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Abstract

We consider a casino gambling model with an indefinite end date and gamblers endowed with
cumulative prospect theory preferences. We study the optimal strategies of a pre-committed
gambler, who commits her future selves to the strategy she sets up today, and of a naive
gambler, who is unaware of time-inconsistency and may alter her strategy at any time. We
identify conditions under which the pre-committed gambler, asymptotically, adopts a loss-exit
strategy, a gain-exit strategy, or a non-exit strategy. For a specific parameter setting when
the utility function is piece-wise power and the probability weighting functions are concave
power, we derive the optimal strategy of the pre-committed gambler in closed form whenever
it exists, via solving an infinite dimensional program. Finally, we study the actual behavior of
the naive gambler and highlight its marked differences from that of the pre-committed gambler.
In particular, for most of empirically relevant CPT parameter values, a pre-committed gambler
takes a loss-exit strategy while a naive agent does not stop with probability one at any loss level.
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1. Introduction

We analyze theoretically, and compare, the behavior of different types of gamblers in a casino
gambling model, which is a generalization of the one initially proposed by Barberis in [5]. A
gambler, consecutively playing out a fair bet in a casino, needs to determine the best time to stop
playing and leave, with the objective to maximize her preference value of the final wealth, while
the preference is dictated by the cumulative prospect theory (CPT) [33].
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[5] proposes such a model for the first time with five periods and Markovian and non-randomized
strategies, and derives the gambler’s strategy by exhaustive search. The author finds that when
the gambler uses the same CPT preferences to revisit the gambling problem in the future, e.g., at
time t > 0, the optimal gambling strategy solved at time 0 is typically no longer optimal. This
time-inconsistency arises from the probability weighting in CPT. If the gambler is pre-committed,
she commits her future selves to the strategy solved at time 0. If she is not aware of the time-
inconsistency, then the gambler is said to be naive. The actual strategy implemented by a naive
gambler will often be dramatically different from the strategy planned at time 0 (which would be
implemented by a pre-committed gambler). For example, Figure 4 in [5] shows that for a large
range of parameter specifications the naive gambler entering the casino with a loss-exit plan ends up
with a gain-exit strategy. [5] also studies the gambling behavior of so-called sophisticated gamblers
without commitment, who know their future selves will not follow today’s strategy and thus adjust
today’s strategy accordingly. The author finds that these gamblers never enter the casino.1

[16] show that, for Barberis’ model, external randomization such as tossing coins or path-
dependent (namely non-Markovian) strategies can strictly improve the gambler’s CPT preference
value. Moreover, the latter mechanism is equivalent to the former in the sense of reaching the same
objective value; hence there is no need to consider path-dependence if randomization is in place.
This finding is consistent with the use of random devices by individuals in various contexts; see for
instance [10] and [2].

In this paper, we consider an infinite-horizon casino model. In the view of the finding in [16],
we also allow the gambler to use randomization. Apart from the analytical tractability, an infinite-
horizon model can capture the situations where the gambler does not have a definite number of
plays in mind before entering the casino. The approach of exhaustive search taken by [5] can not
work in this setting. In the present paper, we are able to find the strategies of a pre-committed
gambler and a naive gambler analytically, which allows us to build a general theoretical comparison
of these strategies. To the best of our knowledge, our paper is the first to analytically study the
strategies of a pre-committed gambler and compare them with those of a naive gambler in a general
discrete-time casino gambling setting and using CPT preferences.

We first investigate when the optimal strategy of the pre-committed gambler does not exist and,
in this case, find asymptotically optimal strategies. We further divide these asymptotically optimal
strategies into three types: loss-exit, gain-exit, and non-exit strategies. In the original terms of [5]
(for a five-period model), a loss-exit strategy is to exit at a fixed loss level and not to exit at any
gain level, a gain-exit strategy is the opposite, and a non-exit strategy is not to stop at any gain
and loss levels. In the present paper, as the time horizon is infinite and the optimal CPT value
may not be attained, a loss-exit strategy is interpreted as exiting at a certain fixed loss level or at
an asymptotically large gain level (i.e., the limiting strategy only stops at a loss; hence the name).
Similar interpretations are applied to gain-exit and non-exit strategies. We find conditions under
which the pre-committed gambler takes loss-exit, gain-exit, and non-exit strategies, respectively,
and our theoretical results are consistent with the numerical results in [5].

We then assume a piece-wise power utility function and concave, power probability weighting
functions. The concave, power weighting functions, although not typically used in CPT, are still
able to model the overweighing of very small probabilities of large gains and losses. With this
specification of the utility and weighting functions, we are able to derive the optimal strategy of
the pre-committed gambler completely and analytically. The optimal strategy, when it exists, is

1The classification of these three types of agents when facing time-inconsistency dates back to [32].

2



to stop gambling when reaching a random level of gains or a random level of losses, and the latter
level takes no more than two values and thus the optimal strategy yields a limited loss.

Finally, we study the actual behavior of a naive gambler and compare it with that of the pre-
committed gambler. We find the conditions under which the naive gambler stays at the casino
forever. In particular, we prove that under some conditions, while the pre-committed gambler will
stop with probability one before the loss hits a certain level, the naive gambler continues to play
with a positive probability at any loss level.

The explanation for the above gambling behavior, which was first provided by [5], is as follows:
for the most relevant CPT parameter values, the preference value of taking a risk that yields a
huge loss, e.g., $1,000, with a small probability, e.g., 0.1%, is very negative because the weighting
of this loss is strong due to the gambler’s large sensitivity with respect to probability changes near
the left end of the probability scale. Thus, the gambler does not want to end up with a huge loss
and thus plans to stop with probability one before the loss hits a certain level. When the gambler
keeps losing money and reaches the loss level that is supposed to trigger the stopping time under
her initial plan, the probability of reaching this loss level is no longer small and thus this loss level
is no longer heavily weighted. Consequently, she may find that it is optimal not to stop. Moreover,
the above explanation predicts that the risk-taking of the gambler is greater after a paper loss than
before the paper loss. This prediction is consistent with the experimental studies by [6], [3], and
[23].

Mathematically, the casino gambling problem for a pre-committed gambler in our paper is inher-
ently a discrete-time optimal stopping problem in which the underlying state process is a symmetric
random walk and the objective function is represented by CPT. Our mathematical contribution is
to solve this optimal stopping problem analytically. We note that optimal stopping problems in
continuous-time setting with CPT preferences have been studied by [36] and [20], however such
problems are different from our setting both in term of their key features as well as methods used
to solve them. First, from the methodological point of view, [36] solve an optimization problem
with the decision variable being the quantile function of the stopped state value. This technique of
“quantile formulation” is later also used by [20]. In the discrete-time setting of our paper, such a
quantile function is integer-valued because the state process in our model, the symmetric random
walk, takes integer values. Consequently, the set of feasible quantile functions is non-convex which
makes this approach inefficient, if not impossible. Instead, the approach we take is to solve an
optimization problem with the decision variable to be the distribution function of the stopped state
value. Second, from the point of view of stylised model features, the continuous time setting allows
the gambler to construct arbitrarily small random payoffs. This was key to the finding in [11] that
a naive agent never stops gambling, a finding which has been complemented and countered by [19]
with the introduction of randomization; see Section 5 for further discussion. In our model the stake
size is fixed at $1 and the gambler can not construct arbitrarily small payoffs. In addition, the
aforementioned two papers assume either that the gambler’s utility function for gains and losses
has finite left- and right-derivatives at the break-even point or that the utility function is piece-wise
power with the same diminishing sensitivity for gains and losses, whereas in the present paper
we consider a more general utility function. Finally, we mention another recent work of [22] who
consider the optimal selling of a stock for an agent with rank-dependent utility (see e.g., [31]) and
study the stopping behaviors of a naive agent. Again, their methods are linked to the continuous
time setting in which the stock price follows a geometric Brownian motion and are not compatible
with our discrete time setup.

In the five-period model considered by [5], the strategy of a sophisticated gambler without pre-
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commitment is defined through a backward induction: starting from the end of the time horizon
when the only choice of the gambler is to leave the casino, at the beginning of each period, the
gambler decides her strategy knowing what her action will be in the following periods. In our
model, such a definition is impossible because the end of the infinite time horizon does not exist.
We can consider the game-theoretical approach to time-inconsistent problems, in which the agent’s
selves at different time are regarded as different players in a sequential game and an equilibrium
strategy is sought; see for instance [32] and [29]. This approach has been used by [12] and [22]
to study the behavior of a sophisticated agent without commitment in a continuous-time optimal
stopping problem in which the agent’s preferences involve probability weighting. In particular, [12]
provide a sufficient condition under which gambling is never an equilibrium strategy for an agent
with CPT preferences. The analysis of equilibrium strategies in our discrete-time model is much
more involved than that in [12] and [22]; in particular, in the latter never starting to play is always
an equilibrium strategy, but it is not the case in the discrete-time model. Therefore, we opt not
to discuss sophisticated gamblers without commitment in our model and leave the study of such
gamblers as future research.

The remainder of this paper is organized as follows: In Section 2, we propose the casino gambling
model. In Section 3, we study the existence of the optimal strategies and discuss loss-exit, gain-exit,
and non-exit strategies. In Section 4, we solve the gambling problem completely when the utility
function is piece-wise power and the probability weighting functions are power. We then discuss
the strategies taken by a naive gambler in Section 5. Finally, Section 6 concludes. Technical and
lengthy arguments for solving the underlying infinite-dimensional program, namely the proofs of all
results in Section 4, are relegated to online supplementary materials (available at SSRN.2682637).
All the other proofs are placed in the Appendix.

2. The Model

We consider the casino gambling problem initially formulated by [5] but in an infinite-time setting.
At time 0, a gambler is offered a fair bet, e.g., roulette wheel, in a casino: win or lose one dollar
with equal probability. If the gambler takes the bet, the bet outcome is played out at time 1. Then
the gambler is offered the same bet and she decides whether to play. The same bet is offered and
played out repeatedly until the first time the gambler declines the bet. At that time, the gambler
leaves the casino with all her prior gains and losses. The gambler needs to decide the time τ to
exit the casino.

Denote by St, t = 0, 1, . . . the cumulative gain or loss of the gambler in the casino at t. Then,
{St : t ≥ 0} is a symmetric random walk. The gambler chooses the exit time τ to maximize her
preference for Sτ , while the preferences are modeled by CPT, assuming the reference point to be
her initial wealth at the time she enters the casino. Then, the gambler’s preference value of Sτ is

V (Sτ ) =
∞∑
n=1

u+(n)
(
w+(P(Sτ ≥ n))− w+(P(Sτ > n))

)
−
∞∑
n=1

u−(n)
(
w−(P(Sτ ≤ −n))− w−(P(Sτ < −n))

)
,

(2.1)

where u+(·) and u−(·) are the utility function of gains and disutility function of losses, respectively,
and w+(·) and w−(·) are the probability weighting functions regarding gains and losses, respectively.
Following CPT, we assume that u±(·) are continuous, increasing, and concave, and satisfy u±(0) =
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0. In addition, w±(·) are increasing mappings from [0, 1] onto [0, 1]. We adopt the convention that
∞−∞ = −∞ so that V (Sτ ) := −∞ if the second sum of infinite series in (2.1) is +∞.

[16] shows that external randomization, such as tossing coins, can strictly improve the gambler’s
preference value. Moreover, individuals indeed use randomization in various contexts; see e.g., [10]
and [2]. Thus, different from [5], we allow the gambler to take randomized strategies. Importantly,
the gambler can only use uniformly integrable stopping times τ , i.e., {Sτ∧t}, t = 0, 1, . . . needs to
be uniformly integrable, so as to, among other things, exclude doubling strategies. Further, with no
loss of generality, see Section 4.1 for details, we can restrict the gambler to using either randomized
path-independent stopping times or randomized Azéma-Yor stopping times. Both of these types of
randomized stopping times involve tossing coins and are easy to implement, see [17].

Denote by T the set of feasible stopping times described above. Then, the gambler faces the
following optimization problem at time 0:

max
τ∈T

V (Sτ ).(2.2)

The introduction of randomization, in combination with the infinite-time horizon setting, enables
us to apply the techniques of Skorohod embedding from [17], which is a crucial step to solve (2.2);
see Section 4 below.2

As shown in [5], when the gambler uses the same CPT preferences to revisit the gambling
problem in the future, e.g., at time t > 0, the optimal strategy of problem (2.2), which is solved at
time 0, is no longer optimal. This arises from the probability weighting function. If the gambler
commits her future selves to the strategy solved at time 0, the optimal strategy of problem (2.2) is
the one that is implemented by the gambler. In this case, the gambler is (sophisticated and) pre-
committed. If at each time the gambler is unaware of the time-inconsistency, she may keep changing
her strategy in the future. In this case, the gambler is naive, and the actual strategy implemented
by the gambler is different from the optimal strategy of problem (2.2). In the following, we first
study the pre-committing strategy, i.e., the optimal strategy of the pre-committed gambler, in
Sections 3 and 4. Then, we study the actual behavior of a naive gambler in Section 5.

The following usual notations will be used throughout the paper: for any real number x, bxc
stands for the floor of x, i.e., the largest integer dominated by x, and dxe stands for the ceil of x,
i.e., the smallest integer dominating x. For real numbers x and y, x ∧ y := min(x, y).

3. Loss-Exit, Gain-Exit, and Non-Exit Strategies

In this section, we study various behaviors of pre-committed gamblers via a class of simple two-
level strategies. For two integers b < 0 < a we denote by τa,b the first exit time from [b, a], i.e.,
τa,b := inf{t ≥ 0 : St = a or St = b}.

Theorem 3.1 Let V ∗ be the value of the optimization problem in (2.2).

(i) Suppose there exists s > 0 such that

lim inf
x→+∞

u+(sx)w+(1/x) = +∞.(3.1)

2 The Skorokhod embedding, in our context, states that for any zero-mean, integrable distribution on Z, there
exists a uniformly integrable, randomized stopping time τ such that Sτ follows that distribution. If randomization is
not allowed, such a result does not hold unless we do not assume uniform integrability of τ ; see e.g., [9]. The above
Skorokhod embedding result does not hold either in a finite-horizon setting.
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Then, V ∗ =∞ and there exists b < 0 such that lima→+∞ V (Sτa,b) = +∞.

(ii) Suppose there exists ε > 0 such that

lim sup
x→+∞

u−(x1+ε)w−(1/x) = 0.(3.2)

Then, V ∗ = supx≥0 u+(x). Moreover, the optimal solution to problem (2.2) does not exist

and V (Sτa,b) with a = bkε/(1+ε)c and b = −k converges to V ∗ as k goes to infinity.

(iii) Suppose limx→+∞ u+(x) = +∞, and there exists p ∈ (0, 1) such that

lim sup
x→+∞

u−

(
p

1−px
)

u+(x)
<

w+(p)

w−(1− p)
.(3.3)

Then, V ∗ =∞ and there exists c > 0 such that limk→+∞ V (Sτa,b) = +∞ where a = dcke and
b = −k.

Note that the above result only uses two-level strategies which are among the simplest possible
strategies. In particular, Theorem 3.1 still holds even if the gambler is restricted to use, e.g., only
non-randomized or path-independent strategies.

Theorem 3.1 provides three cases in which the optimal solution to problem (2.2) does not exist.3

Note that the three cases are not mutually exclusive, see Table 1 and the associated discussion below.
In these cases, we are still able to study the gambler’s behavior by investigating the strategies taken
by the gambler to reach the optimal value asymptotically.4 In the first case, (i), the optimal value
of the gambling problem (2.2) is infinite. The strategy τa,b the gambler takes, as a→ +∞, is of the
“stop-loss-and-let-profit-run” type: to exit once reaching a fixed loss level −b and not to stop in
gain. It is essentially a loss-exit strategy, in Barberis’ term; see [5]. Such a strategy caps the loss
and allows infinite gain, producing a highly skewed distribution which is favored due to probability
weighting. To interpret the assumption (3.1), consider the following lottery: winning sx dollars
with probability 1/x and winning nothing otherwise, where x is a sufficiently large number. The
expected payoff of the lottery is s and the CPT value of the lottery is u+(sx)w+(1/x). Therefore,
condition (3.1) implies that the gambler has strong preferences for this type of highly skewed
lotteries so that with limited wealth s, she can achieve infinite CPT value by purchasing these
lotteries.

In case (ii), the optimal value is finite or infinite depending on whether or not u+ is uniformly
bounded; however, either way this value is not attained by any stopping strategy. The gambler
likes the following strategy: leave the casino when losing more than k dollars or when winning more
than bkε/(1+ε)c dollars for sufficiently large k. Note that bkε/(1+ε)c is much smaller than k when ε
is small. For instance, when ε = 0.25 and k = 100000, the strategy taken by the gambler is to stop

3 The optimal value for the pre-committed gambler may or may not be infinite. For example, in case (ii) of
Theorem 3.1, the optimal value is finite if supx≥0 u+(x) < +∞. When the optimal value is not attainable, the
problem is said to be ill-posed.

4 [18] consider a single-period portfolio selection problem under CPT and argue that “an ill-posed model is one
whose optimal strategy is simply to take the greatest possible risky exposure” (p. 316). [24] and [25] consider a
continuous-time portfolio selection problem under CPT and find that for certain parameter values, the problem is
ill-posed. Although the authors were critical of the ill-posedness in these papers, following their analysis one can also
find the strategies that reach the unattainable optimal value asymptotically, and this can tell us the agent’s behavior
even when the problem is ill-posed.
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gambling when winning $10 or when losing $100000. To understand the preferences underlying this
sort of behaviors, consider the following random loss: losing x1+ε dollars with 1/x probability and
losing nothing otherwise, where x is sufficiently large. The expected loss is as large as xε. However,
condition (3.2) implies that the CPT value of this random loss, −u−(x1+ε)w−(1/x), is nearly zero.
Hence, the above strategy is a result of the gambler not willing to pay anything to hedge against
the loss, even though the expected loss is large. It corresponds essentially to a gain-exit strategy
in [5].

[4] propose two conditions in Proposition 1 therein and show that under these two conditions, a
risk-neutral firm can extract unbounded profits from consumers with prospect theory preferences.
Conditions (3.1) and (3.2) in the present paper resemble those in [4].

In case (iii) of Theorem 3.1, condition (3.3) is related to the large loss aversion degree (LLAD),
defined as limx→+∞ u−(x)/u+(x), in [18]. Indeed, by setting p = 1/2, condition (3.3) is implied by
the one that LLAD is strictly less than w+(1/2)/w−(1/2), i.e., LLAD is sufficiently low. In this
case, condition (3.3) implies that probability weighting on large gains dominates a combination
of weighting on large losses and loss aversion. The corresponding strategy taken by the gambler
is to exit when either the gain reaches a sufficiently high level (bckc) or the loss reaches another
sufficiently high level (k), and these two levels are of the same magnitude. Therefore, we can
consider it to be an essentially non-exit strategy.

We can summarize the above discussions conveniently using a single quantity. Namely, for any
stopping time τ ∈ T , define the conditional gain-loss ratio as

R(τ) :=
E[Sτ |Sτ ≥ 1]

E[−Sτ |Sτ ≤ −1]
.

For stopping time τa,b, we have R(τa,b) = a/(−b). Thus, Theorem 3.1-(i) corresponds to an arbi-
trarily large conditional gain-loss ratio, while Theorem 3.1-(ii) to an arbitrarily small conditional
gain-loss ratio. Finally, for τa,b with a = dcke, b = −k, and k → ∞ as in Theorem 3.1-(iii),
we can see that R(τa,b) is approximately a positive constant c and the conditional expected gain
E[Sτ |Sτ ≥ 1] is arbitrarily large.

Next, we consider the following specification of the utility function and probability weighting
functions introduced by [33]:

u+(x) = xα+ , u−(x) = λxα− , w±(p) =
pδ±

(pδ± + (1− p)δ±)
1/δ±

,(3.4)

where α+, α− ∈ (0, 1] and δ+, δ− ∈ (0, 1] such that w±(·) are increasing. With this specification,
the results of Theorem 3.1 are summarized in Table 1. These results also hold in the case of power
probability weighting functions w±(p) = pδ± and in the case of the probability weighting functions
proposed by [15]:

w±(p) = a±p
δ±/(a±p

δ± + (1− p)δ±)(3.5)

with a± ∈ (0, 1].
As noted previously, the conditions (3.1)–(3.3), which correspond to the four rows in Table 1,

are not exclusive to each other in general. For example, it is possible that both α+ > δ+ and
α− < δ− are true, in which case both the gain-exit strategy and the loss-exit strategy can lead to
the optimal preference value. However, if we take the parameter values used in [5], i.e., (3.4) with
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Table 1: Existence of optimal solutions. The utility function is given as in (3.4), the weighting
functions are given as in (3.4), given as in (3.5), or power functions w±(p) = pδ± .

Parameter Values Exist. Opt. Solution Strategy

α+ > δ+ No loss-exit

α− < δ− No gain-exit

α+ > α− No non-exit

α+ = α−, λ < sup0<p<1
w+(p)/p

α+

w−(1−p)/(1−p)α+ No non-exit

α+ = α− = α and δ+ = δ− = δ, then the first two rows in Table 1 are mutually exclusive. We show
analytically that the gambler takes loss-exit strategies when α > δ and takes gain-exit strategies
when α < δ. These theoretical results coincide with the numerical results presented by Figure 3 in
[5] in the simple five period setting therein, but they are valid more generally.

For weighting function

w±(p) = e−a±(− ln p)δ±(3.6)

with a± > 0 and δ± ∈ (0, 1], which was proposed by [30], condition (3.1) is satisfied for any δ+ < 1
or for δ+ = 1 and α+ > a+. In this case, the gambler takes an asymptotically loss-exit strategy.
Condition (3.2), however, is not satisfied for any δ− < 1.

Finally, we investigate whether the experimental estimates of the utility function and probability
weighting functions imply any of the loss-exit, gain-exit, and non-exit strategies in our model. As
long as δ± 6= 1, the above analysis shows that with probability weighting function (3.6), the gambler
takes the loss-exit but not the gain-exit strategy. In the following, we focus on the experimental
estimates of the CPT preferences in the literature using probability weighting function (3.4) or
(3.5). We plot in Figure 1 the estimates of α± for the utility function as in (3.4) and the estimates
of δ± for the probability weighting function as in (3.4) or for the one in (3.5): In the left pane α+

versus δ+ is plotted, in the left-middle pane δ− versus α− is plotted, in the right-middle pane α+

versus α− is plotted, and in the right pane δ+ versus δ− is plotted.5 We observe that for most
of the estimates in the literature, α+ < α−, α− > δ−, and α+ > δ+. Hence, our general results
imply that, for the most relevant parameter values, the pre-committed gambler takes the loss-exit
strategy but not the gain-exit nor the non-exit strategy.

It is, however, still of interest to study the pre-committed gambler’s strategy when Theorem 3.1
does not apply because in two of the experimental studies listed in Figure 1, we do have α+ < δ+.
Thus, in the next section, we plan to solve problem (2.2), assuming that none of the conditions in
Theorem 3.1 applies which, as will be clear in the next section, “nearly” implies that an optimal
solution exists.

5We consider only experiments that involve monetary payoffs under risk, as they are relevant to our casino gambling
problem. In addition, we consider only experiments that treat α+ and α− separately, treat δ+ and δ− separately,
and estimate the utility function and probability weighting function simultaneously. This leads to seven works we
are aware of. Some works estimate α+ and δ+ only, and some others estimate α− and δ− only. When the experiment
in a work involves multiple groups of subjects or multiple sessions, we use the grand estimate. Some of the works
estimate the probability weighting functions both in (3.4) and (3.5), but the estimates are very similar so we simply
take the average. Finally, when both the mean and median of the estimate of a parameter is available, we select the
median.
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Figure 1: Experimental estimates of α± for the utility function as in (3.4) and δ± for the probability
weighting function as in (3.4) or as in (3.5). The left pane plots α+ versu δ+, the left-middle pane
plots δ− versus α−, the right-middle pane plots α+ versus α−, and the right pane plots δ+ versus
δ−. The estimate (α+, α−, δ+, δ−) = (0.88, 0.88, 0.61, 0.69) by [33] is represented by the circle
shape, the estimate (α+, α−, δ+, δ−) = (0.89, 0.92, 0.60, 0.675) by [1] is represented by the facing-up
triangle shape, the estimate (α+, α−, δ+, δ−) = (1.035, 1.065, 0.5, 0.52) by [14] is represented by the
square shape, the estimate (α+, α−, δ+, δ−) = (0.859, 0.826, 0.618, 0.592) by [7] is represented by
the diamond shape, the estimate (α+, δ+) = (0.225, 0.56) by [8] is represented by the facing-left
triangle shape, the estimate (α+, δ+) = (0.5, 0.71) by [35] is represented by the facing-right triangle
shape, and the estimate (α−, δ−) = (0.969, 0.8665) by [13] is represented by the pentagram shape.

4. Pre-committed Gamblers with Power Utility and Weighting Functions

In this section, we solve problem (2.2) for a pre-committed gambler when the utility function is
piece-wise power and the probability weighting functions are power functions, i.e., when

u+(x) = xα+ , u−(x) = λxα− , w+(p) = pδ+ , w−(p) = pδ−(4.1)

with α± ∈ (0, 1], δ± ∈ (0, 1], and λ > 0. The parameters α+ and α− measure the diminishing
sensitivity of the utility of gains and losses, respectively; the smaller α+ and α− are, the more risk
averse regarding gains and the more risk seeking regarding losses the gambler is, respectively.

The parameter λ is related to loss aversion, a phenomenon that individuals are more sensitive
to losses than to gains; see for instance [26]. Various definitions of loss aversion degree, a measure
of the extent to which individuals are averse to losses, have been proposed in the literature. These
include the function x → u−(x)/u+(x) in [27], the constant u−(1)/u+(1) in [33], the function
x→ u′−(x)/u′+(x) in [34], the value of limx↓0 u−(x)/u+(x) in [28] and that of limx↑+∞ u−(x)/u+(x)
in [18]. Except for the definition in [33], the parameter λ in (4.1) does not coincide with the other
definitions unless α+ = α−. In addition, the definition of loss aversion degree by [33] depends on
the choice of the unit of monetary payoffs, e.g., using dollars or euros as the units lead to different
loss aversion degree in this definition. Therefore, λ, although related to loss aversion, can not be
directly interpreted as the loss aversion degree. However, with α+ and α− being fixed, the larger
λ is, the more loss averse and hence the more overall risk averse the gambler is.

Note that a commonly used probability weighting function supported by empirical observa-
tions is inverse-S-shaped, i.e., is concave in its low end and convex in its high end. The power
probability weighting functions in (4.1), however, are concave. We consider the power instead of
inverse-S-shaped probability weighting functions since this makes tractable solutions possible while
maintaining the key stylised feature of modeling individuals’ tendency to overweight the tails of
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payoff distributions. Indeed, in our gambling problem, the cumulative gain or loss represents a
mixed gamble for which both gains and losses are possible. The tails therefore refer to significant
gains and losses of small probability. The tendency to overweight these is captured by the concave
parts in the low ends of the two probability weighting functions, see the CPT preference value
(2.1), and is achieved with the two power probability weighting functions. We can see that the
smaller δ+ and δ− are, the more the gambler overweighs large gains and losses of small probability,
respectively.

In the remainder of this section, we always assume (4.1) for the utility and probability weighting
functions. Because of the results in Table 1, we only need to consider the following parameter ranges:
α+ ≤ δ+, α− ≥ δ−, and α+ ≤ α− throughout this section. As discussed at the end of Section 3,
although the parameter range α+ < δ+ is not the most commonly observed one in the experimental
estimates of CPT parameters, it is still of interest to study the optimal gambling behavior in this
case.

4.1. Infinite-Dimensional Programming

A key step is to turn the original problem (2.2) into an infinite-dimensional program that is
tractable. For any uniformly integrable stopping time τ , E[Sτ ] = limt→∞ E[Sτ∧t] = 0. Thus,
the distribution of Sτ is a centered probability measure on Z, i.e., the distribution is integrable and
has zero mean. On the other hand, as shown by [17], any centered probability measure µ on Z
can be embedded into {St} both by a uniformly integrable randomized path-independent stopping
time and by a uniformly integrable randomized Azéma-Yor stopping time, i.e., {St} at the stopping
time follows µ. Thus, to solve the optimal stopping problem (2.2), we can first find the optimal
centered probability measure for {St} at the stopping time and then use the Skorohod embedding
results in [17] to compute the stopping time corresponding to the optimal probability measure.

Use x := (x1, x2, . . . ) and y := (y1, y2, . . . ) to stand for the decumulative distribution of the
gain and the cumulative distribution of the loss, respectively, of Sτ for some stopping time τ ∈ T ,
i.e., xn = P(Sτ ≥ n) and yn = P(Sτ ≤ −n), n ≥ 1. Then, the objective function in (2.2) can be
written as

U(x,y) :=
∞∑
n=1

(u+(n)− u+(n− 1))w+(xn)−
∞∑
n=1

(u−(n)− u−(n− 1))w−(yn)

with U(x,y) := −∞ if the second sum of infinite series is infinity. Here, the form of U(x,y) is
obtained by applying Fubini’s theorem to (2.1). Consequently, problem (2.2) is equivalent to the
following infinite-dimensional optimization problem

max
x,y

U(x,y)

subject to 1 ≥ x1 ≥ x2 ≥ ... ≥ xn ≥ ... ≥ 0,

1 ≥ y1 ≥ y2 ≥ ... ≥ yn ≥ ... ≥ 0,

x1 + y1 ≤ 1,
∑∞

n=1 xn =
∑∞

n=1 yn,

(4.2)

where the first three constraints are present because x and y are the decumulative and cumulative
distributions of the gain and loss, respectively, of Sτ and the last constraint is the case because the
distribution of Sτ is centered, i.e., E[Sτ ] = 0.

It is worth noting that because S0 = 0, exit time τ = 0, which means not to gamble, corresponds
to x = y = 0, and the objective value U(x,y) = 0. Therefore, the gambler chooses to gamble if
and only if there exist x and y such that U(x,y) > 0.
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4.2. A Decomposition

Problem (4.2) is difficult to solve for two main reasons: First, the objective function is neither con-
cave nor convex in the decision variable because both w+(·) and w−(·) are concave. Secondly, there
are infinitely many constraints, so the standard Lagrange dual method is not directly applicable
even if the objective function were concave. To overcome the difficulty, we first decompose problem
(4.2) into two subproblems.

For any x and y of problem (4.2) corresponding to some stopping time τ , introduce s+ :=
(
∑∞

n=2 xn)/x1 and s− := (
∑∞

n=2 yn)/y1. Then,

s+ =

( ∞∑
n=2

P(Sτ ≥ n)

)
/P(Sτ ≥ 1) = E[Sτ − 1|Sτ ≥ 1].

Similarly, s− = E[−Sτ − 1|Sτ ≤ −1]. On the other hand, define z+ = (z+,1, z+,2, . . . ) with
z+,n := xn+1/x1, n ≥ 1, and z− = (z−,1, z−,2, . . . ) with z−,n := yn+1/y1, n ≥ 1. Note that∑∞

n=1 z±,n = s±.
In order to find the optimal x and y, we only need first to find the optimal z+ and z− with

constraint
∑∞

n=1 z±,n = s±, and then to find the optimal x1, y1, and s±. Furthermore, s± imply
the conditional expected gain and loss of Sτ and the conditional-gain loss ratio; i.e.,

E[Sτ |Sτ ≥ 1] = s+ + 1, E[−Sτ |Sτ ≤ −1] = s− + 1, R(τ) =
s+ + 1

s− + 1
.

Therefore, the (asymptotically) optimal value s± will dictate whether the gambler takes a loss-exit,
gain-exit, or non-exit strategy. Finally, after we find optimal z±, x1, y1, and s±, we can compute
optimal x and y as x = (x1, x1z+) and y = (y1, y1z−), respectively.

The above procedure can be summarized as the following three problems: First, for each fixed
s ≥ 0, we consider the following gain-part problem

(4.3)

Max
z

∑∞
n=1

(
(n+ 1)α+ − nα+

)
(zn)δ+

subject to 1 ≥ z1 ≥ z2 ≥ ... ≥ zn ≥ ... ≥ 0,∑∞
n=1 zn = s

and denote by v+(s) the optimal value of this problem. Second, we consider the following loss-part
problem

(4.4)

Min
z

∑∞
n=1

(
(n+ 1)α− − nα−

)
(zn)δ−

subject to 1 ≥ z1 ≥ z2 ≥ ... ≥ zn ≥ ... ≥ 0,∑∞
n=1 zn = s

and denote its optimal value as v−(s). Finally, we consider the master problem

(4.5)

Max
x1,y1,s+,s−

(v+(s+) + 1)x1
δ+ − λ(v−(s−) + 1)y1

δ−

subject to x1 + y1 ≤ 1,

(s+ + 1)x1 = (s− + 1)y1,

x1 ≥ 0, y1 ≥ 0, s+ ≥ 0, s− ≥ 0.
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One can see that problems (4.2) and (4.5) have the same optimal value and the optimal solution
to one of the problems exists if and only if that to the other exists. Moreover, suppose (x∗1, y

∗
1, s
∗
+, s

∗
−)

is optimal to problem (4.5) and z∗+ and z∗− are optimal to problem (4.3) parameterized by s∗+ and
to problem (4.4) parameterized by s∗−, respectively. Then, (x∗,y∗) with x∗ := (x∗1, x

∗
1z
∗
+) and

y∗ := (y∗1, y
∗
1z
∗
−) is optimal to problem (4.2). Therefore, to find the optimal solution to (4.2), we

only need to solve each of the three problems (4.3)–(4.5).
Because solving problems (4.3)–(4.5) involves technical and lengthy arguments, we relegate all

proofs in this Section to the online supplementary materials (available at SSRN.2682637).

4.3. The gain-part problem

We first solve problem (4.3), which is an infinite-dimensional optimization problem with infinite
number of constraints and thus difficult to solve. We present a complete solution in Proposition
4.1, and Proposition 4.2 provides several properties of the optimal value of problem (4.3) which
will in turn be used in solving problem (4.5).

Proposition 4.1 (i) When α+ = δ+ = 1, any feasible solution to problem (4.3) is optimal and
the optimal value v+(s) = s.

(ii) When α+ < δ+ = 1, the optimal solution is

z∗n = 1, n = 1, . . . , bsc, z∗bsc+1 = s− bsc, z∗n = 0, n ≥ bsc+ 2(4.6)

and the optimal value is

v+(s) = (1− (s− bsc))(bsc+ 1)α+ + (s− bsc)(bsc+ 2)α+ − 1.(4.7)

(iii) When α+ = δ+ < 1, the optimal value of problem (4.3) is +∞.

(iv) When α+ < δ+ < 1, the optimal solution to problem (4.3) is

z∗n =

[
µ(s)

(
(n+ 1)α+ − nα+

) 1
1−δ+

]
∧ 1, n = 1, 2, . . . ,(4.8)

where µ(s) > 0 is the number such that
∑∞

n=1 z
∗
n = s, and the optimal value is

v+(s) =
∞∑
n=1

{[
µ(s)δ+

(
(n+ 1)α+ − nα+

) 1
1−δ+

]
∧ [(n+ 1)α+ − nα+ ]

}
.(4.9)

Proposition 4.2 Assume α+ < δ+ ≤ 1.

(i) The optimal value function v+(·) of problem (4.3) is continuous, strictly increasing, and
concave in [0,+∞). If furthermore δ+ < 1, v+(·) is continuously differentiable and strictly
concave in [0,+∞).

(ii) There exist C+ > c+ > 0 such that c+(s+ 1)α+ ≤ v+(s) + 1 ≤ C+(s+ 1)α+ for all s ≥ 0.

(iii) When α+ < δ+ = 1, g+(s) := (v+(s) + 1)/(s + 1)δ+ is strictly decreasing in [0,+∞) and
g+(0) = 1. When α+ < δ+ < 1, g+(s) is strictly increasing in [0, s1] and strictly decreasing
in [s1,+∞), where s1 :=

∑∞
n=1((n+ 1)α+ − nα+)1/(1−δ+), and g+(s1) = (1 + s1)

1−δ+.
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4.4. The loss-part problem

Next, we solve problem (4.4), again an infinite-dimensional optimization problem with infinite
number of constraints. Proposition 4.3 in the following presents a complete solution to this problem.
Further important properties of the optimal value function of problem (4.4), which are then used
in solving problem (4.5), are established in Proposition 4.4.

Proposition 4.3 (i) Suppose α− = δ− = 1. Then, any feasible solution to problem (4.4) is
optimal and the optimal value v−(s) = s.

(ii) Suppose δ− ≤ α− and δ− < 1. Define B1 := 1. For each integer m ≥ 2, define Bm = m when
α− = 1 and define Bm to be the unique number in (m− 1,m) determined by

((m+ 1)α− − 1)

(
Bm
m

)δ−
= (mα− − 1) + ((m+ 1)α− −mα−) (Bm −m+ 1)δ−(4.10)

when α− < 1. Then, for s ∈ (m− 1, Bm], the optimal solution to problem (4.4) is

z∗n = 1, n = 1, . . . ,m− 1, z∗m = s−m+ 1, z∗n = 0, n ≥ m+ 1(4.11)

and the optimal value is

v−(s) = (mα− − 1) + ((m+ 1)α− −mα−)(s−m+ 1)δ− .(4.12)

For s ∈ (Bm,m], the optimal solution to problem (4.4) is

z∗n =
s

m
, n = 1, . . . ,m, z∗n = 0, n ≥ m+ 1(4.13)

and the optimal value is

v−(s) = ((m+ 1)α− − 1)
( s
m

)δ−
.(4.14)

Proposition 4.4 Assume δ− ≤ α− and δ− < 1. Recall Bm,m ≥ 1 as defined in Proposition 4.3.

(i) The value function v−(s) of problem (4.4) is strictly increasing and continuous on [0,+∞),
continuously differentiable in (m − 1, Bm) ∪ (Bm,m), and strictly concave on [m − 1,m] for
all positive integers m. Furthermore, when Bm = m, lims↑m v

′
−(s) < lims↓m−1 v

′
−(s) = +∞.

When Bm < m, lims↑m v
′
−(s) < lims↓Bm v

′
−(s) < lims↑Bm v

′
−(s) < lims↓m−1 v

′
−(s) = +∞.

(ii) There exist C− > c− > 0 such that c+(s + 1)α− ≤ v−(s) + 1 ≤ C+(s + 1)α− for all s ≥ 0.
Furthermore, lims→+∞ v−(s)/(s+ 1)α− = 1.

(iii) The minimum value of g−(s) := (v−(s) + 1)/(s + 1)δ− in [0,+∞) is 1. Furthermore, when
δ− = α− < 1, any nonnegative integer is the minimizer. When δ− < α− ≤ 1, the unique
minimizer is 0.
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4.5. Optimal solution

Now, we are ready to present the optimal solution to problem (4.2) and compute its optimal value,
denoted as U∗. Recall that we assume α+ ≤ δ+, δ− ≤ α−, and α+ ≤ α−. The gambler does not
play in the casino if and only if the optimal solution to problem (4.2) is x∗ = y∗ = 0, and the
gambler chooses to play if and only if there exist x and y such that U(x,y) > 0.

Theorem 4.5 Assume α+ ≤ δ+, δ− ≤ α−, and α+ ≤ α−. Define

f(y, s+, s−) := (v+(s+) + 1)

(
s− + 1

s+ + 1

)δ+
yδ+ − λ(v−(s−) + 1)yδ− , y, s+, s− ≥ 0.(4.15)

(i) Suppose α+ = δ+ = α− = δ− = 1. If λ ≥ 1, the optimal solution to (4.2) is x∗ = y∗ = 0,
i.e., the gambler does not play in the casino. If λ < 1, then U∗ =∞.

(ii) Suppose α+ = δ+ < 1. Then, U∗ = ∞ and there exist s+ > 0, x1 > 0, y, and z
(n)
+ , n ≥ 1

satisfying
∑∞

i=1 z
(n)
+,i = s+ such that (x(n),y) with x(n) := (x1, x1z

(n)
+ ) is feasible to problem

(4.2) and U(x(n),y) diverges to infinity as n→∞.

(iii) Suppose δ− ≤ δ+ and α+ < δ+. Define

M1 : = sup
s+≥0,s−≥0

[
(v+(s+) + 1)(s− + 1)δ+

(v−(s−) + 1)(s+ + 1)δ−(s+ + s− + 2)δ+−δ−

]
,

M2 : = lim sup
s++s−→+∞

[
(v+(s+) + 1)(s− + 1)δ+

(v−(s−) + 1)(s+ + 1)δ−(s+ + s− + 2)δ+−δ−

]
.

(4.16)

Then, 0 < M1 < +∞ and 0 ≤ M2 ≤ M1. Furthermore, M2 > 0 if and only if α− = α+

or α− = δ− and M2 = M1 if α− = δ−. When λ ≥ M1, the optimal solution to (4.2) is
x∗ = y∗ = 0, i.e., the gambler does not play in the casino, and when λ < M1, the gambler
plays in the casino. When M2 < λ < M1, U∗ < ∞ and the optimal solution exists and is
given as x∗ = (x∗1, x

∗
1z
∗
+(s∗+)), y∗ = (y∗1, y

∗
1z
∗
−(s∗−)) where

(s∗+, s
∗
−) ∈ argmax

s+≥0,s−≥0
f (ŷ(s+, s−), s+, s−) , ŷ(s+, s−) :=

s+ + 1

s+ + s− + 2
,

y∗1 = ŷ(s∗+, s
∗
−), x∗1 =

s∗− + 1

s∗+ + 1
y∗1.

(4.17)

When λ < M2, the optimal solution does not exist, U∗ = +∞ if α+ = α− > δ− and U∗ < +∞
if α+ < α− = δ−, and there exist (s

(n)
+ , s

(n)
− ) with limn→∞ s

(n)
− = +∞ such that the objective

value of the pair x(n) := (x
(n)
1 , x

(n)
1 z∗+(s

(n)
+ )), y(n) := (y

(n)
1 , y

(n)
1 z∗−(s

(n)
− )), where

y
(n)
1 :=

s
(n)
+ + 1

s
(n)
+ + s

(n)
− + 2

, x
(n)
1 =

s
(n)
− + 1

s
(n)
+ + 1

y
(n)
1 ,(4.18)

converges to U∗ as n → +∞. Moreover, s
(n)
+ /s

(n)
− ’s converge to zero when α− = δ− and are

bounded from zero and from infinity when α− = α+ > δ−.
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(iv) Suppose δ+ < δ− ≤ 1. Then, the gambler plays in the casino. When α− > δ−, U∗ < ∞ and
the optimal solution is x∗ = (x∗1, x

∗
1z
∗
+(s∗+)),y∗ = (y∗1, y

∗
1z
∗
−(s∗−)) where

(s∗+, s
∗
−) ∈ argmax

s+≥0,s−≥0
f (ȳ(s+, s−), s+, s−) , y∗1 = ȳ(s∗+, s

∗
−), x∗1 =

s∗− + 1

s∗+ + 1
y∗1,

ȳ(s+, s−) := min

{(
δ+(v+(s+) + 1)(s− + 1)δ+

δ−λ(v−(s) + 1)(s+ + 1)δ+

) 1
δ−−δ+

,
s+ + 1

s+ + s− + 2

}
.

(4.19)

Moreover, if λ ≥M3, where

M3 :=
δ+
δ−

(s1 + 2)δ−−δ+(s1 + 1)1−δ− , s1 :=
∞∑
n=1

((n+ 1)α+ − nα+)
1

1−δ+ ,(4.20)

then we can take s∗− = 0 and s∗+ = s1. When α− = δ− and λ > M4, where

M4 :=
δ+
δ−

(s1 + 1)1−δ− < M3,(4.21)

the optimal solution exists and is given as (4.19) with s∗+ = s1 and s− = m for some nonneg-
ative integer m. When α− = δ− and λ ≤M4, U∗ < +∞, the optimal solution does not exist,

and there exists s∗+ such that the objective value of the pair x(n) := (x
(n)
1 , x

(n)
1 z∗+(s∗+)),y(n) :=

(y
(n)
1 , y

(n)
1 z∗−(s

(n)
− )) with s

(n)
− = n, y

(n)
1 :=

s∗++1

s∗++s
(n)
− +2

, x
(n)
1 =

s
(n)
− +1

s∗++1 y
(n)
1 converges to U∗ as

n→ +∞.

Except for the case δ+ > α+ = α− > δ−, λ = M2 < M1 in which we do not know whether
the optimal solution exists, we have solved problem (4.2) completely. When the optimal solution
exists, it is provided in a closed form. Otherwise, a sequence of asymptotically optimal solutions
are provided.

In the case α+ = δ+ = α− = δ− = 1, the gambler does not play in the casino (i.e., the optimal
strategy is x∗ = y∗ = 0) when λ ≥ 1 and chooses to play (because the optimal value is infinite and
thus larger than the value of not gambling) when λ < 1.

In the case α+ = δ+ < 1, the optimal value is infinite. We find a sequence of asymptotically
optimal solutions (x(n),y). Note that the conditional expected gain is fixed to be s+ + 1 and the
conditional expected loss is also fixed. Thus, an infinite CPT value is achieved by taking strategies
that have fixed and finite conditional expected gain and loss.

In the case δ− ≤ δ+ and α+ < δ+, whether the optimal solution exists and whether the gambler
plays in the casino depend on λ. When λ ≥ M1, the gambler chooses not to play; otherwise she
plays. When M2 < λ < M1, the optimal solution exists. Finally, when λ < M2, , which can happen
only when α− = α+ or when α− = δ−, the optimal solution does not exist. In this case, a sequence

of asymptotically optimal solutions are given with s
(n)
− going to infinity and s

(n)
+ /s

(n)
− converging

to zero when α− = δ− or bounded from zero and from infinity when α− = α+ > δ−. Recall that

s
(n)
+ + 1 and s

(n)
− + 1 stand for the conditional gain and loss, respectively. Therefore, when λ < M2,

the gambler takes a gain-exit strategy if α− = δ− and takes a non-exit strategy if α− = α+ > δ−.
In the case δ+ < δ− ≤ 1, the gambler plays in the casino. When α− > δ−, the optimal solution

exists, regardless of the value of λ. When α− = δ−, the optimal solution exists if and only if
λ > M4. When the optimal solution does not exist, a sequence of asymptotically optimal solutions
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are given with s
(n)
+ to be fixed and s

(n)
− going to infinity. Therefore, the gambler takes a gain-exit

strategy.
Finally, the optimal solution, if exists, must take the form x∗ = (x∗1, x

∗
1z
∗
+(s∗+)), y∗ = (y∗1, y

∗
1z
∗
−(s∗−))

for some x∗1 ≥ 0, y∗1 ≥ 0, and s∗± ≥ 0. Moreover, s∗± can be solved by a two-dimensional optimiza-
tion problem (e.g., (4.17) and (4.19)). Recall z∗+(s) as defined in (4.6) and (4.8). When δ+ = 1,
z∗+,n(s) = 0 for n ≥ bsc + 2, showing that the gambler plans to stop when reaching certain level
of gains. When δ+ < 1, z∗+,n(s) > 0 for any n ≥ 1, showing that the gambler chooses to continue
with positive probabilities at any level of gains. The gambler eventually stops at certain level of
gains because there exists a uniformly integrable and thus almost-surely-finite stopping time τ such
that Sτ follows the optimal distribution. On the other hand, recall z∗−(s) as defined in (4.11) and
(4.13). We can see that z∗−,n(s) = 0 for n ≥ dse + 1, showing that the gambler plans to stop
with probability one when reaching certain level of losses. Furthermore, in the optimal solution
y∗ = (y∗1, y

∗
1z
∗
−(s∗−)), because y∗ is the cumulative distribution of the optimal strategy, the gambler

chooses to stop at no more than two loss levels (levels ds∗−e and ds∗−e + 1 when z∗−(s∗−) is in the
form (4.11) and levels 1 and ds∗−e+ 1 when z∗−(s∗−) is in the form (4.13)).

To summarize, if the optimal solution exists, the gambler stops as long as a random level of
gains or a random level of losses is reached. The random level of losses can take no more than two
values, so the gambler’s loss is limited. When δ+ < 1 (which implies that the gambler overweighs
large gains of small probabilities), the support of the random level of gains is the whole positive
integer set, so the gambler effectively constructs a positively skewed payoff. A detailed summary
of the results in Theorems 3.1 and 4.5 regarding the solution to problem (4.2) is given in Table 2.

We consider a numerical example to illustrate the optimal solution (x∗,y∗) to (4.2) and the
corresponding optimal strategy τ∗ of the pre-committed gambler. Denote by {p∗n} the optimal
distribution, i.e., the distribution of Sτ∗ . Obviously, p∗n = x∗n−x∗n+1, n ≥ 1, p∗−n = y∗n−y∗n+1, n ≥ 1.

Example 1 We set α+ = 0.5, α− = 0.9, δ± = 0.52, and λ = 2.25. According to Theorem 4.5, the
optimal solution to (4.2) exists: the optimal distribution is

p∗n = 0.1360
(

(n0.5 − (n− 1)0.5)1/0.48 − ((n+ 1)0.5 − n0.5)1/0.48
)
, n ≥ 2,

p∗1 = 0.0933, p∗0 = 0, p∗−1 = 0.8851, p∗n = 0, n ≤ −2.

The optimal distribution can be embedded into the symmetric random walk both by a randomized
path-independent stopping time and by a randomized Azéma-Yor stopping time, which thus provide
examples of feasible optimal strategies for the pre-committed gambler. The construction of the
stopping times can be found in [17], and here we only illustrate the stopping times in the first 5
periods in Figure 2 (left panel for the randomized path-independent stopping time and the right panel
for the randomized Azéma-Yor stopping time): the gain and loss of the gambler is represented by
a recombining binomial tree. Black nodes stand for “stop”, white nodes stand for “continue”, and
grey nodes stand for the cases in which a random coin is tossed and the gambler stops if and only
if the coin turns up tails. Each node is marked on the right by a pair (t, x) representing time t and
St = x. Each grey node is marked on the top by a number showing the probability that the random
coin tossed at that node turns up tails. In both strategies, the gambler stops with probability one
when the loss accumulates to 1. On the other hand, in the randomized path-independent strategy,
the gambler tosses a coin at each time to decide whether to stop, but in the randomized Azéma-Yor
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Table 2: Optimal solution to problem (4.2) when the utility function is piece-wise power and the
probability weighting functions are power. The third column shows whether the gambler enters the
casino to gamble. The fourth column shows whether the optimal solution to problem (4.2) exists.
The last column gives the optimal solution when it exists and the strategies (such as gain-exit, loss-
exit, and non-exit strategies) the gambler takes when it does not. For the optimal solution, only
s∗+, s∗−, and y∗1 are listed. The optimal solution is then x∗ = (x∗1, x

∗
1 ·z∗+(s∗+)),y∗ = (y∗1, y

∗
1 ·z∗−(s∗−))

where x∗1 = (s∗−+ 1)/(s∗+ + 1)y∗1 and z∗+(s) and z∗−(s) are given as in (4.6), (4.8), (4.11), and (4.13),
respectively. The functions f , ŷ, and ȳ are given as in (4.15), (4.17), and (4.19), respectively. The
blank cells indicate the only case in which problem (4.2) is not fully solved.

Gam. Exist. Strategies

α+ = α− = λ ≥ 1 No Yes not gamble

δ+ = δ− = 1 λ < 1 Yes No non-exit

α+ > δ+ any λ Yes No loss-exit

α− < δ− any λ Yes No gain-exit

α− < α+ any λ Yes No non-exit

α+ = δ+ < 1 any λ Yes No certain asymptotical strategy

δ− ≤ δ+, λ ≥M1 No Yes not gamble

α+ < δ+, and
λ < M1 Yes Yes

(s∗+, s
∗
−) ∈ argmaxf (ŷ(s+, s−), s+, s−)

α− > max(α+, δ−) y∗1 = ŷ(s∗+, s
∗
−)

δ− ≤ δ+, λ ≥M1 No Yes not gamble

α+ < δ+, and
λ < M1 Yes No gain-exit

α− = δ− ≥ α+

λ ≥M1 No Yes not gamble

δ− ≤ δ+,
M2 < λ < M1 Yes Yes

(s∗+, s
∗
−) ∈ argmaxf (ŷ(s+, s−), s+, s−)

α+ < δ+, and y∗1 = ŷ(s∗+, s
∗
−)

α− = α+ > δ− λ = M2 < M1 Yes

λ < M2 Yes No non-exit

α− > δ− > λ ≥M3 Yes Yes s∗+ = s1, s
∗
− = 0, and y∗1 = ȳ(s∗+, s

∗
−)

δ+ > α+ λ < M3 Yes Yes
(s∗+, s

∗
−) ∈ argmaxf(ȳ(s+, s−), s+, s−)

and y∗1 = ȳ(s∗+, s
∗
−)

α− = δ− > λ > M4 Yes Yes
s∗+ = s1, s∗− = m for some integer m

δ+ > α+ and y∗1 = ȳ(s∗+, s
∗
−)

λ ≤M4 Yes No gain-exit
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Figure 2: Randomized path-independent stopping time (left-panel) and randomized Azéma-Yor
stopping (right panel) embedding the optimal probability measure in Example 1. Black nodes
stand for “stop”, white nodes stand for “continue”, and grey nodes stand for the cases in which a
random coin is tossed and the gambler stops if and only if the coin turns up tails. Each node is
marked on the right by a pair (t, x) representing time t and St = x. Each grey node is marked on
the top by a number showing the probability that the random coin tossed at that node turns up
tails.

strategy, no coin is tossed in the first five periods.6 See more discussion on the difference between
these two types of randomized strategies in [17].

5. Naive Gamblers

[5] finds in his five-period casino gambling model that, due to the probability weighting, if the
gambler revisits the gambling problem with the same CPT preferences in the future, she may find
the initial strategy decided at time 0 to be no longer optimal. As a result, if she is unaware of this
time-inconsistency, she may change to a new strategy that can be totally different from the initial
one. Such type of gamblers are called naive gamblers.

Formally, suppose now that at time T , having played T rounds, the gambler has arrived at
some node and has not stopped yet with accumulated gain/loss equal to H. A naive gambler will
re-consider the choice between continuing and leaving at that node. Following [5], we assume the
reference point in the CPT preference of the gambler at any time to be the initial wealth level.
As a result, the cumulative gain or loss of the gambler at any time n ≥ T is Sn. Conditioning on
ST = H, the gambling problem faced by the naive gambler is

maxτ∈TT,H VT,H(Sτ ),(5.1)

6Indeed, we calculate that in the randomized Azéma-Yor strategy, the first time that the gambler may possible
stop at a level other than −1 is the first time his gain reaches 7 and comes back to 1.
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where TT,H is the set of uniformly integrable randomized stopping times τ ≥ T and

VT,H(Sτ ) =

∞∑
n=1

u+(n)
(
w+(P(Sτ ≥ n|ST = H))− w+(P(Sτ > n|ST = H))

)
−
∞∑
n=1

u−(n)
(
w−(P(Sτ ≤ −n|ST = H))− w−(P(Sτ < −n|ST = H))

)
,

where, as before, VT,H(Sτ ) := −∞ if the second sum of infinite series is infinite. One can see that
the CPT value of the strategy of leaving the casino at T is u(H) := u+(H)1H≥0 − u−(H)1H<0.
As a result, the naive gambler decides to play at time T with cumulative gain/loss level H if and
only if the optimal value of problem (5.1) is strictly larger than u(H). Mathematically, (5.1) can
be solved using exactly the same method as for solving problem (2.2) above.

The following corollary is parallel to Theorem 3.1, and the proof is omitted. For two integers
b < 0 < a, we denote the relative first exit time after T by

τTa,b := inf{n ≥ T : Sn − ST = a or Sn − ST = b}.

Corollary 5.1 Fix time T > 0 and level H, −T ≤ H ≤ T . Let V ∗T,H denote the value of the
optimization problem (5.1).

(i) Suppose (3.1) holds. Then, V ∗T,H =∞ and there exists b < 0 such that lima→+∞ VT,H(SτTa,b
) =

+∞.

(ii) Suppose (3.2) holds. Then, V ∗T,H = supx≥0 u+(x). Moreover, the optimal solution to problem

(5.1) does not exist and VT,H(SτTa,b
) with a = bkε/(1+ε)c and b = −k converges to V ∗T,H as k

goes to infinity.

(iii) Assume limx→+∞ u+(x) = +∞ and suppose condition (3.3) holds. Then, V ∗T,H = ∞ and
there exists c > 0 such that limk→+∞ VT,H(SτTa,b

) = +∞ where a = dcke and b = −k.

Corollary 5.1 shows that when one of the conditions (3.1)–(3.3) is satisfied, the naive gambler,
who adjusts her optimal strategy after each bet, always finds continuing gambling more attractive.
In our general setting, this means that, at any time and for any level of gains or losses, with a
positive probability she will continue to gamble. Further, since Corollary 5.1 only makes use of the
simplest two-level exit strategies, it would also apply to a gambler to who is restricted to only using
non-randomised and path-independent strategies. Such naive gambler would continue playing with
probability one regardless of her gains or losses at any point in time.

With piece-wise power utility function (3.4) and weighting functions (3.4), or weighting functions
(3.5), or power weighting functions w±(p) = pδ± , the naive gambler never stops gambling with
probability one if one of the conditions in Table 1 is satisfied. For weighting functions (3.6), the
naive gambler never stops gambling with probability one if δ+ < 1 or if δ+ = 1 and α+ > a+.

[11] also study the conditions under which a naive gambler does not stop gambling. Our work
differs from theirs in three respects. First, they assume that the naive gambler can construct
strategies with arbitrarily small random payoffs and then show that the naive gambler prefers
skewness in the small and thus does not stop gambling. This argument, however, does not work in
our model because the stake size in the model is fixed at $1. In fact, we show here that the naive
gambler prefers skewness in the large. Indeed, in Corollary 5.1, for stopping time τTa,b we send either
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a, or b, or both to infinity, and thus the payoff of τTa,b can be very large.7 Second, [11] either assume
that the utility function has finite left- and right-derivatives at 0 or consider the piece-wise utility
function as in (3.4) with α+ = α−. We, however, also consider the case α+ 6= α−. Third, we allow
for randomized strategies while [11] use pure (i.e., non-randomized) strategies only. Therefore, in
their setting once they have proved that it is not optimal to stop, the immediate conclusion is that
it is optimal to continue. In our setting, however, if it is not optimal to stop, we can only conclude
that it is optimal to continue playing with a positive probability (i.e. the negation of “to stop with
probability one” is “to continue with a positive probability”) because we allow randomization.

When the optimal strategy of the pre-committed gambler does not exist, which is the case
when one of the conditions (3.1)–(3.3) holds, we cannot compare the optimal strategy of the pre-
committed gambler and the actual behavior of the naive gambler. Thus, in the following, we
consider the case in which the optimal strategy of the pre-committed gambler exists, which has
already been solved in Theorem 4.5, and study the actual behavior of the naive gambler.

Theorem 5.2 (i) Assume δ+ < 1. For any H ≥ 1, there exists feasible (x,y) to problem (5.1)
such that U(x,y) > Hα+.

(ii) Assume δ+ < δ−. Then, for any H ≤ −1, there exists feasible (x,y) to problem (5.1) such
that U(x,y) > −λ(−H)α−.

Theorem 5.2-(i) shows that if δ+ < 1, the naive gambler continues with a positive probability at
any gain level, which is the same as a pre-committed gambler. On the other hand, Theorem 5.2-(ii)
indicates that if δ+ < δ−, which is consistent with most experimental estimates of CPT parameters
in the literature (see Table 1), at each time, with a positive probability the naive gambler does
not stop. More precisely, either she simply continues, or else she might want to toss a coin to
decide whether to continue to play or not. In particular, if α+ < δ+ < δ− < α−, according to
Theorem 4.5, the pre-committed gambler stops with probability one if the loss hits certain level.
In sharp contrast, the naive gambler’s actual behavior is to play with a positive probability at
any loss level. Our finding of the naive gambler’s behavior is consistent with that in [11], but we
allow for α+ 6= α−. The explanation for the above stark difference between the behavior of the
pre-committed and the naive gamblers follows the logic outlined in [5] and recalled above in the
Introduction: at time 0, the pre-committed gambler decides to stop when the loss reaches certain
level, e.g., L, in the future because the probability of having losses strictly larger than L is small
from time 0’s perspective and this small probability is exaggerated due to probability weighting.
For the naive gambler, when she actually reaches loss level L at some time t, the probability of
having losses strictly larger than L is no longer small from time t’s perspective. Consequently, loss
L is not overweighted by the naive gambler at time t, so she chooses to take a chance and not to
stop gambling.

Finally, we provide a numerical example to illustrate the actual behavior of the naive gambler.

Example 2 We use the same parameter values as in Example 1. We compute the optimal solution
τ∗H to (5.1) and the corresponding probability mass function of Sτ∗H , denoted as p∗H,n, n ∈ Z, for
H = ±1,±2, . . . ,±5 to illustrate the actual behavior of the naive gambler. The details of how to find
the solution are provided in the online supplementary materials (available at SSRN.2682637). The

7In Appendix W2 of [11], the authors also consider preference for skewness in the large when the utility function
is given by (3.4) with α+ = α−.
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Table 3: Probability mass function p∗H,n, n ∈ Z of Sτ∗H for the optimal solution τ∗H to (5.1),

H = ±1,±2, . . . ,±5. Denote qn =
(
n0.5 − (n− 1)0.5

)1/0.48 − ((n+ 1)0.5 − n0.5
)1/0.48

, n ≥ 1.

H n ≤ −7 −6 −5 −4 −3 −2 −1 0 1 2 n ≥ 3

−5 0 0.98 0 0 0 0 0 0 0 0.0096 0.148qn

−4 0 0 0.97 0 0 0 0 0 0.0063 0.145qn 0.145qn

−3 0 0 0 0.96 0 0 0 0 0.0161 0.142qn 0.142qn

−2 0 0 0 0 0.95 0 0 0 0.0308 0.139qn 0.139qn

−1 0 0 0 0 0 0.92 0 0 0.0543 0.136qn 0.136qn

0 0 0 0 0 0 0 0.89 0 0.0933 0.136qn 0.136qn

1 0 0 0 0 0 0 0 0.85 0.150qn 0.150qn 0.150qn

2 0 0 0 0 0 0 0 0.70 0.300qn 0.300qn 0.300qn

3 0 0 0 0 0 0 0 0.55 0.450qn 0.450qn 0.450qn

4 0 0 0 0 0 0 0 0.40 0.601qn 0.601qn 0.601qn

5 0 0 0 0 0 0 0 0.25 0.751qn 0.751qn 0.751qn

values of p∗H,n are shown in Table 3, where qn :=
(
n0.5 − (n− 1)0.5

)1/0.48 − ((n+ 1)0.5 − n0.5
)1/0.48

,
n ≥ 1.

We can see that for H ≤ −1, p∗H,H = 0, indicating that the naive gambler will play with
probability one at any loss level. This strategy is in contrast to the optimal strategy of the pre-
committed gambler shown in Example 1: stop once the loss accumulates to $1. On the other hand,
for H ≥ 1, p∗H,H ∈ (0, 1), indicating that the naive gambler will play with some probability at any
gain level.

We remark that the discussion in this section has been based on the assumption that the gambler
does not change the reference point, an assumption also used in [5]. An alternative model is one in
which the gambler adjusts the reference point endogenously for prior gains and losses. This is then
likely to depend on the history of his winnings and promises to be a entirely different and difficult
problem, which is left for future study.

6. Conclusion

In this paper, we generalized the casino model first proposed by [5] to an infinite-time setting
and studied the optimal strategies of a pre-committed gambler and a naive gambler. We found
conditions which distinguish three important classes of optimal behavior of the pre-committed
gambler: loss-exit strategies, gain-exit strategies, and non-exit strategies. Our theoretical results
are consistent with the numerical results in [5]. When the utility function is piece-wise power
and the probability weighting functions are power, we derived the optimal strategy of the pre-
committed gambler analytically by solving an infinite dimensional program. We found that the
optimal strategy of the pre-committed gambler, when exists, is to cap the loss, i.e., to stop before
the loss hits a certain level.

In the second part of the paper we studied the behavior of the naive gambler. We found
conditions under which the optimal strategy of the pre-committed gambler and the actual strategy
implemented by the naive gambler are in stark contrast: the pre-committed gambler must stop
if her cumulative loss reaches a certain level whereas the naive gambler continues to play with a
positive probability at any loss level.
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Appendix A: Proofs

Proof of Theorem 3.1 We prove (i) first. The martingale property of S easily implies that P(Sτa,b =
a) = −b/(a− b), P(Sτa,b = b) = a/(a− b), and P(Sτa,b = n) = 0, n /∈ {a, b}. Consequently,

V (Sτa,b) = u+(a)w+

(
− b/(a− b)

)
− u−(−b)w−

(
a/(a− b)

)
= u+(−b(x− 1))w+ (1/x)− u−(−b)w− (1− 1/x)

where x := (a − b)/(−b). Choose b ∈ Z such that −b ≥ 2s. Then, −b(x − 1) ≥ sx for any x ≥ 2.
Consequently, as a→ +∞, we have x→ +∞ and

V (Sτa,b) ≥ u+(sx)w+ (1/x)− u−(−b)w− (1− 1/x)→ +∞.

Next, we prove (ii). We have

V (Sτa,b) = u+(a)w+

(
− b/(a− b)

)
− u−(−b)w−

(
a/(a− b)

)
= u+

(
bkε/(1+ε)c

)
w+ (1− 1/y)− u−(k)w− (1/y)

where y := (a− b)/a. We can see that

y = 1− b/a = 1 + k/bkε/(1+ε)c > k/kε/(1+ε) = k1/(1+ε).

As a result,

lim sup
k→+∞

u−(k)w− (1/y) ≤ lim sup
k→+∞

u−(k)w−

(
1/k1/(1+ε)

)
= 0.

In addition, as k → +∞, we have w+ (1− 1/y) goes to 1. Consequently,

lim
k→+∞

V (Sτa,b) = sup
x>0

u+(x).

On the other hand, it is straightforward to see that for any feasible τ , V (Sτ ) < supx>0 u+(x). Thus,
problem (2.2) is ill-posed and the optimal value is supx>0 u+(x).

Finally, we prove (iii). Suppose

lim sup
x→+∞

u−
(
xp0/(1− p0)

)
/u+(x) < w+(p0)/w−(1− p0)

for some p0 ∈ (0, 1). Then, there exists δ0 > 0 and ε0 > 0 such that

w+(p)

w−(1− p)
> lim sup

x→+∞

u−
(
xp0/(1− p0)

)
u+(x)

+ ε0, ∀p ∈ [p0 − δ0, p0 + δ0].

Choose c > 0 such that 1/(1 + c) = p0. Then, for sufficiently large k, we have k/(dcke + k) ∈
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[p0 − δ0, p0 + δ0]. Consequently, as k goes to +∞,

V (Sτa,b) = u+ (dcke)w+

(
k/(dcke+ k)

)
− u− (k)w−

(
dcke/(dcke+ k)

)
= u+ (dcke)w−

(
dcke/(dcke+ k)

) [ w+

(
k/(dcke+ k)

)
w−
(
dcke/(dcke+ k)

) − u− (k)

u+ (dcke)

]

≥ u+ (dcke)w− (1− (p0 + δ0))

[
w+

(
k/(dcke+ k)

)
w−
(
dcke/(dcke+ k)

) − u− (k)

u+ (ck)

]

= u+ (dcke)w− (1− (p0 + δ0))

[
w+

(
k/(dcke+ k)

)
w−
(
dcke/(dcke+ k)

) − u− (k)

u+
(
k(1− p0)/p0

)]
≥ u+ (dcke)w− (1− (p0 + δ0)) ε0 → +∞. �

Proof of Theorem 5.2 As in the case of problem (2.2), using the Skorohod embedding results in
[17], we can show that problem (5.1) is equivalent to

Max
x,y

U(x,y)

subject to 1 ≥ x1 ≥ x2 ≥ ... ≥ xn ≥ ... ≥ 0,

1 ≥ y1 ≥ y2 ≥ ... ≥ yn ≥ ... ≥ 0,

x1 + y1 ≤ 1,
∑∞

n=1 xn =
∑∞

n=1 yn +H.

(A.1)

Using the same argument as for problem (4.2), we can show that problem (A.1) is equivalent to

Max
x1,y1,s+,s−

(v+(s+) + 1)x1
δ+ − λ(v−(s−) + 1)y1

δ−

subject to x1 + y1 ≤ 1, (s+ + 1)x1 = (s− + 1)y1 +H,

x1 ≥ 0, y1 ≥ 0, s+ ≥ 0, s− ≥ 0.

(A.2)

Denote

FH(y1, s+, s−) := (v+(s+) + 1)

(
s− + 1

s+ + 1

)δ+ (
y1 +

H

s− + 1

)δ+
− λ(v−(s−) + 1)y1

δ− .

Then, when H ≥ 1, problem (A.2) is equivalent to

Max
y1,s+,s1

FH(y1, s+, s−)

Subject to 0 ≤ y1 ≤ s++1−H
s++s−+2 , s+ ≥ H − 1, s− ≥ 0.

When H ≤ −1, problem (A.2) is equivalent to

Max
y1,s+,s1

FH(y1, s+, s−)

Subject to −H
s−+1 ≤ y1 ≤

s++1−H
s++s−+2 , s+ ≥ 0, s− ≥ −H − 1.

We first assume δ+ < 1 and consider H ≥ 1. For H = 1, we choose x1 = 1
s1+1 , y1 = 0, s+ = s1,

s− = 0, which is a feasible solution to (A.2). Moreover, the objective value is
(
v+(s1) + 1

)
/(s1 +
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1)δ+ = (1 + s1)
1−δ+ > 1, where the equality is the case because of Proposition 4.2-(iii) and the

inequality is the case because δ+ < 1. For H ≥ 2, we have FH(0, H−1, 0) = v+(H−1) + 1 > Hα+ ,
where the inequality is the case because of Proposition 4.1-(iv). Therefore, for any H ≥ 1, we can
find feasible (x,y) such that U(x,y) > Hα+ .

Next, we assume δ+ < δ− and consider H ≤ −1. Consider s+ = 0, y1 := (1−H)/(s− + 2), and
the corresponding objective value

h(s−) := FH

(
1−H
s− + 2

, 0, s−

)
=

(
s− +H + 1

s− + 2

)δ+
− λ(v−(s−) + 1)

(
1−H
s− + 2

)δ−
.

According to Proposition 4.3-(ii), v′−(s) = δ−((−H)α− − (−H − 1)α−)(s + H + 1)δ−−1 for s in a
neighbourhood of −H − 1. Consequently, we have

h′(s−) =δ+

(
s− +H + 1

s− + 2

)δ+−1 1−H
(s− + 2)2

+ δ−λ(v−(s−) + 1)

(
1−H
s− + 2

)δ−−1 1−H
(s− + 2)2

− λδ−((−H)α− − (−H − 1)α−)(s− +H + 1)δ−−1
(

1−H
s− + 2

)δ−
≥
[
δ+ (s− +H + 1)δ+−δ−

(1−H)1−δ−

(s− + 2)1+δ+−δ−
− λδ−((−H)α− − (−H − 1)α−)

]
× (s− +H + 1)δ−−1

(
1−H
s− + 2

)δ−
.

Because δ+ < δ−, we conclude lims−↓−H−1 h
′(s−) > 0. From Proposition 4.3-(ii), we have v−(−H−

1) = (−H)α− − 1, so h(−H − 1) = −λ(−H)α− . Therefore, there exists s− > −H − 1 such
that h(s−) > −λ(−H)α− . Consequently, there exists feasible (x,y) to problem (A.1) such that
U(x,y) > −λ(−H)−α− . �
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