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Abstract

We fill a gap in the proof of a (rather critical) lemma, Lemma B.1, in Jin and Zhou

[Mathematical Finance, Vol. 18 (2008), pp. 385–426]. We also correct a couple of other

minor errors in the same paper.
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In our paper “Behavioural Portfolio Selection in Continuous Time”, Mathematical Finance,

Vol. 18, No. 3, pp. 385–426, July 2008, a central idea for overcoming the difficulty arising

from probability distortions is to change the decision variable from the (terminal) cash flow

– which is a random variable – to its quantile function. The idea is based on the following

reasoning: if the preference measure (to be minimized or maximized) in the underlying model

is law-invariant (which is inherently true for the behavioural model under prospect theory,

as well as for many other models), then one could freely swap around the cash flows so long

as their distributions are the same. Therefore, in order to find an optimal cash flow one
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only needs to search among those that maximize or minimize – depending on whether the

performance measure is to be minimized or maximized – the costs of the same distributional

classes. This leads to the following optimization problems (Problems (B1) and (B2) in Jin

and Zhou 2008):

MaximizeX E[XY ]

subject to P (X ≤ x) = G(x) ∀x ∈ IR,

(1)

and

MinimizeX E[XY ]

subject to P (X ≤ x) = G(x) ∀x ∈ IR,

(2)

where Y > 0 a.s. and G is a probability distribution function1, both given.

These problems were first considered by Dybvig (1988) for a finite probability space.2

Theorem B.1 in Jin and Zhou (2008) gives complete, explicit solutions to the above two

problems for general probability spaces. These solutions form the foundation of the quantile

formulations in solving the positive- and negative-part problems in Jin and Zhou (2008). The

quantile-based optimization is proposed by Schied (2004, 2005) to solve a class of convex,

robust portfolio selection problems, and employed by Dana (2005) and Carlier and Dana

(2006) to study calculus of variations problems with law-invariant concave criteria. Recently,

the quantile approach is systematically developed by He and Zhou (2009) into a general

paradigm in solving non-expected, non-convex/concave utility maximization models, includ-

ing both neoclassical and behavioral ones.

In Jin and Zhou (2008), Theorem B.1 is proved based upon Lemma B.1. However, there

is a gap in the proof of the latter. The proof of Lemma B.1-(i) implicitly assumes that

h(0) > −∞ (or in the case of Lemma B.1-(ii), h(0) < +∞). However, when applying Lemma

B.1 to prove Theorem B.1, it is likely that those assumptions are invalid. In particular, in the

proof of Theorem B.1-(ii), the nonincreasing function h is taken as h(x) = G−1(1 − F (x)),

where F is the probability distribution function of Y while G that of X. So it is likely that

h(0) = G−1(1) = +∞.

Although this is only a technical gap in Jin and Zhou (2008), the results are so important

that an erratum is justified. We shall fill the gap by taking into consideration the possibility

that h(0) = −∞ in Lemma B.1-(i) (or equivalently h(0) = +∞ in Lemma B.1-(ii)).

Henceforth we write X1 ∼ X2 if the two random variables X1 and X2 have the same

distribution. The following is a re-statement of Lemma B.1 along with its proof.

1In Jin and Zhou (2008), G is given satisfying G(0) = 0. This assumption is however not needed.
2Despite its title, Dybvig (1988) does not formulate or solve any specific class of portfolio choice problems

per se. Instead, it is concerned with the dual problem of portfolio choice, namely, to characterise the lowest

cost of any given terminal distribution. We were not aware of Dybvig’s result while we were working on Jin

and Zhou (2008).
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Lemma 1 Given a random variable Y > 0 a.s. with EY < +∞.

(i) Let h(·) be a nondecreasing function on [0,+∞). If X ∼ h(Y ), then E[XY ] ≤ E[h(Y )Y ].

On the other hand, if −∞ < E[XY ] = E[h(Y )Y ] < +∞, then X ∈ [h(Y −), h(Y +)]

a.s..

(ii) Let h(·) be a nonincreasing function on [0,+∞). If X ∼ h(Y ), then E[XY ] ≥ E[h(Y )Y ].

On the other hand, if −∞ < E[XY ] = E[h(Y )Y ] < +∞, then X ∈ [h(Y +), h(Y −)]

a.s..

Proof: (i) First assume h(0+) = 0. Employing Lemma A.1 in Jin and Zhou (2008),

together with the assumption that X ∼ h(Y ), we have

E[XY ] ≤ E[

∫ X

0

h−1(u)du] + E[

∫ Y

0

h(u)du]

= E[

∫ h(Y )

0

h−1(u)du] + E[

∫ Y

0

h(u)du] = E[h(Y )Y ].

If the equality holds and |E[h(Y )Y ]| < +∞, then X ∈ [h(Y −), h(Y +)] a.s..

For the more general case when 0 6= h(0+) > −∞, we assume E[h(Y )Y ] < +∞ (for

otherwise the inequality holds trivially). Define h̄(x) := h(x) − h(0+). Then

E[XY ] = E[(X − h(0+))Y ] + h(0+)EY ≤ E[h̄(Y )Y ] + h(0+)EY = E[h(Y )Y ].

Moreover, the equality holds only if X − h(0+) ∈ [h̄(Y −), h̄(Y +)], or X ∈ [h(Y −), h(Y +)].

If h(0+) = −∞, then for any integer n ≥ 1, define hn(y) := h(y) ∨ (−n). Then hn(Y ) ∼

X ∨ (−n), and hn(0+) > −∞; so

E[(X ∨ (−n))Y ] ≤ E[hn(Y )Y ].

The inequality E[XY ] ≤ E[h(Y )Y ] is trivial when E[h(Y )Y ] = +∞. So consider only the

case when E[h(Y )Y ] < +∞, in which case h0(Y )Y = [h(Y )Y ]+ and hence E[h0(Y )Y ] < +∞.

By monotone convergence theory, we have limn→+∞ E[hn(Y )Y ] = E[h(Y )Y ]. Consequently,

E[XY ] ≤ limn→+∞ E[(X ∨ (−n))Y ] ≤ limn→+∞ E[hn(Y )Y ] = E[h(Y )Y ].

Next, assume −∞ < E[XY ] = Eh(Y )Y ] < +∞. Fix any y0 > 0 and let k := h(y0+).

Define

hk(y) := h(y) ∧ k, h̄k(y) := h(y) ∨ k.

Clearly hk(Y ) ∼ X ∧ k and h̄k(Y ) ∼ X ∨ k. Hence

E[XY ] = E[(X ∧ k)Y ] + E[(X ∨ k)Y ] − kEY

≤ E[hk(Y )Y ] + E[h̄k(Y )Y ] − kEY

= E[h(Y )Y ],
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and the equality holds only if −∞ < E[h̄k(Y )Y ] = E[(X ∨k)Y ] < +∞. Since h̄k(0+) > −∞,

we can apply the proved result to conclude that X ∨ k ∈ [h̄k(Y −), h̄k(Y +)], which is valid for

k = h(y0+) with any y0 > 0.

Note that k → h(0+) = −∞ as y0 → 0, and P (X > −∞) = P (h(Y ) > −∞) =

P (Y > 0) = 1. Fixing ω ∈ Ω0 where Ω0 is a proper subset of Ω with full measure, we

choose y0 > 0 sufficiently small so that Y (ω) > y0 and X(ω) > k. In this case X(ω) ∨ k ∈

[h̄k(Y (ω)−), h̄k(Y (ω)+)] reduces to X(ω) ∈ [h(Y (ω)−), h(Y (ω)+)].

(ii) It is straightforward by applying the result in (i) to −X and −h(Y ). Q.E.D.

It should be mentioned that the above lemma is closely related to the so-called Hardy–

Littlewood’s inequality, which appeared in the book Hardy and Littlewood (1952), p. 278, in

an integral form.

Next, for the benefit of the reader, we reproduce Theorem B.1 of Jin and Zhou (2008) and

its proof (with some slight modifications).

Theorem 1 Assume that Y > 0 a.s. having no atom, with EY < +∞.

(i) Define X∗
1 := G−1(F (Y )). Then E[X∗

1Y ] ≥ E[XY ] for any feasible solution X of

Problem (1). If in addition −∞ < E[X∗
1Y ] < +∞, then X∗

1 is the unique (in the sense

of almost surely) optimal solution for (1).

(ii) Define X∗
2 := G−1(1 − F (Y )). Then E[X∗

2Y ] ≤ E[XY ] for any feasible solution X

of Problem (2). If in addition −∞ < E[X∗
2Y ] < +∞, then X∗

2 is the unique optimal

solution for (2).

Proof: First of all note that Z := F (Y ) follows uniform distribution on the (open or

closed) unit interval.

(i) Define h1(x) := G−1(F (x)). Then P{h1(Y ) ≤ x} = P{Z ≤ G(x)} = G(x), and h1(·) is

non-decreasing. By Lemma 1, E[X∗
1Y ] ≥ E[XY ] for any feasible solution X of Problem (1),

where X∗
1 := h1(Y ). Furthermore, if −∞ < E[X∗

1Y ] < +∞, and there is X which is optimal

for (1), then E[XY ] = E[X∗
1Y ]. By Lemma 1, X ∈ [h1(Y −), h1(Y +)] a.s.. Since h1(·) is

non-decreasing, its set of discontinuous points is at most countable. However, Y admits no

atom; hence h1(Y −) = h1(Y +) = h1(Y ), a.s., which implies that X = h1(Y ) = X∗
1 , a.s..

Therefore we have proved that X∗
1 is the unique optimal solution for (1).

(ii) Define h2(x) := G−1(1−F (x)). It is immediate that P{h2(Y ) ≤ x} = G(x), and h2(·)

is non-increasing. Applying Lemma 1 and a similar argument as in (i) we obtain the desired

result. Q.E.D.

The only difference between Theorem 1 here and Theorem B.1 in Jin and Zhou (2008) is

that we have an additional condition E[X∗
1Y ] > −∞ in Theorem 1-(i) (respectively E[X∗

2Y ] >

−∞ in Theorem 1-(ii)). This is because here we no longer assume G(0) = 0; hence a random

variable X with G as its distribution function is not necessarily nonnegative. Nevertheless,
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in the specific context of Jin and Zhou (2008) it is indeed true that G(0) = 0. Thus it holds

automatically that E[X∗
1Y ] ≥ 0 and E[X∗

2Y ] ≥ 0.

There are two additional (minor) errors in Jin and Zhou (2008). In the proof of Theorem

9.2, the argument for Case (1) is incorrect, since f ′′(x) is not always negative as claimed. The

correct argument is as follows: If k > 1, then

f ′(x)



























> 0, if x > −x0

k1/(1−α)−1

= 0, if x = −x0

k1/(1−α)−1

< 0, if x < −x0

k1/(1−α)−1
.

So x∗ = −x0

k1/(1−α)−1
is the only maximum point with the maximum value

f(x∗) = (x∗)α[1 − k(1 − x0/x)α] = −(−x0)
α[k1/(1−α) − 1]1−α.

There is also a minor error in the proof of Theorem 9.2 for the case infc>0 k(c) = 1 and

k(c) > 1 (page 411, line 13 from the bottom). The correct argument is the following:

sup
c>0,x+≥x+

0

v(c, x+) = −(−x0)
α inf

c>0
{ϕ(c)1−α[k(c)1/(1−α) − 1]1−α}

≥ −(−x0)
α inf

c>0
{ϕ(+∞)1−α[k(c)1/(1−α) − 1]1−α}

= −(−x0)
αϕ(+∞)1−α[(inf

c>0
k(c))1/(1−α) − 1]1−α}

= 0.

The subsequent reasoning in the original proof then follows through.
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