RL)
problem. The RL approach would take the bandits problem in a different way and
formulate it as one that trades off near-term and long-term gains. Specifically, the
gambler carefully balances between greedily exploiting what has been learned so
far to choose the machine that yields near-term higher rewards, and continuously
exploring the rest of the machines to acquire more information to potentially
achieve long-term benefits. The so-called ε-greedy strategy (Sutton and Barto,
2018) exemplifies this idea: at nth play the gambler tosses a biased coin with
head occurring with a probability 1− εn and tail a probability εn. He then plays
the current best machine if head appears and the other machines at random (with
uniform probability) if tail appears. Here εn > 0 is a small number and ought to
be smaller as n becomes larger.

The ε-greedy strategy is a randomized strategy: at each play, instead of deter-
ministically and definitely playing a particular machine, the gambler lets a coin
flip decide which machine to play. The problem now becomes how to design the
scheme for {εn}n∈N to achieve a good balance between exploration (learning) and
exploitation (optimizing). A notable feature, and indeed one that is essentially
different from the classical approach, is that the gambler is no longer interested
in estimating the winning probabilities of the machines; rather he is focusing on
learning the best sequence {εn}n∈N. In other words, he learns his best strategies
instead of learning a model. This underpins the basic tenet in RL: An agent does
not pre-assume a structural model nor attempt to estimate an exiting model’s pa-
rameters but, instead, gradually learns the best (or near-best) strategies based on
trial and error, through interactions with the black box environment and incorpo-
ration of the responses of these interactions.1 This learning approach addresses to
large extent the problem of “curse of optimality” due to engaging a wrong model.

The exploration through randomization approach may also be employed to
break the curse of optimality even in problems where learning is not necessary.
Take for example the non-convex optimization where the function to be minimized

1This sounds strikingly different from the model-based approach; but a careful reflection
would reveal that it is exactly how people, especially babies and young children, learn things.
Take learning a new language for example. Adults usually start with learning the grammar
(the model) before actually speaking, whereas babies directly learn to speak (strategies) through
interactions and trial-and-error. It is widely held that the latter learn a language much fast and
effectively than the former.
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is completely known. Still, the first-order condition and the associated algorithms
such as the gradient descent (GD) give only local minima. Simulated annealing,
independently proposed by (Kirkpatrick et al., 1983) and (Cerny, 1985), performs
randomization at each iteration of the GD algorithm to get the iterates out of any
possible trap of a local minimum. Specifically, at each iteration, the algorithm
randomly samples a solution close to the current one and moves to it according to
a probability distribution. This scheme facilitates a broader search or exploration
for the global optima with the risk of moving to worse solutions at some iterations.
The risk is however controlled by slowly cooling down over time the “temperature”
which is used to characterize the level of exploration. Another example is to use
randomization to smooth out an overly sensitive (and hence unstable) optimal
bang-bang control that takes only extreme actions.

Randomization uses a probability distribution (measure) to replace a deter-
ministic action. However, the latter can be embedded into the former as a Dirac
measure. To avoid the situation in which the optimal distribution turns out to be
a Dirac measure, one can force a minimal level of exploration. In the RL literature,
entropy has been used to measure the level of exploration and entropy-regularized
(also termed as “softmax”) exploratory formulation has been proposed, mostly in
the discrete-time and discrete-space Markov Decision Processes (MDPs) setting.
In this formulation, exploration enters explicitly into the optimization objective
as a regularization term, with a trade-off weight (the temperature parameter) im-
posed on the entropy of the exploration strategy; see (Nachum et al., 2017; Neu
et al., 2017; Ziebart et al., 2008) and the references therein. (Wang et al., 2020)
is the first to extend this formulation to the setting of stochastic control with
continuous time and continuous state and action (control) spaces. They derive a
stochastic relaxed control formulation to model the repetitive learning in RL, and
use the differential entropy to regularize the exploration. They show that the op-
timal distribution for exploration is a Gibbs measure or a Boltzmann distribution
of the form π(u) ∝ e

1
λ
H(u) where λ is the temperature and H is the Hamiltonian.

When the state depends on action u linearly and the reward is quadratic in u, the
Hamiltonian is quadratic in u and hence the Gibbs measure specializes to a Gaus-
sian distribution (under some technical assumptions), which in turn justifies the
widely used Gaussian exploration (Haarnoja et al., 2017). (Wang and Zhou, 2020)
further apply this result to a continuous-time Markowitz mean–variance portfolio
selection problem, and devise an RL algorithm to learn the efficient investment
strategies without any knowledge about the key parameters such as stocks’ mean
returns and volatility rates.

With a motivation other than RL, (Gao et al., 2020) apply the general frame-
work and results of (Wang et al., 2020) to the temperature control problem for
Langevin diffusions. A Langevin diffusion is a continuous-time version of a simu-
lated annealing algorithm – the Langevin algorithm – to find the global minima
of a non-convex function. The temperature process controls the level of random
noises injected into the algorithm. The selection of this process can be formulated
as a classical stochastic control problem, whose optimal solution is nevertheless
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bang-bang and hence extremely prone to model mis-specifications. (Gao et al.,
2020) take the entropy-regularized framework of (Wang et al., 2020) by random-
izing this temperature process, and conclude that a truncated exponential dis-
tribution is optimal to sample temperatures and in turn sample the noises to be
injected into the Langevin algorithm.

This subchapter reviews the approaches and main results in (Gao et al., 2020;
Wang et al., 2020; Wang and Zhou, 2020), albeit in a finite time horizon instead
of the infinite one, argues that exploration through randomization can effectively
address the curse of optimality in settings including but not limited to RL, and
suggests some open research questions.

The remainder of this subchapter proceeds as follows. In Section 1.1.2 we
present the entropy-regularized exploratory stochastic control problem based on
the notion of exploration through randomization. Section 1.1.3 derives the optimal
distributions for sampling actions to control the dynamics. Section 1.1.4 gives a
concrete application of the general theory to the sampling problem of the Langevin
algorithm. In Section 1.1.5 we discuss the algorithmic aspects of the general theory
in the RL context. Finally, Section 1.1.6 concludes.

1.1.2 Entropy-Regularized Exploratory Formulation

1.1.2.1 Classical stochastic control

Let T > 0, b : [0, T ]×Rd×U 7→ Rd and σ : [0, T ]×Rd×U 7→ Rd×n be given. The
classical stochastic control problem is to control the state (or feature) dynamics,
a stochastic differential equation (SDE):

dxus = b(s, xus , us)ds+ σ(s, xus , us)dWs, s ∈ [0, T ]. (1.1.1)

The process u = {us, 0 ≤ s ≤ T}, defined on a filtered probability space
(Ω,F ,P; {Fs}s≥0) along with a standard {Fs}s≥0-adapted, n-dimensional Brow-
nian motion W = {Ws, s ≥ 0}, is an admissible (open-loop) control, denoted
by u ∈ Acl, if (i) it is an {FWs }s≥0-adapted measurable process taking values in
U , where {FWs }s≥0 ⊂ {Fs}s≥0 is the natural filtration generated by the Brow-
nian motion, and U ⊂ Rm is the action space representing the constraints on
an agent’s decisions (controls or actions), and (ii) for any given initial condition
xu0 = x0 ∈ Rd, the SDE (1.1.1) admits solutions xu = {xus , 0 ≤ s ≤ T} on the
same filtered probability space, whose distributions are all identical.2

Given xu0 = x0 ∈ Rd at time t = 0, the objective of the control problem is to
find u ∈ Acl so that the total reward

J(u) := E
[∫ T

0
r (s, xus , us) ds+ h(xuT )

]
→ max (1.1.2)

2Throughout this subchapter, admissible controls are defined in the weak sense, namely, the
filtered probability space and the Brownian motion are also part of the control. This is to ensure,
among others, that dynamic programming works; see (Yong and Zhou, 1999, Chapter 4). For
simplicity, however, we will refer to, for example, only the process u as a control.
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where r : [0, T ] × Rd × U 7→ R and h : Rd 7→ R are the running and terminal
reward functions respectively.

In the classical setting where the model is fully known (namely, when the
functions b, σ, r and h are fully specified), one can solve this problem by Bellman’s
dynamic programming in the following manner; see e.g. (Yong and Zhou, 1999)
for a systematic account of the method. Define the optimal value function

V cl (t, x) := sup
u∈Acl

E
[∫ T

t
r (s, xus , us) ds+ h(xuT )

∣∣∣xut = x

]
, (t, x) ∈ [0, T ]× Rd,

(1.1.3)
where (and throughout this subcharpter) t and x are generic variables representing
respectively the current time and state of the system dynamics.3

If V cl ∈ C1,2([0, T ]×Rd), then it satisfies the Hamilton–Jacobi–Bellman (HJB)
equation{

vt(t, x) + supu∈U H(t, x, u, vx(t, x), vxx(t, x)) = 0, (t, x) ∈ [0, T )× Rd;
v(T, x) = h(x)

(1.1.4)
where H is the (generalized) Hamiltonian (Yong and Zhou, 1999, Chapters 3 &
4)

H(t, x, u, p, P ) = 1
2tr [σ(t, x, u)′Pσ(t, x, u)] + p · b(t, x, u) + f(t, x, u),

(t, x, u, p, P ) ∈ [0, T ]× Rd × U × Rd × Rd×d, (1.1.5)

where tr(A) denotes the trace of a square matrix A.

Let

u∗(t, x) := argmaxu∈UH(t, x, u, vx(t, x), vxx(t, x)), (t, x) ∈ [0, T )× Rd. (1.1.6)

This is a deterministic mapping from the current time and state to the action space
U , which is an instance of a feedback policy (or feedback law). It is important to
understand the differences and relationship between an open-loop control and a
feedback policy. The former is a stochastic process; so it is a function of the time
t and the state of nature ω, and the latter is a deterministic function of the time
t and the state of the system x. Throughout this subchapter we call the former a
control and the latter a policy. A policy u can generate a control by substituting
u into the system dynamics (1.1.1) starting from any present time–state pair
(t, x) ∈ [0, T )× Rd.

The verification theorem dictates that u∗ is an optimal policy in the sense that
it generates an optimal control for the problem (1.1.3) with any (t, x) ∈ [0, T )×Rd
via u∗s = u∗(s, x∗s) where x∗ is the solution to (1.1.1) upon substituting us with
u∗(s, x∗s).

3In the classical control theory literature, V is termed simply the “value function”. However,
in the sequel, as customary in the RL literature, we will also use the term value function for any
given feedback policy. Hence, to distinguish, we call V the “optimal value function”.
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Equation (1.1.6) stipulates that at any give time and state, the optimal action
is guided by the Hamiltonian, deterministically and rigidly. Moreover, this action
policy is derived off-line at t = 0 and will be carried out throughout, assuming,
that is, the model is completely specified.

1.1.2.2 Exploratory formulation

As we have discussed in the introduction, there are various reasons the agent
may be unable or unwilling to execute the “optimal” policy (1.1.6), and will
instead need to explore through randomization. For example, in the case when
the underlying model is not known, the agent is not able to maximize the unknown
Hamiltonian in (1.1.6), and hence employs exploration to interact with and learn
the best strategies through trial and error. The exploration is modelled by a
distribution of controls π = {πs(·), s ≥ 0} over the control space U from which
each trial is sampled. Here π is a density-function-valued stochastic process; i.e.
πs(·, ω) is a probability density function on U for any (s, ω) ∈ [0, T ] × Ω. We
therefore extend the notion of controls to distributions when exploration is called
for. A classical control u = {us, s ≥ 0} can be regarded as a Dirac distribution
πs(·) = δus(·).

This subsection and the next subsection largely follow the formulation and
analysis in Wang et al. (2020), except that we are in the setting of a finite time
horizon while Wang et al. (2020) is for the infinite time horizon. However, all the
results in the current setting can be derived analogously.

Given a distributional control π, the agent repeatedly sample classical controls
from π for N rounds over the same time horizon to control the dynamics and
observe the corresponding values of the total reward. As explained in Wang et al.
(2020), when N → ∞, by law of large numbers the limiting system dynamics
under π becomes

dXπ
s = b̃(s,Xπ

s , πs)ds+ σ̃(s,Xπ
s , πs)dWs, s ∈ [0, T ], (1.1.7)

where the coefficients b̃ and σ̃ are defined as

b̃(s, y, π) :=

∫
U
b (s, y, u)π(u)du, y ∈ Rd, π ∈ P (U) , (1.1.8)

and

σ̃(s, y, π) :=

√∫
U
σ2 (s, y, u)π(u)du, y ∈ Rd, π ∈ P (U) , (1.1.9)

with P (U) being the set of density functions of probability measures on U that
are absolutely continuous with respect to the Lebesgue measure.

We call (1.1.7) the exploratory formulation of the controlled state dynamics,
and b̃(·, ·) and σ̃(·, ·) in (1.1.8) and (1.1.9), respectively, the exploratory drift and
the exploratory volatility.
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Similarly, the reward function r in (1.1.2) is modified to the exploratory reward

r̃ (s, y, π) :=

∫
U
r (s, y, u)π(u)du, y ∈ Rd, π ∈ P (U) . (1.1.10)

1.1.2.3 Entropy regularization

Given the exploratory formulation, it seems natural to set the objective to maxi-
mize

E
[∫ T

0
r̃ (s,Xπ

s , πs) ds+ h(Xπ
T )

]
(1.1.11)

subject to (1.1.7) under Xπ
0 = x0. However, it is entirely possible that the optimal

distributional control for this problem is just Dirac, and hence we would then be
in the realm of classical stochastic control. Indeed this happens when the so-called
Roxin’s condition is satisfied; see (Yong and Zhou, 1999, Chapter 2). Thus, in
order to encourage a genuine exploration we need to regulate its level. We use
Shanon’s differential entropy to measure the level of exploration:

H(π) := −
∫
U
π(u) lnπ(u)du, π ∈ P (U) ,

and require the total expected entropy to maintain a minimum level

−E
∫ T

0

∫
U
πs(u) lnπs(u)duds ≥ a (1.1.12)

where a > 0 is given. Taking the Lagrange multiplier of this exploration constraint
we arrive at the following new objective:

E
[∫ T

0

(
r̃ (s,Xπ

s , πs)− λ
∫
U
πs(u) lnπs(u)du

)
ds+ h(Xπ

T )

]
→ max, (1.1.13)

where λ > 0 is the Lagrange multiplier, which can also be regarded as an exoge-
nous exploration weighting parameter capturing the trade-off between exploitation
(the original reward function) and exploration (the entropy). This constant is also
known as the temperature parameter.

Denote by B(U) the Borel algebra on U . A density-function-valued process
π = {πs(·), 0 ≤ s ≤ T}, defined on a filtered probability space (Ω,F ,P; {Fs}s≥0)
along with a standard {Fs}s≥0-adapted, n-dimensional Brownian motion W =
{Ws, s ≥ 0}, is an admissible distributional control, denoted by π ∈ A, if (i) for
each 0 ≤ s ≤ T , πs(·) ∈ P(U) a.s.; (ii) for each A ∈ B(U), {

∫
A πs(u)du, 0 ≤ s ≤ T}

is {FWs }s≥0-adapted measurable process; (iii) the SDE (1.1.7) with Xπ
0 = x0

admits solutions xπ = {xπs , 0 ≤ s ≤ T} on the same filtered probability space,
whose distributions are all identical.
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1.1.3 Optimal Distributional Policies

To solve the entropy-regularized exploratory control problem (1.1.13), we again
apply dynamic programming. Introduce the optimal value function

V (t, x) := sup
π∈A

E
[ ∫ ∞

0

(∫
U
r
(
s,X

π
s , u

)
πs (u) du− λ

∫
U
πs(u) lnπs(u)du

)
ds + h(X

π
T )

∣∣∣∣Xπt = x

]
. (1.1.14)

Using standard arguments, we deduce that V satisfies the HJB equation

vt(t, x) + sup
π∈P(U)

∫
U

[H(t, x, u, vx(t, x), vxx(t, x))− λ lnπ(u)]π(u)du, (t, x) ∈ [0, T )× Rd,

(1.1.15)

with the terminal condition v(T, x) = h(x).

Noting that π ∈ P (U) if and only if∫
U
π(u)du = 1 and π(u) ≥ 0 a.e. on U, (1.1.16)

we can solve the (constrained) maximization problem on the right hand side of
(1.1.15) to get a feedback policy:

π∗(u; t, x) =
1

Z(λ, t, x, vx(t, x), vxx(t, x))
exp

(
1

λ
H(t, x, u, vx(t, x), vxx(t, x))

)
,

(1.1.17)
where u ∈ U, (t, x) ∈ [0, T ]× Rd, and

Z(λ, t, x, vx(t, x), vxx(t, x)) :=

∫
U

exp

(
1

λ
H(t, x, u, vx(t, x), vxx(t, x))

)
du

(1.1.18)
is the normalizing factor that makes π∗(·; t, x) a density function.

The optimal policy (1.1.17) is a deterministic function of the variables u, t
and x. For each given time–state pair (t, x), π∗(·; t, x) is the density function
of a Gibbs measure. When the temperature λ is very high, all the actions are
chosen in largely equal probabilities. When the temperature cools down as λ→ 0,
the distribution increasingly concentrates around the (global) maximizers of the
Hamiltonian, giving rise to something resembling the ε-greedy policies in multi-
armed bandit problems. When λ = 0, the distribution degenerates into the Dirac
measure on the maximizers of the Hamiltonian which is the classical optimal
control.

In the linear–quadratic (LQ) case when b, σ are linear in x and u and r, h
quadratic in x and u, then the Hamiltonian is quadratic in u. In the infinite
horizon case, Wang et al. (2020) prove that the Gibbs measure specializes to the
Gaussian distribution under some technical assumptions. We expect the same
to be true for the current case of a finite time horizon, although there may be
some technical subtleties. Moreover, Wang and Zhou (2020) apply the LQ results
to a continuous-time mean–variance portfolio selection problem and devise an
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algorithm to solve it without needing to know the parameters of the underlying
stocks.

In RL there is a widely used heuristic exploration strategy called the Boltz-
mann exploration, which assigns the following probability to action a when in
state st at time t:

p(st, a) =
eQt(st,a)/λ∑m
a=1 e

Qt(st,a)/λ
, a = 1, 2, . . . ,m, (1.1.19)

where Qt(s, a) is the Q-function value of a state-action pair (s, a), and λ > 0 is
a parameter that controls the level of exploration; see e.g. (Bridle, 1990; Cesa-
Bianchi et al., 2017; Sutton and Barto, 2018). There is a clear resemblance be-
tween (1.1.17) and (1.1.19). This in turn suggests that the continuous counterpart
of the Q-function is the Hamiltonian, given that the former is not well defined and
can not be used to rank and select actions in the continuous setting (Tallec et al.,
2019). The importance of this observation is twofold: the fact that we are able to
derive a result that reconciles with an eminent heuristic strategy in the discrete
setting verifies and justifies the entropy-regularized exploratory formulation for
the continuous setting, and, more importantly, the formulation lays a theoretical
underpinning of the Boltzmann exploration, thereby provides explainability of a
largely heuristic approach.4

Putting (1.1.17) back to (1.1.15), we obtain the following (elegant) form of the
HJB equation

vt(t, x) +λ lnZ(λ, t, x, vx(t, x), vxx(t, x)) = 0, (t, x) ∈ [0, T )×Rd; v(T, x) = h(x).
(1.1.20)

This equation appears to be a new type of parabolic partial differential equa-
tions (PDEs), which would provide a whole wealth of new research problems.
For example, what about its well-posedness (existence and uniqueness) in both
the classical and viscosity senses? How does its solution, along with its first- and
second-order derivatives, depend on the temperature λ > 0? As a result, how does
the optimal policy (1.1.17), along with its mean, variance and entropy, depend on
λ? Does the solution converge when λ → 0 and, if yes, what is the convergence
rate? Some of these questions have been answered in Tang et al. (2021).

Another significant direction for research is the choice of the temperature λ.
In this section, as in (Wang et al., 2020), λ is set to be an exogenous constant.
However, the agent is supposed to learn more and hence need less exploration as
time goes by. So it seems plausible that λ should depend on time and indeed decay
over time. On the other hand, it seems also reasonable that λ should depend on
the system state to optimize its use. In other words, λ ought to be endogenous.
How can we then formulate the problem to optimize the temperature process?

4A type of the formula (1.1.17) was first derived in (Wang et al., 2020, eq. (17)), but the
connection with Boltzmann exploration and Gibbs measure was not noted there.



10SUBCHAPTER 1.1. CURSE OF OPTIMALITY, AND HOWDOWEBREAK IT

1.1.4 Non-Convex Optimization and Langevin Diffu-
sions

While the entropy-regularized exploratory formulation was originally motivated
by RL in Wang et al. (2020), its use may go beyond RL, which this section will
demonstrate. The presentation follows (Gao et al., 2020), although we take a finite
horizon setup as opposed to that of the infinite horizon in (Gao et al., 2020).

Consider a finite-dimensional optimization problem:

min
x∈Rd

f(x), (1.1.21)

where f : Rd → [0,∞) is a non-convex function. The traditional gradient descent
(GD) algorithm may be trapped in a local optimum. The Langevin algorithm
injects noises into GD in order to get out of the trap:

Xk+1 = Xk − ηfx(Xk) +
√

2ηβkξk , k = 0, 1, 2, · · · , (1.1.22)

where fx is the gradient of f , η > 0 is the step size, {ξk} is i.i.d Gaussian noise and
{βk} is a sequence of the temperature parameters that typically decays over time
to zero. The continuous-time version of this algorithm is the so-called overdamped
Langevin diffusion:

dXs = −fx(Xs)dt+
√

2βsdWs, X0 = x0 (1.1.23)

where x0 ∈ Rd is an initialization, W = {Ws : s ≥ 0} is a standard d-dimensional
Brownian motion with W0 = 0, and β = {βs : s ≥ 0} is an adapted, nonnegative
stochastic process, which is also called the temperature process of the Langevin
diffusion.

When βs ≡ β > 0, under some mild assumptions on f , the solution of (1.1.23)
admits a unique stationary distribution which is the Gibbs measure with density

π(x) = 1
Z(β)e

− 1
β
f(x)

(Chiang et al., 1987). When β becomes small, this measure
increasingly concentrates on the global minima of f . This provides a theoretical
justification of using Langevin diffusion (1.1.23) to sample noises for the Langevin
algorithm (1.1.22).

A natural problem is to control the temperature process {βt : t ≥ 0} so
that the performance of the continuous-time version of the Langevin algorithm
(1.1.23) is optimized. Specifically, given an arbitrary initialization X0 = x0 ∈ Rd,
a computing budget T > 0, and the range of the temperature U = [a, b] where
0 ≤ a < b < ∞, we aim to solve the following stochastic control problem where
the temperature process is taken as the control:

Minimize E[f(XT )],

subject to


equation (1.1.23),
{βs : 0 ≤ s ≤ T} is adapted,
βs ∈ U a.e.s ∈ [0, T ], a.s.

(1.1.24)
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This is a classical control problem. Its HJB equation is:

vt(t, x) + min
β∈[a,1]

[βtr(vxx(t, x))− fx(x) · vx(t, x)] = 0, x ∈ Rd; v(T, x) = f(x). (1.1.25)

Then, the verification theorem yields that an optimal feedback policy is “ bang-
bang”: β∗(t, x) = b if tr(vxx(x)) < 0, and β∗(t, x) = a otherwise. This policy
stipulates that one should in some time–state pairs heat at the highest possible
temperature, while in others cool down completely, depending on the sign of
tr(vxx(t, x)). This policy, while theoretically optimal, is clearly too rigid to achieve
good performance in practice as it concentrates on two extreme actions only, and a
computational error of vxx(t, x) may cause drastic change from one extreme to the
other. This motivates us to use exploratory formulation and entropy regularization
in order to smooth out the temperature processes. Note that here the motivation
is no longer from “learning” per se as we can perfectly assume that the function
f is given and known.

We now present our entropy-regularized exploratory formulation of the prob-
lem. Instead of a classical control {βs : 0 ≤ s ≤ T} where βs ∈ U = [a, b] for
s ∈ [0, T ], we consider a distributional control π = {πs(·) : 0 ≤ s ≤ T}, which
represents a randomization of classical controls over the control space U where
a temperature βs ∈ U can be sampled from this distribution whose probability
density function is πs(·) at time s. The optimal value function of the exploratory
problem is

V (t, x) := inf
π∈A

E
[
−λ
∫
U
πs(u) lnπs(u)duds+ f(Xπ

T )
∣∣∣Xπ

t = x

]
, (1.1.26)

where the system dynamic is

dXπ
s = −fx(Xπ

s )dt+ σ̃(πs)dWs, (1.1.27)

with

σ̃(π) :=

√∫
U

2uπ(u)du. (1.1.28)

This problem is a special case of the general problem formulated in the previous
section (except that we now have a minimization problem instead of a maximiza-
tion one). Applying the general results there, we obtain the following optimal
feedback policy:

π∗(u; t, x) =
1

Z(λ, vxx(t, x))
exp

(
− 1

λ
[tr(vxx(t, x))u]

)
, (1.1.29)

where u ∈ U, (t, x) ∈ [0, T ]× Rd, and

Z(λ, vxx(t, x)) :=

∫
U

exp

(
− 1

λ
[tr(vxx(t, x))u]

)
du > 0.
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This is a truncated (in U) exponential distribution with the (state-dependent)

parameter c(t, x) := tr(vxx(t,x))
λ , and we do not require tr(vxx(x)) > 0 (i.e. v is in

general non-convex) or c(t, x) > 0 here.
The HJB equation is

vt(t, x)− fx(x) · vx(x)− λ ln(Z(λ, vxx(t, x))) = 0, (t, x) ∈ [0, T )× Rd, (1.1.30)

with v(T, x) = f(x).
To apply the obtained results to sample the Langevin algorithm (1.1.22), we

can follow the following steps. First, we solve the HJB equation (1.1.30) to get v.
Second, with the initialization X0 = x0, and for each k = 0, 1, 2, · · · , we sample βk
from π∗(·; ηk, Xk) where π∗ is determined by (1.1.29), Xk is the current iterate and
ηk is the cumulative step size. Finally we apply (1.1.22) to move to the next iterate
where ξk is independently sampled from a standard Gaussian distribution. For
a numerical experiment comparing the performance of this method (albeit based
on the infinite horizon model) with other benchmarks, see (Gao et al., 2020).

1.1.5 Algorithmic Considerations for RL

The previous sections are more about the theory of an entropy-regularized ex-
ploratory formulation. We now discuss some aspects of the algorithm design in
the RL context. Specifically, we need to design RL algorithms to learn the opti-
mal solutions of the entropy-regularized problems and to output implementable
policies, without assuming any knowledge about the underlying parameters or
attempting to estimate these parameters.

First thing to note is that some of the theoretical results presented earlier al-
ready have algorithmic implications. For example, if we know Gaussian is optimal,
then we will need to learn only two parameters (mean and variance). If an expo-
nential distribution is optimal, then there is only one parameter to learn. Making
use of this information could dramatically simplify the corresponding algorithms
and speed up their convergence.

The following discussion, however, is more general without targeting for a
particular distribution. It is a generalization of the algorithm developed in (Wang
and Zhou, 2020) for the mean–variance portfolio selection problem. The two key
steps involved in our algorithm are policy evaluation and policy improvement, as
standard in RL for MDPs (Sutton and Barto, 2018).

First we define the value function of a given distributional policy π. Note that
π generates an open-loop distributional control through the exploratory dynamics
(1.1.7) in the same way as in classical control. Specifically, for each given current
time–state pair (t, x) ∈ [0, T )× Rd, π generates an open-loop control

πs(u) := π(u; s,Xπ
s ) (1.1.31)

where {Xπ
s , t ≤ s ≤ T} solves (1.1.7) with Xπ

t = x when the policy π is applied
and assuming that {πs(·), t ≤ s ≤ T} ∈ A. Now define the value function of π:

V
π

(t, x) := E
[ ∫ T
t

(∫
U
r
(
s,X

π
s , u

)
πs (u) du− λ

∫
U
πs(u) lnπs(u)du

)
ds + h(X

π
T )

∣∣∣∣Xπt = x

]
. (1.1.32)
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In an RL algorithm, one starts with an initial policy π0.5 For each given
πk, k = 0, 1, 2, · · · , policy evaluation is carried out to obtain its value function
V πk . Then, a policy improvement theorem specifies the next policy πk+1, and
the iterations go on. We now describe these steps.

For the policy evaluation, we follow Doya (2000) for learning the value function
V π under any arbitrarily given admissible policy π. By Bellman’s consistency,
we have

V
π
(t, x) = E

[∫ t′
t

(∫
U
r
(
s,X

π
s , u

)
πs (u) du− λ

∫
U
πs(u) lnπs(u)du

)
ds + V

π
(t

′
, X

π
t′ )
∣∣∣Xπt = x

]
, (1.1.33)

for any (t, x) ∈ [0, T ) × Rd and t′ ∈ (t, T ]. This is actually analogous to the
Bellman’s principle of optimality for the optimal value function. Rearranging this
equation and dividing both sides by t′ − t, we obtain

E
[
V π(t′, Xπ

t′ ) − V π(t,Xπt )

t′ − t
+

1

t′ − t

∫ t′
t

(∫
U
r
(
s,X

π
s , u

)
πs (u) du− λ

∫
U
πs(u) lnπs(u)du

)
ds
∣∣∣Xπt = x

]
= 0.

Letting t′ → t in the left hand side motivates the definition of the temproral
difference (TD) error

δt := V̇ πt +

∫
U
r (t,Xπ

t , u)πt (u) du− λ
∫
U
πt(u) lnπt(u)du, (1.1.34)

where V̇ πt := d
dtV

π(t,Xπ
t ) is the sample-wise total derivative of V π along (t,Xπ

t ).

The objective of the policy evaluation procedure is to minimize the expected
total squared TD error in order to find the value function V π. In general, this
can be done as follows. Denote by V θ and πφ respectively the parameterized
value function and policy (upon using regressions or neural networks, or taking
advantage of any known parametric forms of them), with θ, φ being the vectors
of suitable dimensions to be learned. We then minimize

C(θ, φ) := 1
2E
[∫ T

0 |δt|
2dt
]

= 1
2E
[∫ T

0

∣∣V̇ θ
t +

∫
U r(t,X

φ
t , u)πφt (u) du− λ

∫
U π

φ
t (u) lnπφt (u)du

∣∣2dt] ,
where πφ = {πφt (·), 0 ≤ t ≤ T} is generated from πφ with respect to a given
initial state X0 = x0 at time 0. To approximate C(θ, φ), we first discretize [0, T ]
into small intervals [ti, ti+1], i = 0, 1, · · · , l, with a equal length ∆t, where t0 = 0
and tl+1 = T . Then we collect a set of samples D = {(ti, xi), i = 0, 1, · · · , l + 1}
in the following way. The initial sample is (0, x0) for i = 0. Now, at each ti,

i = 0, 1, · · · , l, we sample πφti to obtain ui ∈ U and then use the constant control
ut ≡ ui to control the (classical) system dynamics (1.1.1) during [ti, ti+1). We

5The choice of this initialization can also be guided by the theory. For instance, if the theory
stipulates that Gaussian is optimal, then we can choose π0 as Gaussian with some initial values
of the mean and variance.
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observe the state xi+1 at the next time instant ti+1 along with the reward ri
collected over [ti, ti+1). We then approximate V̇ θ

t by

V̇ θ(ti, xi) :=
V θ(ti+1, xi+1)− V θ(ti, xi)

∆t
,

and approximate C(θ, φ) by

C(θ, φ) =
1

2

∑
(ti,xi)∈D

(
V̇ θ(ti, xi) + ri + λ

∫
U
πφti(u) lnπφti(u)du

)2

∆t. (1.1.35)

Finally, we search (θ∗, φ∗)′ that minimize C(θ, φ) using stochastic gradient
descent algorithms; see, for example, (Goodfellow et al., 2016, Chapter 8). This
in turn leads to the value function V θ∗ , concluding the policy evaluation step.6

The policy improvement step is to update the next policy based on the current
policy π along with the corresponding value function V π, the latter having been
found by the policy evaluation. Assume that V π ∈ C1,2([0, T )×Rd)∩C0([0, T ]×
Rd), and that the policy π̃ defined by

π̃(u; t, x) =
1

Z(λ, t, x, V π
x (t, x), V π

xx(t, x))
exp

(
1

λ
H(t, x, u, V π

x (t, x), V π
xx(t, x))

)
(1.1.36)

generates admissible (open-loop) distributional controls for the exploratory dy-
namics (1.1.7). Then we can prove that π̃ is better than π in that

V π̃(t, x) ≥ V π(t, x), (t, x) ∈ [0, T ]× Rd. (1.1.37)

There is an obvious resemblance between the updating rule (1.1.36) and the
optimal policy (1.1.17). Their proofs are also similar: π̃ achieves the supremum
in (1.1.15) where v is replaced with V π. For a proof in the mean–variance setting,
see Wang and Zhou (2020).

1.1.6 Conclusion

In this subchapter, we have put forth the notion of “curse of optimality” to
capture the theoretical and empirical observations that traditional approaches
to optimization often end with unfavorable solutions that are not globally opti-
mal, or too extreme to be useful, or outright irrelevant practically. We find that
an entropy-regularized exploratory reformulation of the problem, originally moti-
vated by balancing exploration and exploitation for reinforcement learning, may

6In a recent paper, Jia and Zhou (2021) consider a general policy evaluation problem with
continuous time and space. Applying a martingale approach, the authors find that the mean-
square TD error method introduced here actually minimizes temporal variations rather than
achieving accurate evaluation. They derive alternative policy evaluation methods based on the
martingality, some of which correspond to well-studied TD algorithms such as TD(0) and TD(λ)
for disctete-time MDPs.
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provide viable solutions to all these setbacks. This is because the randomization
involved in such a formulation helps escape from local traps, broadens search space
and reduces the desire to be “perfect” (extreme) by allowing more flexibility and
accommodation. In the realm of continuous time and state/action spaces, this is
still a largely uncharted research area where open problems abound.
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