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We consider the dynamic casino gambling model initially proposed by Barberis (2012) and study the opti-

mal stopping strategy of a pre-committing gambler with cumulative prospect theory (CPT) preferences.

We illustrate how the strategies computed in Barberis (2012) can be strictly improved by reviewing the

betting history or by tossing an independent coin, and we explain that the improvement generated by using

randomized strategies results from the lack of quasi-convexity of CPT preferences. Moreover, we show that

any path-dependent strategy is equivalent to a randomization of path-independent strategies.
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1. Introduction

Barberis (2012) formulated and studied a casino gambling model, in which a gambler comes to

a casino at time 0 and is repeatedly offered a bet with an equal chance to win or lose $1. The

gambler decides when to stop playing. Clearly, the answer depends on the gambler’s preferences. In

Barberis (2012), the gambler’s risk preferences are represented by the cumulative prospect theory
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(CPT) of Tversky and Kahneman (1992). In this theory, individuals’ preferences are determined by

an S-shaped utility function and two inverse-S shaped probability weighting functions. The latter

effectively overweight the tails of a distribution, so a gambler with CPT preferences overweights

very large gains of small probability and thus may decide to play in the casino.

A crucial contribution in Barberis (2012) lies in showing that the optimal strategy of a gam-

bler with CPT preferences, a descriptive model for individuals’ preferences, is consistent with

several commonly observed gambling behaviors such as the popularity of casino gambling and

the implementation of gain-exit and loss-exit strategies. However, the setting of Barberis (2012)

was restrictive as it assumed that the gambler can only choose among simple (path-independent)

strategies.

We find that when allowed to take path-dependent strategies (i.e. strategies which may depend

on the betting history), the gambler may strictly prefer these strategies over path-independent ones.

Moreover, by tossing an independent (possibly biased) coin at some points in time, the gambler may

further strictly improve his preference value. Our findings are consistent with empirical observations

of the use of path-dependent strategies such as the house money effect documented by Thaler

and Johnson (1990) and the use of random devices by individuals to aid their choices in various

contexts (Dwenger et al. 2013, Agranov and Ortoleva 2015).

We also study, at a theoretical level, the issue of why the gambler strictly prefers path-dependent

strategies over path-independent ones and prefers randomized strategies over nonrandomized ones.

First, we show that tossing independent coins at some points while following a path-independent

strategy can be regarded as a fully randomized strategy: a random selection from the set of path-

independent strategies. It is well known in the decision analysis literature that individuals do not

prefer fully randomized strategies over nonrandomized ones if their preferences are quasi-convex.

CPT preferences, however, are not quasi-convex, so randomized strategies can be strictly preferred

in the casino gambling model.

Second, we prove that any path-dependent strategy is equivalent to a randomization of path-

independent strategies. Consequently, the gambler in the casino problem strictly prefers path-

dependent strategies for the same reason why he prefers randomized strategies. It also follows that
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it is always enough to consider randomized, path-independent strategies since the more complex

randomized and path-dependent strategies cannot further improve the gambler’s preference value.

In the present paper, we focus on the optimal strategy for sophisticated agents with pre-

commitment, who are able to commit themselves in the future to the strategy that is set up at time

0 through some commitment device. This allows us to concentrate on studying the optimal behav-

ior resulting from CPT preferences. Moreover, such sophisticated agents with pre-commitment are

themselves an important type of agents, and many gamblers belong to this type with the aid of

some commitment devices; see the discussion in Barberis (2012, p. 49). In addition, understanding

the behaviors of these agents are key to studying those of any other types of agents; see Barberis

(2012), Ebert and Strack (2015), Henderson et al. (2014) and He et al. (2016).

2. Comparison of Different Types of Strategies in the Casino Gambling Model

2.1. Model

We consider the casino gambling model proposed by Barberis (2012). At time 0, a gambler is

offered a fair bet, e.g., an idealized black or red bet on a roulette wheel: win or lose one dollar with

equal probability. If he decides to play, the outcome of the bet is played out at time 1, at which

time he either wins or loses one dollar. The gambler is then offered the same bet and he can again

choose to play or not, and so forth until a terminal time T or the time he declines to play and exits

the casino, whichever comes first.

We call a random time chosen by the gambler to exit the casino a strategy. As in Barberis (2012),

we assume CPT preferences for the gambler; so the decision criterion is to maximize the CPT value

of his wealth at the time when he leaves the casino. More precisely, the gambler first computes his

gain and loss X relative to some reference point and evaluates X by

V (X) :=

∫ ∞
0

u(x)d[−w+(1−FX(x))] +

∫ 0

−∞
u(x)d[w−(FX(x))], (1)

where FX(·) is the cumulative distribution function (CDF) of X. The function u(·), which is

strictly increasing, is called the utility function (or value function) and w±(·), two strictly increasing



He et al.: Path-Dependent and Randomized Strategies in Casino Gambling
4 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

mappings from [0,1] onto [0,1], are probability weighting (or distortion) functions on gains and

losses, respectively. Following Barberis (2012), we use the following parametric forms proposed by

Tversky and Kahneman (1992) for the utility and probability weighting functions:

u(x) =


xα+ for x≥ 0

−λ(−x)α− for x< 0,

and w±(p) =
pδ±

(pδ± + (1− p)δ±)1/δ±
, (2)

where λ≥ 1, α± ∈ (0,1], and δ± ∈ [0.28,1]. Such u is S-shaped and w± are inverse-S-shaped, and

thus they are able to describe the fourfold pattern of individuals’ choice under risk that cannot be

explained by the classical expected utility theory (EUT); see Tversky and Kahneman (1992).

In the casino gambling problem, as the bet is assumed to be fair, the cumulative gain or loss of

the gambler, while he continues to play, is a standard symmetric random walk Sn, n≥ 0, on Z, the

set of integers. We further assume that the gambler uses his initial wealth as the reference point,

so he perceives Sn as his cumulative gain or loss after n bets. As a result, for any exit time τ , the

gambler’s CPT preference value of his gain and loss at the exit time is

V (Sτ ) =
T∑
n=1

u(n)
(
w+(P(Sτ ≥ n))−w+(P(Sτ >n))

)
+

T∑
n=1

u(−n)
(
w−(P(Sτ ≤−n))−w−(P(Sτ <−n))

)
,

(3)

with the convention that +∞−∞ = −∞, so that V (Sτ ) is always well-defined. The gambler’s

problem at time 0 is to find an exit time τ in a set of admissible strategies which maximizes V (Sτ ).

2.2. Comparison of Strategies

Consider a 6-period horizon, α = 0.9, δ = 0.4, and λ = 2.25, which are empirically reasonable

parameter values; see for instance Tversky and Kahneman (1992). Barberis (2012) consider path-

independent strategies only, in which for any t≥ 0, {τ = t} (conditioning on {τ ≥ t}) is determined

by (t,St), i.e., by the agent’s cumulative gain and loss at time t only. The left-panel of Figure 1

shows the optimal path-independent strategy: the nodes in the recombining binomial tree stand for

the cumulative gain and loss at different times t provided that the agent has not exited the casino
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yet, and the pairs of numbers above each node are (t,St). Black nodes stand for “stop” and white

nodes stand for “continue”, so the gambler exits the casino at the first time when his gain/loss

process hits one of the black nodes. Barberis (2012) computed the CPT preference value of the

optimal path-independent strategy to be V = 0.250440.

Next, suppose the gambler can take path-dependent strategies, in which for any t≥ 0, {τ = t}

is determined by the information set Ft = σ(Su : u≤ t), i.e., by the whole history of the gambler’s

cumulative gains and losses in the casino up to time t. The middle panel of Figure 1 presents the

optimal path-dependent strategy: black nodes stand for “stop”, white nodes stand for “continue”,

and at the half-black-half-white node the gambler stops if the previous two nodes the path has

gone through were (3,3) and (4,2); otherwise he continues. The decision whether to stop or not

at the half-black-half-white node depends not only on the cumulative gain and loss at this node

but also on the cumulative gains and losses in the past. The CPT preference value of the optimal

path-dependent strategy is V = 0.250693, which is a strict improvement from that of the optimal

path-independent strategy.1

Finally, we consider a strategy as presented in the right panel of Figure 1: Black nodes stand for

“stop”, white nodes stand for “continue”, and each grey node means that a coin is tossed at that

node independently from the bet outcomes and the gambler stops if and only if the coin turns up

tails. The coins at the grey nodes (5,3) and (5,1) are tossed independently with the probabilities

of the coin turning up tails to be 1/32 and 1/2, respectively. The CPT preference value of such a

strategy is V = 0.250702, which is a strict improvement from that of the optimal path-independent

strategy and even from that of the optimal path-dependent strategy.

Our finding that the gambler strictly prefers to use path-dependent strategies and to toss coins

in the casino gambling model is not specific to the choice of probability weighting functions. For

instance, we have obtained the same results by using the probability weighting function proposed

by Prelec (1998), i.e., w±(p) = e−γ(− lnp)δ , with γ = 0.5 and δ= 0.4.
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Figure 1 Optimal path-independent strategy (left panel), optimal path-dependent strategy (middle

panel), and a randomized, path-independent strategy (right panel) of the casino gambler.

3. Why Path-Dependent and Randomized Strategies Outperform

In what follows, we explain theoretically, via a general optimal stopping problem, the reasons

underlying the observed strict preferences for randomization and for path-dependence in the casino

gambling model.

3.1. Three Types of Strategies

We consider a general discrete-time Markov chain X = {Xt}t∈[0,T ].
2 Here and henceforth by t∈ [0, T ]

we mean t= 0,1, . . . , T . Without loss of generality, we assume that Xt takes values in Z and that

X0 = 0. We suppose an agent wants to choose a stopping time τ ≤ T to maximize his preference

value of Xτ .

Denote by AM and AD the set of path-independent stopping times and the set of path-dependent

stopping times, respectively, i.e., AD is the set of {Ft}t≥0-stopping times, where Ft = σ(Xu, u≤ t),

and AM is the set of τ ’s in AD such that for each t≥ 0, conditional on {τ ≥ t}, {τ = t} depends on

(t,St) only. Clearly, AM and AD are the two types of strategies considered in the left and middle

panels of Figure 1.
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To formally define the type of strategies considered in the right panel of Figure 1, consider a

family of 0-1 random variables ξt,x, t∈ [0, T ], x∈Z that are independent of {Xt} and are mutually

independent. Each ξt,x stands for a coin toss at time t when Xt = x with ξt,x = 0 standing for tails

and ξt,x = 1 standing for heads. For such family of coin tosses, we can consider the strategy of

stopping at the first time when a coin toss turns up tails, i.e.,

τ := inf{t∈ [0, T ]|ξt,Xt = 0}. (4)

Note that in this case, the information that is used to decide whether to stop or not includes not

only the Markov process {Xt} but also the coin toss outcomes in the history; i.e., the information at

t becomes Gt := σ(Xu, ξu,Xu , u≤ t). Clearly, τ in (4) is a stopping time with respect to this enlarged

information flow. However, τ defined by (4) is path-independent in that {τ = t} depends only on Xt

and ξt,Xt (conditioning on {τ ≥ t}). Let us stress that we do not specify the distribution of these

random coins, i.e., the value of rt,x := P(ξt,x = 0) = 1− P(ξt,x = 1); these numbers are determined

by the agent as part of his stopping strategy. We denote by AC the set of such randomized, path-

independent strategies generated by tossing coins, i.e.,

AC := {τ |τ is defined as in (4), for some {ξt,x}t∈[0,T ],x∈Z that are independent 0-1

random variables and are independent of {Xt}t∈[0,T ].}

Note that AM ⊂AC since non-randomized path-independent strategies correspond simply to the

case in which rt,x ∈ {0,1}. In addition, in the casino gambling problem, the strategy showed in the

right panel of Figure 1 belongs to AC . However, AC and AD do not contain each other.

3.2. Preference for Randomization

A fully randomized strategy is implemented by randomly choosing from a given set of non-

randomized stopping times, e.g., from AM , using a random device. Such a device is represented

by a random mapping σ from Ω to AM and is independent of the Markovian process {Xt}t≥0.

Suppose the outcome of σ is a stopping time τ ∈AM ; the agent then chooses τ as his strategy. To
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visualize this, imagine an uneven die with a possibly infinite but countable number of faces, each

corresponding to a strategy in AM .

We observe that any τ̃ ∈AC , i.e., τ̃ = inf{t∈ [0, T ]|ξt,Xt = 0} for a given set of mutually indepen-

dent 0-1 random variables {ξt,x}t∈[0,T ],x∈Z that are independent of {Xt}t∈[0,T ], can be viewed as a

special case of full randomization. Indeed, for any a := {at,x}t∈[0,T ],x∈Z such that at,x ∈ {0,1}, define

τa := inf{t∈ [0, T ]|at,Xt = 0}. Then, τa ∈AM . Let A be a random variable taking values in sequences

a given by A= {ξt,x(ω)}t∈[0,T ],x∈Z and define σ := τA. Then, σ is a random mapping taking values

in AM and because A is independent of {Xt}t∈[0,T ], σ is a fully randomized strategy and, clearly,

σ= τ̃ . Finally, by an analogous argument, we note that any randomized path-dependent strategy,

i.e. a strategy where coin tosses are independent of {Xt}t∈[0,T ] but the relative chance of tails may

depend on past path of X, can be seen as a full randomization σ taking values in AD.

Now, suppose the agent’s preference for Xτ is law-invariant, i.e., the preference value of Xτ is

V(FXτ ) for some functional V on distributions. We say V is quasi-convex if

V(pF1 + (1− p)F2)≤max{V(F1),V(F2)}, ∀F1,F2, ∀p∈ [0,1]. (5)

If, further, V is continuous, then we can conclude that3

V

(
+∞∑
i=1

piFi

)
≤max

i≥1
V(Fi), ∀Fi, ∀pi ≥ 0, i≥ 1, with

∞∑
i=1

pi = 1.

However, the state distribution at a randomized stopping time is a convex combination of the

state distributions at nonrandomized stopping times. To see this, suppose σ takes values τi’s with

probabilities pi’s, respectively. Then,

FXσ(x) = P(Xσ ≤ x) =E [P(Xσ ≤ x|σ)] =
∑
i

piP(Xτi ≤ x|σ= τi)

=
∑
i

piP(Xτi ≤ x) =
∑
i

piFXτi (x).

Hence, we can conclude that the agent dislikes any type of randomization if his preference repre-

sentation V is quasi-convex.
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It has been noted in the literature that individuals with quasi-convex preferences dislike full

randomization; see for instance Machina (1985), Camerer and Ho (1994), Wakker (1994), and

Blavatskyy (2006).4 It is easy to see that a sufficient condition for quasi-convexity is betweenness:

for any two distributions F1 and F2 such that V(F1)≥ V(F2) and any p ∈ (0,1), V(F1)≥ V(pF1 +

(1−p)F2)≥V(F2). Betweenness is further implied by independence: for any distributions F1,F2,G

and any p∈ (0,1), if V(F1)≥V(F2), then V(pF1 +(1−p)G)≥V(pF2 +(1−p)G).5 Because expected

utility (EU) theory is underlined by the independence axiom, agents with EU preferences dislike

randomization. Similarly, agents with preferences satisfying betweenness or quasi-convexity also

dislike randomization.

However, empirically individuals have been observed to violate quasi-convexity and, as a result,

to prefer randomization; see for instance Camerer and Ho (1994), Blavatskyy (2006), and the

references therein. This is reflected in descriptive models of preferences which involve probability

weighting, such as rank-dependent utility (Quiggin 1982), prospect theory (Kahneman and Tversky

1979, Tversky and Kahneman 1992), and the dual theory of choice (Yaari 1987). These preferences

are in general not quasi-convex (see for instance Camerer and Ho (1994)) and hence may exhibit

a strict preference for randomization, as shown in our casino gambling model.

Finally, let us emphasize that a randomized, path-independent strategy that is obtained by

simply tossing coins dynamically is easier to implement and simpler than a fully randomized

strategy. Although it is well understood in the literature that an agent with quasi-convex preferences

dislike fully randomized strategies, it is unclear whether a randomized, path-independent strategy

will be strictly preferred in a particular model with non-quasi-convex preferences such as CPT

preferences. We contribute to the existing literature by showing that it is indeed the case in the

casino gambling model with reasonable parameter values, i.e., with CPT preferences that are

empirically descriptive of individuals’ behavior under risk.

3.3. Preference for Path-Dependent Strategies

It is well known that if the agent’s preferences are represented by expected utility, i.e., V(F ) =∫
u(x)dF (x) for some utility function u, then the agent’s optimal stopping time may be taken to
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be path-independent. This result is a consequence of dynamic programming. For dynamic decision

problems with non-EU preferences, however, dynamic programming may not hold if the problems

are time inconsistent, so it is unclear whether the optimal stopping time is still path-independent

in this case. In the following, we show that any path-dependent strategy can be viewed as a

randomization of path-independent strategies, so it follows from the conclusion of the previous

subsection that the agent does not strictly prefer path-dependent strategies if his preference for

Xτ is quasi-convex.

Proposition 1. For any τ ∈AD, there exists τ̃ ∈AC such that (Xτ , τ) has the same distribution

as (Xτ̃ , τ̃). More generally, for any fully randomized path-dependent strategy σ, there exists τ̃ ∈AC

such that (Xσ, σ) has the same distribution as (Xτ̃ , τ̃).

Proof. For any τ ∈AD, let r(t, x) = P(τ = t|Xt = x, τ ≥ t), t∈ [0, T ], x∈Z. Take mutually inde-

pendent random variables {ξt,x}t∈[0,T ],x∈Z, which are also independent of {Xt}, such that P(ξt,x =

0) = r(t, x) = 1−P(ξt,x = 1). Define τ̃ = inf{t ∈ [0, T ]|ξt,Xt = 0} ∈ AC . We will show that (Xτ̃ , τ̃) is

identically distributed as (Xτ , τ), i.e., for any s∈ [0, T ], x∈Z,

P(Xτ = x, τ = s) = P(Xτ̃ = x, τ̃ = s). (6)

We prove this by mathematical induction.

We first show that (6) is true for s= 0. Indeed, for any x∈Z, we have

P(Xτ = x, τ = 0) = P(X0 = x, τ = 0, τ ≥ 0) = P(X0 = x, τ ≥ 0)P(τ = 0|X0 = x, τ ≥ 0)

= P(X0 = x)r(0, x) = P(X0 = x)P(ξ0,x = 0)

= P(X0 = x, ξ0,x = 0) = P(X0 = x, τ̃ = 0) = P(Xτ̃ = x, τ̃ = 0),

where the fifth equality is due to the independence of ξ0,x and {Xt} and the sixth equality follows

from the definition of τ̃ .

Next, we suppose that (6) is true for s≤ t and show that it is also true for s= t+ 1. First, note

that {Xt} is Markovian with respect both to the filtration generated by itself and to the enlarged
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filtration {Gt}. Furthermore, τ and τ̃ are stopping times with respect to these two filtrations,

respectively. As a result, for any s < t, given Xs, events {τ = s} and {τ̃ = s} are independent of

Xt. Then, we have

P(Xt = x, τ ≤ t) =
∑
s≤t

∑
y

P(Xt = x|Xs = y, τ = s)P(Xs = y, τ = s)

=
∑
s≤t

∑
y

P(Xt = x|Xs = y)P(Xs = y, τ = s)

=
∑
s≤t

∑
y

P(Xt = x|Xs = y)P(Xs = y, τ̃ = s) (7)

=
∑
s≤t

∑
y

P(Xt = x|Xs = y, τ̃ = s)P(Xs = y, τ̃ = s)

= P(Xt = x, τ̃ ≤ t),

where the third equality holds by the inductive hypothesis. Consequently,

P(Xτ = x, τ = t+ 1)

=P(τ = t+ 1|Xt+1 = x, τ ≥ t+ 1)P(Xt+1 = x, τ ≥ t+ 1)

=r(t+ 1, x)
∑
y

P(Xt+1 = x,Xt = y, τ ≥ t+ 1)

=r(t+ 1, x)
∑
y

P(Xt+1 = x|Xt = y, τ ≥ t+ 1)P(Xt = y, τ ≥ t+ 1)

=r(t+ 1, x)
∑
y

P(Xt+1 = x|Xt = y)P(Xt = y, τ ≥ t+ 1)

=r(t+ 1, x)
∑
y

P(Xt+1 = x|Xt = y)P(Xt = y, τ̃ ≥ t+ 1)

=r(t+ 1, x)
∑
y

P(Xt+1 = x|Xt = y, τ̃ ≥ t+ 1)P(Xt = y, τ̃ ≥ t+ 1)

=r(t+ 1, x)
∑
y

P(Xt+1 = x,Xt = y, τ̃ ≥ t+ 1)

=P(τ̃ = t+ 1|Xt+1 = x, τ̃ ≥ t+ 1)P(Xt+1 = x, τ̃ ≥ t+ 1)

=P(Xτ̃ = x, τ̃ = t+ 1),

where the fourth and sixth equalities hold because of the Markovian property of {Xt}t≥0, the

fifth follows from (7) and the eight holds by the definition of τ̃ . By mathematical induction, (6)
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holds for any s and x. Finally, we see that the above proof also applies to any fully randomized

path-dependent strategy σ. �

Proposition 1 shows that for any path-dependent stopping time τ , Xτ is identically distributed as

Xτ̃ for some τ̃ ∈AC , which is a randomization of path-independent stopping times. This result has

three implications for an agent whose preference for Xτ is represented by V(FXτ ). First, the agent

is indifferent between τ and τ̃ . Consequently, we must have supτ∈AC V(FXτ ) ≥ supτ∈AD V(FXτ ),

i.e., randomized, path-independent strategies always perform no worse than non-randomized path-

dependent ones. The inequality may be strict as seen in our example in Section 2.2.

Second, as argued before, any randomized path-dependent strategy τ ′ can be seen as a fully

randomized path-dependent strategy σ. In consequence, there also exists τ̃ ∈ AC such that Xτ ′

has the same distribution as Xτ̃ . Therefore, using randomized path-dependent strategies cannot

improve the gambler’s preference value compared to simply using randomized but path-independent

strategies. This explains why we consider only the latter in the casino gambling problem.

Third, if the agent’s preference representation V is quasi-convex then it is optimal for him to

use nonrandomized and path-independent strategies only. Indeed, we have already concluded that

he dislikes any type of randomization. Further, by Proposition 1, any path-dependent strategy is

equivalent to a randomization of path-independent strategies and is thus less preferred than some

path-independent strategy. In the casino gambling problem, the gambler can improve his CPT

value by considering path-dependent strategies only because CPT is not quasi-convex.

3.4. Discounting and Time-Dependent Preferences

For any full randomization σ taking possible values τi’s with respective probabilities pi’s, we have

P(σ≤ t,Xσ ≤ x) =E [P(σ≤ t,Xσ ≤ x|σ)] =
∑
i=1

piP(τi ≤ t,Xτi ≤ x|σ= τi) =
∑
i=1

piP(τi ≤ t,Xτi ≤ x),

i.e., the joint distribution of (σ,Xσ) is a convex combination of the joint distributions of (τi,Xτi),

i≥ 1. Furthermore, Proposition 1 shows that for any path-dependent stopping time τ (randomized

or not), (τ,Xτ ) is identically distributed as (τ̃ ,Xτ̃ ) for some randomized but path-independent
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strategy τ . Therefore, the conclusions in Sections 3.2 and 3.3 remain true if the agent’s preferences

are represented by a functional Ṽ of the joint distribution of (τ,Xτ ). In particular, if Ṽ is quasi-

convex, then the agent dislikes randomization and path-dependent strategies.

A special case of interest are agent’s preferences in the form V(FH(τ,Xτ )), a functional of the

distribution of H(τ,Xτ ) for some function H. If V(FH(τ,Xτ )) is quasi-convex in FH(τ,Xτ ) then it is

also quasi-convex in the joint distribution Fτ,Xτ and the agent dislikes randomization and path-

dependent strategies. A simple example of function H is H(t, x) = e−rtx, where r is a discount

factor. Therefore, if the agent has law-invariant and quasi-convex preferences for the discounted

value e−rτXτ , he will choose only path-independent strategies.

4. Conclusion

This paper considers the dynamic casino gambling model with CPT preferences that was initially

proposed by Barberis (2012). Our first contribution was to show that CPT, as a descriptive model

for individuals’ preferences, accounts for two types of gambling behavior, namely, use of path-

dependent strategies and use of independent randomization for assisting ongoing decision making.

Our second contribution was to show the improvement in performance brought by these strategies

in the casino gambling problem is a consequence of lack of quasi-convexity of CPT preferences.

Our third contribution was to show that any path-dependent strategy is equivalent to a random-

ized, path-independent strategy. Consequently, using randomized path-dependent strategies cannot

improve the gambler’s preference value compared to simply using randomized but path-independent

strategies.

Note. Recently, and independently of our work, Henderson et al. (2014) observed that randomized

strategies may be necessary for optimal gambling strategies. This observation emerged in the course

of a conversation between one of those authors and two of the authors of the present paper at

the SIAM Financial Mathematics meeting in November 2014 in Chicago. The other paper was

subsequently posted on SSRN.
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Endnotes

1. The optimal path-dependent strategy is not unique: the gambler can also choose to continue

if the path leading to node (5,1) goes through nodes (3,3) and (4,2) and stop if it goes through

nodes (3,1) and (4,2).

2. The gains/losses process in the casino gambling problem is a symmetric random walk and thus

a Markov chain.

3. Quasi-convexity implies V(
∑n

i=1 piFi) ≤max1≤i≤n V(Fi) and the continuity is needed to pass

with n to infinity.

4. In other words, among non-EU preferences only the ones without quasi-convexity can explain

the preference for randomization. As summarized by Agranov and Ortoleva (2015), non-EU pref-

erences fall in the category of models of deliberate randomization, and another two categories of

models that can explain the preference for randomization are models of random utility and mod-

els of mistakes. The experimental results in Agranov and Ortoleva (2015) support the models of

deliberate randomization.

5. Indeed, by setting G in the definition of the independence axiom to be F1 and F2, respectively,

we immediately conclude that independence leads to betweenness.
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He, Xue Dong, Sang Hu, Jan Ob lój, Xun Yu Zhou. 2016. Optimal exit time from casino gambling: strategies

of pre-committing and naive agents. SSRN:2684043.

Henderson, Vicky, David Hobson, Alex Tse. 2014. Randomized strategies and prospect theory in a dynamic

context. SSRN: 2531457.

Hu, Sang. 2014. Optimal exist strategies of behavioral gamblers. Ph.D. thesis, The Chinese University of

Hong Kong.

Kahneman, Daniel, Amos Tversky. 1979. Prospect theory: An analysis of decision under risk. Econometrica

47(2) 263–291.

Machina, Mark J. 1985. Stochastic choice functions generated from deterministic preferences over lotteries.

Econ. J. 95(379) 575–594.



He et al.: Path-Dependent and Randomized Strategies in Casino Gambling
16 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

Prelec, Drazen. 1998. The probability weighting function. Econometrica 66(3) 497–527.

Quiggin, John. 1982. A theory of anticipated utility. J. Econ. Behav. Organ. 3 323–343.

Thaler, Richard H, Eric J Johnson. 1990. Gambling with the house money and trying to break even: The

effects of prior outcomes on risky choice. Management Sci. 36(6) 643–660.

Tversky, Amos, Daniel Kahneman. 1992. Advances in prospect theory: Cumulative representation of uncer-

tainty. J. Risk Uncertainty 5(4) 297–323.

Wakker, Peter. 1994. Separating marginal utility and probabilistic risk aversion. Theory Dec. 36(1) 1–44.

Yaari, Menahem E. 1987. The dual theory of choice under risk. Econometrica 55(1) 95–115.

Xue Dong He is an associate professor in the Department of Systems Engineering and Engi-

neering of The Chinese University of Hong Kong. His research interests are in behavioral finance

and economics, portfolio selection, asset pricing, and risk management.

Sang Hu is a research fellow in the Risk Management Institute of the National University of

Singapore. Her research interests are in behavioral finance and risk management.
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