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This paper concerns a class of similinear stochastic partial differential equations, of which the drift term
is u second-order dilferentiul operator plus a nonlinearity, and the diffusion term is a first-order differential
operator. When the nonlinearity is only continuous in the state, it is shown that there exist solutions of
the equation provided that the Wiener process involved is one-dimensionul. The existence of optimal
reluxed controls for this class of equations is also proved. Our method is based on a group analysis of
the-first-order differential operator and a time change technique.

semilinear stochastic partial diflerential equations + group of operators * time change = compact
embedding * optimal relaxed controls

I. Introduction

The linear stochastic partial differential equations (SPDI-E::in short) have been studied
extensively by many authors (cf. Pardoux, 1975, 1979; Kunita, 1982; Walsh, 1986),
especially by Krylov and Rozovskii (1977, 1982a, 1982b). For nonlinear SPDEs,
however, even the existence and uniqueness of solutions are not clear in general.
In this paper, we will consider the following kind of nonlincaﬂsemi]inear} SPDE:

dq(t, x)=[a.(a”(x)a,q(1, x)+f'(x, q(1, x)))] dt
+[o'(x)a.iq(1, x)+h(x)q(t, x)+g(x)]dW(r), xeR’  re[o, 1],
Q(O: x)=40(x)- xER“" ) (I.l)

where W is a one-dimensional Wiener process with W(0) =0, and 4, :=3/ax,. Note
here and in the following we always use the conventional repeated indices for

summation.
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2 Xun Yu Zhou | Senilinear stochastic PDEs

SPDE (1.1) describes intuitively a physical object governed by a semilinear partial
differential equation_‘_ perturbed by some random forces. We emphasize that the
diffusion term of (1.1) is a first-order differential operator. Roughly speaking, as we
will see at the later stage, the appearance of o' means that the random perturbation
influences the behavior of the solutions of (1.1) so strongly as does the drift term
containing the second-order operator. This will also result in one of the main
difficulties in this paper.

The objective of this paper is twofold. First we will be concerned with the existence
of solutions (the precise meaning of ‘solution’ will be given later on) of (1.1) with
the continuous nonlinearity. It should be noted that when f'(x,+) is Lipschitz
continuous, the existence and uniqueness of solutions can be proved by a standard
Picard's method. One may refer to Pardoux (1975), Walsh (1986) and Tudor (1989)
for this method (though for slightly different forms of nonlinear SPDEs than (1.1)).
When f'(x, - ) is only continuous, however, Picard's method is not effective. On the
other hand, one may recall that, in stochastic differential equation (SDE) theory, a
typical method of proving the existence with the continuous nonlinearities is to
employ the Ascoli-Arzela theorem and Skorohod theorem (cf. Ikeda and Watanabe,
1989). But we are now treating the SPDE. the state space of which is infinite

Ly

|
e

dimension, where there is no A-A theorem available to us. In this paper, we will 7

employ a similar argument to that in Zhou (1991) to overcome the difliculty. The
main idea is to use a time change technique, based on an analysis of the group
generated by the first-order differential operator, to turn the equation (1.1) into a
P-a.s. deterministic equation. This allows us to apply a compact embedding lemma
(Lemma 2.3 below) and establish the desired existence theorem.

Second, we will study the optimal control problem for SPDEs like (1.1). Most of
the existing results on this aspect are for linear SPDEs, the reason perhaps being
that Zakai's equations for partially observed diffusions are linear SPDEs (cf.
Bensoussan, 1983; Nagase and Nisio, 1990; Bensoussan and Nisio, 1990; Zhou,
1991). But the study on the nonlinear SPDEs as (1.1) is of its own interest in both
theory and application. Using the same method mentioned above, we are able to
show that there exists an optimal relaxed control.

The main restriction of this paper is that the Wiener process W is required to be
one-dimensional. As for multi-dimensional cases, our method applies only to some
special cases (for example, the diffusion operators are commutative) which in
particular include those that the diffusion operators are of order zero.

It should be noted that the ‘time change’ technique, sometimes also called
‘reduction to robust equation,’” has been employed before in the literature by Da
Prato and Tubaro (1985), Cannarsa and Vespri (1987), etc. They reduced the
nonlinear SPDEs to P-a.s. deterministic PDEs (robust equations) and then solved
them by semigroup theory. However, théy assumed some Lipschitz continuity and/or
monotonicity of the nonlinearities in order to guarantee the existence of solutions
to the robust equations. In the present paper, we can handle such SPDEs with only
continuous nonlinearities by applying a compact embedding lemma and Skorohod

0511'"'03509
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theorem to the approximating solutions of the robust equations. Furthermore, our
approach can allow us to treat SPDEs with degenerate second-order differential

operators in the drift, for which the semigroup theory can hardly apply.

The paper is organized as follows: In Section 2 we will give some basic notations
as well as some preliminary lemmas which will play essential roles in this paper.
In Section 3 we will prove the existence of solutions of (1.1). In Section 4 we study
a variant, where the existence theorem is obtained for a more ‘abstract’ equation.
Section 5 is devoted to the existence of optimal relaxed controls.

2. Preliminaries

Let us define operators A and M by
Ad(x)=a,(a’(x)ap(x)), (2.1)
M (x):=o'(x)ap(x)+h(x)p(x) for xeR’ (2.2)
We may then rewrite the SPDE (1.1) as follows:

{dq(rl=[Aq(:)+a.-f'(-,q(r.°))]dr+[Mq{r}+g]dW(r}, te[0,1], 555

q(0) = qy.

In this paper, we shall consider the triplet H'= H< H™' where H* denotes
the Sobolev space W5(R“) with the Sobolev norm |- ||y (k=-1,0,1). We denote
by (-, +) the duality pairing between H ' and H' under (H")*=H"’, and by (-, ")
the inner product in H",

For the second-order differential operator A, when we write (Adg, ), then A is
understood to be an operator from H' to H™' in the following way:

(A, )= —(a’(-)a;p, ) for ¢,y H'".

Given a filtered probability space ({2, %, P; %,), a number p with 1 < p=<+o0, and
a Hilbert space X with the norm |- ||;. Define

L%(0,1; X):={¢: ¢ is an X-valued F -adapted measurable process on [0, 1],
and ¢ e L"([0,1]1x 2; X)}.
We identify ¢ and ¢' in L%(0, 1; X) if EL; |@(2)—a'(1)]|% dr=0.

Now let us clarify the meaning of a solution of (2.3).

Definition 2.1. By a (weak) solution of the eq. (2.3), we mean an H '-valued process
g={q(1): 0= =1} defined on a probability space ({2, %, P) with a filtration {#,: 0=
t =1} such that

027302490
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(i) there exists a one-dimensional %,-Wiener process {W(r):0=r¢=<1} with
W(0) =0;
(ii) ge L3(0,1; H');
(iii) for any ne C'(R”) (smooth function on R with compact support) and
almost all (1, w)e[0, 1]x £,

(g(1), m)=1(qu, ”J"'J:, [(Aq(s), m)=(f"(+, q(s,-)),3m)] ds
+J. (Mq(s)+g, n)dW(s). (2.4)

To emphasize the particular role of the Wiener process W, sometimes we call
(¢, W) a solution of (2.3).

Remark 2.1. According to Da Prato and Tubaro (1985) and Tudor (1989), one can
also define so-called mild solutions of (2.3) as follows: suppose A generates a
Co-semigroup T() on H” and H™', then a mild solution is a solution of the following
integral equation; '

r

q1)= T(-")%JPJ. T(t=5)aS" (-, q(s,+)) ds+J' T(t=s5)(Mg(s)+g)dW(s).
0 0

Note the mild solutions, which satisfy (2.4) on any given probability space with
any given Wiener process, is analogous to those in PDE theory (cf. Ahmed and
Teo, 1981, and Pazy, 1983). In Definition 2.1, on the other hand, probability spaces
together with Wiener processes are also a part of the solutions. In this sense, the
solutions considered in this paper ure weaker than the mild solutions. Moreover, it
is diflicult, i not impossible, to extend the concept of mild solutions to degenerate
A which no longer generates a C,-semigroup, while in our definition, it does not
matter whether A is degenerate or nondegenerate (see also Section 4 below).

Let us fix two positive constants K and 8. We introduce the following assumptions

on the functions appearing in (2.3):
(A1) a’, o, h:R* >R' are bounded measurable functions; the derivatives of o

up to second order and those of h up to first order do not exceed K in absolute value.
(A2) a”=a”", i,j=1,2,...,d, and (a”~}o'c’), =8I, where I is the identity

matrix.
(A3) f:R“xR'>R'is jointly measurable, continuous in the second argument,

and there exists A € H” such that
[ (x, Dl KA(x)+|r), i=1,2,...,d
On the other hand, ge H'.
(A4) g, H".

027802452
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Remark 2.2. In this paper, the operator A is considered to be a purely second-order
operator without lower terms. But it does not lose any generality. Indeed, if Ag(x) =
d,(a’(x)a,b(x)+ b'(x)@(x)+c(x)), then the lower order terms b'(x) ¢ (x) + ¢(x) can
be included to f'(x, ¢(x)), and (A3) is satisfied if b’ and c are uniformly bounded.

The following result concerning the solutions of linear SPDEs is an easy variant
of Krylov and Rozovskii (1977).

Lemma 2.1. Given a filtered probability space (2, #, P; F,) with a one-dimensional
Wiener process W, consider the following linear SPDE

i dg(t)=[Aq(t)+a,F'()]dr+[Mgq(t)+gldW(t), t€[0,1], _

q(0) = gu.
We assume that (A1), (A2) and (A4) are satisfied and that F' € L%(0,1; H"), ge H".
Then, (2.5) has a unique solution g€ L%(0,1; H')n L*(£2; C(0,1; H")) and there
exists a consiant C, depending only on K and 8, such that

Elqli+E [ latolia
1

I

o
<ce{lali+ [ | £ 1PN+t as). 26)

Moreover, forany p= 2, if F'e L2(0, 1; H®), then there is a constant C( p) such that

elgolir+£( [ et as)
0

]

L d )
<cinE] Ilq‘.llﬁ"+_[ [z IIF'(s}Ilﬁ"+IJgIIﬁ"] ds}. - @7

Now let us introduce two lemmas which play the essential roles in this paper.

Lemma 2.2, Assume (Al). On the Hilbert space H®, define an operator M by (2.2)
with the domain D(M )= H', then

(i) M can be extended to a closed operator (still denoted by M) which generates
a strongly continuous group {e™': —c0 < t < +o0} on H°.Moreover, H' is an invariant
subspace of the operator €™ for each 1. Further, there exists a positive constant N such

that
|I3m”£.m‘~ﬂ*p$-emd for any t € (—o0, +00), k=0,1; (2.8)

(ii) Denote by M* the adjoint operator of M on H®, then H'< D(M*) and M*
also generates a strongly continuous group {e™ ' =(e™)*: ~0<1<+x} on HC.
Moreover, with the same constant N, we have

le™ et <ty <e™ for any 1€ (~0, +00), k=0, 1. (2.9)

025602510

£



Lt
16003

16004
toln?

16008

1aln0g

16011

16011

16012

1603

164
16015

16016

16017

16018

16019

162

16021

16022

16023

o024
16025

16020

16027

16028
16029
16630
16031
16032

16033
16034
16HAS

([

16037

6048

L6030

374 119 1 40 16" Galley .6 HEEEN

6 Xun Yu Zhou | Semilinear stochastic PDEs

(iii) Define two operators M*, M** from H' to H™" by the following formula:
(M, )= (M, M*y) =(¢p, M**})) for ¢,y H',
then M* and M** are bounded linear operators from H' to H™".

Proof. See Appendix of Zhou (1991). O

Remark 2.3. Intuitively speaking, Lemma 2.1 simply says that the first-order differen-
tial operator corresponds to a reversible evolution process.

From now on, when we write M, M*, M? and M*?, it is always understood to
be in the sense of that in Lemma 2.2.

Lemma 2.3. Let D be a set in R such that
D is bounded, open and with smooth boundary. (2.10)
Define Wy[0,1]:={¢: p € L*(0, 1; H'(D)), do/dte L*(0,1; H"'(D))} with the

norm

1 i 1/2
“‘buwr,!u.u::(J |f¢(!]lff.:)df+j ”d‘ﬁ(f)/d’ﬂz-:.udf) ;

where H"(D) is the Sobolev space W5(D) with the Sobolev norm |- ||,.;. Then the
embedding: Wy,[0, 1]- L*(0, 1; H(D)) is compact.

Proof: See, for example, Lions (1969). O

3. Existence of solutions

Theorem 3.1. Under (A1)-(A4), there exists at least one solution of the equation (2.3).
Moreover, there is a positive constant N,, depending only on K and 8, such that for
any solution gq,

sup Ellq(f)|I§+EJ lg(lli dr= Ni(llgollz+ A5+ lgll3)- (3.1)
== 0

Proof. Throughout the proof, N, (i=1, 2, ...) will denote some constants depending
only on K and 4.
Fix a standard probability space ({2, %, P) and a one-dimensional Wiener process
W with W(0)=0. Let & =c{W(s):0=<s=t}. Define a sequence {gq,}r-,<
%(0, 1; H') as follows: go(t) = g,; once g,_, is defined, then let g, € L5(0, 1; H') n
L*(2; C(0,1; H")) be the (unique) solution of the following linear SPDE
dq;-(-’) =[AQH{£)+6III( T q»—l(’- : })1 df+{MQn(f)+§) d W{IJ' te [Us 1]1
3i2
{%(U}=Qm "=l»2v”-' ( )
Note the existence and uniqueness of solutions of (3.2) follow by Lemma 2.1 and
i ]
the fact that E J5 [[f(+, gu-i(,)[§ dr <2K7E [LIAIG+[1ga-1(0)]I5] d.

02417702702
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Due to (2.6), we have, for n=1,2,...,

El[q,.{r}||§+5j llg. ()| dr
sce{||q',|t:‘.+||gnﬁ+j zdx*[||A||a+uq,._lmnﬁ]dr}
0
ﬂN:a(Hj Ellq.,_.(r}llfid!)
(1]

EN‘a(]—f_J E“qu—l(t}”sdr)v {33}
]

where a:= 1+ qollc + lgll5, N2:= C-max{l +2dK?|A||3, 2dK?}, Nyi= Nya. In par-

ticular, we have
Elgi(n|i+E j llg, ()]} dr < Nsa(1+at) < Nya(1+1). (3.4)

By (3.3) and (3.4), it is not difficult to obtain by induction that

Ellg.(0)]5+ EJ llg.(0)]7 dt

w=1

1 1
= N}ﬂ( b3 —[N_\H)kfk+;{Nja}"'|f")

k=o k!

1
=< N,a(exp{ Niat)+— (N,a)"_'r") ;

n

hence

sup E LI llg.(0)]F dt < +oo. (3.5)
Note for p =2, 4, we have

E J 17y @ueit, - D)E" de 2% K*E J:[llau%”nq,.-;(r}llﬁ”]dr.

hence appealing to (2.7), a totally similar argument to above yields
sup sup E([g.(D)]s+lg.(D]5) < +oo. (3.6)

n UO=r=l

Therefore, it follows from (2.7) that

i 2
sup E(_[ llqn(r)!fdr)

<sup CE{”%”;:’LJ’U [EI IfC s gaslss '))”3“'”8"3] ds

I
<sup CE{H%II?:H dK* I LA NG+ 11ga-1(5)5] dHIISIIS] <+,
(3.7)

0094701726
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Define p,(1):=e """"q, (1). It will be seen in the sequel that p, satisfies an SPDE
with a constant diffusion term p,,(1):= [} e ™"“'g dW(s). So we define Pualt)=
Pult)=p,.(t). Then by Lemma 2.2 and (3.7), we have

sup £ [ In(oliar
1)

ssupEj e Mg, (01} dr
4 0

1
<sup E( sup emlwmlj Hq,,(r}l]fdl)
t o

U=r=]

/2 1 27 1/2
Esup(E sup emrw“”) [E(I ]Iq,.(r)"fdr) ] < +00, (3.8)
L I

Q==

Similarly, we have
1 1 f
sup EJ Il 2ui ()17 de < sup EI J MWl g2 ds dt < +0,
n u n u u
It follows that

I
sup E‘[ || P25 di < +co, (3.9)
" 0

On the other hand, for any ¢ € H', we have the following formula in H ™' appealing
to Lemma 2.2 and Ito's formula:
d(e™™ Mg ) =IM*2 e M WOy dp - M* e M WG dW(y).
Therefore again by Ito’s formula
d(pa(t), @) =d(qu(2), e ™ V") — (e ™" "g, $) dW (1)
=((Agu()+3S'(, qu-i(1,-)), e ™™ ™) di
+(Mg,(1)+g,e ™ V%) dw(r)
+(ga(1), sM*2 e MW 4y 4y
=(ga(1), M* ™™ W) dW (1)
= (Mg, (1) +g M*e ™" ") d
— (e g, $) dW(1)
={((A=3M?)g,(1) = Mg, e ™"V g)

= (' Guar(t,0)), e M YO %))} de. (3.10)
Hence
(apua(n)/dt, ) = 1A ~1M 0,1, + gl
el
I ety nn.,]||e~'“’wm¢nl
< Ne e Llgu(Oll + lgu-il0lo+ g1 6.
0116702045
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This yields

i
sup E J’ dp,a(1)/de|2, dt

I
sconst_-supE'[ MUl g (DT + |- (DG +1) de <+o0.  (3.11)

i

(3.9) and (3.11) imply that there exists a constant Ns which is independent of n Iy
such that, for any D< R with the property (2.11),

E|| puallivii0.1< Ns. (3.12)

Let Dy :={xeR": |x|<k} for k=1,2,.... Define a metric d on L*0, 1; H") by

o 1 1/2
d(¢, )= E. %min{l. (j (1) =g(Od.00, dr) }

We denote by L*(0, 1; H") the completion of L*(0, 1; H°) by d, namely, for any
¢ € L*(0, 1; H), there is {¢,} = L*(0, 1; H®) such that [} ||, — ¢ |2 dt~ 0 for any
compact D. It should be noted that any ¢ € L*(0, 1; H") is still a function of (1, x, @)
instead of abstract object, since ¢ is pointwisely a limit of functions in the space
L*(0, 1; H").

For p>0, B,'={¢€ L(0,1; H'): |||l w,, 0= (2"0)"%, k=1,2,...} is compact
in L*(0, 1; H°) due to Lemma 2.3. Now (3.12) yields

o0

: 1
P(pn,ZEBp)"‘{‘ E 2& NSENS/)O! for any p>0|
2

k=1
hence {p,.} is tight as a sequence of L*(0, 1; H°)-r.v. (cf. lkeda and Watanabe,
1989). Thus by the Skorohod theorem, we can choose a subsequence (still denoted
by {n}) and have C(0, 1;R") x L*(0, 1; H")-random variables (W,, j,.), (W, 5,) on
a suitable probability space (.(j, .’ﬁ, f’), such that

law of (W,, p,.) =law of (W, p,.), (3.13)
and P-as.

W,-» W  in C(0,1;R"), (3.14)

P2 Pa in L(0,1; H®), as n-+oo, (3.15)

Define
Ga(t)i= e”“'n"’(j e MWlg g ﬁ',,(s)+ﬁ..,zu)).
0

q(” i ei\rl'\-i"l-‘](JA c—Mﬁv’ls)g d w(s)_!_ﬁz(!.]) -
= 1]

By virtue of (3.13), we have
law of (W,, §,) = law of (W, g,). (3.16)

018102322
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Further, observing (3.14) and (3.15), it is not difficult to derive that (cf. Zhou, 1991,
Theor 3.1) there is a subsequence (still denoted by {n}) satisfying

E”én‘é"i‘mn:u";"@, as n - oo, (3.17)

On the other hand, in view of (3.7), there is a subsequence of {g,} weakly converging
in  L([0,1]x £; H'), and the limit is necessarily 4. This implies e

LX([0, 1]x 2; HY).
By (3.16), (§,, W,) satisfies €q. (3.2). Let ¢ be an absolutely continuous lunction
from [0, 1]intoR', with ¢y =dy;/dre L*(0, 1), (1) =0 and n€ Cy(R"). Ito’s formula

yields

I
0=(Q’n. ﬂ)lff{OJ*J' [(Aén("‘}- H)_(f"[ s éﬂ‘—l(f: ! J)! 3:"?)]'9(-'} d"

+j {Mc}‘,.(!Hg,n)ril(r)d‘—i’n(fHJ- (Gu(t), n)d(1) d1, P-as.
L] 1]
(3.18)

Noting (3.17), there is a subsequence (still denoted by {n}) such that
ollbx, )= §(t, x,w) ae.in [0, 1] xsupp n x.{j, as i — o0,

So the assumption (A3) and the dominated convergence theorem gives
1
' EJ f I£°C6 dult, X)) = £'(x, 4(t, x))P dx di >0 as n-+c0. (3.19)
0 Jsuppy
Now sending n to + in (3.18), we get

1
0=(qq, n}¢(0J+J [AG(), )= (f"(+, 4(2,)), am)]u(r) de
(1]

+J (Mé'(!HB,’?)!J'IUJdW(!HI (4(1), m)g(1) de. (3.20)
1] 4 -

In the above, the convergence of oth;; terms rather than (3.19) can be proved by
a routine argument as in linear SPDE cases (cf. Pardoux, 1979). Now (3.20) means
that (4, W) is a solution of (2.3) (cf. Pardoux, 1979). Finally, (3.1) follows easily
from the estimate (2.6) and Gronwall’s inequality. O

Remark 3.1. The main idea in proving Theorem 3.1 is to construct the transformation
pu(t)=e MYg (1), such that Pn satisfies an ‘almost’ deterministic equation in the
sense that p, satisfies an SPDE whose diffusion term is a constant stochastic process
(=Joe ™™g dW(1); see (3.10)). This method may be viewed as a time change
technique, which, however, fails to be effective in general for the equation as follows:

"
idq{r}=[Aq(rJ+a.-f'('. q(1,+))] dt+kZ [Mig()+g.]dW* (1), (3.21) {
q(o) = fo,

0242°'02713"°25226
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where Wi=(W', ..., W%)is a d"-dimensional Wiener process, and A, M, have the
same forms as (2.1), (2.2). But in some special cases, for example, if {M,} are
commutative (i.e., MM, = MM, for k#j), we can still obtain the existence of
solutions of (3.21) by a similar argument to the one-dimensional Wiener process
cases (cf. Zhou, 1991, Theor 5.1). Note the commutative cases include those that
{M,} are of order zero or the coeflicients of {M,} are constants. Now we have seen
that the main difliculty of treating our problem comes [rom the unboundedness of

the operators in diffusion term.

Remark 3.2. Take the transformation p(1):=e "™"'"¢(t) in (2.3), then a similar
calculation to that of (3.10) yields that the eq. (2.3) corresponds to (note the above
transformation is reversible!) a deterministic evolution equation (called robust
equation), the dynamics of which being A —3M?, perturbed by a constant stochastic
process. This justifies the observation in the Introduction that diffusion containing
the first-order operator influences the behavior of the solutions of (2.3) as strongly
as does the drift containing the second-order operator.

Remark 3.3. The uniqueness (in law sense) of solutions of (2.3), when f'(x, +) is
merely continuous, seems to be a very difficult problem and remains open according
to the author’s knowledge. The difficulty arises from the dimensions infinity: in SDE
cases, the corresponding uniqueness has been proved using some estimates of the
differential operators (Stroock and Varadhan, 1979). However, when the differential
operators concerned are on infinite dimensions, none of those estimates is known.

Let us conclude this section by an example.
Example 3.1. Consider a heat flow in a random medium with a temperature depen-
dent source. The lield of temperature g is governed by the following SPDE
dg(r,x)=(4q(f, x)+Vf(q(t, x))dt+g(x)dW(1), te€[0,1], xeR',
i q(0, x) = go(x),

where 4 is the Laplacian, V is the gradient in x, and W is a one-dimensional Wiener
process. A deterministic version and a linear version of the above system have been
discussed in Pazy (1983) and Nagase and Nisio (1990), respectively. By Theorem
3.1, there exists at least one solution of the equation provided that g,e H", ge H',
and f satisfies continuity and linear growth conditions.

4. A variant

In this section, we shall consider the following type of equations:
{dq(r) =[Aq(t)+ F(q(t))]dt+[Mg(t)+g]dW(t), te[0,1],
q(0) = qo,

(4.1)

036203017
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22008 . = M
22007 where A, M are defined as in (2.1), (2.2), and F maps H® into H™'. This type of
equations is of a more general and abstract feature than (2.3), and has been studied

22008
22009 by many authors (Pardoux, 1975; Walsh, 1986; Nagase, 1990; .. .). The existence
22010 of its solutions can be solved by the same method as that for (2.3), except for a
22011 technical problem, which will be explained below.
2012 First let us introduce the following function space. For a positive r, L2={¢: ¢
22013 is a real valued Borel function on RY, and (1+|:[))"?¢(-)e H’} with the norm
2014 b o= e [(1+]x) "2 b (x)[* dx)'/2. L} thus defined is a Hilbert space which is a
2015 subspace of H".
32016 Let H!:={d: &, dxp € L]} with the norm

2 4 2 A
s Iol= (1913, + £ losli)

=1}
22018 It also becomes a Hilbert space.
2019 Theorem 4.1. In addition to the assumptions (A1), (A2), we assume that
22020 (A3) F:H"- H™' is continuous, maps L? into L}, and
201 IF(p)|l- < K1+ pllo) for peH",
IE@lo,< KO+ [#llo,) for we L,
22000 geH'nL}.
22024 (A4) g€ L.
208 Then, there exists at least one solution of (4.1).
22026 Proof. We construct {g,} in a similar fashion to (3.2). By virtue of (A3)’, we can
2027 obtain that §, satisfies (3.17) using the entirely same argument as in the proof of
22024 Theorem 3.1. But this is not enough, since (3.17) only means, roughly speaking,
22029 that §, converges to § in H"(D) for every bounded D. In the present case, we must,
22030 show that the convergence is also in H’. To this end, we make use of the result of
22031 Krylov and Rozovskii (1982b) concerning the L}-norm estimates of the solution of
22032 linear SPDE, to obtain that (noting (A3)') :
2083 sup sup E[d,(0)]3,=consff (laulli.+ Igl3.) < +oo. 1 ¢
n D=t=|]
22034 Then,
- I
2035 E J J‘ lg(1, x)|* dx dt
0 Jdxl=p

. 1

2036 = lim lim EJ‘ J |g.(t, x)]* dx dt
k= n—=o) 0 [.l"-lxl'fk

220 Econs&(ltcﬁ‘i'—»ﬂ. as p - +co. . .l. .

22089 0260702359
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Hence §e L*([0, 1]x (2; H"), and
o
EJ G, (1) =G(0)|5dt =0, as n->-+co. (4.2)
0

Due to the continuity of F, we can complete the proof by the same argument as in
the proof of Theorem 3.1. O

In the foregoing, the existence results have been obtained under the assumption
(A2), i.e., the equations considered are nondegenerate. Now we will show that wz
can allow the equation to be degenerate at the cost of posing more regularity
conditions on the coefficients and initial state.

- - - - - .
Let us introduce the (ollowing conditions:
(B1) a”, o', h:R’ >R' are measurable; these functions and their derivatives up

to second-order do not exceed K in absolute value.
(B2) a’=a”, i, j=1,2,...,4d, and (a’—30'0’);=0.
(B3) F:H°- H"iscontinuous, maps L} and H'into themselves, respectively, and

IF(o) < K(1+|pll) forpe HY,  k=0,1,

uF(w)”u.r'&K(l+|!¢"”u,r] for Y e LE.

geH nHy /7

(B4) goe H'n L}.

Lemma 4.1 (Krylov and Rozovskii, 1982a,b). Given a filtered probability space
(02, F P, F,) and a one-dimensional Wiener process W. Assume (B1), (B2), (B4) and
that Fe L3(0,1; H') o L5(0,1; L), Ge H?~ H!. Then the following equafiaEL

A

(4.3)

.dg(1) =[Aq(t)+ F(1)] de+[Mq(t)+ Gldw(r), 1e€[0,1],
{_q(OFqn.

has a unique solution g€ L%(0,1; H')n L%(0, 1; L?) and there exists a constant C',
depending only on K and r, such that

Ellg(nlld., = C’E{ llqoll5.-+ I A +IGI3.] dS}- (4.4)
0
Moreover, if Fe L%(0,1; H') for p=2, then there is a constant C'(p) such that

Elq(nli< c*ms{uquuuf [llﬁ{s)lli’+llélli+.]ds}, k=0,1. O
(1]
(4.5)

019302099
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Theorem 4.2. Under c":.ssump:iuns (B1)-(B4), there exists at least one solution of (4.1).

Proof. By virtue of Lemma 4.1, the result can be proved by the same argument as
in the proof of Theorem 4.1. [J

5. Optimal relaxed controls

In this section we shali study the existence of optimal relaxed controls for systems
governed by semilinear SPDE like (2.3). First let us introduce the definition of
relaxed control.

~ Let I be a given compact set in R™. By .1 we denote the set of all measures n

on [0, 1]xRY x I" such that
#(SxI)=m(S), for any Lebesque set S in [0, 1] xR, (5.1)

where m is the Lebesque measure on [0, 1]xRY.
We define by A, the limitation of A on V,:=[0, 11x[=k k]*xT, ie., A=
{p[,,,‘”x‘_k‘”-:,,.: meA}, k=1,2,.... Denoting by d, the Prohorov metric on A

we define a metric on A as follows:

© | ,
d(,u.,,u'}:=*§=:l?min{l,d,,{ph},p'!b)}. (5.2)

Lemma5.1. (i) d(u,, u)~>0 i S fdu, > | f du for any bounded continuous function
S with compact support on [0, 1]xRY x I, as n - +oo,
(i) A is compact under the metric d.

Proof. (i) It is clear.
(ii) Each A, is compact under d; since V; is compact (cf. Tkeda and Watanabe,
1989), thus the desired result follows from a standard diagonal argument. [J

Set o,(A):=the o-field generated by {u:p([0,5]xS)e B(RT), s< P S
BRxTI")} and o(A):= oi(A). Let @:=P(A) be the space of probabilities on
(A, o(A)), then Lemma 5.1(ii) yields that 2 is a compact metric space under the
Prohorov metric.

By (5.1), u is represented by u(dr, dx, du) = pu'(1, X, du) dr dx, where w'(t, x, )
is a probability on I for almost all (1, x) and determined uniquely expect (1, x)-null

set,
Now we introduce the relaxed system.

Definition 5.1. % =(0, #, P, #,, W, ) is called a relaxed system, if
(i) (2, #F P, #,) is a standard probability space with filteration {F,: 0= < 1};
(if) W is an #-adapted one-dimensional Wiener process with W(0) =0;
(iii) w is an Z-adapted A-valued random variable (A-r.v. in short), i.e., u(B;x
B,) is #,-measurable whenever B, e B([0, t]) and Bye B(R? x I).

0298'02756
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For simplicity, we put # =(W, u) if no confusion arises.

R denotes the totality of relaxed controls. For & = ( W, 1), m(R) denotes the
image measure of (W, 1) on C(0, T:R') x A. Again by endowing the space IT:=
{m(R): R € R} with the Prohorov metric, we have the following fact (Nagase and
Nisio, 1990):

Lemma 5.2. IT is a compact metric space. [J

Given & = (0, #, P, #, W, u), consider the following SPDE
dq(1)=[Aq()+a.f'(1,, q(t, ), w)] dt
+[Mq()+gldW(r), re[0,1], a (5.3)

q(0) = g,
where A, M are defined by (2.1), (2.2), and

Fx, r,,u1==j S0 x, n w)p'(t, x, du), (5.4)
-
for given functions /' on [0, 1]xRYxR'x [}, i=1,2,...,d.

Remark 5.1. Under some assumptions which will be specified below, for each 7€ JT,
there are R € R and ¢ such that #(R) = 7 and q is a solution of (5.3) for . This
can be proved by the same method as in proving Theorem 3.1. It is in this sense
that we will call either an € R or a 7 € IT a relaxed control. Since we do not know
the uniqueness of solutions, let us denote by S(7) the totality of solutions of (5.3)

corresponding to we [T,

Remark 5.2. The controlled system (5.3) is the relaxed one of the following system:
dg(1)=[Ag(t)+a.f'(1, -, q(1,*), u(s,+))] dt
+[Mq(1)+g]ldW(1), re[0,1), (5.5)

q(0) = gy,

where the admissible control u:[0, 1]xR“ x 2 I" is measurable and F,-adapted.
Indeed, take (1, x, du) = Suiixi(du), where 8,(du) is the Dirac measure on I, then
(5.3) reduces to (5.5). Note in the most of existing results concerning the optimal
control of SPDE the controls were taken to be independent of the space variable
x (Bensoussan and Nisio, 1990; Nagase and Nisio, 1990; Zhou, 1991;...), the
reason being that their motivation was to study the partially observed diffusion
where the controls were indeed space-independent. In this paper we allow the
controls to be space-dependent; it is natural to do so since we are concerned with
the control problem for SPDE itself. It is also worth noting that in the literature of
control problems for deterministic PDE, the controls always took the form of u(1, x)
(cf. Ahmed and Teo, 1981). -‘

031202586
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For each 7 €Il and g€ S(), we are given a cost functional
J(m, q)=E{F(q(:))+G(q(1))}, (5.6)
where F and G are given functionals on L*(0, 1; H') and H" respectively. The
optimal relaxed control problem is to find #*€Il and q*e€ S(#*) such that
J(w*, q*)=min{J(m, q): we I, ge S(n)}.

Let us introduce some conditions:

(AS) The mapping (1, x, r, u)€[0, 1]xR* xR'x I'= f'(4, x, r, u) is measurable. It
is continuous in r, uniformly in u, and continuous in w. There are Ae H" and K >0
such that

|F(t, x, 0| = K(A(x)+]r]).
On the other hand, ge H'.

(A6) F and G are weakly continuous mappings from L*(0,1; H') and H" to R'

respectively, and

|F(é)|= K(1+|l¢ | 204:4%) for e L?(0,1; H'),
[G()|=K(1+|¢lo), forye H.

Theorem 5.1. Under (A1), (A2), (A4)-(A6), there exists at least one optimal relaxed
control for the system (5.3) with the cost functional (5.6).

Proof. First observing Theorem 3.1 (especially (3.1)) and (A6), J(m, q) is bounded
below. Hence there is a sequence of m, € IT and g, € S(m,) such that

J(my, go) = inf{J(m, q): we I, g€ S()}. (5.7)

By Lemma 5.2, there is a subsequence (still denoted by {n}) of {#,} and m*e T
such that o, = 7* in Prohorov metric. Suppose m, = w(R,)=7({(W,, 1,)), =*=
m(R*) = a((W*, u*)).

Noting the compactness of A, by the entirely same argument as in proving Theorem
3.1 (ef. (3.16), (3.17)), we can choose a subsequence (still denoted by {n}) and have
(W, fny G, (W*, A*, §*) on a suitable space (2, % P), such that

law of (W,, i, 4.) =law of (Wi, s, 4.) (5.8)

as C(0, 1;R)x A x £3(0, 1; H%-r.v., and P-as.:
W,= W* in C(0,1;R"), (5.9)
L, a0, (5.10)
G.=G* in L*(0,1; H°), as n-+o0. (5.11)

By a similar calculation to that of (3.18), we have

1
(qlh ﬂ)¢(0)+J [(Aél'l(!l)i ﬂ)“(il(f. “a q‘u(t‘ 3 )' ﬁu)i afﬂ)l‘\"(!) d!
. ) i ) (5.12)
+J [MC?,.(U"‘E.n)dl(!)de(fHJ (G (0), m)w(t) de =0,
(1] 0

0231702538
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where y, n are specified in the paragraph followed by (3.18). Now we can write

| M
r[ (j:l{.f, R étl£f9 : )i l‘inj__f‘(fy e q‘*(’. ')l A{‘I*)’al‘q}u‘l(r) dt

]
=J- I I[f’(f, X, Gu(t, x), u)=f'(t, x, ¢*(t, x), u)]
0 dsuppn JI
x (1, x, du)am(x)y(r) dx dr
I
+'[ I J £ x, g*(t, x), u)am(x)g(t)

x [, (dr, dx, du) — a*(de, dx, du)]
-+0, asn->-+o,

Sending n to +c0 in (5.12), we arrive at

I
(Go, T?JIP{O_J‘FJ [KAG* (1), m)= (S (8 -, §*(8 ), &%), am) 10 (1) di

1 1
+j (MG*(1)+g, n)-fx(ndif*(mj (§*(1), n)i(1) dr=0.
1] 0

This means §*e S(#( W*, i*)) = S(aw(W*, u*)) = S(7*), noting (5.8)-(5.11).

On the other hand, observing the compactness of the embeddings L*0,1; H")>
w-L%(0,1; H') and H°>w-H® (w-X means the Banach space endowed with the
weak-topology), we can show, by the same argument as above, that g, > §* weakly
in L%(0,1; H"), §.(1)=§*(1) weakly in H® as n-+o0, P-as. So J(m,., G.)=
J(7*, §*) as n—=+oo by virtue of (A6). Now (5.7) implies that (7*, §*) is an optimal
one. [J

Remark 5.1. The relaxed controlled system (5.3) reduces to the (usual) controlled
system (5.5) when assuming some convex conditions (Roxin's condition) on
f'(t, x, r, I') (cf., for example, Nagase and Nisio, 1990). In particular, the existence
result holds for the controlled systems governed by deterministic semilinear PDE.
Note the existence of optimal controls for linear PDE,\'with Roxin’s condition has
been known for a long time (cf. Ahmed and Teo, 1981).
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