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Abstract

In this paper we formulate a continuous-time behaviaré Ccumulative prospect
theory) portfolio selection model where the losses arettaimgd by a pre-specified
upper bound. Economically the model is motivated by the iptesty proved fact
that the losses occurring in a bad state of the world can kstaphic for an
unconstrained model. Mathematically solving the modelsbdown to solving
a concaveChoquetminimizationproblem with an additional upper bound. We
derive the optimal solution explicitly for such a loss cahtmodel. The optimal
terminal wealth profile is in general characterized by ttpiesees: the agent has
gains in the good states of the world, gets a moderate, endagly constant loss
in the intermediate states, and suffers the maximal losg&fwik the given bound
for losses) in the bad states. Examples are given to illiestn@ general results.
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1 Introduction

Study on continuous-time portfolio choice has so far preidamtly centered around
expected utility maximisation (EUM), following the semim@aper of Merton (1969).
The underlying assumption of EUM is that decision makersatienal and risk averse
when facing uncertainty. This assumption, however, hag b@en challenged by many
observed and repeatable empirical patterns as well aspasdnd puzzles such as the
Allais paradox and the equity premium puzzle.

A number of alternative preference measures to expectisg bave been proposed,
notably in Yaari's “dual theory of choice” (Yaari 1987), Leg SP/A model (Lopes
1987), and Kahneman and Tversky’s cumulative prospectyi@PT; Kahneman and
Tversky 1979, Tversky and Kahneman 1992). All these theduidnere SP/A and CPT
are regarded as instances of behavioural economics) mgolbjective probability dis-
tortions (although they may have different economic intetgetions), and CPT is the
richest one in that it in addition incorporates a referencmtpand anS-shaped util-
ity function which both have significant impact on the cop@sding decision-making
models and their solutions.

There have been burgeoning research interests in incoipptaese new theories
into portfolio choice; nonetheless these have been ovémvhgly limited to the single-
period setting; see for example Benartzi and Thaler (199&)es and Oden (1999),
Shefrin and Statman (2000), De Giorgi and Post (2008), an@rdeZhou (2009c).
Little analytical treatment has been carried outdgnamic especially continuous-time,
asset allocation featuring behavioural criteria. Suchcl t& study is because all the
main mathematical approaches dealing with the converitiBbd! models fail. In
particular, probability distortions abolish virtuallyl dhe good properties associated
with the standard additive probability and linear expectat Moreover, in the CPT
framework, the utility function is non-convex and non-cawe, while traditionally the
global convexity/concavity is a general prerequisite ilvieg an optimization problem.

Because of these difficulties, study on behavioural podfsélection is still in its
infancy in the mathematical finance community. To our besikadge there are less
than a handful of papers available in the literature thagstigate continuous-time be-
havioural portfolio choice. Berkelaar, Kouwenberg andtH@604) consider a very
special two-piece S-shaped power utility function, and lemp convexification tech-
nique to tackle the non-convexity of the problem. Howevee, probability distortion
is absent in that paper. Jin and Zhou (2008) develop a systeapproach to solving
a model under CPT with a complete market and genebgbibcesses for asset prices,
featuring bothSshaped utility functions and probability distortions. €lthapproach
includes a divide-and-conquer procedure to separate thmniaptions for gains and
losses, a quantile formulation to deal with the probabidlistortions, and a technique
to solve a concave Choquet minimization problem corresjontb the risk-seeking



part. The optimal trading strategies derived therein betmarkedly differently from
those of the classical EUM models: they are gambling pdjdietting on good states
of the world while accepting a fixed, known loss in bad onesis Téature is indeed
reminiscent of the trading pattern of many investors angaiticular, of hedge funds.

Recently, the quantile approach is further developed by mteZhou (2009a) as
a general machinery in formulating and solving portfolibesgon with a very broad
class of law-invariant performance criteria. In particuraodels with Yaari's and SP/A
criteria are solved explicitly in He and Zhou (2009a,b) exgjvely.

The model in Jin and Zhou (2008) is essentially unconstda(save for the tame-
ness requirement for admissible portfolios). Jin and ZI#09) prove that potential
losses can be catastrophically large with a sufficientlgrgjragent greed (as reflected
by a very high reference point). In other words, when onedase can lose real big. A
naturally arising problem is, therefore, to study a CPT nhedere the loss is priori
bounded by a given level, thereby the greed is containaddifectly, at a manageable
level. This is clearly an economically sensible model (aed/velevant to the current
financial crisis) from a loss control or regulatory point cdw.

This paper is to formulate and solve a CPT portfolio selectradel with loss con-
trol.! The additional technical challenge, compared with Jin amali2008), is that we
have to solve @oncaveChoqueminimizationproblem with an additional upper bound.
The minima of a constrained concave functional usuallyhi¢he boundary of the con-
strained set; hence the problem is essentially a combiahtiptimization problem in
an infinite dimesion. The main mathematical contributiothas paper is to solve such
a non-conventional problem explicitly. The final optimaitenal wealth, again derived
in an explicit form, to the portfolio choice problem exhgidifferent (indeed richer)
gualitative features than that of an unconstrained mobelagent has gains in the good
states of the world, gets a moderate, endogenatmhgtantloss in the intermediate
states, and suffers the maximal loss (which is the given #danlosses) in the bad
states.

The rest of this paper is arranged as follows. The portfadiection model is for-
mulated in Section 2, and a divide-and-conquer solutioesehadapted to the present
model is highlighted in Section 3. Section 4 consists thenrteshnical contribution of
the paper, where we solve a general constrained Choquenination problem. Sec-
tion 5 presents the optimal solution to the behavioral modielSection 6 we give a
number of concrete examples to illustrate the general teskinally, Section 7 con-
cludes. The proof of a technical lemma is put in an appendix.

1in Berkelaar, Kouwenberg and Post (2004), the terminal théalconstrained to be nonnegative,
implying a specific bound for losses. However as mentioneg tto not consider probability distortions.



2 Formulation of the M odel

We take the same market and agent preferences (and useyd¢kacthme notation) as
those in Jin and Zhou (2008). Consider a behavioral agehtamtinvestment planning
horizon [0, 7] and an initial endowment, > 0, both exogenously fixed throughout,
in an arbitrage-free and complete marfketet (Q2, F, P, {F; }+>0) be a standard fil-
tered complete probability space representing the unideriyncertainty, along with
a standard Brownian motiofi¥;,t > 0}. Here the filtrationF; is generated byV;,
augmented with alP-null sets. The unique pricing kernel in this market is

p=e{= [ ) +otsy1as - oy aw o)}

wherer(t) is the risk-free interest rate process, d@td) is the market price of risk.
Assume thap is atomless, and denote 5Y(-) the probability distribution function gf
throughout this paper.

The agent risk preference is dictated by the CPT. Specifjcstlle has a reference
point B at the terminal timé&", which is anFp-measurable contingent claim (random
variable§ with P(|B| < oo) = 1. The reference poinB determines whether a given
terminal wealth position is a gain (excess o¥gror a loss (shortfall fromB). We al-
ways assume in this paper that the benchniaiik lower bounded. The agent utility
(value) function isS-shaped:u(z) = uy(xt)1,>0(z) — u_(x7)1,<0(z), where the
superscripts” denote the positive and negative parts of a real numher,_ arecon-
cavefunctions on R with u_.(0) = 0. There are also subjective probability distortions
on both gains and losses, which are captured by two nonjimeadecreasing func-
tions 7, 7_ from [0, 1] onto [0, 1], with 7. (0) = 0,7%.(1) = 1 andTx(p) > p when
p is close to0. The agent preference on a terminal cash fléws measured by the
behavioural functional

V(X = B)=V,((X=B)") = V_((X - B)"),

whereV, (Y) = " T, (P(u,(Y) > y)dy, Vo(Y) = [ T_(P(u_(Y) > y))dy.
A portfolio selection model (without loss control) is théree to solve the following

optimization problerf
Maximize V(X — B)

. ElpX] = o, (1)
subject to ]
X is Fr-measureable and lower bounded.

2We assume market completeness so as not to distract owwsadve the main issue of the paper,
namely the loss control. Market incompleteness can be délat least for markets with deterministic

opportunity sets — see He and Zhou (2009a), Section 4.
3In Jin and Zhou (2008) it is assumed that= 0 without loss of generality.
41f X* is an optimal solution to the problem, then the optimal mdidfis the one that replicateXs*,

owing to the market completeness. An optimal terminal veofile is usually more revealing than the
corresponding portfolio about the trading behaviors ofagent.
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In the above, the lower bound &f may depend oX (i.e. the bounds are allowed to be
different with differentX). This requirement is due to the tameness of the admissible
portfolios.

Jin and Zhou (2009) carry out an asymptotic analysis on thienap solutions of
the above problem, obtained in Jin and Zhou (2008), whengthsent value ofB
approaches infinity, for the case when(z) = 2%, u_(z) = ka2’ with0 < a < g < 1
andp is lognormal. Their main results show that the losses, ameg @ccur, will grow
to +o0o when the present value &f goes to+oco. In other words, potential losses may
go catastrophic if the reference point is set excessivai.nMotivated by this result,
we consider a constrained portfolio selection model wheeeldss is almost surely
capped by a pre-specified constanieading to the following problem

Maximize V(X — B)

. E[pX| =29, X >B—Las. (2)
subject to ]
X is Fr-measureable.

This problem is equivalent to

Maximize V(X)

, E[pX] =z, X > —L as, (3)
subject to i
X is Fr-measureable,

where, with an abuse of notatioN, represents the terminal gain or loss of the portfolio
(i.e, X should have beeX — B as in (2)), andr, now denotes the deviation of the
initial endowment from the present value Bf Henceforth (3) will be the problem
under investigation.

We remark that Berkelaar et al. (2004) study a similar probleherel. = 0, in the
absence of probability distortions. Probability distontis an integral part of the CPT,
and its presence reflects the agent risk preferences in andiomedifferent from the
utility/value functions. As a result, it will greatly chaaghe agent trading behaviours.
Among other things, Jin and Zhou (2008) point out that theoustrained problem
is ill-posed (i.e. the prospect value is unbounded) if thieneo probability distortion
on losses. Significant qualitative changes are expectethéconstrained model as
well. On the other hand, probability distortions pose gteatnical difficulties for
analytically treating the portfolio choice models.

To conclude this section we address the issue of model wskgness for Problem
(3). In general a maximization problem is ill-posed if itgpsemium is infinite; other-
wise it is called well-posed. It was shown in Jin and Zhou @@8at an unconstrained
behavioural model could be easily ill-posed. The reasohas fat a conceptual level,
one could take a huge leverage (since the potential lossemacapped) to bet for enor-
mous gains, and if the utility on gains overrides the digytdn losses then one ends
up with an arbitrarily large prospective value. Now, if ties$es are a priori contained,



so is the corresponding leverage. Thus our model (3) is nikaly to be well-posed so
long as the gain part is well-posed.

To make it precise, consider a maximization problem invajvine Choquet inte-
gral:

+oo
MaximizeV, (X) = / Ty (P(uys(X) >y))dy
0
subject toE[pX] = z9, X >0 a.s, “)
X is Fr-measureable.
DenoteR,  (z) = —"”uzfl(g), x > 0, the Arrow-Pratt index of relative risk aversion of
+

the utility functionu (-) for gains.

Theorem 1. Assume thalim inf, .. R, (z) > 0. Then Problem (3) is well-posed for
any initial capitalz, > 0 under any one of the following conditions:

(i) Problem (4) is well-posed for any initial capital, > 0.
(i) E [u+ (u; (m)) T;(F(p))} < too.

(i) E [u+ (u’+ (%)) T;(F(p))} < +oo for some > 0.

Proof: From Jin and Zhou (2008), p. 418, it follows that Problem &\vell-posed if
and only if the following problem is well-posed:

Maximize @1(g) := Elu (g(Z)T".(1 — Z)] -
subjectto E[g(Z)F'(1 - 2)] =m0y, g €T,

whereZ :=1— F(p) ~ U(0, 1), a uniform random variable on interval, 1) and
I':={g:[0,1) — RTis nondecreasing, left continuous, wittd) = 0}.  (6)

Define a new probability measuféwhose expectatioh(X) := E[T'.(1 — Z)X],
L Fl(1-z) _ . '
and( := -2 = T,+(§(p)). Then¢ > 0 a.s.. Rewrite Problem (5) in terms of the

probability measuré® as follows

Maximize z7~1(g) = Fluy(9(2))] @
subjectto E[(g(Z)] = xo, g €T.
Now take the following enlarged set bf
I[':={g:[0,1) — RTis left continuous, withy(0) = 0},

and consider Problem (7) withi replaced byl'. The resulting problem has a larger
feasible set, but it is well-posed under (ii) or (iii) accmglto Jin, Xu and Zhou (2008),
Theorem 5.4. Hence (5), or (4), is well-posed under (ii) . (i
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It remains to show that Problem (3) is well-posed for apy> 0 under (i). Indeed,
if X is a feasible solution of (3), thefi[pX ] = E[p(X + X )] < E[pX]+ LE[p] <
oo, indicating thatX ™ is a feasible solution to (4) with an initial capita) < zo +

LE]p|. Denoteu(a) := sup V. (X), which is a nondecreasing
E[pX]=a, X>0, X is Fr—measureable

function ina > 0. If (4) is well-posed for any initial capitat > 0, thenV(X) =
V(X)) = V(X)) < Ve(XT) < p(xg + LE[p]) < 400, implying that (3) is also
well-posed forry > 0. O

3 Solution Scheme: Divide and Conquer

We use the same divide-and-conquer approach developed andi Zhou (2008) to
solve (3), and highlight the main difference and difficulggulting from the additional
loss constraint. First, split Problem (3) into the follogipositive part and negative part
problems:

Positive Part ProblemA problem with parameter&A, x . ):

Maximize Vi (X)= [" T (P(uy(X) > y))dy

8
subjectto E[pX]=z,, X >0as, X =0a.s.0nA’, ®

wherez, > zd (> 0) andA € Fr with P(A) < 1 are given. We define the optimal
value of Problem (8), denoted (A, =), in the following way. If P(A) > 0, in which
case the feasible set of (8) is non-emply & z,.1,/pP(A) is a feasible solution
satisfying all the constraints), then (A, z. ) is defined to be the supremum of (8).
If P(A) = 0 andz, = 0, then (8) has only one feasible solutigh = 0 a.s. and
vi(A,zy) = 0. If P(A) = 0andz; > 0, then (8) has no feasible solution, where we
definev, (A, z) := —oc.

Negative Part ProblemA problem with parameter&A, =, ):

Minimize V_(X) = ["°T_(P(u_(X) > y))dy

9
subjectto F[pX] =z, — 29, 0< X < Las, X=0a.s.0n4, ®)

wherez, > zj andA € Fr with P(A) < 1 are given. We define the optimal value
v_(A,xy) of Problem (9) as follows. ILE[pl4:] > x, — zo, Problem (9) admits a
feasible solution and_( A,z ) is the infimum value of (9). ILE[pl4c| < x, — x,
then (9) has no feasible solution, in which case we defirel, z,) = +oc.

Once the preceding two problems are solved, we then “coihtfuenriginal prob-
lem by finding the bestA, =, ) in yet another optimization problem:

Maximize v, (A, z,)—v_(A,xy)

_ (10)
subjectto A € Fr, x> a,

Compared with Jin and Zhou (2008), the positive part prol{@rhere is unaffected
by the loss constraint; and a more general version of it has been solved alreadwy in Ji
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and Zhou (2008), Appendix C. The only difference here liehanegative part prob-
lem (9) where there is an additional upper bound constrainko This, certainly, is
due to the loss control in the original model. Using the gilafdrmulation developed
in Jin and Zhou (2008) and He and Zhou (2009a), we will be abterh (9) into amin-
imizationproblem of aconcaveunctional. The solution thus must lie on the boundary
of the budget constraint set. Via a delicate analysis, JthZou (2008), Appendix
D, have solved this (unconventional) problem whers absent. The additional upper
constraintZ introduces significant difficulties in solving this combioaal-type opti-
mization problem in an infinite dimensional space. The maatmhical contribution of
the present paper is the tackling of the difficulty arisingnirthis additional constraint
in solving (9), which in turn leads to significantly differtequalitative features in the
final solution. Problem (9) will be solved in the next section

Finally, let us remark that as in Jin and Zhou (2008), Theosem one needs only
to solve the three problems (8)—(10) with= {p < c} for somec € [p, p] wherep
andp are the essential lower bound and upper boungd k#spectively. The essential
reason for this is that the optimadl is the set when the agent ends up with gains, and
the optimal terminal wealth must be anti-comonotonic witsee He and Zhou (2009a)
for a detailed discusson on this point.

4 Solving the Negative Part Problem

We solve the negative part problem (9) in this section. Feeed exposition we con-
sider first a general constrained utilitginimizationproblem involving the Choquet
integral:

Minimize  V5(X) := /;OO T(P(u(X) > y))dy (11)

subjectto  E[pX]=a, 0< X < La.s,

wherep is the pricing kernel defined earlier, with no atom and thérithgtion function
F(-), a > 0 (the caser = 0 is trivial), T : [0,1] — [0, 1] is a strictly increasing, dif-
ferentiable function witl{’(0) = 0, 7'(1) = 1, andu(-) is strictly increasing, concave
with u(0) = 0. WhenE[p] > a/L, Problem (11) admits a feasible solution, and hence
has a finite optimal value.

The exactly same argument used in Jin and Zhou (2008), Appéndeveals that
the optimal solutionX* to (11) must be in the form o ~!(F'(p)) for some probability
distribution functiol G(-), whereZ = F(p) ~ U(0,1). Hence, (11) reduces to the
following problem seeking the optimaél(-):

SThere are left-continuous version and right-continuousiea in defining an inverse function. The
above result holds true with both versions. In this papengesthe right-continuous version for inverses
of monotone functions, i.e5~(y) := inf{x : G(z) > y}.



Minimize vy(G) := [T (P(u(G~Y(Z)) > y))dy

—Jo

ElF,N2)G7H2)] = a,

: 12
subjectto { @ is the distribution function of a random variable (12)

taking values irf0, L| a.s.

The following result formalizes the equivalence betweeobRims (11) and (12),
which can be proved in exactly the same way as in Jin and Zh@@8(2 Proposition
D.1.

Proposition 1. If G* is optimal for (12), thenX* := (G*)~!(Z) is optimal for (11).
Conversely, itX* is optimal for (11), then its distribution functio@* is optimal for
(12) andX* = (G*)"}(Z), a.s..

A simple integration by parts shows (see Jin and Zhou (2088pendix D) that
1(G) = Elu(G™Y(2))T'(1 — Z)]. Denotingg = G, Problem (12) can be rewritten
as

Minimize vo(g) == Elu(g(2))T'(1 — Z)]

13
subjectto  E[g(Z)F,; ' (Z)] =a, g €T, g(t) < LVt, (t3)

wherel is the set of quantile functions (inverses of probabilitgtdbution functions)
of all the nonnegative random variables, which was definéceea (6).

The above procedure of changing decision variables from@ara cash flowX to
its quantile functiony is called aquantile formulation The idea of this formulation was
around in Carlier and Dana (2006), fully exploited in Jin alu (2008) to solve the
behavioral portfolio model and later systematically depeld in He and Zhou (2009a)
for a general non-expected utility model. The advantagdigfformulation is that it
overcomes the difficulty caused by the nonlinear expectdiiovolved in many prob-
lems including those with probability distortions) andueds the problem to one with
the usual linear expectation.

Notice that (13) is taninimizea concavefunctional over some constraint set of the
guantile functions; hence the solutions must lie on the damwnof the constraint set.
Due to the presence of the additional constrgiit} < L V¢, one needs to find those
boundary points carefully.

Defineb, := sup{b > 0 : E[L1z-,F, (Z)] > a} where we conventup §) := —oc.

If (13) admits a feasible solution, then cleably< [0, 1).

The following result is crucial, which dictates the form afyapossible optimal

solution to (13).

Proposition 2. Assume(-) is strictly concave. Then the optimal solution for Problem
(13), if it exists, must be in the forgit) = q(b1, ba)1p,, b0s)(t) + Llp,, 1y(t), t € [0, 1),

_ -1
with by, b, Satisfyingd < by < by < by < 1, andq(by, by) := ‘S el <
1,92
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Proof: Let g be an optimal solution to (13). Cleardy 0. We first show that there are
no0 < t; <ty < 1 suchthat) < g(t;) < g(t2) < L. Indeed, if there are such and
t,, then we consider two cases.

Case 1:g(1—) = g(t2). In this casg is constant orfit5, 1). For 5 € (0, 1) define

By(t), 0<t<ty,
g7 (1) = { By(tr) + L2HLLa0) (() — g(11)), 1 St <1, (14)
Y(3)g(t2), by <t <1,

where~(3) is uniquely determined bE[gf(Z)Fp*l(Z)] = a. If v(B) < 1, then

it is easy to show thag/(t) < g(t) Vt € [t,,1] and henceE[¢/(Z2)F;*(Z)] <
Elg(Z)F,'(Z)] = a which is a contradiction. Sg(3) > 1. A similar argument shows
thatlﬁi?%y(ﬂ) = 1. Chooses* € (0, 1) appropriately such that < 1B8Yg(t2)=Fg(t) - o

g(t2)—g(t1)
andg)” (t2) = 7(3")g(t2) < L.
Case 2:g(1—) > g(t2). Then forj € (0, 1) define

By(t), 0<t<t,
g1 (t) = q By(ty) + 2EBLD00) (g(4) — g(1y)),  t <t<ty,  (15)
Y(B)g(t2) + (9(t) — g(t2) CFFDE ¢, <t <1,

where~(3), again, is defined byz[¢/ (Z VE, N (Z)] = a. Similarly ~v(B) > 1 and
lim (%) = 1. ChooseJ” € (0, 1) appropriately such thait < 1Bg(2)=59(t1) - 9 gnd

g(ta)—g(t1)

g(1-)—y(B*)g(t2)
0<iogm <2

In either of the above two cases, define

g =29-9g) .
Henceforth we writey; and ¢, as shorthands respectively fof and ¢’ . By the
constructions it is easy to check that g2 € I', g:1(t) < L, go(t) < L, Vt € [0,1).
As g(+), g1(+), g=(+) are left continuous functions and(t2) > g(t2) > g¢2(t2), there
existsd > 0 such that < ¢, — ¢, andg, (t) > g(t) > ga(t), Vt € [t2 — 0, t5]. The strict
concavity ofu(-) implies thatvy(g) > [v2(g1) + 2(g2)]/2; SO eithervy(g) > v2(gq) OF
v2(g) > v4(g2) holds, which contradicts the optimality ¢f-).

Denoteb, = min(inf{¢t > 0 : g(t) = L}, 1), by := max(sup{t > 0 : g(t) <
g(ba—)}, 0). The analysis above shows that< b, < by < by < 1 andg(t) =
Kby, by)(t) 4 L1p,, 1y(t) for somek € R*. The feasibility condition[g(Z)F, ' (Z)] =

a implies
o — LE[F, (Z)1jp,(2))

E[F_l(Z)l[bhbz)(Z)]

p

]{3 = q(bl,bg) =

< L,

where the last inequality is due to the fact thak b,. O
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In view of the preceding result, we need only to determine‘fiest” b, andb, by
solving the following two-dimensional optimization preioh:

Minimize  0y(by, by) := Elu(g(Z2)T'(1 — Z)],

| (16)
SUbJeCt to g(t) = Q(bl, bg)l[bh bz)(t> + Ll[b27 1)(t>, 0< bl < b(] < bz <1.

Proposition 3. Problems (13) and (16) have the same infimum values.

Proof: Denote byr and the infimum values of (13) and (16) respectively. Obviously,
a < . If the opposite inequality is false, there exists a feasgalutiong of (13) such
thatvs(g) < 5.

Denotef(-) := F*l( -) for notational convenience. Foreaeh> 1, 0 < k < 2"—1,
J620an FO30O

k/2m
f(k/ 1)/2n f )dt

definea(n, k) =
check that

Theng(%:1) < a(n,k) < g(4%), and it is easy to

271

gn(t) =Y aln, I SN()

’2
k=1
is a feasible solution of Problem (13). Singe — ¢ a.s. andg,(t)| < L, we have
v2(gn) — v2(g). Hence, there exists € N such thatvy(g,) < 3. Now g, is right
continuous, nondecreasing and piece-wise constant; &, @fmbining the adjacent
terms with an identical function value, we can rewrgjteas

l I+m
Z& tk tht1) ) + Z a(k)l[tk, tk+1)(t)?
k=1 k=l+1

wherel > 1 satisfyingt; < by < t;p, m > 0,0 <t < -+ < tiymy1 = 1, and
0<a(l) <---<a(m+1) < L. By virtue of Lemma 1 below, we have the following

representation
I I4+m+1

= Z Z >\z‘jJ(tm t.i)(t>

i=1  j=I
where
Jits, 1)) = q(ti, £)1p,, 1) () + L, 1(2),
and);, 1 <i <[, I+1<j <1+ m+ 1arenonnegative constants satisfying
S A = 1. Inother wordsg, is a convex combination of g, ;) : 1 <

J=l+1
i1 <j,l+1<j5<Il+m+ 1}. Howeveru is concave; so

I I+m+1

B > va(gn) > Z Z AijO2(Jits, 1))-

i=1 j=l+1

Hence there existg, j) such thatv,(J,, «,)) < (3, which contradicts the fact thatis
the infimum of (16). OJ
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Lemmal. If g € T satisfyingE[g(Z)F, ' (Z)] = a with

p
l I+m

g(t> - Za(k)l[tk,tk+1)(t> + Z a(k)l[tk,tk+1)(t)7
k=1 k=Il+1

wherel > 1,t, < by <t;;1,m>0,0<t; < -+ <ty =1L and0 <a(l) <--- <
a(m +1) < L, theng is a convex combination df/, ) : 1 <i <[, [+1 <5 <
I+ m+ 1} on|0,1), namely,

I l+m-+1

g = Z Z Nijd (e, )

i=1 j=I+1

for some constant$\;; > 0 : 1 < i <[, [+1 < j <1+ m+ 1} satisfying
I l+m+1

> 2 A=1
i=1 j=I
Proof: We apply induction omz. If m = 0, then, witha(0) := 0, we have

l

g(t) = Za(k)l[tk,tkﬂ)(t)

71

= Y (a(k) — a(k — 1))1g,, 1(t)
k=1

= Z )\k, l+1J[tk, 1)<t)7
k=1

wherel, ;.1 = % > (. Since

1 l 1
0= / dOFOU = 3 N / Jon (D F (E)dt
l
= ZAMHG,

we getz Aigt1 = L.
Now assumlng the lemma is true for — 1 and anyl > 1, we are to prove it is also
true form, wherem € N.
3 L . a(1) a(l+m)—a(l+m—1)
Let )\1,l+m = mln(q(t17tl+m), T—q(r,tiem)

;\u+m < 1. Ifitis not true, theru(1) > q(t1, tj4m), all + m) > a(l+m —1) + L —
q(t1, t;1m); and hence

). Obviously X, 4, > 0. We claim

g(t) > (tlv tl-l—m)l [t1, ti4m) (L - Q(tlv tl+m) + a’(l +m — 1))1[tl+m7 titmt1)
> (tla tl—i—m)l [t1, titm) + Ll[tz+m7 titm+1)
J(tly tler) (t)7

12



which contradicts the feasibility af.

Define
g . g )\1 l+mJ(t1 tl+m)

17)
11— )\1 J4+m

It is not a difficult exercise to check thgt € I" andg(t) < L Vt. Rewrite (17) as

9= MsmJ i) + (1= Airm)d.
If Ay = A allim_l) ‘then it is not hard to see thaitt, ., —) = §(tim), i.€.

Li‘l(tlytl-km)
l l+m—1
f](t) = Z &<k)1[tk, tk+l)(t) + Z d(k)l[tk: tk+1)(t)7
k=1 k=l+1

with the samé, ¢;, m and some (possibly) differefit< a(1) < --- < a(l+m—1) < L.
Sog has onlym—1 steps oriby, 1) in this expression and hence is a convex combination
of {Ju,, +,)} by the induction hypothesis. As a resyltis a convex combination of
{Jit,, ;) }» which completes the proof

If, on the other hand\, ;,,,, =
[t1, t2), andg can be written as

q(t t then it is easy to check thatt) = 0, Vt €

l+m—2

l
g(t) = Z&(k)l[tk,tkﬂ)(t) + Z &<k)1[tk7tk+1)(t) +a(l+m— 1)1[tz+m—171)’
k=2 k=141
with the samé, ¢;, m and somé < a(2) < --- < a(l+m—1) < L. In this expression,
g hasl —1 steps on0, by) andm steps orjb,, 1). Repeat the previous procedure starting
with defining a yet another new function via (17) wheris replaced byy on the right
hand side. We claim that afte(m) < [ times, we get

g :5\1,l+mt](t1,tl+m) +(1- /~\1,l+m)5\2,l+mz](t2,tl+m) + -

sm—1 S(m)
+ H (1 - )\k,l+m))\s(m),l+mt](ts(m),tl+m) + H (1 - )\k,l+m)§m7s(m)7
k=1

where §™*(™) has onlym — 1 steps on(h,, 1) and hence is a convex combination of
{J, +,)} by the induction hypothesis, which would then lead to therddsconclusion.
If, on the other hand, the above claim is false, then dftenes, we get

-1 l

g= 5\1,l+mJ(t1,tl+m) +-- H(1 — S\k,l+m)5\l,l+m!](tl,tl+m) + H(1 — 5\k,l+m)§m’l,
k=1 k=1

(18)

whereg™! € T, g™!(t) < L andg™! is zero on[0, t,,,]. By the definition ofb, and

13



the inequalityt,,; > by we have

-1 l

= A+ a [T = Merem) Magm + [J(1 = Mesgm) E [§7(2)F,(2)]
k=1 k=1

-1 l

< 05\1,l+m +--+ta H(1 — 5‘k,l+m)5\l,l+m +a H(l — 5\k,l+m)

k=1 k=1
= a’

which contradicts the feasibility of. I
Definecy := F;l(bo). The following theorem gives a complete solution to Problem
(112).

Theorem 2. Problem (11) and (16) have the same infimum values. If, intieahgli.(-)
is strictly concave, then (11) admits an optimal solutiomnid only if the following
optimization problem irfcy, ¢s):

; a-_'ng(p1p>cz>
p<er Seoler<p {“ ( Elol—pers) ) [T(P(p>c1)) —T(Plp > c))]

(19)
+u(L)T(P(p > 02))}

admits an optimal solutiofx], ¢3), in which case the optimal solution to (11) is

a— LE[p1P>C*]
X' = 21 ercp<er + L1 s ex. 20
E[plcf<p§63] 1<,0§ 2 + p>cy ( )

Proof: The first conclusion follows from Proposition 3. For the aed conclusion,
substitutingg(t) = q(b1,b2)1p, 4,)(t) + Llp, 1y(t) into the objective function of (16)
and changing the variables by= F~!(1;), i = 1,2, we obtain the objective function
of (19). Finally, the optimal solution (20) follows from thiee fact thatX* = ¢*(F'(p)),
a.s., whergy* is the optimal quantile function corresponding to the oplirsolution
(¢}, ch) to (19). O

In summary, we have obtained an explicit optimal solutioRttoblem (11), in terms
of the optimal solution to a two-dimensional mathematicalgpam (19).

We are now in the position to solve the negative part problgpti{anks to the
general solution obtained above. As in Jin and Zhou (2008willesolve (9) when
A ={p < c}. Foranyz, > xy, defineco(xy) := sup{d > p : E[Lpl,~q4] > x4 —x0}.
Only whene < ¢q(z ), (9) with parameter§{p < ¢}, z, ) has a feasible solution.

Theorem 3. Assume that._(-) is strictly positive. Giverd = {w : p < ¢} with
p<c<c(ry)andzy > zj.

(i) If ;. = g ande = ¢o(z1) = p, then the optimal solution of (9) i§* = 0 and

v_(c,z4) = 0.
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(i) Otherwise, we have

= o (B ) 1
= T(P(p > )| + u(L)T(P(p > c2)) }.
(21)

Moreover, Problem (9) with parametef§p < c}, x ) admits an optimal solution
X* if and only if the minimization problem on the right hand sad€21) admits
an optimal solutior(c}, ¢;), in which case

Ty — 20 — LE[pl 5]

X" =
E[plc*{<p§cs]

1cf <p<c3 + L1p>c§

Proof: (i) is trivial. Given Theorem 2 for the general constrai@tbquet minimization
problem, (ii) can be proved in exactly the same way as thatadipg Theorem 7.1, Jin
and Zhou (2008). O

5 Solution of the Behavioral Model

Now that we have solved the negative part problem (9), anghdiséive part problem
(8) is solved exactly as in Jin and Zhou (2008), Theorem Solwisat remains to do is
completely parallel to that in Jin and Zhou (2008).

First of all, in view of Theorem 3, we only need to consider fiblléowing problem
in lieu of (10), whergc, ¢, x ) are the decision variables:

vy — 0~ LE[pl e
E[plc<pS62]
(DT (P(p > ),
subjectto p < ¢ < co(wy) < < p, af <y < @9+ LE[p],

Maximize v, (c,z;) —u_ ( ) [T_(P(p>c)) =T (P(p>ca))]

x, = 0whenc = 0.
(22)

—xo—L .
Here we convent thag—20—LElPle>c]l . g whene = c,.
E[plc<p§cg]

Theorem 4. Assume that_(-) is strictly concave. We have the following conclusions:

(i) If X*is optimal to Problem (3), thest := FF~}(P(X* > 0)),c¢5 = F 1 (P(X* >
—L)), % = E[p(X*)*], whereF is the distribution function of, are optimal

to Problem (22). Moreovefw : X* > 0} and{w : p < ¢*} are identical up to a

£E+—1‘0—LE[[21/,>C§} 1

E[plc*<p§c’2‘]

zero probability set, andX™*)~ =

c*<p<c} + L]-p>c§ .
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(ii) If (c*,c5, 2% ) is optimal to Problem (22) and; is optimal to Problem (8) with
parameterg{p < c*},z% ), then the optimal solution to (3) can be represented

as
4 — x9 — LE[pl ;5]
X*: *1 c* T 2 10* c*—Ll cx. 23
+ops E[plc*<p§c§] <P p=e ( )
Proof: The proof is the same as that for Jin and Zhou (2008), Thedrém ]

The optimal terminal wealth profile (23) is obtained exphciwhich depends on the
solution to a three-dimensional mathematical program. (2yome cases the solutions
can be derived analytically; see the next section for examypost importantly though,
the expression (23) reveals interesting qualitative festulifferent from that without
loss control, obtained in Jin and Zhou (2008). The futurelavd divided intothree
instead of two, classes of states: the good, the moderaaélyand the bad. In the good
states f < ¢*), the agent obtains a gaiXi’, a random variable which generally takes
different values in different good states. In the modeyaleld states < p < ¢3),

. x4+—x0—LE[pl < .x]
there is aconstant moderate loss— P2

Bl o] In a bad state, the agent incurs the
maximum lossl.. The corresponding trading strategy is still gambling: digent sells
two contingent claims, corresponding to the two lower @ass states, in order to raise
funds and gamble on the high states of the world. So the ag#stitake leverage if
her reference point is high, but she will be more cautiousinglso — by differentiating
the loss states and controlling (indirectly) the leverayel.

6 An Examplewith Two-Piece Power Utility

We take the same benchmark example as in Jin and Zhou (20820159, except now
that we have an additional explicit bound for losses. Theipgi kernel is lognormal
with p = 0, p = +o0, and the utility function is the one proposed by Tversky and
Kahneman (1992), namely, () = 2, u_(z) = k_z*, where0 < o« < 1 andk_ > 0.

For simplicity, we take the interest rate as 0 and$p| = 1. The positive part problem
(8) in this example (wherel = {p < c}) has been solved explicitly by Jin and Zhou
(2008) with the following results:

1

\ ay (TL(F(p)\ = 4
X = 1 ¢ 0<e< ) > ’ 24
+(C7 er) (,0(6) ( P p< €= 00, Ty Z Xy ( )
and
vi(e,zy) = p(e) %%, 0 < c < 4o0, 4 > af (25)
where .
T (F e
olc):=FE (JF(T(p))) p1p<c] >0, 0<c¢< 4.
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Let
o(c), if 0 <c< o0,

plc) = _
0, if c=0.

Then Problem (22) specializes to

Maximize v(c,co, )

—ple et~ (
CELT(Plp > ),

Ty —To — LE[p1P>02]
E[plc<p§02]

)tnww>ow4upw>@m

, 0<c<cy <400, max{zl,zg+ LE[pl,se, |} < 2p <29+ LE[pl, >,
subject to 2 {23, %o [PLpsco]} + 0 (P1p>c)
ry = 0whenc = 0.

(26)

Note that in the above, the original inequality constraint ¢y(z,) < ¢, is replaced
by zo + LE[pl=e,] <z < 30+ LE[pl 5]

Denotegi (cz) := Pp > ¢2), ga(c2) := Elpl,s,]. Then defing(z) := g2(gy ' (2))
andh(z) := T (g '(x)), = > 0. ltis easy to verify thay(-) is concave and.(-) is
nondecreasing satisfyintg0) = 0, h(1) = 1, and7_(z) = h(g(z)).

Theorem 5. If A(-) is convex, then the optimal solution to Problem (3) is

X" =

LEpl,~e:| (T'.(F T-a
Zo + SO(CE(p) p> 2] ( +(p<p))) 1p§C§ . L1p>c; (27)
2
wherec (possibly infinite) is the optimal solution to

Maximize — @(ca)' (20 + LE[plyne,))* — k_L*T_(P(p > c3)),

. (28)
subjectto 0 < ¢y < +o0, @9+ LE[plyse,] > 7.

Proof: Define
T_(P(p>c)) —T_(P(p > c2))

E[plc<p<cg]
h(ElpLp>c) = MElpLp>a])
Elplysc] — Elplpse,] 7

s(c,co) s =

< c < e < oo,

where we use the convention thdt, c;) := 0 whenc = ¢,. Thens(c, ¢2) is a nonin-
creasing function of, by virtue of the convexity ok(-). Rewrite

v(c, co, x4 )
= ¢(0)' "2 — k- [(2+ — w0 — LE[plpsey])s(e, )" [T-(P(p > ¢)) = T_(P(p > 2))]*
—k_LT_(P(p > ¢2)).
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We see that(c, o, z) is nondecreasing in € [0, ¢;]. Therefore at optimum = ¢,

ry = x9 + LE[pl,-,], and Problem (26) reduces to (28), which is a simple one-
dimensional optimization problem ip € [0, +o0c|. The expression (27) then follows
from the general one (23). O

It is interesting to note that Berkelaar, Kouwenberg and P2304) derive an op-
timal wealth profile similar to (27): the agent gets eitheraegngor the maximum loss,
depending on the states of the world. However, there is noglmitity distortion present
in Berkelaar, Kouwenberg and Post (2004). Here, we have siioat for almost arbi-
trary probability distortiong’, on gains and a large class of distortidinson losses (so
long as the correspondind-) is convex), the same qualitative trading behaviors of an
behavioral agent prevail.

We now demonstrate why, at least in theory, a large classstérdion functions
T_(-), be they concave, convex or even invetsshaped, will lead ta(-) being con-
vex. First, takel'_(z) = g(z) which is a concave distortion. Thér{z) = z, which
is trivially convex. Next, takd™ (z) = 2%, a convex function. Theh(z) = [g7!(x)]?
is again convex. Finally, we can construct a reve§sghaped!’ (-) so that the corre-
spondingh(-) is convex. The construction is based on a “reversed” praegaamely,
we start with a proper convex-) and then end with as-shapedl”_(-). Specifically,

for a given constant, € (0,1), letd (O, QCOQ(CO)+23(EC[))(1_03J , and

h(I) L 5$7 r < g(CO)a
1— 5B g @), o > gla).
Then
() = 0, x < g(co),
YT e oM@ )
=g g'(g7 (@)’ gico);

which is a nondecreasing function. Thius) is convex. Accordingly,

(59(1’), T < Co,

1— 71_1‘19(%0)(1 — %), x> cp,

T_ () = hlg()) =

which is concave ofD, ¢g] and convex ofic, 1], hence reversg-shaped.

So, Theorem 5 covers a large class of loss distortions. Hexyveélre convexity
assumption o (-) may be violated in many other cases. Here let us take an erampl
LetT (z) = g(x)?, whereg € (0, 1). In this caséi(z) = «” is a concave function. To
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solve this problem, first note that (26) now reduces to
Maximize  v(c,co, 1) = p(c)' *ag

i — 20— LE[pl)=e,] \* )
— ke ( E[plecp<es) ) [(E[plp>c]>ﬁ — (E[p1p>c2])ﬁ} —k L (E[P1p>cz])ﬁ,

i 0 < ¢ < e < oo, max{zy, 2o+ LE[plyse} < 2y < 29+ LE[plysd],
subject to 2 {zg, 20 [Plpse]} <y <9 (21 5e]

x4y = 0whenc = 0.
(29)

Denotey, := (E[pl,=.,])” as a new variable in lieu of. By the constraints in (29)

takes value iri0, (%)B]. Now, the following function

1
l—a,.a L (I-i- — Lo — LyZ/ﬁ

(Elplpse)’ = y2) — k—L%y> (30)
Ewbxk—£m>

is aconvexfunction inys € [0, (M)ﬁ] (see Appendix for a proof); so iteaximum

L
is achieved either a, = 0 ory, = (@)6. Simple calculations shows
>0, If §<a,
. N Ty — X b .
9(0) — 0 7 <0, iff8>a, (31)
=0, If 5=aqa.

Hence the optimat; for (29) is, taking into consideration the constraints:

+oo, if 3< a,
C; = 00(1'4_), if ﬂ > «Q,

+ooorco(zy), If f=a,

where we recall thaty(z ) is such thatf;(";) rdF(r) = =72,

The final solutions to the underlying behavioral portfolimae problem (3) depend
on the relation between andg.

Case wher > «: in this case it is necessary that= ¢(z, ) at optimum; so (29)
is rewritten as

Maximize  v(c,co,74) = @(c)' " *2% — k_LE[pl =,]°,

. 0 S c S Co S +OO7 Ty =Ty + LE[p1p>CQ] Z 07 (32)
subject to
r, = 0whenc =0, x, = xog whenc = 4oc.

By the monotonicity of3(c), it is obvious that at optimum* = ¢; andz’ = x¢ +
LE|pl,-.]. The optimal solution of Problem (3) is

X*

:m+meD@<Tuﬂm>

o) D) et @
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Interestingly, the above is exactly the same as (27).
Case wherg < «: in this case optimat; = +o0o and Problem (29) is

l-a, .«

Maximize wv(c,co,x4) = @(c)' 2% — k_(v4 — x0)*E[pl,5)" 7,

) 0<c<+oo,x+<x < x9+ LE|(pl,~.|, (34)
subjectto{ ~ 0 =" ="0 [PLo>c]
r, = 0whenc =0, x, = xog whenc = 4oc.

Let (2%, c¢*) be the optimal solution of (34), then

Tl F ﬁ -
Xt o ( " (p))> e — 2= T0 (35)
A\ o o Bl

solves (3). Note that in this case, although qualitativhly $olution is similar to that
of (27) or (33) (namely, the terminal wealth has a two-pietacsure), there is an
intriguing difference. In (35), the lower loss bourds never realised; only moderat
losses are incurred in bad states.

Although the examples so far all have optimal terminal weplofiles with two —
instead of three — pieces (one gain part and one loss pastgasy to find a three-piece
solution as indicated in the general result, Theorem 4. \Weausumerical example.
Takery = —1, L = 10, 8 = 0.85, a = 0.88, k = 2.25, andlog(p) ~ N(—0.045,0.09).

The values olx and % are taken from Kahneman and Tversky (1992), and the agent
starts with a loss (due to a high reference point). The pridibadlistortions arel’, (z) =
x,andT"_(z) = h(g(z)) where

0.5z, 0<z< 37,
W)= 0 2 ()3 + (- w), e, @0)
b, - <z<Ll

Numerically solving the mathematical program (26) we abtéi = 0.47834, ¢ =
1.7126, andz”, = 0.0035334. So

0.00049434p8:3333 ) < 0.47834,
X* =1 —1.04153, 0.47834 < p < 1.7126, (37)
-10, p > 1.7126.

Figure 1 depicts the optimal terminal wealti* as a function of the pricing kernel
p. So when the market is goog < 0.47834), the agent gets substantial gains (and
the gains soar as becomes smallé)y. When the market is between good and bad
(0.47834 < p < 1.7126), the agent ends with a constant moderate J$s= —1.04153
(compare with the initiak, = —1). If the market is badd{ > 1.7126), the agent has the
maximum lossX* = —10 no matter how bad the market might be.

5For example, X* = 0.2306 whenp = 0.47834, X* = 6.7655 whenp = 0.47834/1.5, X* =
74.3788 whenp = 0.47834/2, andX* = 2182 whenp = 0.47834/3.
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Figure 1: Three-Piece Solution

7 Concluding Remarks

Motivated by a companion paper Jin and Zhou (2009) which shibxat a behavioral
agent may suffer catastrophic losses if there is no constoai potential losses and/or
on leverage level, this paper investigates a behavioralgffolio choice model where
the losses ara priori constrained. The mathematical contribution of the pagarih
solving completely an associated, unconventional Choepir@tmization problem with
both upper and lower constraints, in an infinite dimensispake (the space of quantile
functions). Economically, the final solution exhibits qudifferent trading behaviors
compared with their unconstrained counterparts: whileathent is still gambling (on
the good states of the world), she is more cautious in talengrlge so as to meet
the regulation on losses. The paper demonstratestmastrainedoehavioral portfolio
selection problems are both mathematically interestirggwell as challenging) and
economically sensible.
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Appendix

A Proof of The Convexity of (y,)

In this appendix we prove that the functiordefined in (30) is convex ig,. Denote
y := E[pl,-.] andy := “==_ It suffices to prove that the function

/B
I(yo) == (y y1/;a> (v’ —y2) + 12 (38)
Y—Ys

o\ ¢ -
is concave iny, € [0,7°]. Definep(y,) := <z_z§/ﬁ) andq(ys) == z Y2 . Then we
2

have the following results:

I'(y2) = P/ (1) (¥ — yo) — p(y2) + 1 (39)
]//(92) = (yﬁ - y2)P”(92) - 217/(92); (40)
P'(y2) = aq(y2)*'q (12) = ap(y2)d (v2)/a(y2);
1 o CY2 q/(yQ) ) /
P (y2) = a"p(y2) (q(yQ)) ( ()
d) w1
q(y2) B B <y y ) <0

() _ dw) (1,
- 5+t BT /s ] |-
q(y2) Y2q(y2) \ B Bo\yg— Yo Y — Yy
Substituting the last four equalities into (40) and simpfig it gives

" (y2)
) [ g (1 L) -
- p<y2>q<y2>{<y ) (6 R ] 2}

VIRVACON _q’(y2) (1 ﬁ 1 1 | N
< aplyn) q(y2) {(y v) q(y2) i Y2 (5 H p (gj—y;/’g i yy;/ﬁ)) 2}

¢(12) (L= A" — ") + (L4 By — ')

p(y2)
) Bya(y — 5"
(41)
Denotel(y,) := (1= 3)(y™*" — ™) + (14 B)y’ya(ys™ " = 4 7), 92 € [0, 9],
It is easy to verify that(y”’) = 0, I'(y”) = 0, and!”(y,) = ;32 2P — )P >0

Yy, € [0, y”]. It follows that!'(y») < I'(y®) = 0, and hencé(y,) > 0 for Vy, €

[0,5°] C [0, y?]. SinceZ¥2 < 0, we havel”(y,) < 0 ¥y, € [0,7"], which completes

a(y2)
the proof. 0
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