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Key words: Black{Scholes market, optimal stopping, buy and hold, stock goodnessindex, value function1 IntroductionA conventional and widely accepted investment wisdom is the so-called buy-and-hold rule,i.e., one should buy a good stock and leave it alone for a long time. It is based on theempirical observation that in the long run investing in a good company gives good rateof return while the volatility { which is short-term in nature { is insigni�cant. One of themain theoretical foundations of the buy-and-hold rule is the e�cient market hypothesis(EMH): if the market is e�cient and the price is right at any given time, then there isno point to trade (or to sell). So you sell a stock because something happens to you, notbecause something happens to the market. Another argument is based on transactioncosts, including bid/o�er spread, brokerage, capital gains tax, and so on. Warren Bu�ett,who clearly does not believe in EMH because his primary investment philosophy is to�nd under-priced stocks, is a buy-and-hold advocate belonging to the transaction costschool. Barber and Odean (2000) examine the issue from the behavioural �nance pointof view. They argue that due to over-con�dence investors tend to trade excessively. Anelaborative empirical study on US household investors reveals that active trading has ledto poor performance; hence \trading is hazardous to your wealth".Perverse enough, to our best knowledge no well-established dynamic investment model1has generally produced the pure buy-and-hold rule.2 When transaction costs are ignored,the famous Merton portfolio (Samuelson 1969, Merton 1971) via utility maximization re-quires trading continuously so as to keep a constant proportion in wealth among stocks.The continuous-time Markowitz model (Richardson 1989, Zhou and Li 2000) or the recentbehavioural portfolio selection model (Jin and Zhou 2008) both lead to similar continu-ously rebalancing optimal portfolios, even in the Black{Scholes case where there is onlyone stock available. When transaction costs are present, trading is signi�cantly reduced;in fact in this case there are buying, selling and no-trade regions and an optimal strategyis to move the wealth process to the no-trade region as soon as possible and stay there asfar as possible (Davis, Panas and Zariphopoulou 1993, Liu and Loewenstein 2002, Dai,Xu and Zhou 2008). However, such a strategy in general is still not exactly buy-and-hold.Consider an innocent individual investor who has no knowledge whatsoever aboututility maximization or mean{variance theories. He just bought a stock at the beginning1Clearly buy-and-hold applies nontrivially only to a dynamic model. For a single-period model, everystrategy is buy and hold.2See also the concluding section of this paper and the introduction section of Liu and Loewenstein(2002) for an overview of the literature on this. 2



of a year and for some reason (e.g. to invest for a speci�c event or an obligation) mustsell it in one year's time. Therefore he needs to decide the best time to sell within theyear. What would be his criterion to evaluate the \best timing"? A simple and na�ive, yetnatural and perhaps dominating one for many small investors, would be \to sell higher".But how high is higher? It would be ideal if the stock could be sold exactly at themaximum price over the entire year; unfortunately this is mission impossible because thetiming of the maximum price would be known only at the end of the year. Then howabout if he tries to sell at the price closest to the maximum? This sounds sensible, butone needs to de�ne precisely the meaning of the \closeness". An immediate measurewould be the absolute di�erence { the absolute error { (or any power of the di�erence)between the selling price and the maximum price, except that such a measure would failto capture the scale of the prices themselves. The scale will be taken care of if we considerthe relative error. In conclusion, a natural criterion for the investor is to minimize theexpected relative error between the selling price and the maximum price.Motivated by the above, in this paper we formulate and investigate the stock sellingproblem for a Black{Scholes market. Although the relative error criterion involves themaximum stock price over the entire investment horizon (and hence is not adapted),we are able to transform the problem into a standard optimal stopping problem with aterminal payo� and an adapted state process. We introduce a stock goodness index �,which is de�ned to be the ratio between the excess return rate and the squared volatilityrate,3 to measure the quality of the stock. Our main result is that one should sell at theend of the horizon if the goodness index of the stock is greater than or equal to 12 , and sellimmediately if the index is non-positive.4 The implication of this result is two-fold: 1)being a \good" or \bad" stock is precisely characterized by a critical level of the goodnessindex, and 2) the optimal selling strategy for a good stock is a pure buy-and-hold one.Moreover, the optimal relative errors for both good and bad stocks are explicitly derived,based on which sensitivity analysis on the market parameters is carried out. In particular,it is shown that the expected relative error when one buys and holds diminshes to zero ifthe stock goodness index tends to in�nity. This implies that for a su�ciently good stockthe buy-and-sell rule almost realizes selling at the ultimate maximum price.It is interesting to note that the buy-and-hold rule has long been believed to be theantithesis of the market timing: the notion that one can enter the market on the lowsand sell on the highs does not work for small investors at least; so it is better to just buy3Clearly the goodness index is intimately related to the Sharpe ratio { in fact it is the Sharpe ratiofurther normalized by the volatility rate. It turns out that this index plays a more prominent role in theparticular problem considered in this paper.4Indeed a stronger result holds that one should sell immediately if the index is less than 12 ; see theconcluding section. 3



and hold. Our model and result, however, show that market timing (attempting to sellhigher) indeed leads to buy-and-hold!The initial impetus to investigating this model was the combination of two papers byShiryaev (2002) and Li and Zhou (2006) which at the �rst glance seemed to be ratherunrelated. The former investigates the quickest detection problem for a change of marketparameters, whereas the latter reveals the high chance of a Markowitz mean{variancestrategy hitting the expected return target. The chemistry between the two papers hasnonetheless emerged, somewhat unexpectedly, leading to the formulation and solution ofthe present stock selling problem. The mathematical analysis of the underlying optimalstopping problem is related to Graversen, Peskir, and Shiryaev (2001), which appears tobe the �rst paper of its kind where the problem is to stop a Brownian motion so as tominimize the squared error from the maximum.The remainder of the paper is organized as follows. The stock selling model is formu-lated and the main results presented in section 2. Section 3 is devoted to transformingthe model into a standard optimal stopping problem. In sections 4 and 5 optimality forvarious cases is proved using two di�erent approaches, while in section 6 the optimal rel-ative errors are derived. Section 7 concludes with �nal remarks. Some technical detailsare relegated to an appendix.2 A Stock Selling ProblemConsider a Black{Scholes economy where there is a stock with an appreciation rate a anda volatility rate � > 0, along with a saving account with a continuously compoundinginterest rate r. The discounted stock price process, Pt, followsdPt = (a� r)Ptdt+ �PtdBt; P0 = 1 (1)on a standard �ltered probability space (
;F ; fFtgt�0;P), where B� is a standard Brow-nian motion with B0 = 0 under P. Here, fFtgt�0 is the P-augmentation of the �ltrationgenerated by B�. We can alternatively writePt = e�t+�Bt (2)where � = a� r � 12�2. De�ne the running maximum price processMt = max06s6tPs; t � 0 (3)and a goodness index of the stock � = a� r�2 : (4)4



An investor buys a share of the stock at time 0, and for some reason she must sell thestock by a pre-speci�ed date T > 0. The question is to determine the \best" time to sell.In general we could de�ne the following criterion for the optimal selling problem:Maximize E �U � P�MT �� (5)over � 2 T , the set of all Ft-stopping time � 2 [0; T ], where U is certain \utility" function.In this paper we investigate the special case when U is linear. This is a particularlyinteresting case because it is equivalent to the followingmin�2T E �MT � P�MT � ; (6)which means that the investor wishes to minimize the expected relative error between the(discounted) selling price and the (discounted) maximum price (over the entire horizon[0; T ]).Before we solve (6), let us consider (5) with U(x) = logx, x > 0. This problem turnsout to have a simple solution. To see this, let � = 1 for simplicity and writeB�t := �t+Bt; S�t := max06s6tB�s : (7)Then, R� := sup�2T E �log� P�MT �� = sup�2T E(�� � S�T ):Thus, the optimal stopping is, trivially,� � = 8><>: T; if � > 0any time between [0; T ]; if � = 00; if � < 0= 8><>: T; if � > 12any time between [0; T ]; if � = 120; if � < 12 (8)
So the solution is of a simple bang-bang structure (stop either at the beginning or at theend).5 Now, if U is linear (which is the problem we would like to solve in this paper),the above argument fails, and it is not clear what an optimal stopping time might be. Inthis paper, via rather involved probabilistic analysis, we shall solve the cases when � � 12and � � 0 and show that the optimal solution possesses similar bang-bang structure.As a by-product, Problem (5) has bang-bang solution for any power utility function5Incidentally, once may also consider a \dual" problem R� := inf�2T E hlog�MTP� �i = inf�2T E(S�T ���) = �R�: This problem has the same bang-bang solution (8).5



U(x) = x
 because by modifying appropriately the drift and volatility values the problemis mathematically equivalent to the one with a linear utility function.Let �(�) denote the probability distribution function of a standard normal randomvariable. The main results of the paper are as follows.Theorem 2.1 (i) If � � 12 , then � � = T is the unique optimal selling time to Problem(6) when � > 12 , and either � � = T or � � = 0 is optimal when � = 12 . Moreover,the optimal expected relative error is given byr�(�; �) = 1� �1� 12������� 12� �pT�� �1 + 12�� e��2T�����+ 12� �pT� :(9)Furthermore, r�(�; �) decreases in � and increases in �, and0 � r�(�; �) < 12� 8(�; �) 2 �12 ;1�� [0;1) : (10)(ii) If � � 0, then � � = 0 is the unique optimal selling time to Problem (6). Moreover,the optimal relative error is given byr�(�; �) = 1� 2�� 12(�� 1)������ 12� �pT�� 2�� 32(�� 1)e(1��)�2T����� 32� �pT� :(11)So when the stock goodness index � � 12 , one should hold on to the stock, selling onlyat T . This in turn implies that the stock must be a good one. The better the stock (asmeasured by �) the smaller the relative error, the latter being subject to an upper boundthat is inversely proportional to �. In particular, the error diminishes to zero when �goes to in�nity. This suggests that the buy-and-hold rule almost realizes selling at themaximum price if the stock is su�ciently good. On the other hand, if � � 0, then oneshould sell the stock immediately or short sell if possible. This is a bad stock the investorought to get rid of as soon as possible.It is interesting to examine our results applied to some real data. We take the onein Mehra and Prescott (1985) based on S&P 500 (1889-1978). The estimated parametersare the following (both are annual �gures): a � r = 6:18% and � = 16:67%. In thiscase � = 2:2239 > 0:5 (by large margin)! Moreover, if we take T = 1 (year), then itfollows from (9) that r�(�; �) = 10:15%. This means that if you buy and hold an S&P500 index fund for one year then statistically you are expected to achieve almost 90% ofthe maximum possible return.66One might argue that it is not reasonable to model an index such as S&P 500 as a geometricBrownian motion, and hence the results in this paper may not apply. However, the �gures a� r = 6:18%and � = 16:67% do appear very plausible for a typical good stock. On the other hand, we expect thatour analysis and results in this paper extend to the case of a market index which is nothing else than alinear combination of geometric Brownian motions.6



3 An Equivalent ProblemTo prove the part of the optimal selling times stated in Theorem 2.1 we assume withoutloss of generality that � = 1, since by a change of time one can write �Bt = ~B�2t where~Bt is a standard Browian motion.Recall the notation (7). Problem (6) is equivalent to (with � = 1) the followingstopping problem sup�2T E �eB��eS�T � : (12)The above is not a standard optimal stopping problem, because the term eS�T is notFt-adapted. To get around, for any stopping time � 2 T , we haveE h eB��eS�T i = E � eB��maxfeS�� ;emax�6t6T B�t g� = E �min�e�(S�� �B�� ); e� max�6t6T(B�t �B�� )��= E �E �min�e�(S���B�� ); e� max�6t6T(B�t �B�� )� ����F���= E �E hminne�x; e�S�T��oi ���x=S���B�� �= E[G(�; S�� � B�� )]; (13)
where G(t; x) := E hminne�x; e�S�T�toi > 0; (t; x) 2 [0; T ]� [0;1): (14)Direct computations show (for details see Appendix A) that when � 6= 1=2,G(t; x) = 2(��1)2��1 e�(��1=2)(T�t)���x+(��1)(T�t)pT�t �+ 12��1e�(1�2�)x���x��(T�t)pT�t � + e�x��x��(T�t)pT�t � ; (15)and when � = 1=2,G(t; x) = (1 + x+ (T � t)=2)���x�(T�t)=2pT�t ��qT�t2� e� (x+(T�t)=2)22(T�t) + e�x��x�(T�t)=2pT�t � : (16)Equation (13) implies that (12) is actually a standard optimal stopping problem witha terminal payo� G and an underlying (adapted) state processXt = S�t �B�t ; X0 = 0;the so-called \drawdown process".In view of the dynamic programming approach we consider the following problemV (t; x) = sup�2TT�tEt;x [G(t + �;Xt+� )] ; (17)7



where Xt = x under Pt;x with (t; x) 2 [0; T ] � [0;1) given and �xed, and Ts in generaldenotes the set of all Ft-stopping times � 2 [0; s] for s > 0. The original problem iscertainly V (0; 0) = sup�2T E �eB��eS�T � :It is well known that V satis�es the following dynamic programming equation (orvariational inequalities)minf�LV; V �Gg = 0; (t; x) 2 [0; T )� (0;1) (18)V (T; x) = G(T; x); x 2 (0;1) (19)Vx(t; 0+) = 0; t 2 [0; T ) (20)where the operator L is de�ned by(Lf)(t; x) = ft(t; x)� �fx(t; x) + 12fxx(t; x): (21)The holding region is thereforeC = f(t; x) 2 [0; T ]� [0;1) : V (t; x) > G(t; x)g; (22)while the selling region isD = f(t; x) 2 [0; T ]� [0;1) : V (t; x) = G(t; x)g: (23)An optimal selling time is� � = infft 2 [0; T ] : (t; S�t � B�t ) 2 Dg: (24)So the problem boils down to �nding and/or analyzing V .Noting that B�� has stationary independent increments and X� is a Markovian process,we may rewrite V (t; x) = sup06�6T�tE [G(t+ �;Xx� )] (25)where X� under P is explicitly given asXxt = x _ S�t � B�t ; t � 0: (26)
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4 Optimal Selling Times When � � 1 and � � 0In this section we derive optimal selling times for the cases when � � 1 and � � 0respectively, via an approach that turns the problem with the terminal payo� to one witha running payo�. This approach is standard in the optimal stopping literature; see, e.g.,Peskir and Shiryaev (2006). To proceed, note thatXx� law== jY�j; (27)where Y� is the unique strong solution to the SDE( dYt = ��sign(Yt) dt+ dBtY0 = x: (28)The process Y� has an in�nitesimal generator L de�ned by (21). By Itô{Tanaka's formula,we have jYsj = x� � Z s0 I(Yu 6= 0) du+ Z s0 sign(Yu)I(Yu 6= 0) dBu + `0s(Y ); (29)where `0s(Y ) is the local time of Y� at 0. SoG(t+ s; jYsj) =G(t; x) + Z s0 LG(t+ u; jYuj) du+ Z s0 Gx(t + u; jYuj)sign(Yu) dBu+ Z s0 Gx(t+ u; jYuj) d`0u(Y )=G(t; x) + Z s0 H(t+ u; jYuj) du+Ms;where we have used the fact that Gx(t; 0+) = 0 for 0 6 t 6 T (details in Appendix C),and H and M� are de�ned respectively byH(t; x) := LG(t; x) � Gt(t; x)� �Gx(t; x) + 12Gxx(t; x);Ms = Z s0 Gx(t + u; jYuj)sign(Yu) dBu:Due to the de�nition (14) of G and (32) below, we have �1 6 �G 6 Gx 6 0; so M� is amartingale, and Problem (25) can be expressed asV (t; x) = sup06�6T�tE [G(t + �;Xx� )]= sup06�6T�tE [G(t + �; jY� j)]=G(t; x) + sup06�6T�tE �Z �0 H(t+ u; jYuj) du�=G(t; x) + sup06�6T�tE �Z �0 H(t+ u;Xxu) du� : (30)9



A lengthy calculation (see Appendix B) shows thatH(t; x) = (�� 1=2)G(t; x)�Gx(t; x): (31)Now, if � � 1, then � � a� r � 12 � 12 (recall we are assuming that � = 1). In this case,noting that Gx 6 0 by the monotonicity of G in x, we haveH(t; x) = (�� 1=2)G(t; x)�Gx(t; x) > 0 8(t; x) 2 [0; T ]� [0;1);and the inequality is strict if � > 1. This shows that an optimal stopping time toProblem (30) is � � = T � t, and it is the unique optimal solution if � > 1. In particular,the conclusion applies to the original problem (6) with � � = T .On the other hand, if � � 0, then � � �12 . Noting thatexG(t; x) = exE hminfe�x; e�S�T�tgi = E hminf1; e�S�T�t+xgiis strictly increasing with respect to x, we have@(exG(t; x))@x > 0; or Gx(t; x) +G(t; x) > 0: (32)ThusH(t; x) = (�� 1=2)G(t; x)�Gx(t; x) = (�+ 1=2)G(t; x)� (G(t; x) +Gx(t; x)) < 0:This indicates that the unique optimal stopping time to Problem (30) is � � = 0 andV (t; x) = G(t; x). In particular, the conclusion is valid for the original problem (6).5 Optimal Selling Time When 12 � � < 1While the approach in the previous section is rather direct, we have yet to cover the casewhen 12 � � < 1 for which we now use a di�erent technique to tackle.7Proposition 5.1 If � � 12 , thenV (t; x) > G(t; x) 8t 2 [0; T ); x � 0 (33)whenever � > 12 , and V (t; x) > G(t; x) 8t 2 [0; T ); x > 0 (34)whenever � = 12 .7As will be seen shortly, the case � � 1, which has been already solved in the previous section, canalso be solved by the approach presented in this section.10



Proof. Note that � � 12 is equivalent to � � 0. Also as before we assume hereinthat � = 1 without loss of generality. The proof consists of several steps.Step 1. We �rst consider the case when � = 0. In this case, we are to show thatE[G(T;XxT )] > G(0; x) 8x > 0; and E[G(T;XxT )] = G(0; x) for x = 0 (35)where Xx� is de�ned by (26). To this end, taking � = 1 and � = 0 in the general expressionof E[G(T;XxT )] � E[e�XxT ] (derived in Appendix D) we haveE[G(T;XxT )] =eT=2�x��x� TpT �+ eT=2+x���x� TpT � :On the other hand, it follows from (15) with � = 0 thatG(0; x) =2eT=2���x� TpT �� e�x���xpT � + e�x�� xpT � :De�ne g(x) :=ex (E[G(T;XxT )]�G(0; x))=eT=2��x� TpT �+ eT=2+2x���x� TpT �� 2eT=2+x���x� TpT � + ���xpT �� �� xpT � ; x � 0:Then g0(x) =2eT=2+x(ex � 1)���x� TpT � > 0 8x > 0:However, it is straightforward to check that g(0) = 0, proving (35).Step 2. In this step we show that when � > 0,E[G(T;XxT )] > G(0; x) 8x � 0: (36)Indeed, by de�nitionsE[G(T;XxT )] = E he�(x_S�T�B�T )i ; G(0; x) = E he�x_S�T i : (37)Applying Girsanov's theorem, we haveE[G(T;XxT )]�G(0; x) =E he�(x_S�T�B�T ) � e�x_S�T i=E he�x_S�T �eB�T � 1�i=EQ he�x_SQT �eBQT � 1� e� 12�2T+�BQT i=E he�x_ST �eBT � 1� e� 12�2T+�BT i ;11



where BQ � B�t = �t + Bt is a standard Brownian motion under probability Q, withdQ = e� 12�2T��BT dP. This leads toe 12�2T (E[G(T;XxT )]�G(0; x)) =E �e�x_ST �eBT � 1� e�BT � :Hence@@� �e 12�2T (E[G(T;XxT )]�G(0; x))� =E �e�x_ST �eBT � 1�BT e�BT � > 0 8� > 0: (38)The desired inequality (36) then follows from (35).Step 3. By the arbitrariness of T > 0 and x � 0 in the strict inequality (36), we canprove in exactly the same way thatEt;x[G(T;XT )] > G(t; x) 8t 2 [0; T ); x � 0 (39)where Xt = x under Pt;x, provided that � > 0. Thus (33) follows from the fact thatV (t; x) � Et;x[G(T;XT )]. Similarly, (34) is implied by (35).Now we return to the proof of Theorem 2.1. If � > 0 (or � > 12), then the uniqueoptimality of � � = T follows immediately from the preceding proposition, in view of thede�nition of the holding region (22).If � = 0 (or � = 12), by the arbitrariness of T > 0 and x � 0 in (35), we can prove inexactly the same way thatEt;x[G(T;XT )] > G(t; x) 8x > 0; and Et;x[G(T;XT )] = G(t; x) for x = 0: (40)Then, for any � 2 T , we haveE[G(T;XxT )jF� ] > G(�;Xx� ) 8x � 0; (41)or E[G(T;XxT )] > E[G(�;Xx� )] 8x � 0: (42)Since � 2 T is arbitrary in the above, we concludeV (0; x) = sup�2T E[G(�;Xx� )] = E[G(T;XxT )] 8x � 0: (43)In particular, applying (35), we obtainV (0; 0) = E[G(T;X0T )] = G(0; 0): (44)This implies that both � � = T and � � = 0 are optimal.88In exactly the same way we can show that V (t; 0) = G(t; 0) 8t 2 [0; T ], meaning that when � = 12one should either sell at the end or sell whenever the drawdown state x = 0 (in particular at time 0).12



6 Optimal Relative ErrorsBased on the proved results so far, a stock with the goodness index � � 12 is a good stockbecause one should hold on to it until the end, and one with � � 0 is a bad one sinceone should sell it immediately. In this section we complete the proof of Theorem 2.1 byderiving the optimal expected relative errors for both a good and a bad stock. Since weneed to investigate the sensitivity of the optimal relative errors in �, we allow � to vary(instead of assuming � = 1) throughout this section.6.1 Good stock: � � 12Recall Pt = e(a�r� 12�2)t+�Bt ; Mt = max06u6tPu:The joint probability density function of (Pt;Mt) is given byf(t; s;m) = 2�3p2�t3 ln(m2=s)sm exp�� ln2(m2=s)2�2t + �� ln(s)� 12�2t� ;where 0 < s 6 m, m > 1, and� := a� r� � �2 � ��� 12� �; (45)see e.g. [7] p. 368, or [12] p.402.9 Now, we compute, for any t > 0 and 0 < y < 1:P� PtMt > y� = Z 1y Z s=ys_1 f(t; s;m) dm ds= Z 1y Z s=ys_1 2�3p2�t3 ln(m2=s)sm exp�� ln2(m2=s)2�2t + �� ln(s)� 12�2t� dm ds= 2�3p2�t3 e� 12�2t Z 1y s�=��1 Z s=ys_1 ln(m2=s)m exp�� ln2(m2=s)2�2t � dm ds= 2�3p2�t3 e� 12�2t Z 1y s�=��1 Z s=ys_1 ��2t2 d�exp�� ln2(m2=s)2�2t ��ds= 1�p2�te� 12�2t Z 1y s�=��1 �exp�� ln2((s _ 1)2=s)2�2t �� exp�� ln2(s=y2)2�2t �� ds= 1�p2�te� 12�2t �Z 1y s�=��1 exp�� ln2(s)2�2t � ds� y2�=� Z 11=y s�=��1 exp�� ln2(s)2�2t � ds�= 1�p2�te� 12�2t �Z 1ln(y) exp�� u22�2t + ��u� du� y2�=� Z 1� ln(y) exp�� u22�2t + ��u�du�=����t� ln(y)�pt �� y2�=�����t+ ln(y)�pt � :9There is a typo in [12] p.402: � there should be r=� � �=2 instead of r=� + �=2.13



Consequently,E � PtMt� =Z 10 P� PtMt > y�dy=Z 10 �����t� ln(y)�pt �� y2�=�����t+ ln(y)�pt �� dy=Z 10 Z ��t�ln(y)�pt�1 1p2�e�u2=2 du dy � Z 10 y2�=� Z ��t+ln(y)�pt�1 1p2�e�u2=2 du dy=Z 1�1 Z (e��t�u�pt)^10 1p2�e�u2=2 dy du� Z �pt�1 Z 1eu�pt���t 1p2�e�u2=2y2�=� dy du=Z �pt�1 1p2�e�u2=2 du+ Z 1�pt 1p2�e�u2=2+��t�u�pt du� 12�=� + 1 Z �pt�1 �1� e(2�=�+1)(u�pt���t)� 1p2�e�u2=2 du= 2�=�2�=� + 1���pt� + 2�=� + 22�=� + 1e(�+�=2)�t���(� + �)pt� :Next we prove that E h PtMti strictly decreases in t > 0. Indeed, if � + � > 0, then byLemma E.1,@@t �E � PtMt�� =� �p2�te��2t=2 + (� + �)�e(�+�=2)�t���(� + �)pt�<� �p2�te��2t=2 + (� + �)�e(�+�=2)�t 1(� + �)p2�te�(�+�)2t=2 = 0:If � + � 6 0, then@@t �E � PtMt�� =� �p2�te��2t=2 + (� + �)�e(�+�=2)�t���(� + �)pt� < 0:This establishes the strict monotonicity in t. On the other hand, when � � 0, straight-forward computation leads tolimt!0+E � PtMt� = 1; limt!+1E � PtMt� = 2�=�2�=� + 1 � 1� 12�:Hence, when � � 0 (or � � 12), we have the following0 � E �Mt � PtMt � < 12� 8t > 0; � � 12 : (46)Moreover, if � > 0, then@@� P� PtMt > y� = @@� �����t� ln(y)�pt �� y2�=�����t+ ln(y)�pt ��=� 2 ln(y)� y2�=�����t+ ln(y)�pt � > 0 8y 2 (0; 1):14



As a result @@� E � PtMt� = @@� Z 10 P� PtMt > y�dy > 0:Meanwhile@@� P� PtMt > y� = @@� �����t� ln(y)�pt �� y2�=�����t+ ln(y)�pt ��= 2 ln(y)�2p2�te� (��t�ln(y))22�2t + 2� ln(y)�2 y2�=�����t+ ln(y)�pt � 6 0:Hence @@� E � PtMt� = @@� Z 10 P� PtMt > y�dy 6 0:Returning to Problem (6) we have proved that when � � 12 an optimal selling time is� � = T . Hence the corresponding optimal relative error is r�(�; �) = 1�E h PTMT i. Noting(45) and (46) we complete the proof of Theorem 2.1-(i).6.2 Bad stock: � � 0First for y > 1: P (Mt < y) = P�max0�s�t(�s+Bs) < 1� ln(y)�=�� ln(y)� ��t�pt �� y2�=���� ln(y)� ��t�pt � :
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Notice that � 6= �2 when � � 0. ThusE � 1Mt� = Z 10 P� 1Mt > y�dy = Z 10 P�Mt < 1y� dy= 1�p2�t Z 10 "Z � ln(y)�1 exp��(u� ��t)22�2t � du� y�2�=� Z ln(y)�1 exp��(u� ��t)22�2t � du#dy= 1�p2�t Z 10 Z � ln(y)�1 exp��(u� ��t)22�2t � du dy � 1�p2�t Z 10 y�2�=� Z ln(y)�1 exp��(u� ��t)22�2t � du dy= 1�p2�t Z 1�1 Z e�u^10 exp��(u� ��t)22�2t � dy du� 1�p2�t Z 0�1 Z 1eu y�2�=� exp��(u� ��t)22�2t � dy du= 1�p2�t �Z 0�1 exp��(u� ��t)22�2t � du+ Z 10 exp��(u� ��t)22�2t � u�du�� 11� 2�=� 1�p2�t �Z 0�1 exp��(u� ��t)22�2t � du� Z 0�1 exp��(u� ��t)22�2t + (1� 2�=�)u�du�= �2�=�1� 2�=�����pt�+ 2� 2�=�1� 2�=�e(�=2��)�t��(� � �)pt� :Now, for Problem (6) the optimal relative error isr�(�; �) = E �MT � P0MT � = 1� E � 1MT � ;which is (11) after some easy manipulations.7 ConclusionsThis paper formulates a �nite horizon stock selling model as one minimzing the expectedrelative error between the selling price and the maximum price over the horizon. It isshown that one should hold on to the stock until the end if the stock goodness index isno less than 12 , while one should sell immediately if the index is no greater than 0. Ourresults justify the classical maxim that one should buy and hold a good stock. Indeed,the very fact that our model is able to produce the buy-and-hold rule suggests in turnthat the criterion proposed in this paper may be a sensible one that warrants furtherinvestigations in more general settings.It is intriguing to compare our result to that of Merton (1971). Merton's portfolioin the Black{Scholes setting without consumption, for a utility function u(x) = 11�
x1�
(
 > 0), stipulates that the stock-to-wealth ratio should be kept as �
 where � is exactly ourstock goodness index (also called the Merton line). Hence Merton's strategy degeneratesto buy-and-hold only in a very exceptional case when 
 = �, which requires a coordinationbetween the risk attitude of the agent and the market opportunities. Of course, such a16



requirement is impractical because all the parameters are estimates prone to (sometimeslarge) errors.This brings about another advantage of our model. Unlike with other standard port-folio selection models (including Merton's) our optimal solutions are insensitive to themarket parameters. Indeed, our de�nition of a good (as well as a bad) stock involves arange of the parameters, instead of speci�c values for them. As demonstrated by the S&P500 example the criterion that � � 12 is satis�ed by a large margin which would accom-modate su�cient level of errors. In general statistical terms, verifying whether � � 12 ismuch easier than estimating the value of � itself. Hence the notorious mean{blur problemis hardly an issue in our model, especially for very good stocks.Finally, one may have by now noticed that the case when the goodness index is between0 and 12 has been left unsolved in this paper. This gap, 0 < � < 12 , can be �lled by a partialdi�erential equation (PDE) approach, and the result is that one should sell immediately if� < 12 .10 For the pure PDE argument we refer to a companion work, Dai, Jin, Zhong andZhou (2008), where a buying decision is incorporated in addition to the selling one. Wehave chosen to present the probabilistic approach here { at the cost of having a gap { fortwo reasons. First, it was indeed the approach we had liked and employed since the verybeginning of our research. Second, it is our view that, while solving the case 0 < � < 12may be mathematically interesting for the sake of completeness, it is not as signi�cantand interesting �nancially. The reason is that the de�nition of a good stock � � 12 (orthat the excess return rate is greater than or equal to half of the squared volatility) is sogenerous that it covers many of the stocks commonly perceived as \good"11. Indeed, asis shown in section 2 the S&P 500 has a goodness index greater than 12 by a large margin.With a large set of \good" stocks (as per our de�nition) available, it is less interesting toconsider stocks outside of this set.10In fact, the cases solved in this paper could also be treated by the PDE approach.11Let us take the excess return rate to be 6:18% p.a., a very modest one for a typical good stock, whichwas estimated to be the equity premium based on S&P 500 data in Mehra and Prescott (1985). Thenany stock whose annual volatility is less than 35:19% (!) will be quali�ed as a good stock according toour de�nition.
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AppendixA Function GHere we derive the explicit expression of the function G, de�ned byG(t; x) =E hminne�x; e�S�T�toi=Z 1x e�z dP �S�T�t 6 z�+ e�xP �S�T�t 6 x� ; 0 � t � T; x � 0:Noting P �S�T�t 6 z� = ��z � �(T � t)pT � t �� e2�z���z � �(T � t)pT � t � ;we have Z 1x e�z d��z � �(T � t)pT � t � =Z 1x e�z 1p2�(T � t)e� (z��(T�t))22(T�t) dz=e�(��1=2)(T�t)���x + (�� 1)(T � t)pT � t � :Assume for now that � 6= 1=2. ThenZ 1x e�z d�e2�z���z � �(T � t)pT � t ��= Z 1x 2�e�(1�2�)z���z � �(T � t)pT � t �dz + Z 1x e�(1�2�)z d���z � �(T � t)pT � t �=� 2�2�� 1e�(1�2�)x���x� �(T � t)pT � t �� 2�2�� 1 Z 1x e�(1�2�)z d���z � �(T � t)pT � t �+ Z 1x e�(1�2�)z d���z � �(T � t)pT � t �=� 2�2�� 1e�(1�2�)x���x� �(T � t)pT � t �+ 12�� 1e�(��1=2)(T�t)���x + (�� 1)(T � t)pT � t � :HenceG(t; x) = Z 1x e�z dP �S�T�t 6 z�+ e�xP �S�T�t 6 x�= Z 1x e�z d��z � �(T � t)pT � t �� Z 1x e�z d�e2�z���z � �(T � t)pT � t ��+ e�x��x� �(T � t)pT � t �� e�(1�2�)x���x� �(T � t)pT � t �=2(�� 1)2�� 1 e�(��1=2)(T�t)���x + (�� 1)(T � t)pT � t �+ 12�� 1e�(1�2�)x���x � �(T � t)pT � t � + e�x��x� �(T � t)pT � t � :18



This is (15). The case when � = 1=2 can be dealt with similarly leading to (16). Denotingby G(t; x;�) to highlight the dependence on � it is not hard to verify that, in fact,lim�!1=2G(t; x;�) = G(t; x; 1=2):B Equations for HWe prove (31) for the case when � 6= 1=2, the other case � = 1=2 being similar. WriteG(t; x) =2(�� 1)2�� 1 e�(��1=2)(T�t)���x + (�� 1)(T � t)pT � t �+ 12�� 1e�(1�2�)x���x� �(T � t)pT � t �+ e�x��x� �(T � t)pT � t �:=2(�� 1)2�� 1 A(t; x) + 12�� 1B(t; x) + C(t; x):ThenAx(t; x) =e�(�� 12 )(T�t) 1p2�e� (x�(��1)(T�t))22(T�t) (�(T � t)�1=2);Axx(t; x) =e�(�� 12 )(T�t) 1p2�e� (x�(��1)(T�t))22(T�t) (�(T � t)�1=2)(�2(x� (�� 1)(T � t))2(T � t) )=Ax(t; x)(�x(T � t)�1 + �� 1);At(t; x) =(�� 12)A(t; x) + e�(�� 12 )(T�t) 1p2�e� (x�(��1)(T�t))22(T�t) (�(T � t)�1=2)12(x(T � t)�1 + �� 1))=(�� 12)A(t; x) + Ax(t; x)12(x(T � t)�1 + �� 1)):HenceAt(t; x)� �Ax(t; x) + 12Axx(t; x)=(�� 12)A(t; x) + Ax(t; x)12(x(T � t)�1 + �� 1))� �Ax(t; x) + 12Ax(t; x)(�x(T � t)�1 + �� 1)=(�� 12)A(t; x)� Ax(t; x):
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Next,Bx(t; x) =(2�� 1)B(t; x) + e�(1�2�)x 1p2�e� (x+�(T�t))22(T�t) (�(T � t)�1=2);Bt(t; x) =e�(1�2�)x 1p2�e� (x+�(T�t))22(T�t) (T � t)�1=2 12(�x(T � t)�1 + �)=((2�� 1)B(t; x)� Bx(t; x))12(�x(T � t)�1 + �);Bxx(t; x) =(2�� 1)Bx(t; x) + e�(1�2�)x 1p2�e� (x+�(T�t))22(T�t) (�(T � t)�1=2)(�2(x + �(T � t))2(T � t) )+ (2�� 1)e�(1�2�)x 1p2�e� (x+�(T�t))22(T�t) (�(T � t)�1=2)=(2�� 1)Bx(t; x) + (Bx(t; x)� (2�� 1)B(t; x))(�x(T � t)�1 � �)+ (2�� 1)(Bx(t; x)� (2�� 1)B(t; x))=(�x(T � t)�1 + 3�� 2)Bx(t; x) + (2�� 1)(x(T � t)�1 � �+ 1)B(t; x);leading toBt(t; x)� �Bx(t; x) + 12Bxx(t; x)=((2�� 1)B(t; x)�Bx(t; x))12(�x(T � t)�1 + �)� �Bx(t; x)+ 12((�x(T � t)�1 + 3�� 2)Bx(t; x) + (2�� 1)(x(T � t)�1 � �+ 1)B(t; x))=(�� 12)B(t; x)�Bx(t; x):Finally,Cx(t; x) =� C(t; x) + e�x 1p2�e� (x��(T�t))22(T�t) (T � t)�1=2;Cxx(t; x) =� Cx(t; x) + e�x 1p2�e� (x��(T�t))22(T�t) (T � t)�1=2(�2(x� �(T � t))2(T � t) )� e�x 1p2�e� (x��(T�t))22(T�t) (T � t)�1=2=� Cx(t; x) + (Cx(t; x) + C(t; x))(�x(T � t)�1 + �� 1);Ct(t; x) =12e�x 1p2�e� (x��(T�t))22(T�t) (T � t)�1=2(x(T � t)�1 + �)=12(Cx(t; x) + C(t; x))(x(T � t)�1 + �):SoCt(t; x)� �Cx(t; x) + 12Cxx(t; x) =12(Cx(t; x) + C(t; x))(x(T � t)�1 + �)� �Cx(t; x)+ 12(�Cx(t; x) + (Cx(t; x) + C(t; x))(�x(T � t)�1 + �� 1))=(�� 12)C(t; x)� Cx(t; x):20



Since G is a linear combination of A, B, and C we conclude (31).C Proof of Gx(t; 0+) = 0.Again we only prove for the case when � 6= 1=2. Following the calculation in the previoussubsection, we haveGx(t; x) =2(�� 1)2�� 1 Ax(t; x) + 12�� 1Bx(t; x) + Cx(t; x)=2(�� 1)2�� 1 e�(�� 12 )(T�t) 1p2�e� (x�(��1)(T�t))22(T�t) (�(T � t)�1=2)+ 12�� 1((2�� 1)B(t; x) + e�(1�2�)x 1p2�e� (x+�(T�t))22(T�t) (�(T � t)�1=2))� C(t; x) + e�x 1p2�e� (x��(T�t))22(T�t) (T � t)�1=2=B(t; x)� C(t; x):Hence Gx(t; 0+) = B(t; 0+)� C(t; 0+) = 0:

21



D Calculation of E �e�XxT �We �rst study the distribution function of Xxt = x _ S�t � B�t 8t > 0, x � 0. For anyy � 0,P(x _ S�t � B�t 6 y) = P(ex_S�t 6 eB�t +y)=P(ex _ eS�t 6 eB�t ey) = Z 10 Z +1s_1 1fex_m6seygf(t; s;m) dm ds = Z 1ex�y Z seys_1 f(t; s;m) dm ds= Z 1ex�y Z seys_1 2�3p2�t3 ln(m2=s)sm exp�� ln2(m2=s)2�2t + �� ln(s)� 12�2t� dm ds= 2�3p2�t3 e� 12�2t Z 1ex�y s�=��1 Z seys_1 ln(m2=s)m exp�� ln2(m2=s)2�2t � dm ds= 2�3p2�t3 e� 12�2t Z 1ex�y s�=��1 Z seys_1 ��2t2 d�exp�� ln2(m2=s)2�2t ��ds= 1�p2�te� 12�2t Z 1ex�y s�=��1 �exp�� ln2((s _ 1)2=s)2�2t �� exp�� ln2(se2y)2�2t �� ds= 1�p2�te� 12�2t �Z 1ex�y s�=��1 exp�� ln2(s)2�2t � ds� Z 1ex�y s�=��1 exp�� ln2(se2y)2�2t �ds�= 1�p2�te� 12�2t �Z 1x�y eu�=� exp�� u22�2t� du� e�2y�=� Z 1x+y eu�=� exp�� u22�2t� du�= 1�p2�t �Z 1x�y exp��(u� ��t)22�2t � du� e�2y�=� Z 1x+y exp��(u� ��t)22�2t � du�=���x� y � ��t�pt �� e�2y�=����x + y � ��t�pt � :
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Therefore,E �e�XxT � = Z 10 e�y dP(X0;xT 6 y)=Z 10 e�y d����x� y � ��T�pT �� e�2y�=����x + y � ��T�pT ��= 1�p2�t Z 10 exp��(x� y � ��T )2 + 2�2Ty2�2T � dy� Z 10 e�ye�2y�=� d����x + y � ��T�pT ��� Z 10 e�y���x + y � ��T�pT � d�e�2y�=��=e�(x���T� 12�2T )��x� ��T � �2T�pT �� Z 10 e�(1+2�=�)y d����x + y � ��T�pT ��� 2�=�1 + 2�=� Z 10 ���x + y � ��T�pT � d�e�(1+2�=�)y�=e�(x���T� 12�2T )��x� ��T � �2T�pT � + 2�=�1 + 2�=����x� ��T�pT �� 11 + 2�=� Z 10 e�(1+2�=�)y d����x + y � ��T�pT ��=e�(x���T� 12�2T )��x� ��T � �2T�pT � + 2�=�1 + 2�=����x� ��T�pT �+ 11 + 2�=�e(1+2�=�)(x+ 12�2T )���x + ��T + �2T�pT � :Now suppose � = 1, then � = r � 1=2 = �.E �e�XxT � =e(�+1=2)T�x��x� (�+ 1)TpT � + 2�2�+ 1���x + �TpT �+ 12�+ 1e(2�+1)(x+T=2)���x� (�+ 1)TpT � :E A LemmaLemma E.1 If x > 0, thenx1 + x2 1p2�e�x22 < �(�x) < 1x 1p2�e�x22 :Proof. This is evident by�(�x) = Z �x�1 1p2�e� t22 dt < Z �x�1 t�x 1p2�e� t22 dt = 1x 1p2�e�x22 ;and �(�x) =Z �x�1 1p2�e� t22 dt > Z �x�1 x2t2 1p2�e� t22 dt= xp2�e�x22 � x2 Z �x�1 1p2�e� t22 dt = xp2�e�x22 � x2�(�x):23
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