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Abstract

We study a model of a corporation which has possibility to choose various produc-
tion/business policies with different expected profits and risks. In the model there are
restrictions on the dividend distribution rates, as well as restrictions on the risk the com-
pany can undertake. The objective is to maximize the expected present value of the total
dividend distributions. We outline the corresponding Hamilton-Jacobi-Bellman equation
and compute explicitly the optimal return function and determine the optimal policy. As
a consequence of these results the way the dividend rate and business constraints affects
the optimal policy is revealed. In particular we show that under certain relationship be-
tween the constraints and the exogenous parameters of the random processes governing
the returns, some business activities might be redundant, i.e., under the optimal policy
they will be never used in any scenario.

Short Title. Dividend rate and business constraints
1 Introduction

In recent years we saw a lot of new results in application of diffusion optimization models to
financial mathematics. Together with portfolio optimization models, the dividend distribution

and risk control models have undergone a major development.
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In typical model of this type (see Jeanblanc Piqué and Shiryaev [11], Asmussen and Taksar
[2], Radner and Shepp [14], Boyle et al. [3], Hgjgaard and Taksar [8], [9], [10], Paulsen and
Gjessing [13], and Taksar and Zhou [16]) the liquid assets of the company are governed by a
Brownian motion with constant drift and diffusion coefficients. The drift term corresponds to
the expected (potential) profit per unit time, while the diffusion term is interpreted as risk.
The decrease of the risk from the business activities, corresponds to a decrease in potential
profits. Different business activities in these models correspond to changing simultaneously the
drift and the diffusion coefficients of the underlying process. This sets a scene for an optimal
stochastic control model where the controls affect not only the drift, but also the diffusion part
of the dynamic of the system.

In this paper we study a model with an explicit restriction on risk control and on the rate at
which the dividends are paid out. In addition there may exist liability which the company has
to pay out at a constant rate no matter what the business plan is.

The controls are described by two functionals a; and c¢;. The first represents the degree of the
business activity which the company assumes. The process a; takes on values in the interval
[a,0], 0 < a < B < 4oo. The risk, which in our model is associated with the diffusion
coefficient and the potential profit associated with the drift coefficient of the corresponding
process, are both proportional to a;. The constraints for the values of a; reflect institutional or
statutory restrictions (e.g., for a public company) that the risk it can assume cannot exceed a
certain level or that its business activities cannot be reduced to zero unless the company goes

bankrupt.



The value ¢; of second control functional shows the rate at which the dividends are paid out at
time ¢t. The dividends are paid out from the liquid reserve and are distributed to shareholders.
That corresponds to c; entering the drift coefficient of the reserve process with negative sign.
The dividend rate is bounded by a constant M given a priori.

In our model we also assume existence of a constant rate liability payment, such as a mortgage
payment on a property or amortization of bonds. The results of this model can be viewed
as an extension of the results of Choulli, Taksar and Zhou [4]. The presence of dividend rate
constraints, however, adds a whole new dimension to the analysis as well as to the qualitative
structure of the results obtained.

What is the most interesting is the interplay between the constraints and the exogenous parame-
ters governing the process of returns. Depending on the relationship between those parameters,
we get several distinct cases of qualitative behavior of the company under the optimal policy.
The paper is structured as following. In the next section we present a rigorous mathematical
formulation of the problem and state general properties of the optimal return or the wvalue
function. We also write down the Hamilton-Jacobi-Bellman (HJB) equation this function must
satisfy. In Section 3 we find a bounded smooth solution to the HJB equation. In Section 4 we
construct the optimal policy and present our main findings in a table form. Finally, in Section

5 we describe some economic interpretation of the results and conclude the paper.



2 Mathematical Model

We start with a filtered probability space (2, F, F;, P) and a one-dimensional standard Brow-
nian motion W; (with Wy = 0) on it, adapted to the filtration F;. We denote by R the reserve
of the company at time ¢ under a control policy © = (af, c];t > 0) (to be specified below). The

dynamic of the reserve process R] is described by
dR} = (afp — 8)dt + afodW; — cjdt, Rj =z, (2.1)

where p is the expected profit per unit time (profit rate) and o is the volatility rate of the
reserve process (in the absence of any risk control), § represents the amount of money the
company has to pay per unit time (the debt rate) irrespective of what business activities it
chooses, and z is the initial reserve.

The control in this model is described by a pair of Fi-adapted processes m = (af,cf;t > 0).
A control 7 = (af,cf;t > 0) is admissible if a < af < 5, and 0 < ¢f < M, Vt > 0, where
0<a< f<4ooand 0 < M < +o00o are given scalars. We denote the set of all admissible
controls by \A. The control component af represents one of the possible business activities
available for the company at time ¢, and the component ¢ corresponds to the dividend pay-out
rate at time ¢.

Given a control policy 7, the time of bankruptcy is defined as
7" =inf{t > 0: R} = 0}. (2.2)
The performance functional associated with each control 7 is

Jo(m)=E ( / " e el dt) : (2.3)
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where v > 0 is an a priori given discount factor (used in calculating the present value of the

future dividends), and the subscript « denotes the initial state z. The objective is to find

v(x) = sup J(m) (2.4)
mEA

and the optimal policy 7* such that
Jo (%) = v(z). (2.5)

The exogenous parameters of the problem are u,0,6,a,8 and . The aim of this paper is
to obtain the optimal return function v and the optimal policy ezxplicitly in terms of these
parameters.

The main tools for solving the problem are the dynamic programming and Hamilton-Jacobi-
Bellman (HJB) equation (see Fleming and Rishel [6], Fleming and Soner [7], and Yong and
Zhou [17], as well as relevant discussions in [2], [9] and [16]). We start with stating the following

properties of the optimal return function v.

Proposition 2.1 The optimal return function v is a concave, non-decreasing function subject
to v(0) =0 and
M

0<w(z) < v Vz > 0. (2.6)

Proof. The proof of the concavity and the monotonicity as well as the boundary condition,

v(0) = 0, is similar to the one in [4]. To show (2.6), consider

T 00 M
0<E ( / e el dt) <M / e Mdt = —.
0 0 Y



O
If the optimal return function v is twice continuously differentiable, then it must be a solution

to the following HJB equation

0 = mMaXa<e<p0<c<M (%ozaQV”(az) + (ap— 86 —c)V'(z) — vV (x) + c)
= maxacacs (50%a2V"(z) + (ap— O)V'(x) — 4V (z) + M (1 = V'(z))*), (2.7)
0= V/(0),

where 1t = max(z, 0). This equation is rather standard and its derivation can be found in [7],

[6], [17]; see also [9] and [10].

Note that we do not know a priori whether the HJB equation has any solution other than
the optimal return function. However, the following verification theorem, which says that any
concave solution V' to the HJB equation (2.7) whose derivative is finite at 0 majorizes the

performance functional for any policy , is sufficient for us to identify optimal policies.

Theorem 2.2 Let V' be a concave, twice continuously differentiable solution of (2.7), such that

V'(0) < +o0. Then for any policy m = (af,cf;t > 0),
V() > Ju(m). (2.8)

Proof. Let RT be the reserve process given by (2.1). Denote the operator

1 d? d
La — _ 2.2 7 _ — .
50 @ e + (ap —9) o o

Then applying Ito’s formula (see Dellacherie and Meyer [5, Theorem VIIL.27]) to the process
e "V (RF), we get
tAT
e TV (RE ) = V(z) + / BaaV! (RT)dW, (2.9)

6



tAT x tAT
+/ e L%V (RY)ds — / e "*V'(RI)crds.
0 0

Since V' is non-decreasing, concave with finite derivative at the origin, V'(z) is bounded and

the stochastic integral in (2.9) is a square integrable martingale whose expectation vanishes.

In view of the HIB equation (2.7) and the inequality ¢7 < M, we have
LEV(R]) < —c; (1= V'(RY)"

Taking expectations of both sides of (2.9), in view of (2.10) we get

E(e" V(RS ) < V(z) — E / " [V(RD) + (1 - VI(RD))T] ds.

Combining (2.11) with the fact that y + (1 —y)™ > 1, we get
tAT
E(e""V(RF ) + E/ e cids < V(x).
0
Note that in view of boundedness of V",

eIV (R, < e TK(L+ RY,,) < e E(L+ |R]))

(2.10)

(2.11)

(2.12)

for some constant K. Since R} is a diffusion process with uniformly bounded drift and diffusion

coefficient, standard arguments yield F|R]| < z + K;t for some constant K;. Therefore

Ee "M IV(RT ) =0
as t — oo. Thus taking limit in (2.12) as t — oo we arrive at

V(z) > E/T e ’cids = Ji(x).
0

(2.13)



The idea of solving the original optimization problem is to first find a concave, smooth function
to the HJB equation (2.7), and then construct a control policy (via solving an SDE; for details
see Section 4) whose performance functional can be shown to coincide with the solution to (2.7).
Then, the above verification theorem establishes the optimality of the constructed control policy.

As a by-product, there is no other concave solution to (2.7) than the optimal return function.

3 A Smooth Solution to the HJB Equation

In this section, we are looking for a concave, smooth solution to (2.7). Assume that such a

solution, V', has been found. Let
rp=inf{z >0 : V'(z) <1} (3.1)
Then for 0 < z < zy, (2.7) becomes

0 = max (%UQGQV”(x) + (ap —0)V'(z) — ’yV(m)) : (3.2)

a<a<p

while for z > x1, (2.7) can be rewritten as

0 = max (%02GQV”(.’L‘) + (ap— 6 — M)V'(z) — vV (z) + M) . (3.3)

a<a<p
We start with seeking a smooth solution to (3.3). Obviously if V'(0) < 1, then z; = 0 and

(2.7) is equivalent to (3.3) for all z > 0.
Proposition 3.1 If fu < 6, then V'(0) < 1.

Proof. Tt follows from (2.7) that there exits a € [a, (3] such that

0= %a2a2V”(0) + (ap— V') +M (1 =V'(0)". (3.4)



If Bu < 6, then each of the first two terms on the right hand side of (3.4) is non-positive with
the second being strictly negative. Therefore M (1 — V/(0))* > 0, which implies V'(0) < 1.
The same argument goes if Sy = ¢ and V”(0) < 0. In this case either the first or the second
term on the right hand side of (3.4) is strictly negative. If fu = § and V”(0) = 0, then the
maximizer of the right hand side of (2.7) is equal to 8 for all z in a right neighborhood of
0 (recall that V'(0) > 0). Substituting a = 3 either into (3.2) or into (3.3) and solving the
resulting linear ODE with constant coefficients we get a function V' whose second derivative at

0 does not vanish, which is a contradiction. O

Remark 3.2 When the dividend rates are unrestricted, the condition Sy < ¢ makes the
problem trivial (see [4], Theorem 4.1). This is not the case when the dividend rates are bounded.
Even if Su < 6 the second derivative of V' at 0 is strictly negative which makes the problem

nontrivial in contrast to a similar situation in the case of unrestricted dividends.

Now we analyze the solution to (3.3) under the condition Su > 6. As we will see later the
qualitative nature of this solution depends on whether a(z1) < aor a < a(x1) < fora(z;) > B,
where a(z) is defined by

pV' ()

a(z) = o) >0, <. (3.5)

To this end, we need the following proposition

Proposition 3.3 (i) If a(z,) > «, then for each x > z1,

a(z) > a. (3.6)



(i) If a(x1) > B, then for each x > w1,

a(x) > f. (3.7)

Proof. (i) Suppose there exists zo > 1 such that a(zq) < a. Then there exists € > 0 such
that a(z) < « for each x with |z — z¢| < €. Let 2’ = sup{z1 <z < xp: a(x) = a}. Then
z1 <12’ <zp < 9+ ¢ and a(z') = a. Since a(z) < «a for all z € [z, xy + €), the function V

satisfies (3.3) with the maximum there attained at a = «. Therefore
M f+(a)(z—2") _(a)(z—z) ’
V(z) = o + Ke™ + Kse , Yz €[z, o +e). (3.8)

Here

—(z—06— M)+ \/(z,u— § — M)? + 2y0222
Z2o?
zu—86— M) — \/(,z,u—(S—M)2 + 2y0222

2202

: (3.9)

—~

. 2>0. (3.10)

From (3.8) and (3.5), the equation a(z') = « can be rewritten as

p+ ac’F_(a)

K7 = —Kyr_
17+ (@) 2f (@) p+ ac?iy (a)’

which establishes a relation between the constants K; and K5. Using this relation, we calculate

L i (efFr @) (@)@ ) _ ntactis(a)
a(r) = ;uV” (=) _ M( - - —prac T:r(a)2)~ @y VT € [z, zg+€) (3.11)
o?V"(z) o? (7~“+(a)e(’“+(‘1)—7‘7 (@)(@=2") — F_(q) —Z+352;J:(Z))

However, we have a(z) < « for z > ', which after a simple algebraic transformation of (3.11)

is equivalent to e(™+(®)~7-())@=2') < 1 This leads to a contradiction. Therefore (3.6) holds.

(ii) By virtue of the assertion (i), a(x) > « for all z > z;. Suppose there exists z’ > z;
such that a(z’) < . Then there exists ¢ > 0 such that a(z) < S for all x < 2’ +¢e. Let

10



a(x) = B}. Then z; <z < 2’ and a(z) = . In addition a < a(z) < B

= —Zzﬂ;(% into (3.3), we get

for all Z < z < 2'. Substituting a = a(z) and V" (z) =

T=sup{n <z <z :

(3.12)

palz) V'(z) — (6 + M)V'(z) — 7V (2) + M.

0=
2

= @) jnto the resulting equation, we

Differentiating (3.12) and again substituting V" (z) = o%als)
obtain
W+ 20"y
a(z)d' (z) = (a(z) — 5)7. (3.13)

Then integrating (3.13) we get

2 2 2
W20 S, vi<a<a, (3.14)

M=) = -t

a(z) — a(z) + ¢ log <W

Ol O

which is a contradiction. Hence (3.7) holds and this ends the proof of the proposition.

First suppose that a(x1) > . In view of Proposition 3.3-(i), we deduce that a(z) > g for each

x > z1. Substituting a = 3 into (3.3) and solving the resulting equation, we get

—% or T,fwdepending respectively

Here Kj is a constant which takes on either the value

on the fact whether z; in (3.1) is zero or not. Then straightforward calculations show that

L Thus, the condition a(x;) > [ is equivalent to

U= 5 (6)
2p0+ M) > B. (3.15)

u? + 2yo?

c

Next suppose a < a(z1) < . By virtue of Proposition 3.3-(i), a(z) > « for all x > z;. As a
— _wV'(z)

o2a(z)

result, @ < a(z) < [ in a right neighborhood of x;. Substituting a = a(z) and V"(z) =

11



into (3.3), we deduce that a(x) satisfies (3.12). Then, following the same analysis there, we

derive the equation (3.13) for a(z).

Suppose there exists &' > z; such that a(z’) < ¢é (respectively a(z') > €), then from (3.13)
we deduce that a(z) < & (respectively a(z) > ¢é), for each x > z'. Thus, by integrating
(3.13) we derive (3.14) for all x > z', with Z replaced by z'. From (3.12) and (2.6), we see
that a(z) < W:—Ml, Vo > x1. Therefore, the left hand side of (3.14) is bounded. This is
a contradiction and we conclude that a(z) = ¢, for each x > x;. In view of the above, the

condition a < a(x1) < B can be rewritten as « < ¢ < . Now, substituting a = ¢ into (3.3)

2

and solving the resulting equation (noting that 7_(¢) = —%), we get
M ~ 028
Vizg)= —+Ke # @) vz >a,
Y

where K is a constant which takes on either the value of —%

or —-5- depending respectively
on whether z; = 0 or z; > 0.
Finally, suppose that a(z;) < a. Then it follows from the above that é < a. Therefore a(z) < «

for all z in a right neighborhood of z;. Substituting a = « into (3.3) and solving the resulting

linear differential equation, we get

M ; :
Vie) = X 4 Ky (a)d @@ 4 Fy(a)d- @), (3.16)
Y

where K;(a) and Ky(«) are free constants. If Kj(a) > 0, then the right hand side of (3.16)
is unbounded on [z1,00), which contradicts (2.6). If Ki(a) < 0, then the right hand side of
(3.16) becomes negative for x large enough, which again is a contradiction. Hence K;(«) = 0.

12



On the other hand, we have Ky(«) < 0 in view of V"(0) < 0. Therefore

M -
V(z) = — 4 Kye-(@@-a1),
g

where K, is a constant that takes on either the value —% or ﬁ depending on whether x; is

zero or not. Combining the above results, we can formulate the following theorem.

Theorem 3.4 Let 7_(«), 7_(B) and ¢ be the constants given by (3.10) and (3.15) respectively.
Let 1 be defined by (8.1). Then for x1 = 0 (respectively for x1 > 0) the following assertions
hold.

(i) If € > B, then

M N
Vie)=—+ Kpe- @)z > a, (3.17)

is a concave, twice differentiable solution of the HIB equation (3.3) on [z1,00), where Kz is
M - 1

equal to - (respectively to ) ).

(i1) If « < ¢ < B, then

M . -
V(z) = — + Ke%@ ™) 2> g (3.18)
g

is a concave, twice differentiable solution of the HJB equation (3.3) on [x1,00), where K is
M .

equal to —=- (respectively to — ).

(11i) If ¢ < «, then

M .
Vi) ="+ Ko@) g >y (3.19)

is a concave, twice differentiable solution of the HJB equation (3.3) on [x1,00), where K, a

constant equal to —% (respectively to ﬁ ).

13



Corollary 3.5 If 1 = 0, then the solution to (2.7) subject to (2.6) is given by

(1 - e”—w)w) . ifé> B,
= ifa<é<fB, Vz>0.
(1 — ef—(a)x) . ifc<a,

<
—~
8
~—
Il
SIS NENS
TN
—_
|
®
Q
&
[
N——

Corollary 3.5 shows that the qualitative nature of the solution depends on the relation between
2!‘—‘5, a and (. Accordingly, we will consider three cases. However, in contrast to the situation

with the unbounded dividend rates, each case here will consist of several subcases, each subcase

being associated with a different range for the value of M.

Remark 3.6 If neither —%ﬂ(ﬂ) < 1 when é < B, nor XL < 1 when o < é < B nor

v o?¢

—%71 (o) <1 when ¢ < « is satisfied, then the solution to (2.7) satisfies

V'(0) >1

The main purpose of the remaining part is to derive the solution to (3.2), and then to combine
the latter with Theorem 3.4. The solution to (3.2) is based mainly on the value of a(0). Thus,

first of all, we will present an analysis of a(0).

Proposition 3.7 Suppose the assumptions of Remark 3.6 hold. Then

i) 2 < o if and only if a(0) < a. In this case a(0) = 42—
b 2(pa—9)

i) a < 2 < Bif and only if a < a(0) < B. In this case a(0) = 22.
u

T |

(111) B < QN—‘S if and only if a(0) > B. In this case a(0) = 2(553).

Proof. The assumption of Remark 3.6, assume that x; is positive. Let a € [, ] be such that

0= max (%a%ﬂv"m) +(ap— 5)v’(0)) - %a%ﬁv"(m + (- 6)V'(0). (3.20)

a<a<p

14



Comparing (3.20) with (3.5) we obtain
a* — 2a(0)a + —a(0) = 0. (3.21)

From (3.21), it follows a(0) > %5. Moreover, by definition, a(0) € [«, B] is equivalent to
@ = a(0), which is further equivalent to a(0) = %‘5 € [a, B]. Thus we conclude:

(i) If a(0) < «, then QM—‘E < a(0) < a. Conversely, suppose Zu—5 < a. If a(0) € [a, B], then
by the above a(0) = %‘5 < « which is a contradiction. Thus either a(0) < « or a(0) > 5.
Suppose a(0) > f, then @ =  and by (3.21), a(0) = % < B (due to 27‘5 < a < (). This

is again a contradiction. Hence we have a(0) < a. Then @ = « and in view of (3.21), we get

a(0) = 4

2(ap—30) "

(ii) Suppose a < %‘5 < B. Then due to (i) we have a(0) > «. Now we proceed to prove
that a(0) < QH—‘i < B. Suppose a(0) > %‘5. Then a(0) > B = a. On the other hand, in

view of (3.21) we have a(0) = 46— thus

2 ﬂ2 . . . ) .
2(Bu—0) 50a—g) = B, which is equivalent to 20 > £ This

2(Bu

however is a contradiction and therefore a(0) = QH—J € [a, B). Conversely, if a(0) € [a, (), then

iii) Suppose f < 2. Then a(0) > 2 > 3, leading to @ = 8 and a(0) = . > . Con-
I I

2(Bu—0)
versely, if a(0) > 3, then @ = 8 and a(0) = %’% > 3, which is equivalent to QM—‘S > B. O

3.1 Case of 27‘5 <o

To resolve the equation (3.2), we begin our analysis with an observation that in this case,

in view of Proposition 3.7-(i), a(z) < « for all z in the right neighborhood of 0. We also

15



suppose that a(z;) > 8. This assumption is not a restriction, but gives us the solution of (3.2)
that corresponds to the maximal interval [0, z1). Substituting ¢ = « in (3.2) and solving the

resulting second-order linear ODE, we obtain
V(z) = ki (a, B)(e+ @ — er-(@), (3.22)

where k1(«, ) is a free constant to be determined, and
(o — 6 —5)2 4 952,212
ro(z) = (zp )+[(zu2 : )"+ 207
_ —(zp = 0) = [(21 = 0)* + 20%2%]'/?
0222

(3.23)

, 2> 0.

Due to (3.5) and (3.22),

) BV @ = VEVOE) _ —pr(a)r (@l @ 1 ()  r_(@)’
N (L) B e &

for each z in the right neighborhood of 0. Therefore a(z) increases and reaches « at the point

X given by

(3.24)

v — 1 r_(a) (n+ 04027"_(04))) -

@ =1 (@) <r+<a> (4 + a0?r(a))

By virtue of Proposition 3.3 (i), a < a(z) < 8 in the right neighborhood of z,. In this case we

substitute a = a(x) and

—puV'(x)
Vi(z) = 4 3.25
@) = o (3.25)
into (3.2), differentiating the resulting equation and substituting V" (z) = %%2 once more,
! 5 2 2 2
we arrive at F2 () + B e i . As a result
2 o?a(x) 202
2 2 2
d(z) = 2T - _C (3.26)

a(x)

po?

16



with
c=20p/(1? + 2v0?). (3.27)

Integrating equation (3.26) we get G(a(z)) = L1237 (z — z,) + G(a), where

po?

G(u) = u+ clog(u — c). (3.28)
Therefore
2 2
1 (K +2v0
a,(m) =G 1 (T(.’E — xa) + G(a)) . (329)
Thus a(x) is increasing and a(zg) = (3 for
2 2 2
_ Mo B _ o B poc p—c
0a = T GO - G+ e = AT (- a)+ AT 1P 30)
Solving equation (3.25) we obtain
Via) = Viza) +V/(wa) [ —ﬂ/yd—“ dy, 5o <1< (3.31)
z) =V(z, Ta) [ exp | =5 | a() Y, To <x< I, .

where V(z,) and V'(x,) are free constants. Choosing V(z,) and V'(z,) as the value and the
derivative respectively of the right hand side of (3.22) at x,, we can ensure that the function
V' given by (3.22) and (3.31) is continuous with its first and second derivatives at the point z,
no matter what the choice of k(«, ) is. (Note that due to the HJB equation, continuity of V'
and its first derivative at z, automatically implies continuity of the second derivative as well.)

Next we simplify (3.31). First, changing variables a(u) = 6 we get

2

T
z o (Y du o /a(w) c 0—c
— —dy | = ——7— 1 db, ro <z < T8
/xanp< nlo /xa a(u) y) p2 + 2702 Ja ( +0—c) a—c ) Fa =TSP

On the other hand, relations (3.24) and (3.22) imply

op—20_,
V(ze) = > V'(2qa)-

17



Simple algebraic transformations yield

2
uo c z-—c zp— 20
— | (= - = Vz >0 3.32
<u2+2w2>(r 1—F) 2y T (3:32)

where ¢ is given by (3.27) and
2

_ H
= o (3.33)
Therefore
. pa(z) =20 (a(z) —c -t
= < . .
Vz) =V'(z,) % p— , Lo << 18 (3.34)

The same arguments as in Proposition 3.3 (ii) show that a(z) > g for each z > z3. Thus,

substituting a = £ into (3.2) and solving the resulting ODE, we get
V(z) = ky(B)e+B@=o1) 4k (B)er-Bl=a1) - g < g < 1, (3.35)

where k() and ky(3) are two free constants to be determined. The continuity of (3.31) at zg,
together with simple but tedious algebraic transformation (similar to the ones used above to

simplify (3.31) to (3.34)) lead to

a—C

V(za) = V'(25) (ﬁ - C>F. (3.36)

Let ¢ be given by (3.15) and

2 2 4 947
on >“+ 77 2>, (3.37)

M, =(z-
? (z 2 + 202y 24
Then, ¢ > [ (respectively ¢ = ) is equivalent to M > My (respectively M = Mp). This is

the first subcase we will consider.
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3.1.1 Case of M > Mjy

Our assumptions imply that in this case, a(z;) > £, which is equivalent to z; > z3.
Combining (3.22), (3.34), (3.35) and Theorem 3.4-(i) we can write a general form of the solution

to (2.7) and (2.6):

Ki(a, B) (e”("‘)z — e"—(a)x) , 0<z<xq,
T
V(x) _ V/(xa)ua(g)—% (asﬁzc) 7 To < < g, (3.38)
Ky (B)er+ @) L Ky (B)er- a0 2y < 4 < @,
My L)) £ >
~ 7 ) = )

where 74 (a), r_(), r4+(B) and 7_(8), x4 and z are given by (3.23), (3.24) and (3.30) respec-
tively, and K1(8), K2(8), K1(«, 8) and x; are unknown constants to be determined. Continuity

of the first and the second derivatives at x; results in
Vl(ﬁl) = 1, V”(CCl) = f,(ﬁ)
This gives us two equations

1=K (B)r+(B) + Ko (B)r_(B), 7—(8) = K1(B)r’.(B) + K2(B)r” (B),

whose solutions are

r(8) —r(B)

BN T ) I () M R N ) I ) M
Put A = 23 — z,. As before, using the principle of smooth fit at z3, we get
AL (B =) (BT (B)
N Borar ) Lk o e e <o) R
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The expression on the right hand side of (3.40) is negative due to ¢ > 3. In view of (3.40) and

(3.39) we can derive a simplified expression for V'(zz):

2,7 (B)A r+(8) —7-(B)

Vilas) = bo 1+ B0, (B)

The continuity of V' at z,, yields V'(z,) = Ki(a, ) (u(a)e”(a)‘”a —r_ (a)er—(o‘)“a) . Combin-
ing this equality with (3.36), we get

V'(zp) (%)r

Kl(a’ /B) = ,,,.+(a)€r+(a)ma _ rr_(a)er—(a)xa ’

(3.41)

Theorem 3.8 Let a(z) be a function given by (3.29) and (), r_(c), 7+(B), r—(B), Ta, xp,
¢, T, 7 (8), Ki(B), K2(8), K1(c, B), and x1 be given by (3.23), (3.24), (3.30), (3.27), (3.33),
(8.10), (3.39), (3.41), and (3.40) respectively. IfZM—‘S < a and M > Mg, then V given by (3.38)

is a concave, twice differentiable solution of the HJB equation (2.7), subject to (2.6).

Proof. From the way we constructed V, it is a twice continuously differentiable solution to the

HJB equation (3.2). What remains to show is the concavity. From (3.38), we deduce that
V" (z) = ki(a, B) (ri(a)e”(a)x — Ti(a)er‘(a)”) >0, V0<z<z,,

due to r_(a) < 0 < ki(a, B). Hence on this interval V" is increasing and

V”(m) < V”(xa) = kl(aa /B) (7'_21_(0{)6'”'(&)30& - 7'3 (a)eu(a)za) < Oa

r_(«) 7

due t — elr+(@—r-(a)za 514 |1 > .

ue to (o) e and [r_(a)| > ry (@)

For zo <z <z, V'(z) = #Eg) <0. Forzg <z < zy,

VI (2) = ki (B (B)er P ) 4 ky()r ()P ) >,
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since ko(B) and r_(B) are of the same sign. Thus V"' (z) < V"(z1) <0, Vzg <z < z;. Finally,
V"(x) < 0, Vo > x1. This establishes the concavity of V. Since V'(z) > 1 for z < z; and

V'(xz) <1 for x > x4, it is clear that V satisfies (2.7). O

3.1.2 Case of M, <M < Mg

Expression (3.37) shows that § > ¢ > « if and only if Mg > M > M,. From (3.29) we

see that the condition f > & > « is equivalent to 8 > a(z1) > a. In view of Theorem 3.4,

2

a(z) < a(zy) < B, for all x > 0. This also implies V'(z1) = 1. As a result K = —%. Taking
into account, (3.22), (3.34) and (3.18) we can write the expression for V' as follows

Ki(a, B) (e”(a)z — e’"*(")x) , 0< <z,
-r
Vo =] Vit (422) 7 <o

2y = —c
2z —
M _ 0%~ (e—e1) T > 1.
v 7 ’ =

For a(z) given by (3.29), the root of the equation a(z,) = ¢ can be written as

2 — po? /5 udu po? (¢ — %6) n po? log c—c . (3.42)
pr+20%yJ B u—c  p?+20%y  p’+ 207y QN—J—C

r
The continuity of V' at z; leads to V'(z,) = (é_cc) . Consequently

m
T
c—c
2% _¢
©w

i (a,)em.(a)wa _ ri(a)er_(a)wa :

K1(Oé, 5) = (3.43)

Theorem 3.9 Let a(z) be a function given by (3.29) and vy (), r_ (), Ki(o, B), Za, 21, €,

[, and ¢ are given by (3.23), (3.43), (3-24), (3-42), (3.27), (5.83), and (3.15) respectively. If
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2u—6<aandMa<M§Mg, then

Ki(a, B) (e+®7 —e=()) | 0 <z < x,,
V(.Z‘) = ua(z‘ (a?,)cc) To < < T4, (344)
2¢ ,— = (z— 561)
T L e , T > T

is a concave, twice differentiable solution of the HIB equation (2.7) subject to (2.6).

Proof. The proof of this theorem follows the same lines of those of Theorem 3.8. O

Now suppose that M < M,. Then a(z) < a(z;) < «a for each z > 0 (since a(z) is increasing on

[0, z1) and is constant for x > z1; see Theorem 3.4). If V'(0) > 1, then z; > 0 and V'(z1) = 1.

As a result K, = Ll(a). In view of (3.22) and (3.19), the function V is given by
Vi) = { b ey ) 05 (3.5
) ’ =
The smoothness of V' requires
Vi(zi—) =1, V'(x1-) =7_(a),
which translates into
ki(a, B) (m(a)e“r(o‘)g”1 —r (a)e"(a)wl) =1, (3.46)
ki(a, B) (ri(oz)e”("‘)“Cl — r%(a)erf(”‘)ml) =7_(a).
Excluding k1 («, ), we get an equation for z;
ptrs(@)r—(@en _ (@) (r_(a) = 7 (e)) (3.47)




This equation has a positive solution if and only if

a?o?y
M > M, =——. 3.48
This proves the following
Proposition 3.10 If QM—‘S < «, then
a’o?y
V'0)>1 4ff M
0)>1 4ff M> 2op—90)
Let M, be given by (3.37) and
22oty )
M, =— > —.
0(2) 2(2/1,—5)’ z 1

A simple analysis shows that f(z) = My(z) — M, is a decreasing function of z and f(ZH—‘S) = 0.
Similarly, we claim that My(z) is decreasing for z < %‘5 and increasing for z > %‘5. Thus, we

derive the following inequalities

260 20
20 . 26
M, < M()(Ck) < M()(F) < Mg, if a< ; < pB. (350)
20 . 20
M, < Mg < Mo(;) < Mo(ﬂ) < Mo(O[), if /6 < E (351)

Since the qualitative behavior of the solution to (3.2) (respectively to (3.3)) depends on the
value of a(0) (respectively of a(z1)), in accordance with (3.49) we will distinguish and study
the remaining subcases in the following subsections.
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3.1.3 Case of My(a) < M < M,

This is the case when (3.47) has a positive solution z; given by

1 _
T = log (T (o

(3.52)

N
—
k
—
Q
N
I
< lﬁz
~—
Q
N—r
N—r
N———

Theorem 3.11 Let (), r (a), 7 («) and x, are given by (3.23), (3.10) and (3.52) respec-
tively and ki(«, B) be determined by (3.46). If %‘5 < a and My(a) < M < M,, then V given

by (3.45) is a concave, twice continuously differentiable solution of (2.7) subject to (2.6).

Proof. The proof of this theorem follows from that of Theorem 3.9. O

3.1.4 Case of M < My(«)

By virtue of Proposition 3.10, this assumption results in V'(0) < 1. As a consequence, x1 = 0.
As shown in Theorem 3.4, this leads to a(x) = a(0) for each x > 0. Since M, > My(«), we can

apply Corollary 3.5 to deduce a(0) < a.

Theorem 3.12 Let 7 («) be a constant given by (3.10). If 2u_5 < aand M < My(«), then
M -
V(z)=—(1—€e-@2)  z>0, (3.53)
(1 o)
is a concave, twice continuously differentiable solution of (2.7) subject to (2.6).

Proof. See Corollary 3.5. O
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3.2 Caseofag%‘s<,8

In this subsection, we will investigate the second main case of @ < a(0) < 3. Asin the precedent

section, if we assume a(z;) > §, then (3.2) admits the following solution

T
! pa(z)—24 [ a(z)—c
Vi) =4 VO ( Te) 0=z <ap (3.54)
K (B)er+ @@ 4 Ky (B)er B2 15 < g < a4
Here
2 2
o o 20uc B—c
=———[G(B) —G(2§ =——(B-26 1 .
Te= ey 2702[ (8) — G(20/p)] 2+ 3707 (B—26/p) + 21900 og(%/u —), (3.55)
and the function a(z) is defined by
2 2 2
a(r) =G (M ‘;0;70 T+ G(25/,u)> € [26/u, o0), (3.56)

where G is given by (3.28).
As before, the solution to (2.7) is derived by combining (3.54) and (3.3), by distinguishing

subcases as follows.

3.2.1 Case of M > Mjy

As in Subsection 3.1.1, consider the case of 1 > z3. This case is characterized by M > Mg,
which is also equivalent to ¢ > 3. As a result, we get V'(z;) = 1. This leads to K = 7,_1@
(see Theorem 3.4-(i)). Then using (3.54) and Theorem 3.4-(i), V' can be represented in the

following form

—I
V’(O)““(?J% (ag)cc , 0< <z
V(x) = Kl(ﬁ)er.,.(ﬁ)(wfwlst_i_ KQ(ﬁ)er_(ﬁ)(:cfm)’ Tp <z<ux, (357)
¥t Eme O, vz
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where a(z), Ki(B8), K2(B8) and z; are given by (3.56), (3.39) and (3.40) respectively. Let
A = zg — z; be given by (3.30). Continuity of V at zz yields

2y B—c r
uB—26 % —c

T K (B)er+ DA + Ky(B)er-BA

V'(0)

(3.58)

Theorem 3.13 Let V'(0), a(x), ¢, T', K1(B), Ko(5), =1, and & are given by (3.58), (3.56),
(3.27), (3.33), (3.39), (3.40) and (3.15) respectively. If o < 27‘5 < B and M > Mg, then V(z)

given by (3.57) is a concave, twice continuously differentiable solution of (2.7) subject to (2.6).

Proof. The proof results from combining (3.54) and Theorem 3.4-(ii). O

To classify the remaining cases, suppose M < Mg. Let V/(0) > 1. In this case z; defined by

(3.1) is positive. Therefore, using (3.54) and Theorem 3.4 (ii), we can represent V' as

-
vy = | VO (9) ;o 0<w<m, (3.59)
)= o2é 0%e ,— 5= (z—z1) |
Viay) + 58 = e a7, a2,

where a(z) and ¢ are given by (3.56) and (3.15) respectively. As a consequence, we get
a(zy) = ¢ (3.60)

Continuity of V'(z) at = x; (see (3.26) for the expression of the derivatives of a(x)) along

with (3.60) results in

V'(0) = (;i) : (3.61)

(3.62)
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The unknown constant z; is the root of the equation (3.60). Recalling (3.56), we see that (3.60)

admits a positive solution if and only if

20, 26%0%y
M > My(—) = . 3.63
o M) 2 (3.63)

Proposition 3.14 Suppose a < QH—J < . Then

V) >1 iff M> MO(QM—(S).

In view of this proposition, we distinguish the remaining subcases as follows.

N

3.2.2 Case of My(2) < M < Mg

=|

Substituting (3.56) into (3.60), we obtain

2

¢ udu  pot(c—% 2 ¢ —
7 =t / udu _po (=) po ~log st (3.64)
I

:,u2+2027 %u—c_ w2+ 20%y  p?+ 202
Theorem 3.15 Let a(x), ¢, I', ¢, and x, be given by (3.56), (3.27), (3.33), (3.15), and (3.64)

respectively. If a < %‘5 < f and MO(QM—J) < M < Mg, then

ua(z)—28 (a(ac)—c)_F 0< 1<z
— 2 c—c ? — L
V(.’E) - { % _’Y %efﬁ(w—ml)’ T > 1 (365)

is a concave, twice continuously differentiable solution of (2.7) subject to (2.6).

Proof. The proof of this theorem follows from that of Theorem (3.54). O

3.2.3 Case of M < MO(QM—‘s)
Note that in this case, V'(0) < 1 due to Proposition 3.14. From (3.50), it follows that a(0) =
¢ < p.
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Theorem 3.16 Suppose a < %‘5 <band M < MO(%‘;). Let ¢ and 7_(«) be given by (3.15) and
(8.10) respectively.
(i) If a < %‘5 and o < ¢, then

M

V() y

l—e %%, >0 3.66
( ). (3.66)

is a concave, twice continuously differentiable solution of (2.7) subject to (2.6).
(i) If « = %‘5 or ¢ < a, then

M _
V(z)=—(1—¢-®?) 2>0 3.67
(z) 5 ( ) (3.67)

is a concave, twice continuously differentiable solution of (2.7) subject to (2.6).
Proof. See Corollary 3.5. O
3.3 Caseof%<ﬂ§%‘5

We now investigate the final main case, % < pB < QN—‘S. Suppose V'(0) > 1. Then z; defined by
(3.1) is positive. In view of Proposition 3.7 (iii) and Proposition 3.3 (i), a(z) > g for all z > 0.

Therefore, using (3.62) and Theorem 3.4-(i), V' can be represented as follows

K (er+Bz _er-Bz) (< 1 <
V(z) = { M (e 1 ;_ig)(wwl))’ ; TSI (3.68)
o + —@° , X > X1.
The principle of smooth fit for V' at z; yields
Vi(@i—) = K (ry(B)e P —r_(B)er-m) =1, (3.69)
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Thus

(re(B)—r_ (e _ T-(B) (r(B) = 7_(B)) 270
‘ 2 (8) s (B)— 7 (B)) (370)
which admits a positive solution x; iff
B 0.252,)/
M > My(B) = 25— (3.71)

Proposition 3.17 ]f% <p< 27‘5, then
VI0)>1 iff M > My(B).

Proof. The proof of this proposition follows from the calculations in this and in the previous

subsections. O

In view of the above proposition we need only to treat two subcases, namely, M > M,(/3) and

M < My(B), to complete our analysis.

3.3.1 Case of M > My(B)

In this case, (3.70) has a positive solution z; given by

- ! (B (B =7 (8)
(O <T+(ﬂ) (r+(8) - 71(5))) ' (3.72)

Theorem 3.18 Let x1, 7.(3), and r_(B) and 7_(B) be given by (3.72), (3.23), and (3.10)
respectively and let K be a constant determined from (3.69). If% <p< QM—J and M > My(B),
then V' given by (3.68) is a concave, twice continuously differentiable solution of (2.7) subject

to (2.6).
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Proof. By differentiating the expression (3.68), we obtain
VO(z) =K (ri(ﬁ)e”(ﬂ)m - Ti(ﬁ)e“(ﬁ)m) >0, 0<z<ux.

As a result, V"(z) < V"(z1) =0 and V'(z) > V'(x1) = 1. This proves that V is concave. O

3.3.2 Case of M < My(B)

In this case, in view of Proposition 3.17, V'(0) < 1. Therefore, z; defined by (3.1) equals zero.

Theorem 3.19 Suppose that either 8 < %, or % <p< %‘5 and M < My(B). Let 7—(B), 7—(«)
and ¢ be given by (3.10) and (3.15) respectively.
(i) If M > Mg, then

M ~
Vig)=—(1—-¢-®=) >0 3.73
(z) 7( ) (3.73)

is a concave, twice continuously differentiable solution of (2.7)subject to (2.6).

(ii) If Mo < M < Mj, then

V(m)z;(l—e*ﬁ_ﬂ), x>0

is a concave, twice continuously differentiable solution of (2.7) subject to (2.6).
(111) If M < M, then

V(z) = % (1 — e’:‘(a)””) , >0

is a concave, twice continuously differentiable solution of (2.7) subject to (2.6).

Proof. In the case of f < %, the inequality V/(0) < 1 holds due to Proposition 3.17. Then
by applying Corollary 3.5, the desired result follows. On the other hand, if % < p < QN—‘S and
M < My(B), then V'(0) < 1 (see Proposition 3.1). Thus, in view of (3.51), Corollary 3.5 can
be applied again to obtain the results. O
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4 Optimal Policies

In this section we construct the optimal control policies based on the solutions to the HJB
equations obtained in the previous section. The derivation of the results of this section is
simpler than the corresponding one in [4], in view of the fact that no Skorohod problem has to
be involved in this case.

Suppose V' is a concave solution to the HJB equation (2.7). Define

a*(z) = arg max (%0’2G2V”($) + (ap — 8)V'(z) —yV(z) + M (1 — V'(:U))+) : (4.1)

a<a<p
and
M*(z) = M1{z>s,},
where z; is defined by (3.1). The function a*(z) is the optimal feedback risk control function
while the function M*(x) represents the optimal dividend rate payments, when the level of the

reserve is .

Theorem 4.1 Let R;;t > 0, be a solution to the following stochastic differential equation

dR; = [a*(R})p — 6 — M*(R})] dt + a*(R})odW,,

R (4.2)

Then for m = (aj, ¢t > 0) = (a*(Ry), M*(R});t > 0), we have
Jp(7*) =V (x), Yz >0. (4.3)

Proof. For simplicity assume that the initial position £ < z;. In this case the process R} as a

solution to (4.2) is continuous. In view of (4.1) and (2.7)

La*(R:)V(R:) o M*(R:)VI(R:) + M*(R:) — 0’ (44)
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(since M(1 —V'(z))" = M*(x)(1 — V'(x))) where the operator L is defined in the proof of
Theorem 2.2. Repeating the arguments of the proof of Theorem 2.2 and applying (4.4), we see

that (we write 7 instead of 7™ below, since there would be no confusion)
tAT
E(e V(R ) = V(z) - E / e~ ds. (4.5)
0

Taking limit as ¢ — oo, and applying (2.13), we obtain the desired result. O

Combining Theorems 2.2 and 4.1, we get the following result immediately.

Corollary 4.2 The function V presented in Section 3 is the optimal return function and 7 is

the optimal policy.

Next we summarize all the results we obtained in the following tables for easy reference.

1 is the
first point
Risk Risk S the
Range for " .
v Ta zg a*(z) ever ever z1 possible
attained attained maximal
risk is
attained at
positive positive (i) a, for z € [0,zq];
and and (ii) increases from positive;
M > Mg finite; finite; a to B on [za, z3]; yes yes see no
see see see (3.29); (3.40)
(3.24) (3.30) (iii) B, for x > xp

(i) a, for z € [0,zq];

positive (ii) increases from

2p(8+M) .
a to .
M, < M < Mg am.i AT no positive;
B =N Pu— finite; 00 on [Za,z1]; yes ”e see yes
-8 see see (3.29); Y (3.42)
ooy 2u(5+M
(3.24) (iii) W,
for z > z1
positive;
Mo(a) < M < My 00 00 o yes no see no
(3.52)
M < My(a) 00 00 a yes no 0 yes
Table 1: The case of — < «
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1 is the first
Risk a Risk g point the
Ran%; for Ta zg a*(z) ever ever 1 possible
attained attained maximal risk
is attained at
positive (i) increases from yes, if
and 2u_6 to B a :’ 25. positive;
M > Mg 0 finite; on [0, zg]; o ifu ’ yes see no
see see (3.56); o ’> 26 (3.40)
(3.55) (ii) B, for x > zp b
(i) increases from
§+M .
2#—6 to 7/2"53_;02) yes, if e
Mo(B)y< M <M on [0, z1]; a=2; no positive;
LA A 0 0 » b P see yes
M=M see (3.56); no, if yes
A oy 20(54+M) 26 (3.64)
(ii) PEET for a><
T > T
My < M < Mo(%) 0 0 % no no 0 yes
M < M, 0 e} « yes no 0 yes
Table 2: The case of a < — < 3.
7 is the first
Range for Risk a Risk g point the
%/[ ZTa xg a*(z) ever ever z1 possible
attained attained maximal risk
is attained at
positive;
M > Mo(B) 0 0 B no yes see no
(3.72)
Mpg < M < Mo(B) 0 0 B no yes 0 yes
Mo <M < Mg 2u(5+M) no
— M= | | ® | ¥ | e no 0 yes
M < Mg ] [e's) « no no 0 yes
Table 3: Th f 2 <2
able 3: e case o ﬁ<ﬁ_;.
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5 Economic Interpretation and Conclusions

The optimal policies obtained in the previous sections have clear economic meaning and are
very easy to implement. Let us now elaborate.

The risk control policy is characterized by two critical reserve levels: z, and xg. The values of
these two levels are further determined by the four parameters: the minimum risk allowed (),
the maximum risk allowed (/3), the ratio between the debt rate and profit rate (%), and the
maximum dividend rate allowed (M). Specifically, there are three different cases to consider.
The first case is when the company has very little debt compared to the potential profit (so
that QH—‘S < ). In this case, if the maximum dividend rate M is large enough (M > Mjp), then
both the critical reserve levels, z, and x, are positive and finite. In other words, the company
will minimize the business activity (i.e., take the minimum risk «) when the reserve is below
the level z,, then gradually increase the business activity when the reserve is between z, and
zg, and then maximize the business activity (i.e., take the maximum risk 5) when the reserve
ever reaches or goes beyond the level z5. This policy is the same as that obtained in [4] for the
case of unbounded dividend rate. Next, if the maximum dividend rate M is at a medium level
(M, < M < Mg), then z, remains positive and finite while zz becomes infinity. This implies
that the company will become less aggressive, in particular it will never take the maximum
risk, due to a more restrictive dividend pay-out upper bound. Finally, if M is so small that
M < M,, then both z, and z turn out to be infinity, meaning that the business activities will
be carried out at the minimum level or, those business activities are redundant.

The second case is when the company has a higher debt-profit ratio (so that o < 27‘5 < B). In
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this case r, = 0. This means that no matter how small the reserve is the company will never
take the minimum risk; rather it will start with a bit higher risk level and gradually increase it.
On the other hand, whether it will ever increase to the maximum possible risk (ie., whether z4
is finite or infinite) depends on the value of the maximum possible dividend rate M, in the same
way as in the first case discussed above. Therefore, in the second case the company overall has
to be a bit more aggressive than in the first case. This can be explained by the fact that when
the debt rate is high one needs to gamble on the higher potential profits in order to get out of
the ”bankruptcy zone” as fast as possible, even at the expense of assuming higher risk.

The company becomes even more aggressive in the third case when the debt-profit ratio is even
higher (precisely when 2 < § < 2}). In this case, when the maximum dividend rate M is large
enough (M > Mp), the maximum allowable risk § is taken throughout while the two critical
levels z, and x4 are both zero. On the other hand, when M is small enough so that M < M,,
the business activities are carried out at the minimum level a throughout.

On the other hand, the optimal dividend policy is always of a threshold type with the threshold
being equal to z; (which is positive or zero). Namely, the dividend distribution takes place
only when the reserve exceeds the critical level x1, in which case the dividend pay-out rate is
M.

It is interesting to note that in the case of unbounded dividend rate, the maximum business
activity is always taken before dividend distributions ever take place; see [4]. However, in the
present case of bounded dividend rate, the company may need to pay dividends before the

maximum risk level 5 is ever taken; refer to Tables 1-4 for details. This represents a striking
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difference between the cases of unbounded and bounded dividend rate. The economic reason
for such a behavior is the following. When there is a significant constraint on the dividend
rate there might be not necessary to pursue the business aggressively because the accumulated
liquid assets could not be paid out as dividends fast enough anyway.

In conclusion, we would like to point out at an intricate interplay between the restriction on the
dividend distribution rate and that on the risk control of a financial company. The sheer number
of qualitatively different optimal policies, which appears due to different possible relationship
between exogenous parameters, shows the multiplicity of different economic environments which
a financial company faces depending on the size of the debt, on the constraint on the dividend

rate, and on the size of available business activity.
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