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The security market line is often flat or downward-sloping. We hypothesize that probability weighting plays
a role and that one ought to differentiate between periods in which agents overweight extreme events and
those in which they underweight them. Overweighting inflates the probability of extremely bad events and
demands greater compensation for beta risk, whereas underweighting does the opposite. Unconditional on
probability weighting, these two effects offset each other, resulting in a flat or slightly negative return-
beta relationship. Similarly, overweighting the tails enhances the negative relationship between return and
coskewness, while underweighting reduces it. We derive a three-moment conditional CAPM model for a
market with rank-dependent utility agents to make these predictions, and we support our theory through

an extensive empirical study.
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1. Introduction

The classical CAPM theory of Sharpe| (1964), Lintner| (1965)), and Mossin| (1966) asserts that

expected returns increase with beta, leading to an upward-sloping security market line. However,

empirical studies have shown that the return—beta slope is flat or even downward-sloping; see, e.g.,

Black et al| (1972)), Fama and French| (1992), and Baker et al. (2011)). Various explanations have

been offered for why beta is not or is negatively priced, ranging from misspecification /miscalculation

of risk (Jagannathan and Wang)|1996; Bali et al.|2017b), inefficiency of market proxies (Roll and

1994)), market frictions (Black et al.[1972;[Frazzini and Pedersen/[2014)), aggregate disagreement
(Hong and Sraer|2016]), lottery-type demand (Bali et al.|2017al)), to information gap (Andrei et al.
2020).

We approach the beta anomaly from a different perspective, one that involves probability weight-

ing. The central task of asset pricing is to characterize how expected returns are related to risk
and to investors’ perceptions of risk. Probability weighting affects the perception of risk, espe-
cially in the two tails of the market returns; therefore, it is poised to play a role in beta pricing.
Meanwhile, a positive/negative skewness measures the risk of large positive/negative realizations
and can be viewed as a part of tail risk. As a result, probability weighting is also relevant to

skewness/coskewness pricing because substantially right-/left-skewed events, such as winning a

lottery (Barberis and Huang|[2008; Bordalo et al. 2012; |Green and Hwang]2012)) or encountering

a catastrophe (Kelly and Jiang 2014} Bollerslev et al.|2015; [Kozhan et al.|2013) are even more

attractive/undesirable to an investor under probability weighting.

In this paper, we provide a theory for beta and coskewness pricing using rank-dependent utilities

(Quiggin|1982; [Schmeidler| 1989; |Abdellaoui| 2002} |Quiggin/ 2012)). The key difference between the

rank-dependent utility theory (RDUT) and the classical expected utility theory (EUT) is that in the
former the utility is weighted by a probability weighting function assigned to ranked outcomes.! So
RDUT nests EUT but also captures risk attitude toward probabilities, especially those represented
in the two tails of the return distributions. We first derive an equilibrium asset pricing formula for
a static, representative RDUT economy, and we then examine the signs and magnitudes of the risk

premia in covariance and coskewness. Our results show that the pricing kernel in this economy is



Shi, Cui and Zhou: Beta and Coskewness Pricing
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 3

the product of the marginal utility and the derivative of probability weighting, which implies that
the shape of the weighting function matters for pricing.

The dominant view in the behavioral finance literature is that individuals overweight probabili-
ties of both extremely good and extremely bad events, rendering an inverse S-shaped probability
weighting function (Tversky and Kahneman|1992; Wu and Gonzalez||1996} Prelec| 1998} Hsu et al.
2009; [Tanaka et al.|2010). Some authors, however, have documented empirical evidence that indi-
viduals sometimes underweight tail events (Hertwig et al|2004; Humphrey and Verschoor |2004;
Harrison et al.[2009; Henrich et al|2010), leading to S-shaped weighting functions. Accordingly,
Barberis (2013)) comments that the coexistence of overweighting and underweighting poses a chal-
lenge in the study of extreme events. Employing the generalized method of moments (GMM), we
use the S&P 500 index option data to infer the probability weighting functions, updated monthly.
Among the total 244 months tested in our study, about 58.6% of the implied weighting functions
are inverse S-shaped and 41.4% are S-shaped. This observation suggests that the periods of over-
weighting and underweighting over a sufficiently long time period (over 20 years in our tests) are
almost 6:4. |Polkovnichenko and Zhao| (2013]) have similar observation by taking a nonparametric
method.

Our main theoretical result is a closed-form expression of a static three-moment CAPM, charac-
terizing the risk premia of covariance and coskewness of any given asset with respect to the market.
These premia depend on the utility function, as well as on the probability weighting function evalu-
ated at the probability value of having a positive market return. During an overweighing month (in
which the weighting function is inverse S-shaped), the agent overweights both tails. Overweighting
the left tail makes the RDUT agent more risk averse toward bad states (related to the convex
part of the weighting function) than her EUT counterpart, whereas overweighting the right tail
makes her more risk taking toward good states (the concave part). One may be tempted to think
that these two effects offset each other. However, we find empirically that the average probabilities
of having a positive market return are sufficiently large that they fall in the conver domain of
Prelec’s function, a baseline inverse S-shaped weighting function (see Figure . This yields that

only the convex part of the weighting function is relevant. Intuitively, in a typical stock market,
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the chance of observing an extreme negative realization is much smaller than that of observing
the same size positive realization. Thus, the impact of extremely bad states is much stronger than
that of extremely good states, which causes the agent to pay more attention to the former. This
one-sided effect results in an enhanced positive risk premium with respect to the covariance with
the market; see the second term inside the brackets of for the enhancing effect driven by proba-
bility weighting. Symmetrically, during an underweighting month in which the agent underweights
both tails of the market return distribution, she is less risk averse toward bad states and less risk
seeking toward good ones. Once again, the left tail effect dominates and only the former behavior
is relevant because the probability of having a positive market return now falls in the concave
domain of the S-shaped weighting function. In this case, the agent demands less compensation for
the covariance with the market compared to an EUT maximizer, and she may even be willing to
pay for the risk if and when she sufficiently underweights the bad states. Finally, for a sufficiently
long sample period covering comparable runs of overweighting and underweighting months, the
elevated beta during the former periods and the reduced beta during the latter periods may cancel
each other, leading to an overall flat or possibly downward-sloping security market line (see Figure
(a)).

Kraus and Litzenberger| (1976)) and Harvey and Siddique| (2000) show that a typical EUT agent is
willing to pay for the coskewness, implying a negative premium in coskewness. Probability weighting
is likely to strengthen this skewness-inclined preference during an overweighting period. This can
be explained as follows. When the asset has positive coskewness with the market, the asset return
has a fat right tail with respect to the market portfolio. The hope of a larger gain relative to the
market due to overwheighting further increases the attraction of the risky asset and requires even
less compensation when compared to the case of no probability weighting. Symmetrically, when
the coskewness is negative, the fear of a larger loss, which is also amplified by the overweighting,
reduces the attraction of the risky asset and hence demands greater compensation. Combined,
overweighting the tails inflates the negative relationship between expected return and coskewness,

generating a significantly negative premium of the coskewness (see Figure [7[b)). When the agent
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underweights both tails of the market return, the probability weighting introduces a skewness-
averse preference. Underweighting the tails deflates the negative relationship between expected
return and coskewness, resulting in an insignificant (or even potentially positive) premium.

The characteristically different risk premia between the overweighting and underweighting peri-
ods suggest that we need to separate the whole sample into over- and under-weighting regimes and
analyze the corresponding beta and coskewness pricing conditionally and separately. Indeed, the
GMM analysis shows the clear time-variation in both risk aversion and probability weighting. This
motivates us to formulate a conditional three-moment CAPM and put its predictions to empirical
tests. Following the empirical asset pricing literature, we first perform portfolio analysis to study
the impact of probability weighting on the mean-covariance and mean-coskewness relationships,
respectively. We use all of the common stocks listed on the NYSE, AMEX and NASDAQ for the
period January 1991 — April 2016. The one-way sort portfolio analysis shows that the covariance
spread portfolio has a significantly positive return during overweighting months, a significantly
negative return during underweighting months, and a slightly positive (but insignificant) average
return for the entire period. The coskewness spread portfolio, on the other hand, has a significantly
negative return during overweighting months, an insignificantly negative return during under-
weighting months, and a notably negative average return for the entire period. A Fama—MacBeth
cross-sectional regression analysis (Fama and MacBeth|[1973)) further confirms these results.

The paper proceeds as follows. In Section [2] we deduce the static three-moment CAPM and
study the impact of probability weighting on asset pricing theoretically. In Section [3| we derive the
time-varying risk aversion and probability weighting using GMM, which motivates the formulation
of the conditional CAPM. We test the theoretical predictions by an extensive empirical analysis of
the conditional return and covariance/coskewness relationship in Section We conclude in Section

All the proofs and a robustness analysis are presented in the online appendix.

2. The Static CAPM

2.1. Portfolio Selection under Rank-Dependent Utility

Consider a one-period-two-date market where there are n risky assets and one risk-free asset. The

set of possible states of nature at date 1 is 2 and the set of events at date 1 is a o-algebra F
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of subsets of Q. Any F-measurable contingent claim & is priced as E[mé], where m is the pricing

kernel, which is an F-measurable random variable such that P(m > 0) =1 and E[m] < cc.

Figure 1 Prelec’s probability weighting functions with different a’s

The representative agent in the market has an RDUT preference given by

U(X) = / u(a)w (1 - Fg (2))dFg (),

where u(-) is a utility function, w(-) is a probability weighting function, w’(-) is the first-order
derivative of w(-), and Fg(-) is the cumulative distribution function (CDF) of the random payoff
X . Specific parametric classes of probability weighting functions proposed in the literature include

(o3

those by Tversky and Kahneman (1992)), w(p) = m, and by [Prelec| (1998), w(p) =
exp(—(—log(p))®), where, in both cases, 0 < a < 1 corresponds to inverse S-shaped weighting func-
tions (i.e., first concave and then convex; hence overweighting both tails) and « > 1 corresponds to
S-shaped one (i.e., first convex and then concave; hence underweighting both tails). In this paper,
we will use Prelec’s weighting functions, which are plotted in Figure[I} The smaller the a(< 1), the
higher degree of overweighting, and the larger the a(> 1), the higher degree of underweighting.
Here we assume the existence of a representative investor — and hence the existence of a (well-
diversified) market portfolio — in the RDUT market. Such an existence is deduced in Xia and Zhou
(2016)) under the assumption that all the investors have the same probability weighting function
but may have heterogeneous utility functions. In a follow-up paper|Jin et al.| (2019), RDUT markets

with heterogeneous probability weighting are studied, but the existence of a representative agent

is not proved, which remains an outstanding open question to our best knowledge. To get around
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this difficulty, in this paper we take a “revealed preference” perspective, adopted also by |Post
and Levy| (2005), based on the empirical observation that many investors are known to invest in
broadly diversified passive security portfolios such as market index ETFs. The static three-moment
CAPM established in this section lays out what we can do with theoretical deductions. It in turn
motivates a structural model — a conditional CAPM — formulated in Section [3| which is further
put to empirical tests in Section EL

We make the following assumptions on the market.

AssuMPTION 1. (i) The probability space (€2, F,P) admits no atom.
(ii) w is strictly increasing, strictly concave, continuously differentiable on (0, c0), and satisfies the

Inada condition: u'(0+4) = 0o, u'(00) =0. Moreover, without loss of generality, u(co) > 0. The

asymptotic elasticity of u is strictly less than one: lim,_, w:j(lf)”) <1.
(iii) w is strictly increasing and continuously differentiable on [0, 1] and satisfies w(0) =0, w(1) = 1.

(iv) The total return of the market portfolio Ry, satisfies 1 — Fg (1)>e .

Assumption [1i) means that there is no state of nature w such that P({w}) > 0. Being non-atomic
is a standard assumption for continuous probability space to avoid non-essential technicalities.
Assumptions (ii) and (iii) are standard and mild on the preference functions v and w. Finally,
(iv) is a condition on the market return, yielding that 1 — F (1) lies in the convex (concave)
domain of w(-) when a <1 (a>1). In Section 3 of the online appendix, we show empirically that
this condition is met by the S&P 500.

Denote by Rp the total return of a portfolio P. Our portfolio selection problem is formulated as

follows,

max u(z)w'(1—Fz (x))dFs (z),
Ep is F-measurable / (~) ( RP( ) RP( ) (1)
s.t. E[@RP] = 1,

This problem is a special instance of the one solved by Xia and Zhou (2016)).? Applying Theorem

3.3 of Xia and Zhou| (2016), we can derive the optimal portfolio E}; for .
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2.2. The Three-Moment CAPM

Recall éM is the total return of the market portfolio, and denote by 7, and 7, the return rates of
the market portfolio and the risk-free asset, respectively. By the market clear condition Ry = E};,

we can derive the equilibrium pricing kernel as well as the CAPM under RDUT as follows.

THEOREM 1. When the market is in equilibrium with ITEM having a continuous CDF Fg.,» the

pricing kernel is given by

~ w' _Fﬁ EM u RM
e m(Far) = (1 Fy, (o) (Ba) o)
(L+7)E [w/(1 = Fp,, (Bar))u/ ()|

Moreover, if ]?ZM has a continuously differentiable density function fEM, then, for any asset i in

the market, we have the three-moment CAPM:
1
E[r;] =ry + ACov(r;, 7ar) + 5 BCov(7s, ) +o(73y), (3)
where 7; is the return rate of the asset i, and the risk premia A and B are given as

A=—Ew/ (1~ Fp, (Ra)u(Ryr)]
x [ (1= Fg,, (1) (1) = w"(1 = Fg (D) (D 7, (1] (4)

B=—-E'w'(1- F;?@M(JBLM))U/(EM)]

Ryp

X [wl(l_FEM(l))UHI(l)+wm(1_F§M(1))UI(1) ror (1)

—w"(1=Fg,, (1) [2u" (1) fz,, (1) +U’(1)f}%M(1)]] : ()

A notable feature of this result is that the equilibrium pricing kernel m (indicated by expression
(2) is not only influenced by the utility function u, but also by the probability weighting function
w evaluated at 1 — F EM(ﬁM) and, consequently, by the market return distribution. Figure (a)

demonstrates how all three work together in determining pricing kernel. There, we consider Prelec’s

probability weighting function and the CRRA utility function u(x) = ﬁxl_"* with v =2, and

take 73; to be skew-normal with mean 7.6%, standard deviation 15.8% and skewness -0.339.% This

specification can be easily verified to satisfy the condition 1 — F EM(l) >e L.
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Figure 2 Pricing kernels and aggregate risk aversions
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(a) Theoretical pricing kernel (b) Aggregate risk aversion vs « (c) Aggregate risk aversion vs vy

Figures (a) plots the pricing kernel against the market return. It shows that the RDUT agent
overweighting both tails pays higher prices in the extreme states, resulting in a U-shaped pricing
kernel.* The case of underweighting both tails has the opposite characteristics, with a bell-shaped
pricing kernel. Such U-shaped or bell-shaped patterns driven by probability weighting will be
reexamined empirically in Section [3.1

Figures (b) depicts the aggregate relative risk aversion, —m’(Ry;) - Rar/m(Ra), at Ry =1, as a
function of a. The classical CRRA case (the black dot at o =1) has a flat relative risk aversion, as
expected. The solid red and dashed blue lines show how probability weighting changes risk attitudes
by influencing investors’ perceptions of tail risk. As shown in Figures (b), the aggregate risk
aversion is a decreasing function of a. When a < 1, overweighting both tails enhances the aggregate
risk aversion, and hence demands a higher risk compensation. When « > 1, underweighting both
tails has the opposite effect. Indeed, the aggregate risk aversion is negative when one sufficiently
underweights, yielding a risk-seeking behavior. Figures (c) shows the aggregate risk aversion as a
function of . As expected, all the functions are increasing irrespective of the value of the probability

weighting parameter.

2.3. Risk Premia, Risk Aversion and Probability Weighting

In the three-moment CAPM model, the terms A and B are the risk premia of the covariance and the
coskewness, respectively. The signs of the two parameters determine the risk preference with respect

to covariance and coskewness. As A and B depend on the utility function, the weighting function,
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and the distribution of the market return in a complex way, it is difficult to analytically study
their signs in general. However, if we choose specific preference functions, say, Prelec’s weighting

function and CRRA utility function

u(r) = ;- w(x) = exp(—(=log(p))*), (6)

then analytical characterizations of the signs becomes possible.

Let us examine first the sign of A. From its expression on the right hand side of , it follows
that the first term (including the factor in front of the brackets) is positive, representing the part of
the risk aversion arising from the outcome utility function u. The second term is more complicated,
representing the part of the risk aversion arising from the probability weighting, whose sign depends
on whether the quantity 1 —Fg (1) lies in the convex or concave domain of the weighting function
w or equivalently whether the tails are overweighted or underweighted.

PROPOSITION 1. Assume that the market is in equilibrium with EM having a density function fﬁM.

Let o= a(y) be the unique solution of the algebraic equation
v+ (oyy —a+1-— yo)eyoyglfﬁM(l) =0

where yo = —log(1 — Fz (1)). Then a(y)>1, ¥y >0, and
(i) when 0 <a <1 (overweighting), we have A > 0;

(ii) when a>1 (underweighting), we have A >0 (A <0) if and only if a < a(y) (a> a(y)).

Figure 3 Theoretical signs of risk premia A and B

ul B<0
A>0 ;

overweighting

0 0.5 1 1.5 2 25 3

(a) Theoretical sign of risk premium A (b) Theoretical sign of risk premium B



Shi, Cui and Zhou: Beta and Coskewness Pricing
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 11

We illustrate Proposition [1] by Figure [3[(a) where the (c,v)-plane is separated into two regions
according to the signs of A. The red line in Figure [3(a) corresponds to the threshold value ().
Let us consider first the case 0 < o <1 (w is inverse-S-shaped), in which the agent overweights
both extremely good and extremely bad states. Overweighting the left tail makes the RDUT agent
more risk averse toward bad states than her CRRA counterpart, and overweighting the right tail
makes her less risk averse toward good states. While these two effects seem to offset each other,

the condition 1 — F's

Ryr

(1) > e~ !, which has been shown to be empirically satisfied by the S&P 500,
dictates that only the former effect is relevant.® This results in a positive risk premium A; see the

solid red line in Figure [{fa).

Figure 4 Theoretical relationship between risk premia and probability weighting parameter «

2r N L Overweighting
- — — Underweighting

(a) Risk premium A against « (b) Risk premium B against «
Notes: The probability weighting function is that of Prelec with parameter o and the utility is CRRA with relative

risk aversion v = 2. The market return follows a skew-normal distribution with mean 7.6%, standard deviation 15.8%,
and skewness -0.339.

There is more to it. Write
w'(1—Fg (1))u'(1)
E[w'(1—Fg, (Ra))w' (Ra)]

w1 w"(1—Fg, (1))
w(l)  w(l-Fg, (1))

A= fa, (|- (7)

u” (1)
u/(1)

The first term inside the brackets, — > (0, measures the risk aversion arising from the outcome

w'(1-Fg (1)) .
WﬁfﬁM(l), which

utility function u in the classical EUT framework. The second term, a
M

arises from the probability weighting independent of the outcome utility function, is also positive
when 0 < o < 1. Thus, the risk premium A is not only positive in this case, but indeed elevated by
this second term compared with when there is no probability weighting. Such an increase of the

level of beta risk premium is also consistent with Figure (a).
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When a > 1, on the other hand, w is S-shaped and the agent underweights the two tails of the
market return distribution. This entails less risk aversion toward bad states and less risk seeking
toward good states. However, the condition 1 — Ff (1) >e™" implies that 1 — F (1) is now in
the concave domain of w and hence only the former behavior is relevant. In this case, the agent
demands less compensation for the beta risk compared with a classical utility maximizer and,
indeed, may even become willing to pay for the risk (i.e., A <0) when she sufficiently underweights
bad states (i.e., when « is sufficiently large). This case is illustrated by the dashed blue line in
Figure (a). Moreover, Figure (a) reveals that the risk premium A decreases in «, a theoretical

prediction that will be confirmed empirically in Section [4.4]

w” (p)
w’(p)

It is interesting to note that |Quiggin| (2012) defines the term — as probabilistic risk aversion,
analogous to the Arrow—Pratt absolute risk aversion measure. However, unlike the latter which
always takes positive values for a concave outcome utility function, the probabilistic risk aversion
can take both positive and negative values depending on where it is evaluated for an S-shaped or
inverse-S-shaped weighting function. The formula shows that when the probabilistic risk aver-
sion is positive (negative) at the point of market break-even then overweighting (underweighting)
of the left tail dominates.

Next we investigate the sign of B. First, when there is no probability weighting, we have B =
—E[u/(Ry)]u” (1) < 0 assuming that w” >0, which is satisfied by most commonly used utility
functions.® This implies that a typical EUT agent is willing to pay for the coskewness; see also
Harvey and Siddique (2000). In the presence of probability weighting, the first term of B (see

(5) is negative if, again, u"”

> (. The second and third terms are more complicated, in that their
signs depend on the utility function, the weighting function, and the market return distribution,
all intertwined. However, as in the case of A, whether 1 — FEM(l) lies in the convex or concave

domain of w is critical for the sign of B. Here, we provide the necessary and sufficient conditions

for B to be positive or negative.

PROPOSITION 2. Assume that the market is in equilibrium with R having a continuously differ-

entiable density function fﬁm' Define

2(0) = { PO 203y 1) = VELO, A0
- 0, if A <O,
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(a){maX(O.5[(—1—2gl(a)fﬁM(1))+\/K],O), if A>0,
= o, if A<,

where A = (1+2g,(a) f5,, (1)* — 4[-g1(0) ff (1) + ga(0)f2, (1)), gr() = =50 () =

e_yOyO

(Ozyg—a+1—y0)2+(1—a)+(1—a—y0)(ay8_y0)7 and yo = —log(1 — FEM(l))' Then B <0 (B>0) if and only

e~ 2v0y2
if v €[0,7(a)) U (F(a), +00) (v € (y(),7(a)))-

The “if and only if conditions” in Proposition [2| separate the («,y)-plane into two regions where
the risk premium B has different sign; see Figure (b) for visualization. The blue dot line (y(c))
and blue dot-dash line (y(a)) separates the sign of B. Note that y(a) =%(a) =0 when 0 <a <1
(overweighting), in which case B < 0. For o > 1 (underweighting), y(a) and F(«) form an elliptic
region within which B > 0; otherwise, B < 0.

To interpret Proposition |2, we plot the risk premium B against the probability weighting param-
eter o while fixing the CRRA parameter v =2 in Figure [f{b). We have noted earlier that in the
absence of probability weighting, B < 0 for “most commonly used utility functions,” suggesting an
inherent skewness-inclined preference in the classical EUT framework (as also shown by the nega-
tive B for a =1 in Figure [d|(b)). Now, when the agent overweights both tails of the market return
(the case of 0 < a < 1), probability weighting is likely to enhance the skewness-inclined preference
when overweighting occurs; refer to the red solid line in Figure (b) This enhancement can be
explained intuitively as follows. When the asset has positive coskewness with the market, the asset
return has a fat right tail with respect to the market portfolio. The hope of a larger gain relative
to the market, which is strengthened by overweighting, further increases the attraction of the risky
asset and requires even less compensation when compared to the case of no probability weighting.
Symmetrically, when the coskewness is negative, the fear of a larger loss, which is also amplified
by the overweighting, reduces the attraction of the risky asset and hence demands greater com-
pensation. Combined, overweighting the tails inflates the negative relationship between expected
return and coskewness, generating a more significantly negative B.

A similar (and opposite) argument yields that underweighting tails (i.e., a > 1) deflates the
negative relationship between expected return and coskewness, which may even lead to an overall

positive premium B. Whether B is eventually positive or negative depends on which one dominates:
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the skewness-inclination inherent in u or the skewness-aversion in w. Proposition [2| characterizes
when one of these is the case. Moreover, this dominance is not monotone as shown by Figure (b):
for each fixed «, as the probability weighting evolves from overweighting to underweighting, the
skewness premium changes from negative to positive, and then to negative again. This theoretical
predictions will be supported empirically in Section [4.4]

We conclude this section by noting that Propositions 1| and [2| are presented with specific, if com-
monly used, parametric forms of preference functions — the CRRA utility and Prelec’s weighting.
The results can be extended to more general functions involving more complex algebraic equations

and less transparent assumptions and conclusions.
3. The Conditional CAPM

The implications of the theoretical static CAPM derived in the previous section depend crucially on
whether agents overweights or underweights the tails. In this section we discuss the time-variation
of preference parameters to motivate the formulation of conditional CAPM. In Subsection [3.1] we
derive the implied preference parameters, including those of the risk aversion and the probability
weighting, from option data, using GMM. The result demonstrates a strong time-varying structure
including the changes between overweighting and underweighting. Then, in Subsection we

formulate the conditional CAPM.

3.1. Implied Preference Parameters via GMM

Option data have been used to estimate empirical pricing kernels in the literature (see, e.g.,|Rosen-
berg and Engle|2002). Recall that the pricing kernel under RDUT is the product of the marginal
utility and the derivative of probability weighting. Hence, by specifying the utility function and
the probability weighting function as in the simple one-parameter forms in @, we can obtain the
implied preference parameters, v and «, from option data by GMM. A detailed GMM procedure
is described in Section 4 of the online appendix.

The time series of the estimated risk aversion and probability weighting parameters are shown
in Figure (a) and Figure (b), respectively. We have a couple of important observations. First,

around 33% of the implied risk aversion is zero or close to zero, which means only the probability
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weighting plays a role during the corresponding months. Second, among the total 244 months, 143
months are identified as overweighting the tails (v < 1) and 101 months underweighting the tails
(> 1). So, both a and +y are time-varying and, in particular, Figure[5|(b) confirms that investors do
switch between overweighting and underweighting. The time variation of o was first documented by
Polkovnichenko and Zhao| (2013) under a fixed risk aversion parameter. Our result shows that this is
prevalent regardless of whether one considers fixed or varying risk aversion. Moreover, Figure Al(a)
in the online appendix indicates that the probability weighting index derived here by GMM and
the one by |Polkovnichenko and Zhao| (2013) have a correlation coefficient 0.9646; hence the time
variation of probability weighting is a robust property of the data that cannot be accounted for by

the variation of the outcome utility function.

Figure 5 Time-varying risk aversion and probability weighting parameters
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Figure [6] depicts the pricing kernels and the corresponding probability weighting functions in
an overweighting period and an underweighting one. On Apr. 30, 2008 — during an overweighting
period — the pricing kernel has a U-shape and the probability weighting function has an inverse
S-shape. During an underweighting period on Oct. 31, 2012, the pricing kernel has a bell-shape
and the weighting function has an S-shape. These empirical observations match our theoretical
predictions demonstrated in Figure 2{a).

Note that for Prelec’s weighting function, 0 < o < 1 corresponds to inverse S-shaped (overweight-
ing) and a > 1 to S-shaped (underweighting), with o =1 dividing the two. The smaller (greater)
a, the greater the degree of overweighting (underweighting). This suggests that we can use the

following index, PW I, to quantify the level of probability weighting:

1
PWI=—. 8
. 3)
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Figure 6 Two typical option-implied pricing kernels and probability weighting functions
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3.2. The Conditional CAPM

The previous subsections show that the preference parameters change over time, and hence so do
the beta and coskewness risk premia. To capture such a dynamic structure, we assume that the
three-moment CAPM holds in a conditional sense.

In a dynamic economy one needs not only to manage the types of risk that present in a static
economy but also to anticipate and hedge against the possibility of adverse changes in both invest-
ment opportunities and risk preferences in the future. Complete characterizations of these hedging
needs call for a full theoretical equilibrium model for a dynamic RDUT economy, which remains
a significant and challenging open question, especially because of the time-inconsistency inherent
with the probability weighting. However, following |[Merton| (1980) and Jagannathan and Wang
(1996), we assume that the hedging motives are not sufficiently important, and hence the condi-

tional three-moment CAPM will hold in the following way:

N - - 1 - -
Ei(7it41) =7f0101 + AiCovi(Ti g1, Taris) + §BtCOVt(7’¢,f,+1, T?\J)t+1)- 9)

In the above, the subscript ¢ indicates the relevant time period; so, for instance, 7; ;4 denotes the
return rate of asset ¢ in period t+ 1, E; the expectation conditional on the information up to the
end of period ¢, Cov; the corresponding conditional covariance, and A; and B; the resulting risk

premia that are influenced by preferences (including outcome utility and probability weighting) as

shown by and .
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It should be noted that our conditional CAPM model takes variation of risk premia as given
which is then connected to variation of preferences. The latter is likely to be a manifestation of some
more fundamental forces that the model in itself does not identify. The identification and study of

those forces once again requires a dynamic model and remains an outstanding open question.
4. Empirical Analysis

The empirical analysis in this section tests our preceding theory regarding how probability weight-
ing impacts the risk premia on covariance and coskewness. Subsections contains the traditional
one-way sort portfolio analysis to study the effect of probability weighting on the mean-covariance
and mean-coskewness relationships, respectively. In Subsection [£.2] and [£.3], we run Fama-MacBeth
regression to investigate the impact of probability weighting on cross-sectional asset pricing with
and without control variables. In Subsection [4.4] we further test the structural dependence of the

risk premia on the preference parameters.

4.1. One-way Sort Portfolio Analysis

We now conduct one-way sort portfolio empirical analysis to test the mean-covariance and mean-
coskewness relationships during different probability weighting periods. In our study, we use all the
common stocks (share codes 10 and 11) listed on the NYSE, AMEX, and NASDAQ to perform
cross-sectional analysis. Data on prices, returns, and shares outstanding are obtained from CRSP
monthly files, which range from January 1991 to May 2016.

At the end of each month ¢ from January 1996 to April 2016, we use the immediate prior
60-month sample covariance and sample coskewness to estimate the pre-ranking covariance and

coskewness in month £,

59 59
1 - . _ 1 - . —
covar, = o Z(r”*j — 7)) (Tarp—j —Tar), coskew; , = — E(r“*j — 7)) (Frpa; —73),  (10)

Jj=0 59 J=0
where 7; ,_; is the monthly return rate of stock 4 in month ¢ — j, 7p/,—; is the monthly return rate
of the value-weighted market portfolio in month t — j, and 7;, 73, and TTQW are the sample means of
Tit, Tare, and 73, respectively.

At each t, we classify stocks into 10 covariance-sorted groups based on their pre-ranking covari-

ance. Group 1 (10) contains stocks with the lowest (highest) covariance. For each group, we build
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a value-weighted portfolio.” Then, we construct a spread portfolio (10-1) that longs Portfolio 10
and shorts Portfolio 1. We then calculate the next month (¢ + 1)’s post-ranking portfolio returns
for these portfolios and repeat the procedure for the next month. Similarly, we construct the
coskewness-sorted portfolios.

Table[I] reports the average next month’s returns of covariance-sorted portfolios and coskewness-
sorted portfolios for the entire period (January 1996 to April 2016), overweighting periods and
underweighting periods, respectively, where the overweighting and underweighting periods are
determined by the index PW I defined in . In order to balance the two sample sizes, in what
follows we use the median of PW I, instead of 1, to separate the overweighting and underweighting
months. We observe that the spread covariance-sorted portfolio (10-1) has a significantly posi-
tive monthly return during the overweighting periods and a significantly negative monthly return
during the underweighting periods. Meanwhile, the spread coskewness-sorted portfolio (10-1) has
a significantly negative monthly return during the overweighting periods and an insignificantly
negative monthly return during the underweighting periods. Moreover, the negative return of this
spread portfolio doubles its size from an average of -0.79% monthly over the entire period to an

average of -1.62% monthly during the overweighting periods.

Table 1 One-way sort results based on PW T

Panel A: average returns of covariance-sorted value-weighted portfolios

1 2 3 4 5 6 7 8 9 10 (10-1) t-statistic
All 0.89% 1.07% 1.11% 1.09% 1.19% 1.12% 1.06% 1.12% 1.04% 0.99% 0.10% 0.18
Over 0.73% 0.96% 1.02% 1.03% 1.26% 1.38% 1.42% 1.84% 2.15% 2.68% 1.95%** 2.09

Under 1.06% 1.19% 1.20% 1.15% 1.12% 0.84% 0.71% 0.40% -0.08% -0.69% -1.75%***  (-2.85)

Panel B: average returns of coskewness-sorted value-weighted portfolios
1 2 3 4 5 6 7 8 9 10 (10-1) t-statistic

All 1.37% 1.32% 1.28% 1.29% 1.09% 1.07% 1.09% 0.85% 0.78% 0.58% -0.79%** -2.36
Over 2.42% 2.11% 1.81% 1.71% 1.38% 1.37% 1.30% 0.96% 0.84% 0.80% -1.62%*** -2.71
Under 0.31% 0.54% 0.74% 0.88% 0.79% 0.76% 0.88% 0.75% 0.73% 0.36% 0.05% (0.18)

Notes: The overweighting periods and underweighting periods are separated by the median of PWI. All periods (All), over-
weighting periods (Over), and underweighting periods (Under) include 244 months, 122 months, and 122 months, respectively.
The spread portfolio (10-1) is constructed by longing the 10th portfolio and shorting the 1st portfolio. The t-statistics of the
returns of the spread portfolios are reported. *** ** " and * denote significance at the 1%, 5%, and 10% levels, respectively.

Figure m(a) and Figure (b) plot the regression lines of the average next month’s returns of

value-weighted portfolios on the average covariance and on the average coskewness, respectively.
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The return—covariance line has a steep upward (downward) slope during the overweighting (under-
weighting) periods. The return—coskewness line has a steep downward slope during the overweight-
ing periods and a nearly flat slope during the underweighting periods. These findings are consistent
with our theoretical predictions in Section Finally, for the entire sample period, the return—
covariance line is almost flat, reconciling with the beta anomaly, and the return—coskewness line is
downward-sloping, conforming to the skewness-inclined preference that is well documented in the

literature.

Figure 7  The relationship between average expected return and average covariance (coskewness)
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4.2. Fama-MacBeth Cross-Sectional Regression

We conduct a Fama-MacBeth regression to investigate the impact of probability weighting on cross-
sectional asset pricing. Following Bali et al.|(2016), we first compute the covariance and coskewness
of stock i for each month ¢ from January 1996 to April 2016, by means of a 60-months-window

ordinary least squares (OLS) regression:

Ti.r = ki + covariance; ;7 , + coskewness; ;71, . + €, ,, T=t—"59, -t (11)

)

where k;; is the intercept and ¢, , is the residual.® In contrast to computing the covariance and
coskewness from the samples directly, as in Subsection the above regression rules out interac-
tions between covariance and coskewness. Next, for each ¢, we consider the following cross-sectional

regression:

- . 1 .
Tit+1 = k¢ + Azcovariance; ; + iBtcoskewnessi,t +eitt1, t=1,---,n. (12)
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The significance of the risk premia A and B is determined by a ¢-test on the time series {4;} and

{B:}-

Table 2

Fama-MacBeth regression results

Panel A: Fama-MacBeth results without control variables

All periods

Overweighting periods

Underweighting periods

A 1.51 11.17%%% -8.24% %%
(0.65) . (-3.47)
B -0.88%%* 174k 0.01
(-2.87) (-2.98) (0.06)
Adj. R? 0.02 0.02 0.02
n 2695 2799 2590

Panel B: Fama-MacBeth results with control variables

All periods

Overweighting periods

Underweighting periods

A 1.24 2.30 1.73 8.36%** 9 4Q%** 7 7eHF* 8TH*kk  _gq pQRKk -4.31%*
(0.65) (1.20) (1.03 (2.58) (2.88) (2.81) ( 3.16)  (-2.67) (-2.52)
B -0.38%** _(0.33%** _(.,24%* -1.37¥** |1 25%*%*  _(Q ¥ ** -0.14 -0.07 -0.06
(2.04)  (2:63) (247 (2.87)  (267)  (‘2.61) (-0.83) ~0.44) (-0.37)
IVol 0.01 -0.06 -0.05 0.10 0.01 0.01 -0.08* 0.13%**  _(Q,12%*%*
(0.15)  (-1.34)  (-1.35) (0.99) (0.13 (0.19 (1.66)  (-2.91) (12.82)
ISkew -0.74 -1.04* -0.76 -2.57%* -2.67%* -1.94%* 0.10 0.58 0.43
(-1.19)  (-1.68)  (-1.42) (-2.42)  (-2.53) ( 2.18) (1.62) (0.98) (0.75)
Size -1.66%**  _1,43%** -2.06%** 1.45%* 1.25%%* |1 42%%*
(327)  (-3.23) ((227)  (-1.86) 9.76) (3.29)
BM 1.68%* 1.93%** 1.02 1.37 2.35%** 2.51%k**
(2.35) 2 (0.88) (1.16) (2.82) (3.10)
Mom 0.01 -0.03 0.04%**
(0.44) (-0.72) (2.49)
Rev -0.34%** -0.53 -0.15
(46.38) (-5.96) (-2.81)
Adj. R? 0.03 0.04 0.05 0.03 0.04 0.06 0.02 0.03 0.04
2693 2691 2689 2796 2794 2792 2587 2585 2583

Notes: “Underweighting periods” and “Overweightin, g periods” are separated by the respective median for PWI. The average
values of the coefhicients, Wthh are multiplied by 1000, are reported above and the corresponding t-statistics are reported below
in parentheses. *** **, and * denote mfgnlﬁcance at the 1%, 5%, and 10% levels, respectively. The row labelled “Adj. R?”
reports the average adjusted R-square of each regression. The row labelled “n” reports the average number of stocks in each
Cross- sectlonal regression.

Panel A in Table 2] reports the Fama-MacBeth regression results, in which the market over-
weighting and underweighting periods are divided by the GMM-derived probability weighting index
PWI. If we do not separate the time periods based on probability weighting, the overall risk
premium of covariance, A, is not significant and the risk premium of coskewness, B, is modestly
negative. These are consistent with the empirical findings in the literature. When we do separate
the whole period into two regimes (overweighting and underweighting), however, A becomes sig-
nificantly positive during overweighting periods and significantly negative during underweighting
periods, and B almost doubles its overall value during overweighting periods yet becomes insignifi-
cant during underweighting periods. Again, these results reaffirm our theoretical and prior one-way
and two-way sort portfolios analysis findings.

Finally, we note that during overweighting periods, the mean-covariance tradeoff and mean-

coskewness tradeoff are also economically significant. Indeed, the standard deviation of covariance
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is 0.864 and that of coskewness is 10.591. Thus, during an overweighting period, a one-standard-
deviation increase in covariance is associated with a roughly 0.97% (the std of covariance times
A, ie., 0.864 x 11.17 x 1073) increase in expected monthly return, and a one-standard-deviation
decrease in coskewness is associated with a roughly 0.92% (the std of coskewness times B, i.e.,
0.5 x (—10.591) x (—1.74) x 1073) increase in expected monthly return. This finding strengthens

the notion that probability weighting has important implications in pricing and investment.

4.3. With Common Control Variables

In this subsection, we conduct a Fama-MacBeth regression to test the robustness of our main
findings after controlling six other common variables. These control variables are Size (Size),
Book-to-market ratio (BM ), Momentum (Mom), Short-term reversal (Rev), Idiosyncratic volatil-
ity (IVol), and Idiosyncratic skewness (I Skew). Among them, the first four are well-studied factors
long known to be relevant in asset pricing, and the last two are relatively new in the literature.
Liu et al| (2018) argue that the beta anomaly arises from beta’s positive correlation with idiosyn-
cratic volatility (IVol). Barberis and Huang| (2008)) find that CPT investors are willing to pay
more for lottery-like stocks due to probability weighting. |An et al. (2020)) observe that lottery-
like stocks significantly underperform their non-lottery-like counterparts, especially among stocks
where investors have lost money.

Following [Bali et al. (2016)), these control variables are computed as follows

. PRC;, x SHROUT;,
Size; ; =log . =,

1000 x BE;,,
1000 BMi,t = log < > )

PRC,, x SHROUT,,

11

[[Fe—+1) -1

Mom,; ;=100 , Rev; ; =100 X 7 4,

Jj=1

IVoly, =100 x {/ =5 &2 x V12 IShew. . — 8020 Shs
e T A e » 2 )3/2,

1
(% 2 im0 it

where y is the end of a fiscal year, ¢ is the end of a month between June of year y+ 1, and May of
year y+2, PRC;; is the price of stock ¢ at t, SHROUT,;, is the number of shares outstanding of

stock i at t, BE;, is the book value of common equity of stock i at y, PRC; , is the price of stock
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i at y, SHROUT, , is the number of shares outstanding of stock 7 at y, 7; ,—; is the return rate of

stock ¢ during month ¢ —j, and €;,_;, j =0,---,59, are the residuals of the following regression:
Fir=kiy+06, MKT.+0;,SMB.+0; HML, +¢;,, T=t—59,---,t,

where M KT, is the return of the market factor during month 7 and SM B, and HM L, are the
returns of the size and value factor mimicking portfolios, respectively, during month 7.°

The Fama-MacBeth regression results with control variables are reported in Panel B of Table
They show that even with the commonly used variables controlled in a cross-sectional analy-
sis, our main empirical finding that the risk premium of covariance (coskewness) is significantly
positive (negative) during overweighting periods and significantly negative (insignificant) during
underweighting periods still stands.

It is interesting to note that, in Panel B of Table |2 IVol exhibits a significantly negative relation-
ship with expected return only during underweighting periods. In other words, the mispricing (the
negative risk premia for beta and idiosyncratic volatility) only appears when investors underweight
the tail risk, which echoes the finding in [Liu et al| (2018)). On the other hand, similar to coskew-
ness, [Skew shows a significantly negative relation with expected return only during overweighting
periods. This implies that overweighting both tails leads to RDUT investors developing a strong
taste for both coskewness and idiosyncratic skewness.

In addition to controlling the common variables presented here, we also conduct several robust-
ness checks, including the effect of time-varying risk aversion, the effect of stochastic volatility,
the result from the UK market, the result based on both ITM and OTM options and the role of

standard state variables; see Section 5 of the online appendix for details.

4.4. The Dependence of Risk Premia on PWI and Risk Aversion

Our previous empirical analysis studies risk premia A and B conditional on a binary variable:
whether the market is overweighting or underweighting tails. In this subsection, we investigate
the time-varying structural relationship between the risk premia and the preference parameters

directly using GMM.
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In the conditional CAPM model @, we further assume that the risk premia A; and B, depend

on v, PW I, and ~,PW I, as follows
At(’ﬂ):alfyt—f—aQPWIt—i-ag'ytPWIt, Bt('ﬂ) :bl'yt—i‘bQPWIt‘i‘bg'ytPWIt, (13)

where ¥ = (a1, as,as,by,by,b3). Here, we add the product term ~, PW I, to reflect the nonlinearity
in the theoretical expressions of A; and B; in v, and PW I,; see Theorem m Now, the conditional

expected return of a risky asset i satisfies

1

Et(fi,tﬂ) =Tfer1+ At(ﬂ)COVt(fi,tHa 7:IVI,t+1) + §Bt(19)COVt(7:i,t+1> 7:12\“4_1)7

which further yields

A

. . - 1 . -
[i(0) = B(Ey(Fii1)) = Elrpin + Ad(9)Covi(Fi g1, Parerr) + §Bt(19)COVt(Ti,t+1a )

1
=E[rs 1] + E[A(D)E[Covi(Fi s, Paresr)] + §E[Bt(79)] [Covi(Fiir1, s e1)]
. - 1 . _
+ COV(At('ﬁ), COVt (Tz’,t+17 TM,t-{—l)) + §COV(Bt (19), COVt (7’@7t+1, T?\/[,t+1))' (14)
We have the time series v, PW I, 74111, Covi(Ti i1, Tare+1) and Covy (7 ¢41, 7’]2\47t+1) for 244 months
from Jan. 1996 to Apr. 2016. Each of the expectations on the right hand side of is computed

as the corresponding average over these 244 samples.

Define the following set of moment conditions

2

=

1 4

244
~real . ~Teal
( ) f].( ) 244 1t I 7fn 244222

IIM

real

where 779" is the observed return of risky asset ¢ in month ¢ and n is the number of risky assets.

The estimated parameters U are then obtained by solving

J=argmin G0 )Wg(9)7,

YERS

where, again, W is chosen to be the identity matrix. According to |Hansen| (1982), the estimated

parameter vector 9 follows ¥ ~ N (9, V/244), where V = [GWGT|'\GW SWGT[GWGT]™!, S is the

93(9)
a9

covariance matrix of the n risky assets, and G = is an 6 X n matrix.
We use 1412 stocks, including 890 stocks whose monthly return data are available for the whole

period and 522 stocks with numbers of missing monthly return data less than 36, to estimate
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the parameters. Table [3| reports the results. The estimated coefficients, which are multiplied by
1000, are reported above and the corresponding t-statistics are reported below in parentheses. We
also draw the corresponding scatter diagrams of the time-varying risk premia A, and B, against
PW I, respectively in Figure [§] Table [3] and Figure [§] show clearly that the probability weighting
index PW I, has a statistically significant positive influence on the risk premium of covariance A,
and a statistically significant negative influence on the risk premium of coskewness B, consistent
with our theoretical prediction as illustrated in Figure[dl On the other hand, although the signs of
influence of 4; on A and B are the same as those of PWI;, the levels of influence are statistically

insignificant.

Table 3 The dependence of risk premia on preference parameters

Preference parameters Coefficients of A, Coefficients of B,
Yt -0.65 -0.29
(-0.21) (0.72)
PWI, 11.12%%* -0.58%**
(5.74) (-2.58)
e % PWI, -1.97 0.46
(-0.69) (1.45)

Figure 8 The relationship between risk premia and preference parameters
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5. Conclusions

The Nobel-prize-winning CAPM theory takes an asset’s beta - the correlation with the market - as
the risk measure and predicts that high-beta assets earn higher average returns than low-beta ones.

However, extensive empirical studies do not support this prediction - a puzzle named the “beta
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anomaly”. An underlying yet unstated assumption of the classical CAPM is that individuals are
able to evaluate probabilities objectively. However, behavioral economics study finds that people
tend to “distort” or “weight” probabilities of rare events, and this probability weighting plays a
crucial role in dictating risk preference and decision making. For example, buying insurance or
lottery tickets reflect exaggeration of small probabilities of very “bad” or “good” events. Now, if
an investor inflates the small probability of significant downside of an asset then she will demand
more return compensation than the CAPM predicts. Likewise, if she deflates that small probability
then she will be happy with a smaller average return. Our thesis is then that probability weighting
can potentially explain the beta anomaly, at least partly.

The purpose of this paper is to test this thesis, both theoretically and empirically. We show that
probability weighting is indeed a key driver in beta and coskewness pricing. Whether overweighting
or underweighting is in force changes dynamically over time, but the total length of overweighting
periods is comparable to that of underweighting periods. If we analyze a sufficiently long sample
period, the aggregate effects of overweighting and underweighting may cancel out, potentially
deceiving us into overlooking the significance of probability weighting. It is, therefore, important
to separate out the overweighting and underweighting periods and to study them individually and
respectively. In doing so, as demonstrated in this paper, we are able to understand the significant
role that probability weighting plays in pricing and in building profitable portfolios.

We carry out the theoretical analysis using a static RDUT model and extend it to a conditional
CAPM to account for the time-variation in both risk aversion and probability weighting. We then
confirm the theoretical predictions with extensive empirical tests. We believe that our model offers
a partial explanation of the beta anomaly and hints a viable way to potentially resolve other puzzles
in asset pricing.

Finally, the results of this paper may motivate new research problems. One of them is why indi-
viduals sometimes overweight tail events and sometimes underweight them? The conditional CAPM
approach in this paper has helped identify variation in preferences and connect it to expected
return, but the source of this variation remains hidden and a challenge to understand. Is there a

model built upon psychological foundation that can explain the switch between overweighting and



Shi, Cui and Zhou: Beta and Coskewness Pricin,
26 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!

underweighting? Another outstanding problem is a full dynamic CAPM taking into consideration
the inherent time-inconsistency arising from probability weighting. The answers to these questions

are beyond the scope of this paper, which we hope to see in future research.

Endnotes

1. Another prominent theory that extends EUT to include probability weighting is the cumulative prospect theory

(CPT; |Tversky and Kahneman|[1992). Based on CPT, Barberis et al| (2016) construct a TK factor and find its

predicting power derives mainly from probability weighting. Hence, we focus on RDUT in this paper.

2. In Problem (2.2) of [Xia and Zhou (2016), setting I =1, uoi(-) =0, w1;(-) = u(-), wi(:) =w(-), Bi =1, E[pé1s] =1,

eo; =0, and ¢1; = Rp, we recover our Problem (1).

3. The distribution of 7y is estimated based on the annual historical data of the S&P 500 from January 1946 to

January 2009, which is reported in |De Giorgi and Legg| (2012).

4. U-shaped pricing kernels have been presented in literature under various settings. For example,
finds that the pricing kernel has a U-shape when agents have heterogeneous risk tolerance. observe
that pricing kernels under the cumulative prospect theory (CPT) are also U-shaped.

5. This observation is straightforward from the mathematical expression of A, @, which depends on w only through

its value at 1 — Fz (1), a point in the conver domain of w.

6. Brockett and Golden| (1987) refer to the class of increasing utility functions with derivatives that alternate in

"

sign as the class that contains “all commonly used utility functions.” In particular, v > 0 implies that the utility

function has nonincreasing absolute risk aversion, which is one of the essential properties (also termed risk prudence)

of a risk-averse individual; see [Harvey and Siddique| (2000)).

7. There are two different approaches to form portfolios: equal-weighted or value-weighted. Our main results, includ-

ing the one-way and two-way portfolio analysis, remain unchanged for the equal-weighted portfolios.

8. Besides |Bali et al| (2016)’s approach, [Harvey and Siddique| (2000) propose to compute covariance;

and coskewness;: by 7 = k;+ + covariance; Ty, + €,-,7 = t — 59,---,t, and coskewness;; =

4§89 (o 23 _

- 5?)92120(6’";7)(;;4’th TM)i =, where 7y and 73, are the sample means of 7y, and 737+, respectively. We
\/ﬁ Zj:oéi,t—j‘ﬁ Zj:o(TM,tfj*TM
obtain the same results based on this method (omitted here due to space limit).

9. The IVol;; and I Skew;,; are estimated based on monthly data in a rolling window fashion. We have also estimated

the I'Vol;+ and ISkew;; based on daily data in each month ¢, and the main results still hold.
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“Beta and Coskewness Pricing: Perspective from Probability Weighting”
Online Appendix

This document contains all the proofs and other supplement materials in the paper “Beta
and Coskewness Pricing: Perspective from Probability Weighting”.

1 Proofs

1.1 Proof of Theorem 1

Applying Theorem 3.3 of Xia and Zhou (2016), we can solve the optimal portfolio selection
problem and obtain the total return of the optimal portfolio as follows

Ry = ()™ (VN (1= w(Fa(n)))

where the Lagrange multiplier A* is determined by E [ﬁz(u’)_l <)\*]\7’ (1-— w(Fm(m))))] =1,
N(q) = — fu,l;l(q) Q1 —p)dp, q€l0,1], w(p) =1—w(l—p), N is the concave envelope of

N, N’ the right derivative of N and Q7 (p) 2 sup{z € R | Fj5(x) < p}, p € (0,1], is the lower
quantile function of m.

When the market is in equilibrium, the total return of the optimal portfolio of the repre-
sentative investor equals the total return of the market portfolio, i.e., Ry, = Rj;. Applying
Theorem 5.2 of Xia and Zhou (2016), we obtain

= (\") w1 — Fp (Ran)u'(Ry).
However, the pricing formula of the risk-free asset yields
1 =E[m(l+rs)] =E[m|(1+ry),
which in turn implies
X = (L4 7))B [w/(1 = Fg,, (Ra)u! (Bag)] (A1)

This establishes the equation (2) in the paper.
Next we rewrite

m o= (X)) (1= Fg, (1+7y))u'(1+ 7).



Applying the Taylor expansion up to the second order of 7),, we can express the pricing kernel
as follows:!

m =)' (1= F (1))u/(1)
+ ()7 w1 = P, (D) (1) = w"(1 = Fr, (D) (D) 5, (V)] 7

)Ml (1 = Py (00"(1) (1~ Fr (1)[26"(1) i, (1) 4 (1) 75, (1)
(1= Fg, (W (D)2, (1)} + o(%), (A2)

Applying the pricing formula to the asset 7, we have
E[m(l1+7)] = 1.
Hence,
Cov(m, (1 + 7)) + E[1 + 74]E[m] = 1,

or

o) =G0

1
—1=ry+ ACov(F;, Fyr) + 5Bcov(@,ﬁj) + o(73y),

thanks to (A1) and (A2).

1.2 Proof of Proposition 1

i) When o < 1, w is inverse S-shaped. Hence, 1 — Fz (1) lies within the convex domain of w
under the assumptions of the proposition. Therefore, the two terms inside the brackets of the
equation (5) in the paper are both negative. This implies A > 0.2

ii) When a > 1, w is S-shaped, and 1 — Fj (1) lies within the concave domain of w. With

w(p) = exp(—(—log(p))®) and u(z) = ﬁxlﬂ, we have

w'(1—Fg (1))
w'(l = Fg, (1))

w(l=Fg, (1)
Elu! (1~ Fp,, (Ran)uf ()]
w(1 = Fg,, (1)

L By (R )

A=— u’(1) —

u'(1) fz, (1)

'Here, we Taylor expand Fg (1+7) around 1, then expand w'(1 — F (1 + 7)) around 1 — F (1),
and expand (1 4 7p) around 1.

2This part of the proof does not depend on the specific forms of w and w; it only requires 1 — F B (1) to
be in the convex domain of w and u to be a concave function.



where gi(a) = (ays — a+ 1 — o)y, yo = —log(1 — FﬁM(l)). As w'(1 — FEM(EM)) >0
and u'(Ry) > 0, A > 0 (< 0) if and only if

v+ 9i(a)f, (1) >0 (<0).
Next, as 1 >1—Ff (1) > e~!, we have 1 > yo > 0, which implies that

dgi ()

0 (yo — 1+ ayg log(yg))ey(’yo_1 <0, for a>1.

Since gi(a) is an decreasing function of a, v + ¢1(1)f7,,(1) = v > 0 and lima 00y +
91(1)f,,(1) = —oo, there exists a unique a(y) > 1 such that v + gi(a(7))f5,,(1) = 0.
Furthermore, v + g1(@) f,,(1) > 0 (< 0) if and only if o < a(y) (@ > a(v)).

1.3 Proof of Proposition 2

Under the assumption, we have

w'(l = Fg, (1)u'(1)

== oy —atl—y, o .
e E[w/(l B FEM (EM))U/(EM)] ry<ry i 1) e~%yo ( ZrYfRM(U + fRM(l))
Jlafmatl-y? +0-0)+ (1 -yl —w g
e yOyO o

_ w'(1 — FJTzMN(l))u'(l)N 2+ (14 201(0) fz. (D))y — (@) f= (1) + ga(@) f2 (1),
E[w'(1 — Fg, (Ra))u/(Ra)] M Far F

where yo = —log(1 — Fg, (1))
As w'(1 = Fg (Ra)) > 0 and o/(Ry) > 0, B > 0 (< 0) if and only if
7+ (L4 201() f7,, (D)7 — gi(@) ff, (1) + g2(a) [z (1) <O (>0).

The desired conclusion then follows from the standard results regarding signs of a quadratic
function.

2 Estimation and Simulation of EGARCH Model

In this subsection, we explain some details about the estimation and simulation of an EGARCH
model used for various purposes in this online appendix. At the end of each month (denoted
as time 0), we collect the immediately prior 1250 daily S&P 500 index return data. Then, we



compute the maximum likelihood estimations of the parameters (u, v, 3, ¢, »¢) in the following
EGARCH(1,1) model for daily return:

log(Sare) = log(Sare—1) + i+ Vhez,

(A3)
log(h) = v+ Blog(hi—1) + C(|ze—1| — El|zi-1]]) + »21-1,

where z; follows a standard Gaussian distribution.

For a given time horizon [0,7}], we already have the presample variance hg, presample
innovation zp and presample index price Syr0. To generate a sample path of {Sas1,- -+, Smr; }
we compute the conditional variance h; based on the second equation in (A3), generate z;
from a standard Gaussian distribution, and then compute the realization of Sj;; according
to the first equation in (A3). Repeating the same procedure, we can simulate the whole path
{Sma, -+, Sur,}, which in turn gives the value of }N%M;pj = log(Sm,1;) — log(Sar). We apply
this method to simulate 100,000 paths of {Sa1,---, Sur} and {Syq,- -+, Su}, yielding
100,000 samples of Sy, Rasry, S, and Raysg,.

3 Verifying the Condition 1 — F5 (1) > e

Notice that 1 — F (1) = P(EM > 1), i.e., the probability that the market has a positive
return rate. So this quantity reflects the trend of the overall economy/market. Let us examine
this condition for the S&P 500. Following De Giorgi and Legg (2012), we assume that the S&P
500 annual return rate, 7y, follows either a normal distribution, a skew-normal distribution,
or a log-normal distribution. Based on the annual historical data of the S&P 500 from January
1946 to January 2009, the annual return rate, 757, has a mean of 7.6% and a standard deviation
of 15.8%. Moreover, in the case of skew-normal, its skewness is estimated to be -0.339. Based
on these values, assuming 7, is respectively normal, skew-normal, and log-normal, we can
estimate the corresponding value of 1 — F (1) to be respectively 0.6847, 0.6980, and 0.6543,
all greater than e *.

Next, we consider the S&P 500 monthly return, as our main empirical analysis is con-
ducted at the monthly frequency. Following Polkovnichenko and Zhao (2013), we use the
daily historical data of the S&P 500 from January 2, 1991 to April 29, 2016 and estimate
an EGARCH model for the S&P 500 with 1250 daily index return data up to the end of
each month from January 1996 to April 2016. Then, we simulate 100,000 samples based on
the EGARCH model following the same approach to be described in Section 2 of the online
appendix and compute the nonparametric probability density function for the monthly return
of the S&P 500. We find that 1 — F (1) > e~ holds for all the months tested.

4 GMM for Implied Preference Parameters

In this section, we provide the detailed procedure of GMM to derive the implied preference
parameters « and ~ used in Subsection 3.1 of the paper. We use the S&P 500 index option

4



data and the S&P 500 index data to derive the option-implied preference parameters for
any given period of time (monthly in this section). These indices are then used to gauge
and « for the period concerned. The option data are obtained from OptionMetrics, with a
time window from January 4, 1996 to April 29, 2016. The index data are obtained from the
Centre for Research in Security Prices (CRSP), with a time window from January 2, 1991
to April 29, 2016. We derive the preference parameters by matching the theoretical implied
volatilities with the observed implied volatilities based on out-of-the-money (OTM) options
only. Following a convention in literature, we use OTM options with nearest maturity 7 (less
than a month) and second nearest maturity 75 (larger than a month) to compute one-month
implied volatilities. The general reasons for using OTM options only include better liquidity
and price reliability compared with in-the-money (ITM) options (Christoffersen et al., 2013;
CBOE, 2021), and the specific reason in our setting is that probability weighting is driven by
tail behaviors of returns that are more relevant to OTM options.?

With the parametric preference functions (6), it follows from Theorem 1 in the paper that
the pricing kernel /m; is, now denoted as a function of the preference parameter 6 = (v, o)

—(—log(1-Fpx (Rar, ) =~ =~
1;(0) ae Raay (—log(1 — FEM,T]- (RJ\/LTJ'))Olil(RMTj)MY
m; = ~ = o ’
(1 + Tf,T].)<l - FE}M,TJ- (RM,Tj>>E w’(l — FRJVI,TJ- (RM,T]-))U’(RM,TJ-)

where EM,TJ. and ry 7, are respectively the total return of the S&P 500 index and the risk-free
return with time horizon Tj, j = 1,2. The OTM options have theoretical prices
C(0, K}, Ty) = Elm; (0)(Sur, — Ki))+], PO, K, T;) = E[my(0)(K[; — Sum)+], 7=1,2,
where Sy 7, is the S&P 500 index value at time Tj, chj is the strike price for call 7, 1 =
L., n,, Kfj is the strike price for put ¢, £ = 1,--- ,m;, n; and m; are the numbers of
OTM calls and puts with maturity 7Tj, respectively. Notice that n; and m; may vary for
different months. Based on the Black—Scholes option pricing formula, we can further obtain
the theoretical implied volatilities, denoted by IV (6, Kfj, T;) and IVp(6, K, fj, T;). Then, we
simulate 100,000 samples of }N%M,Tj and Sys7; based on the EGARCH model. Some details of
the simulation procedure are provided in Section 2 of the online appendix. The theoretical
values for implied volatilities are then approximated by summing over the 100,000 samples.
At the end of each month, we compute the differences between the theoretical and real
implied volatilities of OTM options:

g(0) = [IVe(0, Kfl, Ty) — IVEe (9, Kfl, ), -, IVe(, KS

T3)
ng,2) 2)s
IVp(0, KT, Th) — IVE“ (0, K{ 1, Th), -+ IVp(0, K}, 5, To) — IVE< (0, K}, 5, T2)],

Ty) — IVE (9, K

ng,2’

3The authors are very grateful to an anonymous referee for suggesting using OTM only. A comparison of
results between OTM only and the full cross section (including I'TM) is presented in Section 5.7 of the online
appendix.



where IVE(0, KT, T;) and IV (0, K[, T;) are the real implied volatilities of OTM calls
and puts, respectively. In total, there are (n; + ns + m; + my) moment conditions. Finally,

we estimate 6 by solving

0 =arg min g(0)Wg(0)",

720,20

where T denotes the transpose of a vector or a matrix, W is the weighting matrix for the
moment conditions, chosen in our study to be the identity matrix yielding an equal weight to
all the components of g. In view of the forward-looking nature of option price, the estimated
preference parameters at the end of each month can be used to predict the representative
agent’s preference in the next month.

With the estimated preference parameters (&, %) obtained by GMM as well as the EGARCH-
estimated market return distribution Fz , we can get the theoretical values of A and B from
the equations (4)—-(5) in the paper.

As discussed in Subsection 3.1 of the main body of the paper, there are 244 months
in our sample, containing 143 overweighting months and 101 underweighting ones. For the
143 overweighting months, the majority of A (135 out of 143) are positive and those of
B are all negative. For the 101 underweighting periods, A is negative during 58 periods.
Moreover, the mean and standard error of A are respectively -0.6795 and 0.1704 conditional
on underweighting, implying that the negativity of A is statistically significant at 1% level.
On the other hand, B is positive during 69 months out of the 101 underweighting months.
The corresponding mean and standard error are 1.2634 and 1.0234 respectively. Hence the
mean of B is not statistically significant due to the large standard error.

So the theoretical predictions based on the estimated market and preference data are
that A’s are mostly positive under overweighting and mostly negative under underweighting,
while B’s are all negative under overweighting but insignificant under underweighting. These
predictions is confirmed empirically in Section 4 of the paper.

5 Robustness Analysis

5.1 Two-way Sort Portfolio Analysis

In this section, we conduct two-way sort portfolio analysis to separate the effects of covariance
and coskewness. For each month ¢ from January 1996 to April 2016, we classify all the
stocks into five coskewness-sorted groups based on their pre-ranking coskewness. Then, in
each coskewness-sorted group, we further group the stocks into five covariance-sorted groups
based on their pre-ranking covariance. Thus, there are now a total of 25 groups. For each
group, we construct the value-weighted portfolio, calculate next month (¢ 4 1)’s post-ranking
portfolio returns, and repeat the procedure from the next month onwards. As the stocks have
similar values of coskewness within the same coskewness-sorted group, we can thereby control
the influence of the coskewness and compare the performance of the five covariance-sorted



portfolios. Similarly, we also analyze the 25 covariance-coskewness-sorted portfolios based
first on their pre-ranking covariance and then on their pre-ranking coskewness.

Table Al reports the average next month’s returns of value-weighted portfolios for the
entire period, overweighting periods and underweighting periods, respectively, where the over-
weighting periods and underweighting periods are determined by PW . Panel A shows that
with the coskewness controlled, the spread portfolios (5-1) still have significantly positive
monthly returns during the overweighting periods and significantly negative monthly returns
during the underweighting periods. Panel B, on the other hand, yields that with covariance
controlled the spread portfolios (5-1) have significantly negative monthly returns during the
overweighting periods and insignificantly monthly returns during the underweighting periods.

Our portfolio analysis suggests that one can significantly improve the performance of the
long-short covariance-sorted and coskewness-sorted strategies by making use of the additional
information from the PWI proposed in this paper. It confirms that probability weighting is
an important factor for pricing securities and building profitable portfolios.

5.2 The Effect of Time-Varying Risk Aversion

From our empirical analysis in the paper, it follows that the risk premia depend critically
on whether the market is overweighting or underweighting tails, or in general on the time-
variation of probability weighting. However, risk preferences consist of two parts in our model,
risk aversion and probability weighting, which are both time-varying as shown empirically in
Subsection 3.1 of the main body of the paper. As a result, the impacts of the time-variation
of the two may be entangled in our previous analysis. In this subsection, we disentangle them
by controlling the risk aversion.

To do this, we assume that the risk aversion is constant over time and time-variation
is attributed all to the probability weighting. Following the procedure of Polkovnichenko
and Zhao (2013), we derive the implied probability weighting function, denoted as PW 7%,
also from option data. Different from the GMM method, Polkovnichenko and Zhao (2013)’s
method makes no assumption on the functional form of the probability weighting; instead it
assumes a power utility function with a fixed risk aversion (v = 2 in our analysis). Figure
Al(a) puts together PWIPZ and PW for easy comparison. The former has a much larger
variation than the latter. This is expected, because all the time-variation of risk preferences
is attributed to probability weighting under Polkovnichenko and Zhao (2013)’s framework.
On the other hand, Figure Al(a) also shows that the two indices tend to move in the same
direction. When we separate overweighting and underweighting periods by the two indices
respectively, there are only 12 months (among 244 months in total) that are labeled differently.

Panel A in Table A2 reports the Fama-MacBeth cross-sectional regression results under
PWItZ which is characteristically similar to our main results presented in Panel A of Table 2
in the paper. In Panel A of Table A2, A is significantly positive during overweighting periods
and significantly negative during underweighting periods, and B almost doubles its overall
value during overweighting periods yet becomes insignificant during underweighting periods.
Comparing Panel A of Table 2 in the paper with Panel A of Table A2 here, the results of the



Table Al: Two-way sort results based on PW[

Panel A: average returns of coskewness-covariance-sorted value-weighted portfolios

covariance

Periods  coskewness 1 2 3 4 5 (5-1) t-statistic of (5-1)
1 1.17%  1.25% 1.33% 1.28%  0.79%  -0.38% (-0.99)
2 1.06% 1.20% 1.24% 1.01% 0.89%  -0.17% (-0.39)
All 3 1.08% 1.20% 1.15% 1.11%  1.09% 0.01% (0.03)
4 0.90% 0.95% 1.06% 1.13%  1.09% 0.19% (0.44)
5 0.71% 1.11% 0.93% 0.95%  1.20% 0.49% (0.82)
1 1.28% 1.45% 1.70% 2.16%  1.88% 0.60% (0.93)
2 0.97% 1.09% 1.48% 141% 2.18%  1.22%* (1.72)
Over 3 1.01% 1.13% 1.18% 1.41% 2.30%  1.28%%** (1.97)
4 0.69% 0.83% 1.04% 1.36% 2.36%  1.67%** (2.37)
5 0.30% 1.20% 1.25% 2.00% 2.93%  2.63%%*** (2.64)
1 1.07% 1.06% 0.97% 041% -0.29% -1.36%*** (-3.19)
2 115%  1.32%  0.99% 0.61% -0.40% -1.55%*** (-3.37)
Under 3 1L15% 1.26% 1.13%  0.81% -0.11% -1.26%*** (-2.78)
4 1L11%  1.08% 1.07% 0.90% -0.18% -1.20%*** (-2.66)
5 1.12%  1.01% 0.62% -0.10% -0.53% -1.65%*** (-2.78)

Panel B: average returns of covariance-coskewness-sorted value-weighted portfolios

coskewness
Periods  covariance = 2 3 4 5 (5-1)  t-statistic of (5-1)
1 1.47%  1.20% 1.04% 0.99% 0.69%  -0.78%** (-2.33)
2 1.41% 1.15% 1.21%  0.98% 0.70% -0.71%*** (-3.03)
All 3 1.36% 1.21% 1.12% 1.06% 0.93% -0.44%** (-1.94)
4 1.46% 1.14% 1.08% 1.00% 0.85% -0.61%** (-2.50)
5 0.83% 0.88% 1.20% 1.07%  0.88% 0.06% (0.22)
1 1.75%  1.27%  0.90% 0.80% 0.27%  -1.47%** (-2.40)
2 1.67% 1.10% 1.18% 0.80% 0.56% -1.10%*** (-2.73)
Over 3 1.85% 1.44% 1.13% 1.13% 0.89% -0.96%*** (-2.59)
4 2.47% 1.88% 1.51% 1.27% 1.13%  -1.34%*** (-3.16)
5 2.22% 2.20% 2.47% 2.51% 2.22% 0.00% (0.01)
1 1.19% 1.14% 1.18% 1.19% 1.11% -0.08% (-0.32)
2 1.14% 1.20% 1.23% 1.16%  0.83% -0.31% (-1.35)
Under 3 0.88% 0.98% 1.10% 0.99% 097%  0.09% (0.37)
4 0.46% 0.40% 0.66% 0.74% 0.57% 0.11% (0.48)
5 -0.57% -0.43% -0.07% -0.37% -0.45% 0.11% (0.45)

Notes: The overweighting periods (Over) and underweighting periods (Under) are separated by the median
of PWI. The spread portfolio (5-1) is constructed by longing the 5th portfolio and shorting the 1st
portfolio. The t-statistics of the returns of the spread portfolios are reported. ***, ** and * denote
significance at the 1%, 5%, and 10% levels, respectively.



Figure A1l: Various probability weighting indices
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former with time-varying risk aversion are stronger with larger average absolute values of A
and B.

5.3 The Effect of Stochastic Volatility

The main thrust of this paper is to use probability weighting to explain empirical patterns
including the U-shape/bell-shape pricing kernels. In literature, a more conventional explana-
tion for the option pricing kernel puzzle is stochastic volatility (see Christoffersen et al., 2013).
In this subsection, we aim to disentangle the effects of probability weighting and stochastic
volatility.

Following Christoffersen et al. (2013), we characterize the S&P 500 index by Heston and
Nandi (2000)’s GARCH model,

log(She) = log(Smye—1) + 1y + (/l - %) he + Vi,

2
hy =v+ Bhi_1 +¢ (Zt—l — Ty ht—l) )

where z; has a standard normal distribution, and parameters (u, v, 8, (, 7) in each month are
estimated based on 1250 daily S&P 500 index return data up to the end of that month. We
further assume the following pricing kernel with stochastic volatility,

A Sare \? t
mf”:( M’t) exp (5t+n2hs+§(ht+1—h1)>,

SM’O s=1

(A4)

where the parameters ¢ and 1 govern the time preference, and ¢ and £ capture the respective
aversions to equity and variance risk. According to Christoffersen et al. (2013), the pric-
ing kernel 7" is consistent with the GARCH dynamics (A4) with the following mapping
parameters: 6 = —(¢ + 1)ry — v+ 2In(1 — 26¢), ¢ = —(p— 3 + 7)(1 —26¢) + 7 — 3,
n=—(pu— %)gb -+ (1-pB)¢— (3(_13522?;. Thus, £ is the only free parameter in determining
m:¥, which we now denote by m:" = m:¥(£).

To our best knowledge, there are no existing theoretical results for portfolio selection
under RDUT preference and stochastic volatility. Thus, we opt to disentangle the effects
of probability weighting and stochastic volatility empirically. To this end, we hypothesize
that the pricing formulae in the current model with both stochastic volatility and probability
weighting are

vl

O (o, K, T3) = Bl (€) (Saar, — K)o/ (1~ Fi, - (Rag)

T] RM T
A | ' (A5)
P (o, K, T5) = Bl (€) (K — Swny) /(1= Fi, . (Rur,)

where C*VP% and P*UTP" are the theoretical option prices and ¢ = (£, @) with « being the
parameter in the probability weighting function. Note that (A5) provides a flexible model
covering the two ingredients. Taking the call option formula for example, the price under only
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stochastic volatility, C*, is obtained from (A5) with o = 1 or w/(+) = 1, and the price under
only probability weighting, C?"| follows from (Ab5) with 7*Y = «/(+), as proposed in our paper.

Similar to Subsection 3.1 of the main body of the paper, we use GMM to estimate the
parameter value ¢ at the end of each month by matching the theoretical implied volatilities
with the real implied volatilities of OTM options (using the nearest maturity 77 and the
second nearest maturity 75):

= argmin g(p)g(e)",

where g(@) = [IVCS'U—HDU}(QO’ ch:h Tl)_IVCTeal(ch:la T1)7 T IVCS’U—H)M(%O’ K%,Q» T2)_IVCT€GI(K7§;,27 TQ)a
Ivliv—i_pw(gp’ K517 TI) - ]V£EGZ<K51’ T1>7 Tty ]V;v+pw(gp7 KrI:LzQ’ T2) - Ivgeal(KTZ%W T2)] Figure

A1(b) reports the newly derived probability weighting index PWINSY = 1/& (the black dash
dot line) and the original GMM-derived probability weighting index PW I in Section 3.1 of the
main body of the paper (the red solid line). These two indices again move together, having a
correlation coefficient 0.7550. Panel B of Table A2 reports the Fama-MacBeth cross-sectional
regression results under the new probability weighting index, PWIVSV. Comparing Panel B
of Table A2 here with Panel A of Table 2 in the paper, we can see that the new probability
weighting index PW V5V still has the ability to distinguish the signs of the risk premia, if
with slightly less effectiveness for the risk premium A and more effectiveness for the risk pre-
mium B. In sum, probability weighting still plays a significant role in pricing even taking into
consideration the dependence of the pricing kernel on stochastic volatility.

5.4 The Effect of Data Frequency

We have used monthly data in our empirical analysis in the paper. In this section, we change
the data frequency from monthly to weekly to check the robustness of our results.* As the
one-month maturity options are considered to be the most liquid options (see Bakshi et al.,
2010, Polkovnichenko and Zhao, 2013, Baele et al., 2019), we still use the one-month maturity
option prices to estimate the risk aversion and probability weighting parameters at the end
of each week. Then, following the same GMM estimation procedure described in Section 3.1,
we derive the preference parameters (a; and ;) at the closing of each Friday.

Furthermore, we use a 52-week window to estimate the covariance and coskewness for each
stock i at week t:

Tir = kit -+ covariance; 7y r + coskewnessiytf@T +é€r, T=t-052,--- t.

Note that because we use a smaller window to estimate the covariance and coskewness, we
have more stocks with available values in a given month, and thus have more stocks in the
cross-sectional regression; see the row of n in Panel C of Table A2.

4We choose not to test the daily data because they are known to be too noisy compared with weekly
or monthly data. Moreover, the switch between overweighting and underweighting tails occurs very slowly;
see Figure 5(b) in the paper based on monthly estimated probability weighting indices. It would then be
not necessary to use daily estimated probability weighting parameters to capture the much less frequent
overweighting /underweighting changes.
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Panel C of Table A2 reports the Fama-MacBeth cross-sectional regression results with
weekly data. Compared with the monthly data in Panel A of Table 2 in the paper, probability
weighting still has the ability to distinguish the signs of the risk premia, if with less statistical
significance and smaller values of the coefficients. Such slightly weak (but still statistically
significant) results are expected, since weekly data are known to be much noisier than monthly
data.

5.5 Results under Exponential Utility

Hitherto we have used power CRRA as the outcome utility function. Meyer and Meyer (2005)
argue that an accepted property of a utility function is that its elasticity is zero or (slightly)
positive. CRRA has zero elasticity and the exponential utility has a positive elasticity. So, in
this subsection, we take the latter as an alternative to analyze the robustness of our empirical
results.

Specifically, with the exponential utility we re-estimate the probability weighting param-
eter by the same GMM procedure in Section 3.1. For easy comparison we put the derived
probability weighting indices under both power and exponential utilities together in Figure
Al(c). Clearly, the two are almost identical with a correlation close to 0.9945. Moreover, these
two probability weighting indices result in exactly the same separation of overweighting and
underweighting periods. Therefore, the Fama-MacBeth results under the exponential utility
is the same as Panel A in Table 2 of the paper. In sum, changing CRRA to exponential does
not change our main results.

5.6 Results on the UK Data

We have carried out empirical analysis on the US market in the paper. In this section, we
test on non-US data, specifically the UK data.

We use FTSE 100 index option data and FTSE 100 index data to derive the monthly
option-implied probability weighting index. The monthly option data are obtained from
Bloomberg with a time window from January 2000 to December 2015. The daily index
data are from Bloomberg with a time window from January 2, 1995 to December 31, 2015.
Following the same GMM estimation procedure described in Section 3.1, we derive the pref-
erence parameters (o, and ;) at the end of each month, and separate the whole period into
overweighting months and underweighting months by PW VX,

We use the FTSE 100 constituents to perform the Fama-MacBeth regression analysis.?
The corresponding price data are obtained from Bloomberg ranging from January 1995 to
December 2015. Panel D in Table A2 reports the Fama-MacBeth regression results, which are
largely consistent with those on the US data. Specifically, during the overweighting periods
the risk premium of covariance is significantly positive and that of coskewness significantly

5We use only the FTSE 100 constituents because during the studied period, all the stocks listed in the
FEuropean markets were traded in London Stock Exchange and it is hard to clearly define the UK stocks from
the dataset.
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Table A2: Various Fama-MacBeth regression results

Panel A: Results under PWIFZ with fixed risk aversion

All periods Overweighting periods Underweighting periods
A 1.51 8.89** -5.87***
(0.65) (2.20) (-2.74)
B -0.88*** -1.64%*** -0.09
(-2.87) (-2.89) (-0.53)
Adj. R? 0.02 0.02 0.02
n 2695 2819 2571

Panel B: Results under PW TIN5V excluding stochastic volatility effect

All periods Overweighting periods Underweighting periods
A 1.51 9.15%* -6.22%**
(0.65) (2.09) (-3.11)
B -0.88*** -1.78%** 0.05
(-2.87) (-2.96) (0.25)
Adj. R? 0.02 0.02 0.02
n 2695 2801 2589

Panel C: Results under PWIweek with weekly data

All periods Overweighting periods Underweighting periods
A -0.46 1.82% -2.69%***
(-0.75) (1.76) (-4.26)
B -0.16** -0.37*** 0.02
(-2.23) (-2.70) (0.91)
Adj. R? 0.02 0.02 0.02
n 4726 5248 4217

Panel D: Results under PWIUVE with UK data

All periods Overweighting periods Underweighting periods
A 3.91 15.85** -5.18
(1.02) (2.02) (-1.62)
B -1.78%** -3.91%** -0.28
(-2.77) (-2.98) (-0.48)
Adj. R? 0.06 0.07 0.06
n 82 80 83

Panel E: Results under PWIOTMHITM with both OTM and ITM options

All periods Overweighting periods Underweighting periods
A 1.51 9.62** -6.55%%*
(0.65) (2.27) (-2.87)
B -0.88*** -1 7LRR* -0.04
(-2.87) (-2.85) (-0.21)
Adj. R? 0.02 0.02 0.02
n 2695 2819 2568

Notes: “Underweighting periods” and “Overweighting periods” are separated by the median for PWIFZ PWINSV  pyweek
PWIVE  pyw[OTM+ITM The average values of the coefficients, which are multiplied by 1000, are reported above and the
corresponding t-statistics are reported below in parentheses. *** ** and * denote significance at the 1%, 5%, and 10% levels,

respectively. The row labelled “Adj. R?” reports the average adjusted R-square of each regression. The row labelled

the average number of stocks in each cross-sectional regression.
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negative. During the underweighting periods, the UK risk premium of covariance is still
negative but not significant; thus the result is slightly weaker than the US counterpart.

5.7 Results Based on Both I'TM and OTM Options

In Section 3.1 of the paper, we derive the probability weighting index based on OTM options
only, for the reasons of better liquidity, price reliability, and the relevance of probability
weighting to the tail behavior of pricing kernel. In this subsection, we investigate how the result
will be affected by including both ITM and OTM options. The corresponding probability
weighting index derived is denoted by PW I[OTM+ITM “which contains the information from
the entire cross section.

The real traded S&P 500 index options at the end of each month usually do not have
exactly one month maturity; hence we obtain the interpolated prices of one-month maturity
options from OptionMetrics.® Following Baele et al. (2019), we consider 13 index calls with
deltas ranging from 0.2 to 0.8 (from OTM to ITM), and 13 index puts with deltas ranging
from —0.8 to —0.2 (from ITM to OTM). We further denote the strike prices of these calls and
puts as K<, -+, K§ and KT, -+, KE, respectively.

Given pricing kernel m, the theoretical prices of call and put options with strike price K
and one-month maturity are

C(0,K) = E[m(0)(Su — K)4], P(0, K) = E[m(0)(K — Su)+], (A6)

where Sy is the S&P 500 index value in one month, m(6) is the pricing kernel with 6 = (v, «)
being the preference parameters.

At the end of each month, we estimate an EGARCH model for the S&P 500 index with
1250-daily-window data. Then, based on the EGARCH model, we simulate 100,000 samples.
The theoretical options’ prices in (A6) are then approximated by summing over the 100,000
samples. Then, we compute

9(0) = [C(0,K}) = C™*(KY),---,C(0, K73) — CT(Kf),
P(@,Kf) - Preal(Klp)f" aP(e’ Klg) - Pmal(Kg)]?

where C™% and P are respectively the observed prices of the calls and puts from Option-
Metrics. In total, there are 26 moment conditions. Finally, we estimate 6 by solving

0 =arg min g(0)g(0)".

720,220

The time series of PW [OTMHTM (the blue dashed-dot line) and PWI (OTM only, the
red solid line) are plotted together in Figure A1(d). It is evident that PW [OTMHITM ig highly

6OptionMetrics constructs synthetic one-month implied volatilities (IVs) by using kernel regression approx-
imations to observed IVs for all traded options, and provides the standardized prices by inverting standardized
IVs at fixed delta and maturity values to prices based on Black—Scholes formula.
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correlated with PW I (with correlation coefficient 0.9783). On the other hand, PW [OTM+ITM
takes slightly lower values than PWI. This is expected, as OTM options contain informa-
tion about the tail behavior of the pricing kernel leading to higher values of PWI. As a
result, PW IOTMHITM tonds to yield more underweighting months. Indeed, during the to-
tal of 244 months, there are 121 overweighting months and 123 underweighting months by
PW [OTMAITM yegylting in a ratio between overweighting and underweighting months around
5:5. By contrast, the corresponding ratio is around 6:4 by PW 1.

We also run the Fama-MecBeth cross-sectional regression based on PW and
report the results in Panel E of Table A2, which show that PW IOTM+ITM gti]] has the ability
to distinguish the signs of the risk premia, if with less effectiveness.

]OTM+ITM

5.8 An Alternative Model for Testing Pricing Kernel

One of the referees suggested using an alternative model to test whether the pricing kernel (2)
in the main body of the paper really explains the cross-sectional differences between stocks
and market portfolios. The suggested model is

—E[f{z ~ fir] = beta(R;, m) == COV(% — fir, n?) ,
E[RM — RF] COV(RM — RF,m)

(A7)

which follows from the general fundamental equation E[(R; — Rp)i] = 0 regardless whether
probability weighting is considered or not. Recall that our three-moment CAPM model is also
derived from the same fundamental equation but with the specific form of the pricing kernel
under probability weighting along with its Taylor expansion up to the second order:

E[fi] = r; + ACov(is, ar) + %ch(fi, 2 4 o(i2,). (A8)

Compared with (A8), we believe the equation (A7) has some drawbacks when used for em-
pirical testing. Indeed, 7; and 7,; are directly observable, enabling the accurate computation
of Cov(7;,7pr) and Cov(7;,73,) in (A8). By contrast, the pricing kernel 7 in (A7) is not ob-
servable and can only be estimated (e.g. from option data); hence the terms Cov(R; — Ry, )
and COV(RM — Rp,m) may suffer from larger, compounded estimation errors. Moreover,
Cov (74, 7ar) and Cov(r;, 73,) are risk measures and the coefficients (A, B) are the correspond-
ing risk premia, which all have clear, well-established economic meanings. However, the
quantity beta(R;,7) in (A7) as the ratio of two covariances is foreign to us and its economic
interpretation is not clear.

Nonetheless, we go ahead to conduct empirical testing by carrying out the following Fama—
MacBeth cross-sectional regression:

Rz,t+1 RF,t+1 —C,- COVt(Rz,t RF,ta mt) + e, (A9)
Ryri+1 — Rpesa Covi(Rare — Rpg,my)
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where m; is estimated at the end of month ¢ using the method presented in the paper (with
probability weighting), and Covy(R;+ — Rpyt, m:) and Covy(Rpr: — Rpt, m:) are estimated with
a 60-month rolling window. Then we do a t-test for the estimated coefficients {C;}. The
following Table A3 reports the results:

Table A3: Empirical results for equation (A9)

parameter mean t-statistic p-value

C, 4211 7.999  5.23x10~4

The results indicate that the coefficient C; in (A9) is positive and significant; hence the
pricing kernel (2) derived in the main body of the paper at least reconciles with the cross-
sectional differences between stocks and market portfolios.

5.9 The Effect of Other State Variables

The same referee asked whether time varying probability weighting is driven out by standard
state and conditioning variables such as option implied volatility, option-implied skew, market
liquidity and credit yield spread. We collect the monthly VIX index as the option implied
volatility from the CBOE website, compute the monthly option-implied skew from the option
data at OptionMetrics using the approach of Bakshi et al. (2003), compute the monthly Ami-
hud illiquidity measure of S&P 500 index based on the index data from Yahoo Finance website
using the method of Amihud (2002), and obtain the monthly credit yield spread between Baa
corporate and US Treasure bonds from the website https://www.longtermtrends.net/bond-
yield-credit-spreads/. The time series of these variables are denoted as VIX;, OIS;, ILLIQ,
and CY Sy, respectively.

We then conduct linear regressions for the estimated PW I in month ¢ 4+ 1 with respect to
the above state variables in month ¢. The following Table A4 reports the results. The adjusted
R-square values indicate that these four state variables together can explain only about half
of the PW I’s variation. We stress that identifying more fundamental state variables driving
probability weighting is an outstanding open problem and deserves additional serious research
effort.
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Table A4: Linear regression results for PW1I;.; onto various state variables in month ¢

M1 M2 M3 M4 M5
Intercept 0.32***  1.45™*  0.79***  0.98*** 0.31*
(4.36)  (8.89)  (20.04)  (9.42) (1.78)
VIX  0.04** 0.04"*
(11.32) (8.17)
OIS 0.35" -0.11
(2.17) -(0.93)
ILLIQ 5.46"* 3.07*
(10.58) (4.82)
cys 0.05  -0.12***
(1.20)  -(2.63)
Adj. B2 0.34 0.02 0.31 0.00 0.51

Notes: The regression coefficients are reported above and the corresponding ¢-statistics are reported below in
, and * denote significance at the 1%, 5%, and 10% levels, respectively. The row labelled

parentheses. *** **

“Adj. R?” reports the adjusted R-square values of the regressions.
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