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Abstract

In a financial market, the appreciation rates of stocks are statistically difficult to

estimate, and typically only some confidence intervals in which the rates reside can be

estimated. In this paper we study continuous-time portfolio selection under ambiguity,

in the sense that the appreciation rates are only known to be in a certain convex closed

set and the portfolios are allowed to be based on only the historical stocks prices. We

formulate the problem in both the expected utility and the mean–variance frameworks,

and derive robust portfolios explicitly for both models.

Keywords: Portfolio selection, continuous time, ambiguity, expected utility,

mean–variance, Sharpe ratio, robust portolio.

1 Introduction

Portfolio selection has been studied in great width and depth since Markowitz [16] proposed

the seminal mean–variance model. Different types of portfolio selection models have been
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formulated and studied in the last half century, including the expected utility maximization

model and some generalization of the mean–variance model.

In all those models built for portfolio selection, several parameters of the market, such

as the stocks appreciation rates and volatility rates, must be specified in order to implement

the optimal portfolios derived from the models. Typically, one estimates the parameters

values from the historical data of the asset prices using statistical techniques. But it is also

well known that these estimations are prone to (sometimes significant) errors. In particular,

estimating the appreciation rates of risk assets is notoriously difficult, which is known as the

mean-blur problem (see, e.g., [11]).

On the other hand, optimal portfolios obtained from portfolio selection models are typ-

ically sensitive to the parameters. As a result, an “optimal portfolio” may perform badly

if the underlying parameters are not sufficiently accurate. A model with large errors in

parameters may therefore be completely meaningless from a practical viewpoint.

Research has been carried out in two directions to address the issue of possible poor

performance of optimal solutions arising from “wrong” parameters. One is to improve the

accuracy of the market parameters estimation by calibration techniques or some learning

rules from new arriving data. For example, Chopra et al. [5] proposed a James–Stein esti-

mator for the appreciation rates. Klein and Bawa [14] among others suggested to revise the

estimation of the market parameters by Baysian updating. Yet, none of these improvements

could rule out the estimation errors.

The other direction is to model the problem in a way to reduce the sensitivity of key

market parameters. Lakner [15] formulated an expected utility maximization with the infor-

mation exclusively generated by the the price process of investment, where the appreciation

rates are not observable. Specifically, the appreciation rates are modeled by random pro-

cesses, implying some distributional information, on which the optimal portfolios depend.

This dependence is less sensitive than that involving the values of the appreciation rates.

Robust modeling is the most notable one in the second direction, introduced in the

context of portfolio selection to resolve the issue with uncertain (or ambiguous) market

parameters. A robust model is built to maximize the performance under the worst scenario,

and the resulting optimal solution is expected to be the most insensitive to the ambiguity

in parameters.
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In a single-period financial market, Goldfarb and Iyangar [7] studied a mean–variance

type portfolio selection with uncertainty in the probability distributions of risky returns.

Therein the problem is formulated to maximize the minimal expected return and minimize

the maximal variance, and the optimal solution is searched by some robust optimization

techniques from Ben-Tal and Nemirovski [1] and Boyd et al. [2].

For the portfolio selection problem in continuous time financial markets, most existing

works have considered the uncertainty on the subjective probability measure, which is mod-

eled by a convex set of multiple priors. Gilboa and Schmeidler [6] put forward an axiomatic

system for an atemporal preference represented by a multi-prior expected utility. Chen

and Epstein [4] studied continuous-time recursive utility with multiple priors, and then ap-

plied it to the robust optimal consumption problem previously investigated by Hansen and

Sargent [9] and Skiadas [17]. More relevant to the present paper is Gundel [8], in which

maximization of expected utility on terminal wealth with the multiple priors was studied for

complete/incomplete markets, and some abstract duality result was obtained.

In this paper, we study continuous-time portfolio selection under ambiguity, in the sense

that the appreciation rates are only known to be in a certain convex closed set; namely, the

model ambiguity lies in the values of the parameters rather than in the subjective priors.

With this setup we aim to derive explicit, rather than abstract, results. An important

consideration is that, since now the driving Brownian motion can no longer be inferred from

the historical share prices due to the uncertainty in the appreciation rates, an admissible

portfolio must be restricted to be adapted to the stocks price process. This restriction, in

turn, poses significant technical difficulties.

We model our robust problem in both the expected utility and the mean–variance frame-

works. While it is rather standard to formulate the former, it is not straightforward with

the latter in a continuous-time market because the worst scenarios may not be the same for

mean and variance. We get around by considering the Sharpe ratio of the terminal wealth

as the single objective and discuss how it is related to the original mean–variance problem.

The two models formulated are both min-max problems. If the minimization and max-

imization can be interchanged, then these problems would reduce to classical ones without

ambiguity. However, the interchangeability usually requires convexity/concavity in the un-

derlying decision variables, which are absent in our problems. We employ rather ad hoc
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approach to solve both models analytically and explicitly.

The remainder of the paper is organized as follows. In Section 2 we specify the underlying

continuous-time market. Sections 3 and 4 are respectively devoted to the formulations and

solutions of robust expected utility maximization and mean–variance models. Concluding

remarks are made in Section 5.

2 Market Setting

In this paper T is a fixed terminal time and (Ω,F ,P, {Ft}t≥0) is a fixed filtered complete

probability space on which is defined a standard Ft-adaptedm-dimensional Brownian motion

W (t) ≡ (W 1(t), · · · ,Wm(t))′ with W (0) = 0. It is assumed that Ft ≡ FW
t

△
= σ{W (s) : 0 ≤

s ≤ t}
∨

N (P). Throughout the paper A⊤ denotes the transpose of a matrix A.

We define a continuous-time financial market following Karatzas and Shreve [13]. In the

market there are m+1 assets being traded continuously. One of the assets is a bank account

whose price process S0(t) is subject to the following equation:

dS0(t) = r(t)S0(t)dt, t ∈ [0, T ]; S0(0) = s0 > 0, (1)

where the interest rate r(·) is generally a scalar-valued, uniformly bounded Ft-adapted mea-

surable stochastic process. The other m assets are stocks, whose price processes Si(t),

i = 1, · · · ,m, satisfy the following stochastic differential equation (SDE):

dSi(t) = Si(t)[b̄i(t)dt+
m∑
j=1

σij(t)dW
j(t)], t ∈ [0, T ]; Si(0) = si > 0, (2)

where b̄i(·) and σij(·), the appreciation and volatility rates respectively, are scalar-valued,

Ft-adapted measurable stochastic processes with∫ T

0

[
m∑
i=1

|b̄i(t)|+
m∑

i,j=1

|σij(t)|2
]
dt < +∞, a.s..

Set the excess rate of return vector process

B̄(t)
△
= (b̄1(t)− r(t), · · · , b̄m(t)− r(t))⊤,

and define the volatility matrix process σ(t)
△
= (σij(t))m×m.
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In this paper we assume that both the interest rate r(·) and the volatility rate σ(·) are
known and deterministic. A key feature, however, is that the true appreciation rate process,

b̄1(·), · · · , b̄m(·)), is random and unobservable. This is motivated by the notorious mean-blur

problem in estimating the appreciate rate, i.e., it is impossible to estimate b̄i(·) to within a

workable accuracy using pure statistical method based on historical data of the share prices.

Hence we have ambiguity (or Knightian uncertainty) in the appreciation rates. Specifically,

we model the ambiguity by assuming that at any time t, only a range of the appreciation

rates can be estimated, in which the true appreciation rates reside. Notice that we only

know the range of possible appreciation rates, and no other information is available on their

distributions. This is the key difference between this paper and Lakner [15].

As a result of the above ambiguity, investors can only observe the price processes of

all the assets traded in the market (and therefore the values of their portfolios), and they

make decisions based only on this information. In particular, they are not able to infer

the information about the underlying Bronian motion by the asset processes. Hence, an

admissible portfolio is FS
t -adapted, where FS

t = σ(S(s) : 0 ≤ s ≤ t). As noted, FS
t ⊂ FW

t

and the inclusion is possibly strict. Hereafter we say a random process is observable if it is

FS
t -adapted.

Given B(·), a deterministic, measurable and closed-convex-set-valued function on [0, T ],

we make the following assumptions throughout this paper:

Assumption 2.1 (i) r(·) is deterministic and
∫ T

0
|r(s)|ds < +∞.

(ii) σ(·) is deterministic, and ∃δ > 0 such that σ(t)σ′(t) > δIm ∀t ∈ [0, T ].

(iii) B̄(·) is measurable and FW
t -adapted, and B̄(t) ∈ B(t) ∀t ∈ [0, T ], a.s..

(iv) 0 /∈ B(t) for a.e. t ∈ [0, T ].

We will use the following notations in this paper:

• The true risk premium process θ̄(t)
△
= σ(t)−1B̄(t), which is random and not observable;

• The ambiguity set of all possible risk premium processes:

Θ
△
= {σ(·)−1B(·) : B(·) is measurable, FW

t -adapted, B(t) ∈ B(t) ∀t ∈ [0, T ]};
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• The minimal possible risk premium |θ∗(t)|2 = minB∈B(t) |σ(t)−1B|2; clearly θ∗(·) is

deterministic;

• For any θ ∈ Θ,

ρθ(t)
△
= e−

∫ t
0 [r(s)+

|θ(s)|2
2

]ds−
∫ t
0 θ(s)⊤dW (s), ρ∗θ(t)

△
= e−

∫ t
0 [r(s)−

|θ∗(s)|2
2

+θ(s)⊤θ∗(s)]ds−
∫ t
0 θ∗(s)⊤dW (s).

An investor’s portfolio is an FS
t -adapted measurable process, π(·) = (π1(·), · · · , πm(·))⊤,

where πi(·) is the amount of money invested in the ith risky asset at time t. For technical

reasons, we also require an admissible portfolio to satisfy
∫ T

0
|σ(t)⊤π(t)|2dt < +∞ a.s.. We

denote by Π(S) the set of all admissible portfolios, i.e.,

Π(S)
△
= {π(·) : π(·) is an FS

t -adapted process valued in IRm,

∫ T

0

|σ(t)⊤π(t)|2dt < +∞a.s.}.

It is well known that, under the self-financing operation during the investment time period,

the wealth process x(·; π) with an initial wealth x0 and a portfolio π ≡ π(·) satisfies the

wealth equation:

dx(t;π) = [r(t)x(t;π) + π(t)⊤σ(t)θ̄(t)]dt+ π(t)⊤σ(t)dW (t), x(0) = x0.

Denote Wθ̄(t)
△
= W (t) +

∫ t

0
θ̄(s)ds. Then we can rewrite the wealth equation as

dx(t;π) = r(t)x(t; π)dt+ π(t)⊤σ(t)dWθ̄(t), x(0) = x0. (3)

We conclude this section by a useful lemma.

Lemma 2.1 We have FS
t = FWθ̄

t .

Proof: The stock price equation (2) can be rewritten as

dSi(t) = Si(t)[r(t)dt+
m∑
j=1

σij(t)dW
j

θ̄
(t)], t ∈ [0, T ]; Si(0) = si > 0. (4)

Since both r(·) and σ(·) are deterministic and σ(t) is invertible per Assumption 2.1, the

conclusion follows readily. Q.E.D.
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3 Expected Utility Model under Ambiguity

3.1 Model Formulation

Consider an agent with an initial wealth x0 > 0 and a utility function u(·) applied on the

terminal wealth x(T ) at time T . We assume u(·) is a classical utility function, which is

strictly concave, strictly increasing and satisfies u′(0+) = +∞ and u′(+∞) = 0. In the

classical expected utility model, the objective of the agent is to find an optimal portfolio π∗

such that the expected utility of the terminal wealth is maximized.

When there is ambiguity in the appreciation rates (or equivalently in the risk premium

θ̄), it is common in the literature to formulate a min-max problem in which the agent is

to maximize the expected utility in the worst case. Mathematically, we have the following

robust expected utility maximization problem:

Maximize minθ∈Θ E[u(x(T ;π)|θ̄=θ))]

s.t.

 (x(·; π), π) satisfies equation (3),

π ∈ Π(S).

(5)

This is a challenging problem caused by the uncertainty in appreciation rates. First of

all, for any given admissible portfolio the distribution of the terminal wealth is unknown.

In particular, there is no market completeness whatsoever under such a setting. So the

classical martingale method can not be applied directly. Furthermore, we cannot fit the

problem into those studied in Gundel [8] because the risk-neutral probability measure in our

case is unknown. Second, Problem (5) is a max-min problem. If we could interchange the

maximization and the minimization, then the classical expected utility maximization might

be applied. However, the objective function here does not bear clear convexity/concavativity;

so it is not clear how to apply the general min-max theorem in functional analysis. Finally,

even if we could swap maximization and minimization, the constraint that the portfolio be

FS
t -adapted, instead of being FW

t -adapted, would still pose a technical difficulty.

The main idea of overcoming these difficulties is to consider an auxilary problem in which
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the FS
t -adaptiveness constraint is relaxed to FW

t -adaptiveness:

Maximize minθ∈Θ E[u(x(T ; π)|θ̄=θ)]

s.t.

 (x(·; π), π) satisfies equation (3) ,

π ∈ Π(W ),

(6)

where

Π(W )
△
= {π(·) : π is an FW

t -adapted process valued in IRm,

∫ T

0

|σ(t)⊤π(t)|2dt < +∞a.s.}.

It is easy to see that the optimal objective of Problem (6) is no less than that of Problem (5).

If, on the other hand, an optimal portfolio for Problem (6) happens to be FS
t -adapted, then

it is also optimal for Problem (5). Finally, we will show that maximization and minimization

in Problem (6) can indeed be swapped, and therefore the problem solved.

3.2 Optimal Robust Portfolios

In classical expected utility maximization, some additional assumptions on the utility func-

tion is necessary to ensure the well-posedness of the problem and the existence of optimal

portfolios. Some general and recent results are provided in [12]. In this paper, we take the

following assumptions following [12].

Assumption 3.1 The utility function u(·) satisfies

E[u((u′)−1(ρθ∗(T )))] < +∞

and one of the following three condition:

(i) lim infx→+∞(−xu′′(x)
u′(x)

) > 0.

(ii) lim supx→+∞
u′(kx)
u′(x)

< 1 for some k > 1.

(iii) lim supx→0
(u′)−1(λx)
(u′)−1(x)

< +∞ for some λ ∈ (0, 1).

For any given and fixed possible version of the risk premium process θ ∈ Θ, define J(θ)

as the optimal value of the problem:

Maximize E[u(x(T ;π)|θ̄=θ)]

s.t.

 (x(· ; π), π) satisfies equation (3) ,

π ∈ Π(W ).

(7)
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This is a classical expected utility portfolio selection problem assuming that the true risk

premium process θ̄ = θ. Denote by I(x) = (u′)−1(x), the inverse function of u′(·). By

Theorem 5.4 in [12], the optimal terminal wealth for Problem (7) is I(λθρθ(T )), where

λθ > 0 is the Lagrange multiplier satisfying the algebraic equation E[I(λθρθ(T ))ρθ(T )] = x0.

Proposition 3.1 For any θ ∈ Θ, J(θ∗) ≤ J(θ).

Proof: For any θ ∈ Θ, define a new probability measure by dQθ

dP = e−
∫ T
0 |θ(s)|2/2ds−

∫ T
0 θ(s)′dW (s)

with Eθ[·]
△
= EQθ [·] and λ∗ △

= λθ∗ . Then Wθ(t) = W (t) +
∫ t

0
θ(s)ds is a standard Brownian

motion under Qθ. Recall the definition of θ∗, we have, with the convexity of B(t), that

θ∗(t)⊤θ(t) ≥ |θ∗(t)|2, ∀t ∈ [0, T ], a.s..

Consequently,

E[I(λ∗ρθ∗(T ))ρθ(T )]

= E[e−
∫ T
0 r(s)dsI(λ∗e−

∫ T
0 [r(s)+|θ∗(s)|2/2]ds−

∫ T
0 θ∗(s)⊤dW (s))e−

∫ T
0 |θ(s)|2/2ds−

∫ T
0 θ(s)⊤dW (s)]

= Eθ[e
−

∫ T
0 r(s)dsI(λ∗e

∫ T
0 θ∗(s)⊤θ(s)dse−

∫ T
0 [r(s)+|θ∗(s)|2/2]ds−

∫ T
0 θ∗(s)⊤dWθ(s))]

≤ Eθ[e
−

∫ T
0 r(s)dsI(λ∗e

∫ T
0 |θ∗(s)|2dse−

∫ T
0 [r(s)+|θ∗(s)|2/2]ds−

∫ T
0 θ∗(s)⊤dWθ(s))]

= Eθ∗ [e
−

∫ T
0 r(s)dsI(λ∗e

∫ T
0 |θ∗(s)|2dse−

∫ T
0 [r(s)+|θ∗(s)|2/2]ds−

∫ T
0 θ∗(s)′dWθ∗ (s))]

= E[I(λ∗ρθ∗(T ))ρθ∗(T )] = x0,

where the second last equality is because θ∗(·) and r(·) are both deterministic. Thanks to

the positivity of I(·), we can find k > 1 such that E[kI(λ∗ρθ∗(T ))ρθ(T )] = x0, which makes

kI(λ∗ρθ∗(T )) a feasible solution for Problem (7) with parameter θ. Therefore,

J(θ) ≥ E[u(kI(λ∗ρθ∗(T ))] ≥ E[u(I(λ∗ρθ∗(T )))] = J(θ∗).

Q.E.D.

Next, we are going to construct an FS
t -adapted portfolio π∗ that achieves the maximal

expected utility in (7) when θ̄ = θ∗, i.e., x(T ; π∗)|θ̄=θ∗ = I(λ∗ρθ∗(T )). To this end, define f

as the solution to the following PDE in the range (t, y) ∈ [0, T ]× (0,+∞): ft(t, y) +
1
2
|θ∗(t)|2y2fyy(t, y) + (|θ∗(t)|2 − r(t)) yfy(t, y) = r(t)f(t, y),

f(T, y) = I(λ∗y).
(8)
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The above equation is indeed the Black–Scholes PDE in replicating the contingent claim

I(λ∗ρθ∗(T )) in the market with θ̄ ≡ θ∗; hence it admits a unique solution, which is strictly

decreasing in y. Furthermore, the replicating wealth process is f(t, ρθ∗(t)); in particular,

f(0, 1) = x0.

Define

x∗(t)
△
= f(t, ρ∗θ̄(t)), and π∗(t)

△
= −ρ∗θ̄(t)fy(t, ρ

∗
θ̄(t))(σ(t)

⊤)−1θ∗(t). (9)

According to its definition, ρ∗
θ̄
(·) is FWθ̄

t ≡ FS
t -adapted, so is π∗(·). Furthermore, it follows

from Itô’s formula that

dx∗(t) = r(t)x∗(t)dt+ π∗(t)⊤σ(t)dWθ̄(t), x∗(T ) = I(λ∗ρ∗θ̄(T )),

which means x∗(·) is the wealth process associated with the admissible portfolio π∗(·), i.e.
x∗(t) = x(t; π∗). Furthermore, π∗ replicates I(λ∗ρ∗

θ̄
(T )) with initial wealth x∗(0) = f(0, 1) =

x0. Hence (π∗(·), x∗(·)) is an admissible portfolio-wealth pair with initial wealth x0 and

terminal wealth I(λ∗ρ∗
θ̄
(T )).

Moreover, noting ρ∗θ∗ ≡ ρθ∗ , we have x(T ;π∗)|θ̄=θ∗ = I(λ∗ρθ∗(T )) = I(λ∗ρ∗θ∗(T )).

Proposition 3.2 We have x(T ; π∗) ≥ x(T ;π∗)|θ̄=θ∗ , and the equality holds if and only if

θ̄ = θ∗.

Proof: Since x(T ; π∗) = I(λ∗ρ∗
θ̄
(T )), x(T ;π∗)|θ̄=θ∗ = I(λ∗ρ∗θ∗(T )), and I(·) is strictly de-

creasing, we only need to show that ρ∗
θ̄
(T ) ≤ ρ∗θ∗(T ). Indeed,

ρ∗θ̄(T ) = e−
∫ T
0 (r(s)−|θ∗(s)|2/2)ds−

∫ T
0 θ∗(s)⊤dWθ̄(s)

= e−
∫ T
0 r(s)dse

∫ T
0 (|θ∗(s)|2/2−θ∗(s)⊤θ̄(s))ds−

∫ T
0 θ∗(s)⊤dW (s)

≤ e−
∫ T
0 (r(s)−|θ∗(s)|2/2)ds−

∫ T
0 θ∗(s)⊤dWθ∗ (s) = ρ∗θ∗(T ),

and the equality holds if and only if θ̄ = θ∗. Q.E.D.

The strategy π∗ is in fact the optimal strategy of the classical expected utility problem

(7) as if the underlying true risk premium is θ̄ = θ∗. When one applies this strategy while

the actual risk premium is not θ∗, there is a minimum guaranteed terminal wealth, which

is x(T ;π∗)|θ̄=θ∗ , as stipulated by the above proposition. In other words, x(T ; π∗)|θ̄=θ∗ =
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I(λ∗ρ∗θ∗(T )) is the most pessimistic outcome however the true risk premium might be, under

the strategy π∗.

Here comes the main result of this section.

Theorem 3.1 Let π∗ be the admissible portfolio with wealth process x∗ as defined by (9).

Then

(i) (θ∗, π∗) is a saddle point of Problem (5), namely,

max
π∈Π(S)

min
θ∈Θ

E[u(x(T ;π)|θ̄=θ)] = min
θ∈Θ

max
π∈Π(S)

E[u(x(T ;π)|θ̄=θ)] = E[u(x(T ;π∗)|θ̄=θ∗)].

(10)

(ii) π∗ is an optimal portfolio for Problem (5).

Proof: We first show that

max
π∈Π(W )

min
θ∈Θ

E[u(x(T ; π)|θ̄=θ)] = min
θ∈Θ

max
π∈Π(W )

E[u(x(T ;π)|θ̄=θ)] = E[u(x(T ;π∗)|θ̄=θ∗)]. (11)

Indeed,

minθ∈Θmaxπ∈Π(W ) E[u(x(T ;π)|θ̄=θ)]

= minθ∈Θ J(θ) = J(θ∗) = E[u(x(T ;π∗)|θ̄=θ∗)]

= minθ∈ΘE[u(x(T ;π∗)|θ̄=θ)] ≤ maxπ∈Π(W ) minθ∈Θ E[u(x(T ;π)|θ̄=θ)].

The other inequality is trivial. Hence (11) is valid. Since π∗ is FS
t -adapted, the above yields

that π∗ is an optimal portfolio for Problem (5). Moreover,

maxπ∈Π(S) minθ∈Θ E[u(x(T ; π)|θ̄=θ)]

= maxπ∈Π(W ) minθ∈Θ E[u(x(T ; π)|θ̄=θ)]

= minθ∈Θ maxπ∈Π(W ) E[u(x(T ; π)|θ̄=θ)]

≥ minθ∈Θ maxπ∈Π(S) E[u(x(T ; π)|θ̄=θ)]

≥ maxπ∈Π(S) minθ∈Θ E[u(x(T ; π)|θ̄=θ)].

This establishes (10). Q.E.D.

Remark 3.1 So the optimal robust portfolio is obtained by solving the optimal portfolio

of a classical utility maximization problem as if the market price of risk θ̄ is the minimal

one, θ∗, within the ambiguity set. A key step in establishing this result is to show such a

portfolio is FS
t -adapted, hence implementable even in the presence of ambiguity.
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Remark 3.2 Gundel [8] studied the following model

Maximize minQ∈Q Ê[u(X)]

s.t. Ê[X] = x0,
(12)

where Ê is the expectation under the risk neutral probability measure P̂ and Q is the set

of probability measure Q representing the model ambiguity. Gundel [8] showed that X∗ =

I(λdQ∗

dP̂ ), where Q∗ is the solution to the optimization problem minQ∈Q Ê[v(λdQ
dP̂ )], with v

being the convex conjugate of u. How to replicate X∗ and in what class of strategies were

not a concern in [8]. Moreover, it is unclear to us how to “embed” our model into the abstract

formulation of [8], without assuming that the true risk premium process is FS
t -adapted.

4 Mean–Variance Model under Ambiguity

4.1 Model Formulation

A classical mean–variance model with certain market parameters is formulated as

Minimize Var(x(T ;π))

s.t.


E[x(T ; π)] = z,

(x(· ;π), π) satisfies equation (3) ,

π ∈ Π(W ),

(13)

where θ̄ is known and z ≥ x0e
∫ T
0 r(s)ds is given.

When the market parameters are uncertain, so are both Var(x(T ;π)) and E[x(T ; π)]. At

first glance, a natural choice of the model in such a case is to consider the worst scenario for

the two objectives (i.e., mean and variance) separatively:

Minimize maxθ∈ΘVar(x(T ; π)|θ̄=θ)

s.t.


minθ∈Θ E[x(T ;π)|θ̄=θ] = z,

(x(· ;π), π) satisfies equation (3) ,

π ∈ Π(S).

(14)

A major drawback of the above model, however, is that the worst scenarios, i.e., θ’s, for the

two objectives are generally different. In the real word, only one scenario is realized; hence

12



it will be more reasonable to aggregate the two objectives in certain way and consider only

one “worst” scenario.

It is known that the efficient frontier for the classical continuous-time mean–variance

problem (13) is a straight line in the mean–standard deviation plane, and the efficient port-

folios are those with the maximal Sharpe ratio (see, e.g., [18, 3]). In other words, the classical

problem (13) is equivalent to that of maximizing the Sharpe ratio.

With this observation, we now formulate the mean–variance model with uncertain market

parameters as follows:

Maximize minθ∈Θ
E[x(T ;π)|θ̄=θ]−x0e

∫T
0 r(s)ds

Std(x(T ;π)|θ̄=θ)

s.t.


(x(· ;π), π) satisfies equation (3) ,

π ∈ Π(S),

minθ∈Θ E[x(T ;π)|θ̄=θ] > x0e
∫ T
0 r(s)ds,

(15)

where (and henceforth) Std(X) stands for the standard deviation of a random variable X.

Note in the above the last constraint is just to ensure that the portfolio performs better than

the risk-free account even in the worst state of nature, which is consistent with the classical

model.

The following proposition clarifies the connection between Problem (15) and the mean-

variance efficiency in terms of the Sharpe ratio.

Proposition 4.1 Suppose π∗ is an optimal portfolio for Problem (15). Then for any z >

x0e
∫ T
0 r(s)ds, there is a constant k > 0 such that the portfolio kπ∗ satisfies the constraint

minθ∈Θ E[x(T ; kπ∗)|θ̄=θ] = z, while maximizing the worst Sharpe ratio, i.e., for any feasible

portfolio π̂ for problem (15),

min
θ∈Θ

E[x(T ; kπ∗)|θ̄=θ]− x0e
∫ T
0 r(s)ds

Std(x(T ; kπ∗)|θ̄=θ)
≥ min

θ∈Θ

E[x(T ; π̂)|θ̄=θ]− x0e
∫ T
0 r(s)ds

Std(x(T ; π̂)|θ̄=θ)
.

Proof: Denote by V (π) the Sharpe ratio of an admissible portfolio π, and x̂(t;π) =

x(t; π)e−
∫ t
0 r(s)ds, π̂(t) = π(t)e−

∫ t
0 r(s)ds. Then

dx̂(t; π) = π̂(t)B̄(t)dt+ π̂(t)σ(t)dW (t), x̂(0;π) = x0,

and hence

V (π) =
E[x(T ; π)]− x0e

∫ T
0 r(s)ds

Std(x(T ;π))
=

E[x̂(T ;π)]− x0

Std(x̂(T ;π))

13



=
E[
∫ T

0
e−

∫ t
0 r(s)dsπ(t)⊤σ(t)θ̄(t)dt]

Std
(∫ T

0
e−

∫ t
0 r(s)dsπ(t)⊤σ(t)θ̄(t)dt+

∫ T

0
e−

∫ t
0 r(s)dsπ(t)⊤σ(t)dW (t)

) .
As a result, V (kπ) = V (π) for any k > 0.

Now, π∗ is an optimal portfolio for Problem (15). Denote

z0 = min
θ∈Θ

E[x(T ;π∗)|θ̄=θ] > x0e
∫ T
0 r(s)ds; v = min

θ∈Θ
V (π∗)|θ̄=θ.

Then

min
θ∈Θ

E[x(T ; kπ∗)|θ̄=θ] = min
θ∈Θ

E[x(T ; kπ∗)|θ̄=θ − x0e
∫ T
0 r(s)ds] + x0e

∫ T
0 r(s)ds

= kmin
θ∈Θ

E[x(T ;π∗)|θ̄=θ − x0e
∫ T
0 r(s)ds] + x0e

∫ T
0 r(s)ds.

Taking k = z−x0e
∫T
0 r(s)ds

z0−x0e
∫T
0 r(s)ds

> 0, we get minθ∈Θ E[x(T ;π∗)|θ̄=θ] = z. Finally, by the fact

that V (kπ∗) = V (π∗), we have minθ∈Θ V (kπ∗)|θ̄=θ ≡ minθ∈Θ V (π∗)|θ̄=θ = v, which is the

maximized worst Sharpe ratio. Q.E.D.

4.2 Efficient Robust Portfolios

Although economically we have shown that Problem (15) is intimately related to the classical

mean–variance problem, mathematically the former is much more difficult to solve than the

latter. Due to the absence of convexity and monotonicity of the Sharpe ratio in θ and π, we

are unable to apply most of the existing techniques in portfolio selection theory.

To start, we henceforth suppose x0 = 1, r(·) ≡ 0, σ(·) = I (and hence B̄(·) ≡ θ̄(·)) with-
out loss of generality, as otherwise we could consider x̂(t; π) = x(t; π)/(x0e

∫ T
0 r(t)dt), π̂(t) =

σ(t)⊤π(t)/(x0e
∫ T
0 r(t)dt) instead. With this simplification Problem (15) now becomes

Maximize minθ∈Θ
E[x(T ;π)|θ̄=θ]−1

Std(x(T ;π)|θ̄=θ)

s.t.


dx(t; π) = π(t)⊤θ̄(t)dt+ π(t)⊤dW (t), x(0;π) = 1,

π ∈ Π(S),

minθ∈Θ E[x(T ; π)|θ̄=θ] > 1.

(16)
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Define y(t;π) = x(t; π)− 1. Then the problem is further equivalent to

Minimize maxθ∈Θ f(θ, π)
△
=

Var(y(T ;π)|θ̄=θ)

(E[y(T ;π)|θ̄=θ])
2

s.t.


dy(t;π) = π(t)⊤θ̄(t)dt+ π(t)⊤dW (t), y(0;π) = 0,

π ∈ Π(S),

minθ∈Θ E[y(T ; π)|θ̄=θ] > 0.

(17)

In the rest of this section, we focus on studying Problem (17).

Lemma 4.1 It holds that f(θ, π) ≥ 1
E[ρθ(T )2]−1

for any θ ∈ Θ and any π satisfying the

constraints in (17). Moreover, if θ is deterministic, then there exists a portfolio π ∈ Π(S)

such that the equality holds.

Proof: For any given θ ∈ Θ and π satisfying the constraints in (17), let z = E[y(T ;π)|θ̄=θ] >

0. Consider the following classical mean–variance problem:

Minimize E[x(T )2]

s.t.


dx(t) = π(t)⊤θ(t)dt+ π(t)⊤dW (t), x(0) = 0,

π ∈ Π(W ),

E[x(T )] = z.

(18)

This problem has been studied extensively in the literature (see, e.g., [18, 3]), with the

optimal portfolio in feedback form π∗(t) = (λ − x∗(t))θ(t) and the optimal terminal wealth

being x∗(T ) = λ− µρθ(T ), where (λ, µ) is determined by

λ− µ = z, λ− µE[ρθ(T )2] = 0.

It follows that µ = z
E[ρθ(T )2]−1

, λ = µE[ρθ(T )2], and the corresponding optimal mean and

variance are respectively

E[x∗(T )] = z, Var(x∗(T )) = µ2(E[ρθ(T )2]− 1) =
z2

E[ρθ(T )2]− 1
.

Hence Var(x∗(T ))
(E[x∗(T )])2

= 1
E[ρθ(T )2]−1

which by definition is less or equal than f(θ, π).

Now, we apply the same feedback law as the above π∗ to the original market (i.e., the

one where the risk premium is θ̄) as follows:

πθ(t) = (λ− yθ(t))θ(t).

15



Then the corresponding wealth process yθ satisfies

dyθ(t) = (λ− yθ(t))θ(t)
⊤dWθ̄(t).

If θ is deterministic, then yθ is FWθ̄
t ≡ FS

t -adapted, and so is πθ. On the other hand, recall

that x∗ satisfies

dx∗(t) = (λ− x∗(t))θ(t)⊤dWθ(t).

Thus yθ(T ) and x∗(T ) have the same probability distribution due to the uniqueness in law

of the above SDE. However, x∗(T ) achieves the above lower bound, and hence so does yθ(T ).

Q.E.D.

Corollary 4.1 The optimal value of problem (17) is no less than 1

e
∫T
0 |θ∗(s)|2ds−1

.

Proof: We again omit π ∈ Π(S) and θ ∈ Θ in this proof. We have

min
π

max
θ

f(θ, π) ≥ max
θ

min
π

f(θ, π)

≥ max
θ

1

E[ρθ(T )2]− 1
=

1

minθ E[ρθ(T )2]− 1

=
1

minθ E[e
∫ T
0 |θ(s)|2dse−

∫ T
0 2|θ(s)|2ds−

∫ T
0 2θ(s)⊤dW (s)]− 1

=
1

e
∫ T
0 |θ∗(s)|2ds − 1

.

This completes the proof. Q.E.D.

Before presenting the main result, we need to do some preparations.

Lemma 4.2 Let Y > 0 be a given random variable without atom in its probability distribu-

tion. Then for any random variable X valued in (0, 1], there exists k ∈ [0,+∞] such that

EX = P(Y > k) and

E[X2Y ] ≤ E[Y 1Y >k]

while the equality holds if and only if X = 1Y >k a.s..

Proof: Denote z = EX ∈ (0, 1]. Since Y is atomless, there is k ∈ [0,+∞] such that

z = P(Y > k). Furthermore

E[X2Y ] ≤ E[XY ] = E[X(Y − k)] + kz = E[X(Y − k)1Y >k] + E[X(Y − k)1Y≤k] + kz

≤ E[(Y − k)1Y >k] + kE1Y >k = E[Y 1Y >k],
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and the equality holds if and only if X = 1Y >k a.s.. Q.E.D.

Lemma 4.3 For any θ ∈ Θ,

Var(e−
∫ T
0 |θ∗(s)|2dsρ∗θ(T ))

(1− E[e−
∫ T
0 |θ∗(s)|2dsρ∗θ(T )])

2
≤ 1

e
∫ T
0 |θ∗(t)|2dt − 1

,

and the equality holds if and only if θ = θ∗.

Proof: Fix θ ∈ Θ. We denote c
△
= e

∫ T
0 |θ∗(t)|2dt > 1, and

X
△
= e−

∫ T
0 θ∗(t)⊤(θ(t)−θ∗(t))dt, Y

△
= e−

∫ T
0 |θ∗(t)|2/2dt−

∫ T
0 θ∗(t)⊤dW (t).

Then X ∈ (0, 1] and XY = ρ∗θ(T ). Define a new probability measure P̂ by dP̂
dP = Y and

Ê △
= EP̂. Then Y is a P̂-lognormal random variable with Ê[Y ] = c, and

E[c−1ρ∗θ(T )] = c−1Ê[X], E[c−2ρ∗θ(T )
2] = c−2Ê[X2Y ].

Hence we have

Var(c−1ρ∗θ(T ))

(1− E[c−1ρ∗θ(T )])
2
=

c−2
(
Ê[X2Y ]− (Ê[X])2

)
(1− c−1Ê[X])2

=
Ê[X2Y ]− (Ê[X])2

(c− Ê[X])2
.

By Lemma 4.2, there exists kθ ∈ [0,+∞] such that Ê[X] = P̂(Y > kθ) and Ê[X2Y ] ≤
Ê[Y 1Y >kθ ]. Consequently,

Ê[X2Y ]− (Ê[X])2

(c− Ê[X])2
≤ Ê[Y 1Y >kθ ]− (P̂(Y > kθ))

2

(c− P̂(Y > kθ))2
.

For any k ∈ [0,+∞], define g(k)
△
= (c− 1)

[
Ê[Y 1Y >k]− (P̂(Y > k))2

]
− (c− P̂(Y > k))2.

Then

g(k) = (c− 1)Ê[Y 1Y >k]− c(P̂(Y > k))2 + 2cP̂(Y > k)− c2

= (c− 1)Ê[Y 1Y >k]− c(1− P̂(Y > k))2 + c− c2.

It is now seen that g(·) is strictly decreasing. Moreover, it is easy to verify that g(0) = 0.

Hence g(k) ≤ 0 for ∀k ≥ 0, and the equality holds if and only if k = 0 (or equivalently

X = 1Y >0 ≡ 1 or θ = θ∗). Q.E.D.

Now we are ready to present the main result of this section.
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Theorem 4.1 For any γ > 0, define a feedback portfolio π∗(t) = (γ − y(t;π∗))θ∗(t). Then

(i) (θ∗, π∗) is a saddle point of problem (17), namely,

min
π

max
θ

f(θ, π) = max
θ

min
π

f(θ, π) = f(θ∗, π∗). (19)

(ii) π∗ is an optimal portfolio for Problem (17).

Proof: With a slight abuse of notation we use π∗ to denote both the feedback strategy

π∗(t) = (γ − y(t; π∗))θ∗(t) and the induced open-loop portfolio under y(0) = 0. Under π∗

the corresponding wealth process satisfies

dy(t;π∗) = (γ − y(t;π∗))θ∗(t)⊤[θ̄(t)dt+ dW (t)], y(0;π∗) = 0,

leading to

y(t; π∗) = γ
(
1− e−

∫ t
0 [|θ

∗(s)|2/2+θ̄(s)⊤θ∗(s)]ds−
∫ t
0 θ∗(s)⊤dW (s)

)
= γ

(
1− e−

∫ t
0 |θ∗(s)|2dsρ∗θ̄(t)

)
.

Therefore, given γ > 0, π∗(·) is feasible for Problem (17). On the other hand,

E[y(T ;π∗)] = γ(1− E[e−
∫ T
0 |θ∗(s)|2dsρ∗

θ̄
(T )]),

Var(y(T ; π∗)) = γ2Var(e−
∫ T
0 |θ∗(s)|2dsρ∗

θ̄
(T )).

Hence

f(θ, π∗) =
Var(y(T ; π∗)|θ̄=θ)

(E[y(T ;π∗)|θ̄=θ])
2
=

Var(e−
∫ T
0 |θ∗(s)|2dsρ∗θ(T ))

(1− E[e−
∫ T
0 |θ∗(s)|2dsρ∗θ(T )])

2
≤ 1

e
∫ T
0 |θ∗(t)|2dt − 1

= f(θ∗, π∗),

where the inequality and the last equality are both due to Lemma 4.3.

Therefore, by virtue of Corollary 4.1,

max
θ

f(θ, π∗) = f(θ∗, π∗) ≤ min
π

max
θ

f(θ, π),

implying the previous inequality is in fact an equality. It follows that π∗ is an optimal

solution for Problem (17).

Finally, consider the classical mean–variance model in which θ̄ = θ∗, we know (see the

proof of Lemma 4.1) that minπ f(θ
∗, π) = f(θ∗, π∗). Hence

f(θ∗, π∗) = min
π

f(θ∗, π) ≤ max
θ

min
π

f(θ∗, π) ≤ min
π

max
θ

f(θ∗, π) = f(θ∗, π∗).

This completes the proof. Q.E.D.
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Remark 4.1 The reason why we have infinitely many optimal portfolios – depending on

the choice of the value of γ > 0 – is because the objective function is now the Sharpe ratio.

Different γ leads to different levels of expected terminal wealth, however the Sharpe ratio

remains constant.

Remark 4.2 Although the Sharpe ratio has neither convexity nor monotonicity, we have

shown that, via ad hoc analysis, the order of maximization and minimization can be inter-

changed and the portfolio π∗, obtained through classical mean–variance theory assuming the

underlying risk premium process is θ∗, is an optimal portfolio of our robust mean–variance

problem.

5 Concluding Remarks

Motivated by the significant difficulty in the estimation of appreciation rates for risk assets,

we have studied portfolio selection in a continuous-time financial market with uncertain

or ambiguous appreciation rates. We have applied the idea of robust stochastic control to

formulate portfolio selection problems in terms of the utility maximization and mean-variance

respectively, and have solved the problems thoroughly.

The main contribution of our paper is that we limit our feasible trading strategies to be

only dependent on the progressive information on share prices (but not on the underlying

Brownian motion); this limitation is motivated by the fact that the true risk premium process

is random and unobservable due to the ambiguity present. This feature in turn prohibits us

from applying existing abstract results such as those of Gundel [8].

One of the key assumptions that the current analysis have rested on is that the interest

rate and stocks volatility rates are deterministic functions of t. The analysis and results

should remain the same if they are random but assumed to be adapted to the asset prices.

However, it remains to be a significant open problem if they are adapted to the underlying

Brownian motion.
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