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Abstract

In this paper we formulate a continuous-time behavioral (à lacumulative prospect

theory) portfolio selection model where the losses are constrained by a pre-specified

upper bound. Economically the model is motivated by the previously proved fact

that the losses occurring in a bad state of the world can be catastrophic for an

unconstrained model. Mathematically solving the model boils down to solving

a concaveChoquetminimizationproblem with an additional upper bound. We

derive the optimal solution explicitly for such a loss control model. The optimal

terminal wealth profile is in general characterized by threepieces: the agent has

gains in the good states of the world, gets a moderate, endogenously constant loss

in the intermediate states, and suffers the maximal loss (which is the given bound

for losses) in the bad states. Examples are given to illustrate the general results.
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1 Introduction

Study on continuous-time portfolio choice has so far predominantly centered around

expected utility maximisation (EUM), following the seminal paper of Merton (1969).

The underlying assumption of EUM is that decision makers arerational and risk averse

when facing uncertainty. This assumption, however, has long been challenged by many

observed and repeatable empirical patterns as well as paradoxes and puzzles such as the

Allais paradox and the equity premium puzzle.

A number of alternative preference measures to expected utility have been proposed,

notably in Yaari’s “dual theory of choice” (Yaari 1987), Lopes’ SP/A model (Lopes

1987), and Kahneman and Tversky’s cumulative prospect theory (CPT; Kahneman and

Tversky 1979, Tversky and Kahneman 1992). All these theories (where SP/A and CPT

are regarded as instances of behavioural economics) involve subjective probability dis-

tortions (although they may have different economic interpretations), and CPT is the

richest one in that it in addition incorporates a reference point and anS-shaped util-

ity function which both have significant impact on the corresponding decision-making

models and their solutions.

There have been burgeoning research interests in incorporating these new theories

into portfolio choice; nonetheless these have been overwhelmingly limited to the single-

period setting; see for example Benartzi and Thaler (1995),Lopes and Oden (1999),

Shefrin and Statman (2000), De Giorgi and Post (2008), and Heand Zhou (2009c).

Little analytical treatment has been carried out fordynamic, especially continuous-time,

asset allocation featuring behavioural criteria. Such a lack of study is because all the

main mathematical approaches dealing with the conventional EUM models fail. In

particular, probability distortions abolish virtually all the good properties associated

with the standard additive probability and linear expectation. Moreover, in the CPT

framework, the utility function is non-convex and non-concave, while traditionally the

global convexity/concavity is a general prerequisite in solving an optimization problem.

Because of these difficulties, study on behavioural portfolio selection is still in its

infancy in the mathematical finance community. To our best knowledge there are less

than a handful of papers available in the literature that investigate continuous-time be-

havioural portfolio choice. Berkelaar, Kouwenberg and Post (2004) consider a very

special two-piece S-shaped power utility function, and employ a convexification tech-

nique to tackle the non-convexity of the problem. However, the probability distortion

is absent in that paper. Jin and Zhou (2008) develop a systematic approach to solving

a model under CPT with a complete market and general Itô processes for asset prices,

featuring bothS-shaped utility functions and probability distortions. Their approach

includes a divide-and-conquer procedure to separate the optimizations for gains and

losses, a quantile formulation to deal with the probabilitydistortions, and a technique

to solve a concave Choquet minimization problem corresponding to the risk-seeking
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part. The optimal trading strategies derived therein behave markedly differently from

those of the classical EUM models: they are gambling policies, betting on good states

of the world while accepting a fixed, known loss in bad ones. This feature is indeed

reminiscent of the trading pattern of many investors and, inparticular, of hedge funds.

Recently, the quantile approach is further developed by He and Zhou (2009a) as

a general machinery in formulating and solving portfolio selection with a very broad

class of law-invariant performance criteria. In particular, models with Yaari’s and SP/A

criteria are solved explicitly in He and Zhou (2009a,b) respectively.

The model in Jin and Zhou (2008) is essentially unconstrained (save for the tame-

ness requirement for admissible portfolios). Jin and Zhou (2009) prove that potential

losses can be catastrophically large with a sufficiently strong agent greed (as reflected

by a very high reference point). In other words, when one loses one can lose real big. A

naturally arising problem is, therefore, to study a CPT model where the loss isa priori

bounded by a given level, thereby the greed is contained, ifindirectly, at a manageable

level. This is clearly an economically sensible model (and very relevant to the current

financial crisis) from a loss control or regulatory point of view.

This paper is to formulate and solve a CPT portfolio selection model with loss con-

trol.1 The additional technical challenge, compared with Jin and Zhou (2008), is that we

have to solve aconcaveChoquetminimizationproblem with an additional upper bound.

The minima of a constrained concave functional usually lie on the boundary of the con-

strained set; hence the problem is essentially a combinatorial optimization problem in

an infinite dimesion. The main mathematical contribution ofthis paper is to solve such

a non-conventional problem explicitly. The final optimal terminal wealth, again derived

in an explicit form, to the portfolio choice problem exhibits different (indeed richer)

qualitative features than that of an unconstrained model: the agent has gains in the good

states of the world, gets a moderate, endogenouslyconstantloss in the intermediate

states, and suffers the maximal loss (which is the given bound for losses) in the bad

states.

The rest of this paper is arranged as follows. The portfolio selection model is for-

mulated in Section 2, and a divide-and-conquer solution scheme adapted to the present

model is highlighted in Section 3. Section 4 consists the main technical contribution of

the paper, where we solve a general constrained Choquet minimization problem. Sec-

tion 5 presents the optimal solution to the behavioral model. In Section 6 we give a

number of concrete examples to illustrate the general results. Finally, Section 7 con-

cludes. The proof of a technical lemma is put in an appendix.

1In Berkelaar, Kouwenberg and Post (2004), the terminal wealth is constrained to be nonnegative,

implying a specific bound for losses. However as mentioned they do not consider probability distortions.
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2 Formulation of the Model

We take the same market and agent preferences (and use exactly the same notation) as

those in Jin and Zhou (2008). Consider a behavioral agent with an investment planning

horizon [0, T ] and an initial endowmentx0 > 0, both exogenously fixed throughout,

in an arbitrage-free and complete market2. Let (Ω,F , P, {Ft}t≥0) be a standard fil-

tered complete probability space representing the underlying uncertainty, along with

a standard Brownian motion{Wt, t ≥ 0}. Here the filtrationFt is generated byWt,

augmented with allP -null sets. The unique pricing kernel in this market is

ρ = exp

{

−

∫ T

0

[r(s) + θ(s)2]ds + θ(s)′dW (s)

}

,

wherer(t) is the risk-free interest rate process, andθ(t) is the market price of risk.

Assume thatρ is atomless, and denote byF (·) the probability distribution function ofρ

throughout this paper.

The agent risk preference is dictated by the CPT. Specifically, she has a reference

point B at the terminal timeT , which is anFT -measurable contingent claim (random

variable)3 with P (|B| < ∞) = 1. The reference pointB determines whether a given

terminal wealth position is a gain (excess overB) or a loss (shortfall fromB). We al-

ways assume in this paper that the benchmarkB is lower bounded. The agent utility

(value) function isS-shaped:u(x) = u+(x+)1x≥0(x) − u−(x−)1x<0(x), where the

superscripts± denote the positive and negative parts of a real number,u+, u− arecon-

cavefunctions on IR+ with u±(0) = 0. There are also subjective probability distortions

on both gains and losses, which are captured by two nonlinear, nondecreasing func-

tionsT+, T− from [0, 1] onto [0, 1], with T±(0) = 0, T±(1) = 1 andT±(p) > p when

p is close to0. The agent preference on a terminal cash flowX is measured by the

behavioural functional

V (X − B) = V+((X − B)+) − V−((X − B)−),

whereV+(Y ) =
∫ +∞

0
T+(P (u+(Y ) ≥ y))dy, V−(Y ) =

∫ +∞

0
T−(P (u−(Y ) ≥ y))dy.

A portfolio selection model (without loss control) is therefore to solve the following

optimization problem4

Maximize V (X − B)

subject to

{

E[ρX] = x0,

X is FT -measureable and lower bounded.

(1)

2We assume market completeness so as not to distract ourselves from the main issue of the paper,

namely the loss control. Market incompleteness can be dealtwith at least for markets with deterministic

opportunity sets – see He and Zhou (2009a), Section 4.
3In Jin and Zhou (2008) it is assumed thatB = 0 without loss of generality.
4If X∗ is an optimal solution to the problem, then the optimal portfolio is the one that replicatesX∗,

owing to the market completeness. An optimal terminal wealth profile is usually more revealing than the

corresponding portfolio about the trading behaviors of theagent.
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In the above, the lower bound ofX may depend onX (i.e. the bounds are allowed to be

different with differentX). This requirement is due to the tameness of the admissible

portfolios.

Jin and Zhou (2009) carry out an asymptotic analysis on the optimal solutions of

the above problem, obtained in Jin and Zhou (2008), when (thepresent value of)B

approaches infinity, for the case whenu+(x) = xα, u−(x) = kxβ with 0 < α ≤ β < 1

andρ is lognormal. Their main results show that the losses, once they occur, will grow

to +∞ when the present value ofB goes to+∞. In other words, potential losses may

go catastrophic if the reference point is set excessively high. Motivated by this result,

we consider a constrained portfolio selection model where the loss is almost surely

capped by a pre-specified constantL, leading to the following problem

Maximize V (X − B)

subject to

{

E[ρX] = x0, X ≥ B − L a.s..

X isFT -measureable.

(2)

This problem is equivalent to

Maximize V (X)

subject to

{

E[ρX] = x0, X ≥ −L a.s.,

X isFT -measureable,

(3)

where, with an abuse of notation,X represents the terminal gain or loss of the portfolio

(i.e, X should have beenX − B as in (2)), andx0 now denotes the deviation of the

initial endowment from the present value ofB. Henceforth (3) will be the problem

under investigation.

We remark that Berkelaar et al. (2004) study a similar problem whereL = 0, in the

absence of probability distortions. Probability distortion is an integral part of the CPT,

and its presence reflects the agent risk preferences in a dimension different from the

utility/value functions. As a result, it will greatly change the agent trading behaviours.

Among other things, Jin and Zhou (2008) point out that the unconstrained problem

is ill-posed (i.e. the prospect value is unbounded) if thereis no probability distortion

on losses. Significant qualitative changes are expected forthe constrained model as

well. On the other hand, probability distortions pose greattechnical difficulties for

analytically treating the portfolio choice models.

To conclude this section we address the issue of model well-posedness for Problem

(3). In general a maximization problem is ill-posed if its supremium is infinite; other-

wise it is called well-posed. It was shown in Jin and Zhou (2008) that an unconstrained

behavioural model could be easily ill-posed. The reason is that, at a conceptual level,

one could take a huge leverage (since the potential losses are not capped) to bet for enor-

mous gains, and if the utility on gains overrides the disutility on losses then one ends

up with an arbitrarily large prospective value. Now, if the losses are a priori contained,
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so is the corresponding leverage. Thus our model (3) is more likely to be well-posed so

long as the gain part is well-posed.

To make it precise, consider a maximization problem involving the Choquet inte-

gral:

MaximizeV+(X) =

∫ +∞

0

T+(P (u+(X) > y))dy

subject toE[ρX] = x0, X ≥ 0 a.s.,

X isFT -measureable.

(4)

DenoteRu+(x) := −
xu′′

+(x)

u′
+(x)

, x > 0, the Arrow-Pratt index of relative risk aversion of

the utility functionu+(·) for gains.

Theorem 1. Assume thatlim infx→∞ Ru+(x) > 0. Then Problem (3) is well-posed for

any initial capitalx0 > 0 under any one of the following conditions:

(i) Problem (4) is well-posed for any initial capitalx0 > 0.

(ii) E
[

u+

(

u′
+

(

ρ
T ′
+(F (ρ))

))

T ′
+(F (ρ))

]

< +∞.

(iii) E
[

u+

(

u′
+

(

λρ
T ′
+(F (ρ))

))

T ′
+(F (ρ))

]

< +∞ for someλ > 0.

Proof: From Jin and Zhou (2008), p. 418, it follows that Problem (4) is well-posed if

and only if the following problem is well-posed:

Maximize ṽ1(g) := E[u+(g(Z))T ′
+(1 − Z)]

subject to E[g(Z)F−1(1 − Z)] = x0, g ∈ Γ,
(5)

whereZ := 1 − F (ρ) ∼ U(0, 1), a uniform random variable on interval[0, 1) and

Γ := {g : [0, 1) 7→ R
+is nondecreasing, left continuous, withg(0) = 0}. (6)

Define a new probability measurẽP whose expectatioñE(X) := E[T ′
+(1 − Z)X],

andζ := F−1(1−Z)
T ′
+(1−Z)

≡ ρ
T ′
+(F (ρ))

. Thenζ > 0 a.s.. Rewrite Problem (5) in terms of the

probability measurẽP as follows

Maximize v̄1(g) := Ẽ[u+(g(Z))]

subject to Ẽ[ζg(Z)] = x0, g ∈ Γ.
(7)

Now take the following enlarged set ofΓ:

Γ̃ := {g : [0, 1) 7→ R
+is left continuous, withg(0) = 0},

and consider Problem (7) withΓ replaced bỹΓ. The resulting problem has a larger

feasible set, but it is well-posed under (ii) or (iii) according to Jin, Xu and Zhou (2008),

Theorem 5.4. Hence (5), or (4), is well-posed under (ii) or (iii).
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It remains to show that Problem (3) is well-posed for anyx0 > 0 under (i). Indeed,

if X is a feasible solution of (3), thenE[ρX+] = E[ρ(X + X−)] ≤ E[ρX] + LE[ρ] <

∞, indicating thatX+ is a feasible solution to (4) with an initial capitalx̃0 ≤ x0 +

LE[ρ]. Denoteµ(a) := sup
E[ρX]=a, X≥0, X is FT−measureable

V+(X), which is a nondecreasing

function in a > 0. If (4) is well-posed for any initial capitala > 0, thenV (X) =

V+(X+) − V−(X−) ≤ V+(X+) ≤ µ(x0 + LE[ρ]) < +∞, implying that (3) is also

well-posed forx0 > 0.

3 Solution Scheme: Divide and Conquer

We use the same divide-and-conquer approach developed in Jin and Zhou (2008) to

solve (3), and highlight the main difference and difficulty resulting from the additional

loss constraint. First, split Problem (3) into the following positive part and negative part

problems:

Positive Part Problem: A problem with parameters(A, x+):

Maximize V+(X) =
∫ +∞

0
T+(P (u+(X) > y))dy

subject to E[ρX] = x+, X ≥ 0 a.s., X = 0 a.s. onAC ,
(8)

wherex+ ≥ x+
0 (≥ 0) andA ∈ FT with P (A) ≤ 1 are given. We define the optimal

value of Problem (8), denotedv+(A, x+), in the following way. IfP (A) > 0, in which

case the feasible set of (8) is non-empty (X = x+1A/ρP (A) is a feasible solution

satisfying all the constraints), thenv+(A, x+) is defined to be the supremum of (8).

If P (A) = 0 andx+ = 0, then (8) has only one feasible solutionX = 0 a.s. and

v+(A, x+) := 0. If P (A) = 0 andx+ > 0, then (8) has no feasible solution, where we

definev+(A, x) := −∞.

Negative Part Problem: A problem with parameters(A, x+):

Minimize V−(X) =
∫ +∞

0
T−(P (u−(X) > y))dy

subject to E[ρX] = x+ − x0, 0 ≤ X ≤ L a.s., X = 0 a.s. onA,
(9)

wherex+ ≥ x+
0 andA ∈ FT with P (A) ≤ 1 are given. We define the optimal value

v−(A, x+) of Problem (9) as follows. IfLE[ρ1Ac] ≥ x+ − x0, Problem (9) admits a

feasible solution andv−(A, x+) is the infimum value of (9). IfLE[ρ1Ac] < x+ − x0,

then (9) has no feasible solution, in which case we definev−(A, x+) = +∞.

Once the preceding two problems are solved, we then “conquer” the original prob-

lem by finding the best(A, x+) in yet another optimization problem:

Maximize v+(A, x+) − v−(A, x+)

subject to A ∈ FT , x+ ≥ x+
0 ,

(10)

Compared with Jin and Zhou (2008), the positive part problem(8) here is unaffected

by the loss constraintL; and a more general version of it has been solved already in Jin
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and Zhou (2008), Appendix C. The only difference here lies inthe negative part prob-

lem (9) where there is an additional upper bound constraint on X. This, certainly, is

due to the loss control in the original model. Using the quantile formulation developed

in Jin and Zhou (2008) and He and Zhou (2009a), we will be able to turn (9) into amin-

imizationproblem of aconcavefunctional. The solution thus must lie on the boundary

of the budget constraint set. Via a delicate analysis, Jin and Zhou (2008), Appendix

D, have solved this (unconventional) problem whenL is absent. The additional upper

constraintL introduces significant difficulties in solving this combinatorial-type opti-

mization problem in an infinite dimensional space. The main technical contribution of

the present paper is the tackling of the difficulty arising from this additional constraint

in solving (9), which in turn leads to significantly different qualitative features in the

final solution. Problem (9) will be solved in the next section.

Finally, let us remark that as in Jin and Zhou (2008), Theorem5.1, one needs only

to solve the three problems (8)–(10) withA = {ρ ≤ c} for somec ∈ [ρ, ρ̄] whereρ

and ρ̄ are the essential lower bound and upper bound ofρ respectively. The essential

reason for this is that the optimalA is the set when the agent ends up with gains, and

the optimal terminal wealth must be anti-comonotonic withρ; see He and Zhou (2009a)

for a detailed discusson on this point.

4 Solving the Negative Part Problem

We solve the negative part problem (9) in this section. For ease of exposition we con-

sider first a general constrained utilityminimizationproblem involving the Choquet

integral:

Minimize V2(X) :=

∫ +∞

0

T (P (u(X) > y))dy

subject to E[ρX] = a, 0 ≤ X ≤ L a.s.,

(11)

whereρ is the pricing kernel defined earlier, with no atom and the distribution function

F (·), a > 0 (the casea = 0 is trivial), T : [0, 1] 7→ [0, 1] is a strictly increasing, dif-

ferentiable function withT (0) = 0, T (1) = 1, andu(·) is strictly increasing, concave

with u(0) = 0. WhenE[ρ] ≥ a/L, Problem (11) admits a feasible solution, and hence

has a finite optimal value.

The exactly same argument used in Jin and Zhou (2008), Appendix D, reveals that

the optimal solutionX∗ to (11) must be in the form ofG−1(F (ρ)) for some probability

distribution function5 G(·), whereZ = F (ρ) ∼ U(0, 1). Hence, (11) reduces to the

following problem seeking the optimalG(·):

5There are left-continuous version and right-continuous version in defining an inverse function. The

above result holds true with both versions. In this paper, weuse the right-continuous version for inverses

of monotone functions, i.e.G−1(y) := inf{x : G(x) > y}.
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Minimize v2(G) :=
∫ +∞

0
T (P (u(G−1(Z)) > y)) dy

subject to



















E[F−1
ρ (Z)G−1(Z)] = a,

G is the distribution function of a random variable

taking values in[0, L] a.s.

(12)

The following result formalizes the equivalence between Problems (11) and (12),

which can be proved in exactly the same way as in Jin and Zhou (2008), Proposition

D.1.

Proposition 1. If G∗ is optimal for (12), thenX∗ := (G∗)−1(Z) is optimal for (11).

Conversely, ifX∗ is optimal for (11), then its distribution functionG∗ is optimal for

(12) andX∗ = (G∗)−1(Z), a.s..

A simple integration by parts shows (see Jin and Zhou (2008),Appendix D) that

v2(G) = E[u(G−1(Z))T ′(1 − Z)]. Denotingg = G−1, Problem (12) can be rewritten

as

Minimize v̄2(g) := E[u(g(Z))T ′(1 − Z)]

subject to E[g(Z)F−1
ρ (Z)] = a, g ∈ Γ, g(t) ≤ L ∀t,

(13)

whereΓ is the set of quantile functions (inverses of probability distribution functions)

of all the nonnegative random variables, which was defined earlier in (6).

The above procedure of changing decision variables from a random cash flowX to

its quantile functiong is called aquantile formulation. The idea of this formulation was

around in Carlier and Dana (2006), fully exploited in Jin andZhou (2008) to solve the

behavioral portfolio model and later systematically developed in He and Zhou (2009a)

for a general non-expected utility model. The advantage of this formulation is that it

overcomes the difficulty caused by the nonlinear expectation (involved in many prob-

lems including those with probability distortions) and reduces the problem to one with

the usual linear expectation.

Notice that (13) is tominimizea concavefunctional over some constraint set of the

quantile functions; hence the solutions must lie on the boundary of the constraint set.

Due to the presence of the additional constraintg(t) ≤ L ∀t, one needs to find those

boundary points carefully.

Defineb0 := sup{b ≥ 0 : E[L1Z>bF
−1
ρ (Z)] ≥ a} where we conventsup ∅ := −∞.

If (13) admits a feasible solution, then clearlyb0 ∈ [0, 1).

The following result is crucial, which dictates the form of any possible optimal

solution to (13).

Proposition 2. Assumeu(·) is strictly concave. Then the optimal solution for Problem

(13), if it exists, must be in the formg(t) = q(b1, b2)1[b1, b2)(t) + L1[b2, 1)(t), t ∈ [0, 1),

with b1, b2 satisfying0 ≤ b1 < b0 ≤ b2 ≤ 1, andq(b1, b2) :=
a−LE[F−1

ρ (Z)1[ b2,1)(Z)]

E[F−1
ρ (Z)1[b1,b2)(Z)]

< L.
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Proof: Let g be an optimal solution to (13). Clearlyg 6≡ 0. We first show that there are

no 0 < t1 < t2 < 1 such that0 < g(t1) < g(t2) < L. Indeed, if there are sucht1 and

t2, then we consider two cases.

Case 1:g(1−) = g(t2). In this caseg is constant on[t2, 1). Forβ ∈ (0, 1) define

gβ
1 (t) :=



















βg(t), 0 ≤ t < t1,

βg(t1) + γ(β)g(t2)−βg(t1)
g(t2)−g(t1)

(g(t) − g(t1)), t1 ≤ t < t2,

γ(β)g(t2), t2 < t < 1,

(14)

whereγ(β) is uniquely determined byE[gβ
1 (Z)F−1

ρ (Z)] = a. If γ(β) ≤ 1, then

it is easy to show thatgβ
1 (t) ≤ g(t) ∀t ∈ [t1, 1] and henceE[gβ

1 (Z)F−1
ρ (Z)] <

E[g(Z)F−1
ρ (Z)] = a which is a contradiction. Soγ(β) > 1. A similar argument shows

thatlim
β↑1

γ(β) = 1. Chooseβ∗ ∈ (0, 1) appropriately such that1 < γ(β∗)g(t2)−β∗g(t1)
g(t2)−g(t1)

< 2

andgβ∗

1 (t2) = γ(β∗)g(t2) ≤ L.

Case 2:g(1−) > g(t2). Then forβ ∈ (0, 1) define

gβ
1 (t) :=



















βg(t), 0 ≤ t < t1,

βg(t1) + γ(β)g(t2)−βg(t1)
g(t2)−g(t1)

(g(t) − g(t1)), t1 ≤ t < t2,

γ(β)g(t2) + (g(t) − g(t2))
g(1−)−γ(β)g(t2)

g(1−)−g(t2)
, t2 ≤ t < 1,

(15)

whereγ(β), again, is defined byE[gβ
1 (Z)F−1

ρ (Z)] = a. Similarly, γ(β) > 1 and

lim
β↑1

γ(β) = 1. Chooseβ∗ ∈ (0, 1) appropriately such that1 < γ(β∗)g(t2)−β∗g(t1)
g(t2)−g(t1)

< 2 and

0 < g(1−)−γ(β∗)g(t2)
g(1−)−g(t2)

< 2.

In either of the above two cases, define

gβ∗

2 = 2g − gβ∗

1 .

Henceforth we writeg1 and g2 as shorthands respectively forgβ∗

1 and gβ∗

2 . By the

constructions it is easy to check thatg1, g2 ∈ Γ, g1(t) ≤ L, g2(t) ≤ L, ∀t ∈ [0, 1).

As g(·), g1(·), g2(·) are left continuous functions andg1(t2) > g(t2) > g2(t2), there

existsδ > 0 such thatδ < t2 − t1 andg1(t) > g(t) > g2(t), ∀t ∈ [t2 − δ, t2]. The strict

concavity ofu(·) implies thatv̄2(g) > [v̄2(g1) + v̄2(g2)]/2; so either̄v2(g) > v̄2(g1) or

v̄2(g) > v̄2(g2) holds, which contradicts the optimality ofg(·).

Denoteb2 = min(inf{t > 0 : g(t) = L}, 1), b1 := max(sup{t > 0 : g(t) <

g(b2−)}, 0). The analysis above shows that0 ≤ b1 < b0 ≤ b2 ≤ 1 and g(t) =

k1[b1, b2)(t)+L1[b2, 1)(t) for somek ∈ R
+. The feasibility conditionE[g(Z)F−1

ρ (Z)] =

a implies

k := q(b1, b2) =
a − LE[F−1

ρ (Z)1[b2,1)(Z)]

E[F−1
ρ (Z)1[b1,b2)(Z)]

< L,

where the last inequality is due to the fact thatb1 < b0.
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In view of the preceding result, we need only to determine the“best” b1 andb2 by

solving the following two-dimensional optimization problem:

Minimize v̄2(b1, b2) := E[u(g(Z))T ′(1 − Z)],

subject to g(t) = q(b1, b2)1[b1, b2)(t) + L1[b2, 1)(t), 0 ≤ b1 < b0 ≤ b2 ≤ 1.
(16)

Proposition 3. Problems (13) and (16) have the same infimum values.

Proof: Denote byα andβ the infimum values of (13) and (16) respectively. Obviously,

α ≤ β. If the opposite inequality is false, there exists a feasible solutiong of (13) such

that v̄2(g) < β.

Denotef(·) := F−1
ρ (·) for notational convenience. For eachn ≥ 1, 0 ≤ k ≤ 2n−1,

defineã(n, k) :=
R k/2n

(k−1)/2n f(t)g(t)dt
R k/2n

(k−1)/2n f(t)dt
. Theng(k−1

2n ) ≤ ã(n, k) ≤ g( k
2n ), and it is easy to

check that

gn(t) :=
2n
∑

k=1

ã(n, k)1[ k−1
2n , k

2n )(t)

is a feasible solution of Problem (13). Sincegn → g a.s. and|gn(t)| ≤ L, we have

v̄2(gn) → v̄2(g). Hence, there existsn ∈ N such that̄v2(gn) < β. Now gn is right

continuous, nondecreasing and piece-wise constant; so, after combining the adjacent

terms with an identical function value, we can rewritegn as

gn(t) =
l
∑

k=1

a(k)1[tk, tk+1)(t) +
l+m
∑

k=l+1

a(k)1[tk, tk+1)(t),

wherel ≥ 1 satisfyingtl ≤ b0 < tl+1, m ≥ 0, 0 ≤ t1 < · · · < tl+m+1 = 1, and

0 < a(1) < · · · < a(m + l) ≤ L. By virtue of Lemma 1 below, we have the following

representation

gn(t) =
l
∑

i=1

l+m+1
∑

j=l

λijJ(ti, tj)(t),

where

J(ti, tj)(t) = q(ti, tj)1[ti, tj)(t) + L1[tj , 1)(t),

andλij, 1 ≤ i ≤ l, l + 1 ≤ j ≤ l + m + 1 are nonnegative constants satisfying
∑l

i=1

∑l+m+1
j=l+1 λij = 1. In other words,gn is a convex combination of{J(ti, tj) : 1 ≤

i ≤ j, l + 1 ≤ j ≤ l + m + 1}. However,u is concave; so

β > v̄2(gn) ≥
l
∑

i=1

l+m+1
∑

j=l+1

λij v̄2(J(ti, tj)).

Hence there exists(i, j) such that̄v2(J(ti, tj)) < β, which contradicts the fact thatβ is

the infimum of (16).
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Lemma 1. If g ∈ Γ satisfyingE[g(Z)F−1
ρ (Z)] = a with

g(t) =
l
∑

k=1

a(k)1[tk,tk+1)(t) +
l+m
∑

k=l+1

a(k)1[tk,tk+1)(t),

wherel ≥ 1, tl ≤ b0 < tl+1, m ≥ 0, 0 ≤ t1 < · · · < tm+l+1 = 1, and0 < a(1) < · · · <

a(m + l) ≤ L, theng is a convex combination of{J(ti, tj) : 1 ≤ i ≤ l, l + 1 ≤ j ≤

l + m + 1} on [0, 1), namely,

g =
l
∑

i=1

l+m+1
∑

j=l+1

λijJ(ti, tj)

for some constants{λij ≥ 0 : 1 ≤ i ≤ l, l + 1 ≤ j ≤ l + m + 1} satisfying
l
∑

i=1

l+m+1
∑

j=l

λij = 1.

Proof: We apply induction onm. If m = 0, then, witha(0) := 0, we have

g(t) =
l
∑

k=1

a(k)1[tk, tk+1)(t)

=
l
∑

k=1

(a(k) − a(k − 1))1[tk, 1)(t)

=
l
∑

k=1

λk, l+1J[tk, 1)(t),

whereλk,l+1 := a(k)−a(k−1)
q(tk,1)

≥ 0. Since

a ≡

∫ 1

0

g(t)f(t)dt =
l
∑

i=1

λi,l+1

∫ 1

0

J(ti,1)(t)f(t)dt

=
l
∑

i=1

λi,l+1a,

we get
l
∑

i=1

λi,l+1 = 1.

Now assuming the lemma is true form − 1 and anyl ≥ 1, we are to prove it is also

true form, wherem ∈ N .

Let λ̃1,l+m := min( a(1)
q(t1,tl+m)

, a(l+m)−a(l+m−1)
L−q(t1,tl+m)

). Obviouslyλ̃1,l+m ≥ 0. We claim

λ̃1,l+m ≤ 1. If it is not true, thena(1) > q(t1, tl+m), a(l + m) > a(l + m − 1) + L −

q(t1, tl+m); and hence

g(t) > q(t1, tl+m)1[t1, tl+m) + (L − q(t1, tl+m) + a(l + m − 1))1[tl+m, tl+m+1)

> q(t1, tl+m)1[t1, tl+m) + L1[tl+m, tl+m+1)

= J(t1, tl+m)(t),

12



which contradicts the feasibility ofg.

Define

g̃ :=
g − λ̃1,l+mJ(t1,tl+m)

1 − λ̃1,l+m

. (17)

It is not a difficult exercise to check that̃g ∈ Γ and g̃(t) ≤ L ∀t. Rewrite (17) as

g = λ̃1,l+mJ(t1,tl+m) + (1 − λ̃1,l+m)g̃.

If λ̃1,l+m = a(l+m)−a(l+m−1)
L−q(t1,tl+m)

, then it is not hard to see thatg̃(tl+m−) = g̃(tl+m), i.e.

g̃(t) =
l
∑

k=1

ã(k)1[tk, tk+1)(t) +
l+m−1
∑

k=l+1

ã(k)1[tk, tk+1)(t),

with the samel, tj ,m and some (possibly) different0 < ã(1) < · · · < ã(l+m−1) ≤ L.

Sog̃ has onlym−1 steps on(b0, 1) in this expression and hence is a convex combination

of {J(ti, tj)} by the induction hypothesis. As a resultg is a convex combination of

{J(ti, tj)}, which completes the proof.

If, on the other hand,̃λ1,l+m = a(1)
q(t1,tl+m)

, then it is easy to check thatg̃(t) = 0, ∀t ∈

[t1, t2), andg̃ can be written as

g̃(t) =
l
∑

k=2

ã(k)1[tk,tk+1)(t) +
l+m−2
∑

k=l+1

ã(k)1[tk,tk+1)(t) + ã(l + m − 1)1[tl+m−1,1),

with the samel, tj , m and some0 < ã(2) < · · · < ã(l+m−1) ≤ L. In this expression,

g̃ hasl−1 steps on[0, b0) andm steps on[b0, 1). Repeat the previous procedure starting

with defining a yet another new function via (17) whereg is replaced bỹg on the right

hand side. We claim that afters(m) ≤ l times, we get

g =λ̃1,l+mJ(t1,tl+m) + (1 − λ̃1,l+m)λ̃2,l+mJ(t2,tl+m) + · · ·

+
sm−1
∏

k=1

(1 − λ̃k,l+m)λ̃s(m),l+mJ(ts(m),tl+m) +

s(m)
∏

k=1

(1 − λ̃k,l+m)g̃m,s(m),

whereg̃m,s(m) has onlym − 1 steps on(b0, 1) and hence is a convex combination of

{J(ti, tj)} by the induction hypothesis, which would then lead to the desired conclusion.

If, on the other hand, the above claim is false, then afterl times, we get

g = λ̃1,l+mJ(t1,tl+m) + · · · +
l−1
∏

k=1

(1 − λ̃k,l+m)λ̃l,l+mJ(tl,tl+m) +
l
∏

k=1

(1 − λ̃k,l+m)g̃m,l,

(18)

whereg̃m,l ∈ Γ, g̃m,l(t) ≤ L andg̃m,l is zero on[0, tl+1]. By the definition ofb0 and
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the inequalitytl+1 > b0 we have

E[g(Z)F−1
ρ (Z)]

= aλ̃1,l+m + · · · + a
l−1
∏

k=1

(1 − λ̃k,l+m)λ̃l,l+m +
l
∏

k=1

(1 − λ̃k,l+m)E
[

g̃m,l(Z)F−1
ρ (Z)

]

< aλ̃1,l+m + · · · + a
l−1
∏

k=1

(1 − λ̃k,l+m)λ̃l,l+m + a
l
∏

k=1

(1 − λ̃k,l+m)

= a,

which contradicts the feasibility ofg.

Definec0 := F−1
ρ (b0). The following theorem gives a complete solution to Problem

(11).

Theorem 2. Problem (11) and (16) have the same infimum values. If, in addition, u(·)

is strictly concave, then (11) admits an optimal solution ifand only if the following

optimization problem in(c1, c2):

min
ρ≤c1<c0≤c2≤ρ̄

{

u

(

a − LE(ρ1ρ>c2)

E(ρ1c1<ρ≤c2)

)

[T (P (ρ > c1)) − T (P (ρ > c2))]

+u(L)T (P (ρ > c2))
}

(19)

admits an optimal solution(c∗1, c
∗
2), in which case the optimal solution to (11) is

X∗ =
a − LE[ρ1ρ>c∗2

]

E[ρ1c∗1<ρ≤c∗2
]

1c∗1<ρ≤c∗2
+ L1ρ>c∗2

. (20)

Proof: The first conclusion follows from Proposition 3. For the second conclusion,

substitutingg(t) = q(b1, b2)1[b1,b2)(t) + L1[b2,1)(t) into the objective function of (16)

and changing the variables byci = F−1(bi), i = 1, 2, we obtain the objective function

of (19). Finally, the optimal solution (20) follows from thethe fact thatX∗ = g∗(F (ρ)),

a.s., whereg∗ is the optimal quantile function corresponding to the optimal solution

(c∗1, c
∗
2) to (19).

In summary, we have obtained an explicit optimal solution toProblem (11), in terms

of the optimal solution to a two-dimensional mathematical program (19).

We are now in the position to solve the negative part problem (9) thanks to the

general solution obtained above. As in Jin and Zhou (2008) wewill solve (9) when

A = {ρ ≤ c}. For anyx+ ≥ x+
0 , definec0(x+) := sup{d ≥ ρ : E[Lρ1ρ>d] ≥ x+−x0}.

Only whenc ≤ c0(x+), (9) with parameters({ρ ≤ c}, x+) has a feasible solution.

Theorem 3. Assume thatu−(·) is strictly positive. GivenA = {ω : ρ ≤ c} with

ρ ≤ c ≤ c0(x+) andx+ ≥ x+
0 .

(i) If x+ = x0 andc = c0(x+) ≡ ρ̄, then the optimal solution of (9) isX∗ = 0 and

v−(c, x+) = 0.
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(ii) Otherwise, we have

v−(c, x+) = inf
c≤c1<c0(x+)≤c2≤ρ̄

{

u−

(

x+ − x0 − LE(ρ1ρ>c2)

E(ρ1c1<ρ≤c2)

)

[

T (P (ρ > c1))

− T (P (ρ > c2))
]

+ u(L)T (P (ρ > c2))
}

.

(21)

Moreover, Problem (9) with parameters({ρ ≤ c}, x+) admits an optimal solution

X∗ if and only if the minimization problem on the right hand sideof (21) admits

an optimal solution(c∗1, c
∗
2), in which case

X∗ =
x+ − x0 − LE[ρ1ρ>c∗2

]

E[ρ1c∗1<ρ≤c∗2
]

1c∗1<ρ≤c∗2
+ L1ρ>c∗2

.

Proof: (i) is trivial. Given Theorem 2 for the general constrainedChoquet minimization

problem, (ii) can be proved in exactly the same way as that in proving Theorem 7.1, Jin

and Zhou (2008).

5 Solution of the Behavioral Model

Now that we have solved the negative part problem (9), and thepositive part problem

(8) is solved exactly as in Jin and Zhou (2008), Theorem 5.1. So what remains to do is

completely parallel to that in Jin and Zhou (2008).

First of all, in view of Theorem 3, we only need to consider thefollowing problem

in lieu of (10), where(c, c2, x+) are the decision variables:

Maximize v+(c, x+) − u−

(

x+ − x0 − LE[ρ1ρ>c2]

E[ρ1c<ρ≤c2]

)

[T−(P (ρ > c)) − T−(P (ρ > c2))]

− u−(L)T−(P (ρ > c2)),

subject to ρ ≤ c ≤ c0(x+) ≤ c2 ≤ ρ̄, x+
0 ≤ x+ ≤ x0 + LE[ρ],

x+ = 0 whenc = 0.

(22)

Here we convent thatx+−x0−LE[ρ1ρ>c2 ]

E[ρ1c<ρ≤c2
]

:= 0 whenc = c2.

Theorem 4. Assume thatu−(·) is strictly concave. We have the following conclusions:

(i) If X∗ is optimal to Problem (3), thenc∗ := F−1(P (X∗ > 0)), c∗2 = F−1(P (X∗ >

−L)), x∗
+ := E[ρ(X∗)+], whereF is the distribution function ofρ, are optimal

to Problem (22). Moreover,{ω : X∗ ≥ 0} and{ω : ρ ≤ c∗} are identical up to a

zero probability set, and(X∗)− =
x+−x0−LE[ρ1ρ>c∗2

]

E[ρ1c∗<ρ≤c∗2
]

1c∗<ρ≤c∗2
+ L1ρ>c∗2

.
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(ii) If (c∗, c∗2, x
∗
+) is optimal to Problem (22) andX∗

+ is optimal to Problem (8) with

parameters({ρ ≤ c∗}, x∗
+), then the optimal solution to (3) can be represented

as

X∗ = X∗
+1ρ≤c∗ −

x+ − x0 − LE[ρ1ρ>c∗2
]

E[ρ1c∗<ρ≤c∗2
]

1c∗<ρ≤c∗2
− L1ρ>c∗2

. (23)

Proof: The proof is the same as that for Jin and Zhou (2008), Theorem4.1.

The optimal terminal wealth profile (23) is obtained explicitly, which depends on the

solution to a three-dimensional mathematical program (22). In some cases the solutions

can be derived analytically; see the next section for examples. Most importantly though,

the expression (23) reveals interesting qualitative features different from that without

loss control, obtained in Jin and Zhou (2008). The future world is divided intothree,

instead of two, classes of states: the good, the moderately bad, and the bad. In the good

states (ρ ≤ c∗), the agent obtains a gainX∗
+, a random variable which generally takes

different values in different good states. In the moderately bad states (c∗ < ρ ≤ c∗2),

there is aconstant, moderate loss
x+−x0−LE[ρ1ρ>c∗2

]

E[ρ1c∗<ρ≤c∗2
]

. In a bad state, the agent incurs the

maximum lossL. The corresponding trading strategy is still gambling: theagent sells

two contingent claims, corresponding to the two lower classes of states, in order to raise

funds and gamble on the high states of the world. So the agent will still take leverage if

her reference point is high, but she will be more cautious in doing so – by differentiating

the loss states and controlling (indirectly) the leverage level.

6 An Example with Two-Piece Power Utility

We take the same benchmark example as in Jin and Zhou (2008), Section 9, except now

that we have an additional explicit bound for losses. The pricing kernel is lognormal

with ρ = 0, ρ̄ = +∞, and the utility function is the one proposed by Tversky and

Kahneman (1992), namely,u+(x) = xα, u−(x) = k−xα, where0 < α < 1 andk− > 0.

For simplicity, we take the interest rate as 0 and soE[ρ] = 1. The positive part problem

(8) in this example (whereA = {ρ ≤ c}) has been solved explicitly by Jin and Zhou

(2008) with the following results:

X∗
+(c, x+) =

x+

ϕ(c)

(

T ′
+(F (ρ))

ρ

)
1

1−α

1ρ≤c, 0 < c ≤ ∞, x+ ≥ x+
0 , (24)

and

v+(c, x+) = ϕ(c)1−αxα
+, 0 < c ≤ +∞, x+ ≥ x+

0 (25)

where

ϕ(c) := E

[

(

T ′
+(F (ρ))

ρ

)1/(1−α)

ρ1ρ≤c

]

> 0, 0 < c ≤ +∞.
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Let

ϕ̃(c) =







ϕ(c), if 0 < c ≤ +∞,

0, if c = 0.

Then Problem (22) specializes to

Maximize v(c, c2, x+)

=ϕ̃(c)1−αxα
+ − k−

(

x+ − x0 − LE[ρ1ρ>c2]

E[ρ1c<ρ≤c2]

)α

[T−(P (ρ > c)) − T−(P (ρ > c2))]

− k−LαT−(P (ρ > c2)),

subject to







0 ≤ c ≤ c2 ≤ +∞, max{x+
0 , x0 + LE[ρ1ρ>c2]} ≤ x+ ≤ x0 + LE[ρ1ρ>c],

x+ = 0 whenc = 0.

(26)

Note that in the above, the original inequality constraintc ≤ c0(x+) ≤ c2 is replaced

by x0 + LE[ρ1ρ>c2] ≤ x+ ≤ x0 + LE[ρ1ρ>c].

Denoteg1(c2) := P (ρ > c2), g2(c2) := E[ρ1ρ>c2]. Then defineg(x) := g2(g
−1
1 (x))

andh(x) := T−(g−1(x)), x ≥ 0. It is easy to verify thatg(·) is concave andh(·) is

nondecreasing satisfyingh(0) = 0, h(1) = 1, andT−(x) = h(g(x)).

Theorem 5. If h(·) is convex, then the optimal solution to Problem (3) is

X∗ =
x0 + LE[ρ1ρ>c∗2

]

ϕ(c∗2)

(

T ′
+(F (ρ))

ρ

)
1

1−α

1ρ≤c∗2
− L1ρ>c∗2

(27)

wherec∗2 (possibly infinite) is the optimal solution to

Maximize ϕ̃(c2)
1−α(x0 + LE[ρ1ρ>c2])

α − k−LαT−(P (ρ > c2)),

subject to 0 ≤ c2 ≤ +∞, x0 + LE[ρ1ρ>c2] ≥ x+
0 .

(28)

Proof: Define

s(c, c2) : =
T−(P (ρ > c)) − T−(P (ρ > c2))

E[ρ1c<ρ≤c2]

=
h(E[ρ1ρ>c]) − h(E[ρ1ρ>c2])

E[ρ1ρ>c] − E[ρ1ρ>c2]
, 0 ≤ c ≤ c2 ≤ +∞,

where we use the convention thats(c, c2) := 0 whenc = c2. Thens(c, c2) is a nonin-

creasing function ofc, by virtue of the convexity ofh(·). Rewrite

v(c, c2, x+)

= ϕ̃(c)1−αxα
+ − k− [(x+ − x0 − LE[ρ1ρ>c2])s(c, c2)]

α [T−(P (ρ > c)) − T−(P (ρ > c2))]
1−α

−k−LαT−(P (ρ > c2)).
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We see thatv(c, c2, x+) is nondecreasing inc ∈ [0, c2]. Therefore at optimumc = c2,

x+ = x0 + LE[ρ1ρ>c2], and Problem (26) reduces to (28), which is a simple one-

dimensional optimization problem inc2 ∈ [0,+∞]. The expression (27) then follows

from the general one (23).

It is interesting to note that Berkelaar, Kouwenberg and Post (2004) derive an op-

timal wealth profile similar to (27): the agent gets either a gain or the maximum loss,

depending on the states of the world. However, there is no probability distortion present

in Berkelaar, Kouwenberg and Post (2004). Here, we have shown that for almost arbi-

trary probability distortionsT+ on gains and a large class of distortionsT− on losses (so

long as the correspondingh(·) is convex), the same qualitative trading behaviors of an

behavioral agent prevail.

We now demonstrate why, at least in theory, a large class of distortion functions

T−(·), be they concave, convex or even inverseS-shaped, will lead toh(·) being con-

vex. First, takeT−(x) = g(x) which is a concave distortion. Thenh(x) = x, which

is trivially convex. Next, takeT−(x) = x2, a convex function. Thenh(x) = [g−1(x)]2

is again convex. Finally, we can construct a reverseS-shapedT−(·) so that the corre-

spondingh(·) is convex. The construction is based on a “reversed” procedure, namely,

we start with a proper convexh(·) and then end with anS-shapedT−(·). Specifically,

for a given constantc0 ∈ (0, 1), let δ ∈
(

0, 2c0
2c0g(c0)+g′(c0)(1−c20)

]

, and

h(x) :=







δx, x < g(c0),

1 − 1−δg(c0)

1−c20
(1 − g−1(x)2), x ≥ g(c0).

Then

h′(x) =







δ, x < g(c0),

2(1−δg(c0))

1−c20

g−1(x)
g′(g−1(x))

, x > g(c0),

which is a nondecreasing function. Thush(·) is convex. Accordingly,

T−(x) = h(g(x)) =







δg(x), x < c0,

1 − 1−δg(c0)

1−c20
(1 − x2), x ≥ c0,

which is concave on[0, c0] and convex on[c0, 1], hence reverseS-shaped.

So, Theorem 5 covers a large class of loss distortions. However, the convexity

assumption onh(·) may be violated in many other cases. Here let us take an example.

Let T−(x) = g(x)β, whereβ ∈ (0, 1). In this caseh(x) = xβ is a concave function. To

18



solve this problem, first note that (26) now reduces to

Maximize v(c, c2, x+) = ϕ̃(c)1−αxα
+

− k−

(

x+ − x0 − LE[ρ1ρ>c2]

E[ρ1c<ρ≤c2]

)α
[

(E[ρ1ρ>c])
β − (E[ρ1ρ>c2])

β
]

− k−Lα(E[ρ1ρ>c2])
β,

subject to







0 ≤ c ≤ c2 ≤ +∞, max{x+
0 , x0 + LE[ρ1ρ>c2]} ≤ x+ ≤ x0 + LE[ρ1ρ>c],

x+ = 0 whenc = 0.

(29)

Denotey2 := (E[ρ1ρ>c2])
β as a new variable in lieu ofc2. By the constraints in (29),y2

takes value in[0,
(

x+−x0

L

)β
]. Now, the following function

v̂(y2) := ϕ̃(c)1−αxα
+ − k−

(

x+ − x0 − Ly
1/β
2

E[ρ1ρ>c] − y
1/β
2

)α

(E[ρ1ρ>c]
β − y2) − k−Lαy2 (30)

is aconvexfunction iny2 ∈ [0,
(

x+−x0

L

)β
] (see Appendix for a proof); so itsmaximum

is achieved either aty2 = 0 or y2 =
(

x+−x0

L

)β
. Simple calculations shows

v̂(0) − v̂

(

(

x+ − x0

L

)β
)



















> 0, if β < α,

< 0, if β > α,

= 0, if β = α.

(31)

Hence the optimalc∗2 for (29) is, taking into consideration the constraints:

c∗2 =



















+∞, if β < α,

c0(x+), if β > α,

+∞ or c0(x+), if β = α,

where we recall thatc0(x+) is such that
∫ +∞

c0(x+)
xdF (x) = x+−x0

L
.

The final solutions to the underlying behavioral portfolio choice problem (3) depend

on the relation betweenα andβ.

Case whenβ ≥ α: in this case it is necessary thatc2 = c̄(x+) at optimum; so (29)

is rewritten as

Maximize v(c, c2, x+) = ϕ̃(c)1−αxα
+ − k−LαE[ρ1ρ>c2]

β,

subject to







0 ≤ c ≤ c2 ≤ +∞, x+ = x0 + LE[ρ1ρ>c2] ≥ 0,

x+ = 0 whenc = 0, x+ = x0 whenc = +∞.

(32)

By the monotonicity ofϕ̃(c), it is obvious that at optimumc∗ = c∗2 andx∗
+ = x0 +

LE[ρ1ρ>c∗2
]. The optimal solution of Problem (3) is

X∗ =
x0 + LE[ρ1ρ>c∗2

]

ϕ(c∗2)

(

T ′
+(F (ρ))

ρ

)
1

1−α

1ρ≤c∗2
− L1ρ>c∗2

. (33)
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Interestingly, the above is exactly the same as (27).

Case whenβ < α: in this case optimalc∗2 = +∞ and Problem (29) is

Maximize v(c, c2, x+) = ϕ̃(c)1−αxα
+ − k−(x+ − x0)

αE[ρ1ρ>c]
β−α,

subject to







0 ≤ c ≤ +∞, x+
0 ≤ x+ ≤ x0 + LE[ρ1ρ>c],

x+ = 0 whenc = 0, x+ = x0 whenc = +∞.

(34)

Let (x∗
+, c∗) be the optimal solution of (34), then

X∗ =
x+

ϕ(c∗2)

(

T ′
+(F (ρ))

ρ

)
1

1−α

1ρ≤c∗ −
x+ − x0

E[ρ1ρ>c∗ ]
1ρ>c∗ . (35)

solves (3). Note that in this case, although qualitatively the solution is similar to that

of (27) or (33) (namely, the terminal wealth has a two-piece structure), there is an

intriguing difference. In (35), the lower loss boundL is never realised; only moderat

losses are incurred in bad states.

Although the examples so far all have optimal terminal wealth profiles with two –

instead of three – pieces (one gain part and one loss part), itis easy to find a three-piece

solution as indicated in the general result, Theorem 4. We use a numerical example.

Takex0 = −1, L = 10, β = 0.85, α = 0.88, k = 2.25, andlog(ρ) ∼ N(−0.045, 0.09).

The values ofα andk are taken from Kahneman and Tversky (1992), and the agent

starts with a loss (due to a high reference point). The probability distortions areT+(x) =

x, andT−(x) = h(g(x)) where

h(x) =



















0.5x, 0 ≤ x ≤ −x0

2L
,

2L
−x0

(

(−x0

L
)β(x + x0

2L
) + −x0

4L
(−x0

L
− x)

)

, −x0

2L
< x ≤ −x0

L
,

xβ, −x0

L
< x ≤ 1.

(36)

Numerically solving the mathematical program (26) we obtain c∗ = 0.47834, c∗2 =

1.7126, andx∗
+ = 0.0035334. So

X∗ =



















0.00049434ρ−8.3333, ρ ≤ 0.47834,

−1.04153, 0.47834 < ρ ≤ 1.7126,

−10, ρ > 1.7126.

(37)

Figure 1 depicts the optimal terminal wealthX∗ as a function of the pricing kernel

ρ. So when the market is good (ρ ≤ 0.47834), the agent gets substantial gains (and

the gains soar asρ becomes smaller6). When the market is between good and bad

(0.47834 < ρ ≤ 1.7126), the agent ends with a constant moderate lossX∗ = −1.04153

(compare with the initialx0 = −1). If the market is bad (ρ > 1.7126), the agent has the

maximum lossX∗ = −10 no matter how bad the market might be.

6For example,X∗ = 0.2306 whenρ = 0.47834, X∗ = 6.7655 whenρ = 0.47834/1.5, X∗ =

74.3788 whenρ = 0.47834/2, andX∗ = 2182 whenρ = 0.47834/3.
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Figure 1: Three-Piece Solution

7 Concluding Remarks

Motivated by a companion paper Jin and Zhou (2009) which shows that a behavioral

agent may suffer catastrophic losses if there is no constraint on potential losses and/or

on leverage level, this paper investigates a behavioral CPTportfolio choice model where

the losses area priori constrained. The mathematical contribution of the paper lies in

solving completely an associated, unconventional Choquetminimization problem with

both upper and lower constraints, in an infinite dimensionalspace (the space of quantile

functions). Economically, the final solution exhibits quite different trading behaviors

compared with their unconstrained counterparts: while theagent is still gambling (on

the good states of the world), she is more cautious in taking leverage so as to meet

the regulation on losses. The paper demonstrates thatconstrainedbehavioral portfolio

selection problems are both mathematically interesting (as well as challenging) and

economically sensible.
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Appendix

A Proof of The Convexity of v̂(y2)

In this appendix we prove that the functionv̂ defined in (30) is convex iny2. Denote

y := E[ρ1ρ>c] andȳ := x+−x0

L
. It suffices to prove that the function

I(y2) :=

(

ȳ − y
1/β
2

y − y
1/β
2

)α

(yβ − y2) + y2 (38)

is concave iny2 ∈ [0, ȳβ]. Definep(y2) :=

(

ȳ−y
1/β
2

y−y
1/β
2

)α

andq(y2) :=
ȳ−y

1/β
2

y−y
1/β
2

. Then we

have the following results:

I ′(y2) = p′(y2)(y
β − y2) − p(y2) + 1; (39)

I ′′(y2) = (yβ − y2)p
′′(y2) − 2p′(y2); (40)

p′(y2) = αq(y2)
α−1q′(y2) = αp(y2)q

′(y2)/q(y2);

p′′(y2) = α2p(y2)

(

q′(y2)

q(y2)

)2

+ αp(y2)

(

q′(y2)

q(y2)

)′

;

q′(y2)

q(y2)
= −

y
1/β−1
2

β

(

1

ȳ − y
1/β
2

−
1

y − y
1/β
2

)

< 0;

(

q′(y2)

q(y2)

)′

=
q′(y2)

y2q(y2)

(

1

β
− 1 +

y
1/β
2

β

(

1

ȳ − y
1/β
2

+
1

y − y
1/β
2

))

.

Substituting the last four equalities into (40) and simplifying it gives

I ′′(y2)

= αp(y2)
q′(y2)

q(y2)







(yβ − y2)



α
q′(y2)

q(y2)
+

1

y2





1

β
− 1 +

y
1
β

2

β
(

1

ȳ − y
1/β
2

+
1

y − y
1/β
2

)







− 2







≤ αp(y2)
q′(y2)

q(y2)







(yβ − y2)





q′(y2)

q(y2)
+

1

y2





1

β
− 1 +

y
1
β

2

β
(

1

ȳ − y
1/β
2

+
1

y − y
1/β
2

)







− 2







= αp(y2)
q′(y2)

q(y2)

(1 − β)(yβ+1 − y
1+1/β
2 ) + (1 + β)yβy2(y

1/β−1
2 − y1−β)

βy2(y − y
1/β
2 )

.

(41)

Denotel(y2) := (1 − β)(yβ+1 − y
1+1/β
2 ) + (1 + β)yβy2(y

1/β−1
2 − y1−β), y2 ∈ [0, yβ].

It is easy to verify thatl(yβ) = 0, l′(yβ) = 0, andl′′(y2) = 1−β2

β2 (yβ − y2)y
1/β−2
2 > 0

∀y2 ∈ [0, yβ]. It follows that l′(y2) < l′(yβ) = 0, and hencel(y2) > 0 for ∀y2 ∈

[0, ȳβ] ⊆ [0, yβ]. Sinceq′(y2)
q(y2)

< 0, we haveI ′′(y2) < 0 ∀y2 ∈ [0, ȳβ], which completes

the proof.
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