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Abstract

This paper is concerned with a stochastic linear—quadratic (LQ) control problem in infinite
time horizon where the control is constrained in a given, arbitrary closed cone, the cost weighting
matrices are allowed to be indefinite, and the state is scalar-valued. First, the (mean—square,
conic) stabilizability of the system is defined, which is then characterized by a set of simple
conditions involving linear matrix inequalities (LMI’s). Next, the issue of well-posedness of
the underlying optimal LQ control, which is necessitated by the indefiniteness of the problem,
is addressed in great details, and necessary and sufficient conditions of the well-posedness are
presented. On the other hand, to address the LQ optimality two new algebraic equations d la
Riccati, called extended algebraic Riccati equations (EARE’s), along with the notion of their
stabilizing solutions, are introduced for the first time. Optimal feedback control as well as
the optimal value are explicitly derived in terms of the stabilizing solutions to the EARE’s.
Moreover, several cases when the stabilizing solutions do exist are discussed and algorithms of
computing the solutions are presented. Finally, numerical examples are provided to illustrate
the theoretical results established.
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1 Introduction

Linear—quadratic (LQ) control, pioneered by Kalman [17] for deterministic systems and extended to
stochastic systems by Wonham [31, 32] and Bismut [5], constitutes an extremely important, in both
theory and applications, class of control problems. In recent years, there have been considerable
renewed interest in stochastic LQ control. In particular, the notion of mean—square stabilizability
and detectability was introduced in [12]. On the other hand, initiated by Chen, Li and Zhou [10],
extensive research has been carried out in the so-called indefinite stochastic LQ control, where,
quite contrary to the conventional belief, the cost weighting matrices are allowed to be indefinite;
see [11, 2, 1, 33]. Moreover, this new theory has found applications in financial portfolio selection;
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see [35, 19, 18]. For systematic accounts of the deterministic and stochastic LQ theory, refer to [4]
and [34] respectively.

A key assumption in the LQ theory at large, deterministic and stochastic alike, is that the
control variable is unconstrained. This assumption renders the feedback control constructed via the
Riccati equation automatically admissible, and in turn (along with the underlying linear—quadratic
structure) makes possible the elegant explicit solution to the optimal LQ control problem. Because
of this, the whole conventional L.Q approach would collapse in the presence of any control constraint.

On the other hand, from a practical point of view, LQ control with control constraints is a
well-defined and sensible problem. For example, in many real applications the control variable is
required to take only non-negative values. The mean—variance portfolio selection problem with
short-selling prohibition exemplifies such problems. Other applications include models in medical,
chemical, and economics where system inputs are inherently constrained.

There have been some attempts in dealing with deterministic LQ problems with positive con-
trols, or more general, with controls contained in a given cone. For example, controllability for
linear system & = Az + Bu with positive/conic controls was studied in [26, 7, 25, 14, 8, 22]. These
papers investigated the necessary and sufficient conditions of different types of controllability (null-
controllability, global controllability, differential controllability, etc.). Later, conic stabilization was
addressed in [23]. In a recent work on positive feedback stabilization [30], a stabilizing positive
feedback controller was derived based on the pole placement technique.

Deterministic continuous-time L(Q optimal control problems with positive controllers were stud-
ied in [21, 9, 13]. Discrete-time versions can be found in [27, 28]. In these works, however, only
some necessary and sufficient conditions for optimality were derived based on Pontryagin’s maxi-
mum principle and/or Bellman’s dynamic programming, and some numerical schemes suggested.
The special LQ structure was not fully taken advantage of and no explicit result comparable to
those of unconstrained control was obtained.

As for the constrained stochastic LQ control, to our best knowledge it has never been studied by
other authors in the literature. A related, albeit specific, problem is the mean—portfolio selection
model with no-shorting constraint solved in Li, Zhou and Lim [18], which was formulated as a
stochastic L(Q control problem with positive controls in a finite time horizon. The approach de-
veloped in [18] is nevertheless rather ad hoc (via Hamilton-Jacobi-Bellman equation and viscosity
solution theory), and by no means suggests a remedy for a more general problem. More recently,
a stochastic LQ control problem with conic control constraint, random coefficients as well as pos-
sibly singular cost weighting matrices in a finite time horizon was solved by Hu and Zhou [15],
with explicit solutions based on Tanaka’s formula and the backward stochastic differential equation
theory.

In this paper, we study stochastic LQ control in the infinite time horizon, where the control
variable is constrained in a cone (which includes the problem with positive controls as a special case).
Moreover, the problem is allowed to be indefinite in the sense that the cost weighting matrices are
possibly indefinite. A main assumption of the paper is that the state variable is scalar-valued. Note
that this assumption is valid in many meaningful practical applications, in particular in financial
area where the one-dimensional wealth process is typically taken as the state. The investigation in
this paper centers around several key issues associated with the problem, viz conic stabilizability,
well-posedness and optimality. The conic stabilizability refers to the question whether the system
can be stabilized by a control satisfying the given conic constraint. It arises from the infinity
of the time horizon under consideration, and is quite different from the normal stabilizability for
unconstrained control. In this paper we will derive simple necessary and sufficient conditions for
the conic stabilizability. The second issue, well-posedness of the L(Q) problem, becomes an issue
because the problem is indefinite. To ensure the well-posedness the problem data must coordinate



well, which will be characterized in this paper by the nonemptiness of certain sets in the real
space. Finally, for the optimality, we aim to obtain explicit solutions comparable to those classical
unconstrained-control counterparts. To this end, we will introduce, for the first time in this paper,
two algebraic equations termed the extended algebraic Riccati equations (EARE’s) along with the
notion of their stabilizing solutions. Then it will be shown that the existence of the stabilizing
solutions is sufficient for the existence of optimal feedback control of the constrained LQ problem,
and explicit forms of the optimal feedback control as well as the optimal cost value will be derived
in terms of the stabilizing solutions. Furthermore, several important cases, including that of the
definite LQ control, will be discussed where stabilizing solutions to the EARE’s do exist, and
algorithms for computing these solutions will be presented. To demonstrate the theoretical results
obtained, numerical examples will be given at last.

The rest of the paper is organized as follows. In Section 2, the constrained stochastic LQ
control problem is formulated and conic stabilizability of the system defined. As the prelude to
the main analysis, two technical lemmas are presented in Section 3. The subsequent three sections,
Sections 4, 5, and 6, are devoted to the three major issues, namely stabilizability, well-posedness,
and optimality, respectively. Numerical examples are reported in Section 7. Finally, Section 8
concludes the paper

2 Problem Formulation

Notation: We make use of the following basic notation in this paper:

R" . the set of n-dimensional column vectors.
R : =RL
i : the subset of R™ consisting of elements with nonnegative components.
R™*™ . the set of all m x n matrices.
Snxm . the set of all n X n symmetric matrices.
v =V, veR™
zt : = max{z,0}, z€R.
x~ : = max{—z,0}, z€R.
M' : the transpose of a matrix M.
M >0 : the square matrix M is positive definite.
M >0 : the square matrix M is positive semidefinite.
E[z] : the expectation of a random variable z.

Let (Q, F,P; F;) be a given filtered probability space with a standard F;-adapted, k-dimensional
Brownian motion w(t) = (w1 (¢), wa(t),- - -, wk(t))" on [0,4+00). Let I' C R™ be a given closed cone;
i.e., I' is closed, and if u € " then au € " Va > 0. Typical examples of such a cone are I' = R?,
I'={ueR"Mu<0}and I" = {u € R"|Mu = 0} where M € R™ ™, or the so-called second-
order cone (cf., e.g., [20, p.221]) T = {(¢t,u) € R x R™!|t > |u|}. Next, for M € S™*™ if there is
§ >0 so that K'MK > 6|K|? Y0 # K €T, then we denote M‘F > 0. Similarly we write M‘F >0 if

K'MK >0VK €T. Clearly M > 0 (respectively M > 0) implies M‘F > 0 (respectively M|r >0).
Finally, define the following Hilbert space:

LZ(T) = {¢(,) : [0,400) x Q- I‘|¢>(-, ) is ; — adapted, measurable,
+o0
and E/ (¢, w)[2dt < 400}
0



with the norm ||¢(-, E/ é(t,w) |2dt)%

Consider the following It6 stochastic differential equation (SDE)

dz(t) = [Az(t) + Bu(t)]dt + Z [Cjz(t) + Dju(t)ldw;(t), t € [0,00),

(1)
z(0) =z € R,

where A,C; € R and B, D; € R™. A process u(-) is called a control (with conic constraint) if
u(-) € L%(T).

Definition 2.1 A control u(-) € L%(T) is called (mean-square, conic) stabilizing with respect to
zo if the corresponding state z(-) of (1) with the initial state z( satisfies t_l)lin El|z(t)> = 0.
o0

Definition 2.2 System (1) is said to be (mean-square, conic) stabilizable if there is a feedback
control of the form u(t) = Kzt (t) + K_z~(t), where K, and K_ are constant vectors with
K, €T and K_ € T', which is (mean-square, conic) stabilizing with respect to every initial state
Zg-

Now, for any g € R, we define the set of admissible controls
Uy, = {u(-) € L%(T)|u(-) is stabilizing with respect to o} (2)

If u(-) € Uy, and z(-) is the corresponding solution of (1), then (z(-),u(+)) is called an admissible
pair (with respect to zg). For each (z¢,u(-)) € R x Uy, the associated cost to system (1) is

T (@o; u( —E/ [Qz(t)? + u(t) Ru(t)]dt, 3)

where @ € R and R € S™*™. Note here () and R are not assumed to be nonnegative/positive
semidefinite. As a result, J(zo;u(-)) is not necessarily bounded below.

The indefinite LQ control problem with conic constraint is to minimize the cost functional (3),
for a given z(, subject to (1) and u(-) € Uy,. Such a problem is denoted as Problem (LQ). An
admissible control u(-) € Uy, is called optimal (with respect to ) if u(-) achieves the infimum of
(3), and in this case Problem (LQ) is also referred to as attainable (with respect to xg).

The value function V is defined as

V(zo) := inf J(zo;u(-)), zo €R, 4)

u(+) €Uz,
where V(zg) is set to be +o0 in the case when Uy, is empty.
Definition 2.3 Problem (LQ) is called well-posed if
V(zy) > —o00, Vzo€R. (5)

It is well known that V is a continuous, though not necessarily differentiable, function when
Problem (LQ) is well-posed. Also note that a well-posed problem is not necessarily attainable with
respect to any zo (see Example 6.2 in Section 6).



3 Two Lemmas

In this section we present two lemmas that are useful in the sequel.

Lemma 3.1 (Tanaka’s formula) Let X (t) be a continuous semimartingale. Then

dXT(t) = 1x@>0dX(t) + $dL(t), ©)
dX () = —lixw<0dX(t)+ $dL(t),

where L(-) is an increasing continuous process, called the local time of X (-) at 0, satisfying
t
/ X (s)|dL(s) =0, P — a.s. (7)
0

In particular, X (t) and X~ (t) are semimartingales.

Proof : See, for example, [24, Chapter VI, Theorem 1.2 and Proposition 1.3]. O

Lemma 3.2 Let constants N.,N_ € R be given. Then for any admissible pair (z(-),u(-)) with
respect to xq, we have, for everyt > 0,

E/t[Qszr(s)2 + u(s)' Ru(s)]ds

0

= NG+ N (a)? B[Nyt (0] - BN (0]

+E / {Q:v(s)z + (244 ) CHNyzt(s)® + 24+ CHN_z7(s)’

0 . ,

®
k k

+u(s)'[R + l(z(s)>0)N+ Z D}D]’ + 1(z(s)§0)N— Z D;Dj]u(s)

j=1 j=1
k

k
+2(B + Z C;Dj)u(s)Nyzt(s) —2(B + Z Cij)u(s)N_a:_(s)}ds.

=1 i=1
Proof : Let z(-) be the solution of (1) under an arbitrary u(-) € Uy,. By Lemma 3.1, we have
: 1
dz () = 1((t)>0)[Az(t) + Bu(t)]dt + La()>0) »_[Cjz(t) + Dju(t)]dw; (t) + 2dL(),

Jj=1

k
dr~ (t) = —1(z(t)§0) [A.Z(t) + Bu(t)]dt - 1(1@)50) Z[ij(t) + Dju(t)]dwj (t) + %dL(t).

=1



In the above equations, L(-) is the local time as specified in Lemma 3.1. Applying It6’s formula,
we get

d[Nyz* (t)?]

k
= 2N et () {L(a>0)[Az(t) + Bu(®)]dt + 1(g@)>0) D _[Cio(t) + Dju(t)dw, () + %dL(t)}

=1
k

>0 Ny Y _[Cia(t) +u(t) Di][Cjz(t) + Dju(t)]dt

=1

k
= {Ni[2427 ()" + 2Bu(t)z? (8) + La@y>0) p_(Ca(t) + u(t) D)) (Cya(t) + Dyult))]}dt

=1 (9)
k
+N4 Y [2C;2T (1) + 2D u(t)z (t)]dw; (1)
j=1 .
= [(24+ ) C)N,at(t)* + 2Bu(t)Nya ™ (t) + 2 Z C;Dju(t)Nya™t (t)

M@

+1(z(t)>0) Nyu(t) ZD Dju(t)]dt + [Ny (t) Y (2C;zT(t)* + 2D,u(t)z ™ (t))]dw; (t),

I
-

J

where we have used the fact that zt(t)dL(t) = 0 by virtue of (7). Similarly, for the constant
N_eR,

d[N_z~ (t)?]

M;r

{N_[2Az" (t)* — 2Bu(t)z™ (t) + 1(z(s) <o (Cjz(t) +u(t) D) (Cjz(t) + Dju(t))]}dt

J:

k
+N_ Z[QCjJJ_(t)Z — 2Dju(t)z ™ (t)]dw;(t)

i=1 (10)
k k
= [24A+ > CN_z~(t)* — 2Bu(t)P_z™(t) =2 _ C;Dju(t)N_z™ (t)
j=1 Jj=1
k
1z <oyN-u(t ZD Dju(t)]dt + [N Z (2C;z~ — 2Dju(t)z™ (t))]dw; ().
j=1

Fix t > 0, define a sequence of stopping times

Tn := inf{r € [0,t] : [§ |N4(s) Z?Zl(ZCjaﬁ'(s)Q + 2Dju(s)z™(s))|?ds
+ J5 IN=(s) Z?Zl(Zij*(s)Q —2Dju(s)z(s))]?ds > n}, n=1,2,..,

where inf () := ¢. It is clear that 7, 1 ¢t as n — 400, due to Efot(|ac(s)|2 + |u(s)|?)ds < +o00. Now,
summing up (9) and (10), taking integration from 0 to 7,, and then taking expectation, we obtain
(8) with t replaced by 7,. Thus, (8) follows by sending n — +o00 together with Fatou’s lemma. O

4 Conic Stabilizability

In this section we address the issue of conic stabilizability of system (1). Notice that the conic
stabilizability is different from the usual stabilizability with unconstrained controls, for clearly the
former requires more stringent conditions. Here we will give a complete characterization of the
conic stabilizability in terms of simple conditions involving linear matrix inequalities (LMI’s).



Introduce a pair of functions F, F_ from I'" to R:

k k k
Fi(K):=24+> C;+2(B+> C;D)K+K'> D)DK, (11)
j=1 j=1 j=1
and
k k k
F_(K):=2A+) C:—2(B+> C;D;)K+K'>_ D;D;K. (12)
j=1 j=1 J=1

Theorem 4.1 The following assertions are equivalent.

(i) System (1) is mean-square conic stabilizable.

(ii) There exist Ky € ' and K_ € T such that F . (K,) <0 and F_(K_) < 0. In this case the
feedback control u(t) = K zT(t) + K_xz (t) is stabilizing.

(iii) There exist K € T' and K_ € T such that

k k
24+ Cj+2B+) C;Dj)Ky K\D'

= = <0, (13)
DK, -1
k k
2 _ . Y
2A+jzzlcj 2(B +FZICJDJ)K_ KD _y (14)
DK_ -1

k
where D € R™¥™ satisfies D'D = ZD;'DJ" In this case the feedback control u(t) = Ky zt(t) +
j=1
K_z7(t) is stabilizing.

Proof : Take a feedback control u(t) = K, z7(t) + K_z~(t) and consider the corresponding state
z(-) with an initial state z. Note that by standard SDE theory (cf., e.g., [16]) such z(-) uniquely
exists. Moreover,

E sup |z(t)[Pdt < 400, VI' >0, Vp>0. (15)
0<t<T

Making use of (9) with Ny =1 and u(t) = K, 27 (¢t) + K_z~ (), we obtain

dzt(t)?

k k k
24+ C?+2(B+ Y CiDj)Ky + K, Y DiD;K ]zt (t)%dt
7j=1 j=1 j=1
k

+> (2C; + 2D; Ky )zt (1) dw; (t)

=1

! k
Fr(K )zt (t)?dt+ ) (2C; + 2D, K )t () dw; (t).

=1

Taking integration and then expectation yields (after a localization argument as in the proof of
Lemma 3.2)
dE[z™* (1))

= PR OB (07, (16)



where the expectation of the It6 integral vanishes due to (15). Similarly, we have

dE[z~(t)?] _
— = F_(K_)E[z™ (). (17)
Hence, the equivalence between the assertions (i) and (ii) is evident noting that tl;gl E|z(t)]? =0
o
if and only if lim E|zT(¢)]? =0and lim E|z ™ (¢)]* = 0.
t—+o00 t—=+oo

Finally, the equivalence between the assertions (ii) and (iii) follows from Schur’s lemma. O

Conditions (13) and (14) are in terms of LMI’s. On the other hand, some of the conic constraint
can also be expressed as LMI’s, e.g., when I' = R/!" or when I' is a second-order cone. Hence,
Theorem 4.1-(iii) provides an easy way of numerically checking the stabilizability of system (1)
due to the availability of many LMI solvers. Note that in general there may exist many feasible
solutions to LMI’s. Denote the two sets of feedback gains as

Ky ={Ke I“FJF(K) <0}, Ko:={Ke P‘F_(K) <0}
Then Theorem 4.1 implies the following

Theorem 4.2 System (1) is conic stabilizable if and only if K+ # 0 and K_ # 0.

k
Corollary 4.1 If2A + Z C’J2 < 0, then system (1) is conic stabilizable.
7j=1

Proof : In thiscase 0 e KL NK_. i

Proposition 4.1 We have the following results.
(i) K+ and K_ are convez sets if I" is a convex set.

k
(ii) Ky and K_ are bounded if Z:ID;-DJ-‘F > 0.
J:

Proof : (i) Define the following operator M, from I' to S{m+1)x(m+1).

k k
24+ C?+2(B+)» C;D)K K'D'
j=1 j=1
DK -1

M(K) =

k
where D'D = ZD;-DJ-. By Theorem 4.1, K, can be equivalently represented as K, = {K €
j=1
I‘|M+(K ) < 0}. Thus the convexity of K follows from that of I' together with the fact that the
operator M is affine. Similarly we can show the convexity of K_.
(ii) If £ is unbounded, then there is a sequence {K,} C K. so that |K,| — 4o00. Since

k k
ZD;-Dj‘F > 0, we have K, Y DiD;K, > §|K,|> - 400 as n — 400, where § > 0 is some
j=1

- j=1
constant. Therefore F (K,) — 400 as n — +o00. This contradicts to F{ (K,) < 0, Vn. Hence K
is bounded. Similarly, £_ is bounded. O



5 Well-posedness

Since the cost weighting matrices () and R are allowed to be indefinite, the well-posedness of the
problem is no longer automatic or trivial (as opposed to the classical definite case when @ > 0
and R > 0). In fact, the well-posedness for an indefinite LQ control problem is a prerequisite for
the optimality, and is an interesting problem in its own right. In this section we will carry out
an extensive investigation on the well-posedness and some related issues, including necessary and
sufficient conditions for the well-posedness in terms of the nonemptiness of certain sets.

5.1 Representation of Value Function

In this subsection we present the following representation result, which is a key to many results of
this paper.

Proposition 5.1 Problem (LQ) is well-posed if and only if the value function can be represented

as
V(zg) = P+(;1:3')2 + P (375)2, Vzo € R, (18)

for some P, P_ € R.

Proof : We prove only the “only if” part as the “if” part is evident.
Assume that Problem (LQ) is well-posed. Fix any z > 0,y > 0. Since V(y) > —oo, for any
e > 0 there is u®(-) € U, along with the corresponding state z°(-) (with the initial state y) satisfying

Vi) 2 () —e=E Qe (1) 4w (1) Rus (1) di — e (19)

Now, as z > 0, the linearity of the dynamics (1) and the conic control constraint ensure that
zu’(-) € Uyy with the corresponding state zz°(-). Hence it follows from (19) that

1 +oo 1
Vy) > PE/ [Qlzz® (t)|? + (zuf(t)) R(zuf (t))]dt — € > EV(my) —¢. (20)
0
Sending € — 0 we obtain
V(zy) < V(y)z?, Yz >0,y > 0. (21)
Similarly, one can show that
V(zy) < V(—y)z?, Yz <0,y > 0. (22)

Now for any x > 0, by (21) we have V(z) < V(1)z2. On the other hand, (21) also implies
V(1) = V(zi) < LV (z). So we have shown that

z
V(z) =V(1)z?, V> 0. (23)
Similarly, in view of (22) we can prove that
V(z) = V(~1)z?, Vz<O0. (24)
Finally, the continuity of the value function along with (23) yields
V(0) = 0. (25)

The desired result (18) thus follows from (23)-(25) with Py := V(1) and P_ := V(-1). O



Remark 5.1 The preceding proposition, which suggests the form of the value function when the
underlying LQ problem is well-posed, is crucial for all the main results in this paper. In fact, the
proofs for the stabilizability in the previous section, the characterization of the well-posedness in
this section, and the optimality in the next section, are all inspired by this result. This also explains
why one needs to apply Tanaka’s formula to evaluate dz™(t) and dz~ () as we have seen in the
previous section and will continue to see in the subsequent sections.

Remark 5.2 We saw that the value function for the constrained LQ problem is not smooth.

5.2 Characterization of Well-posedness

Define the following functions from R to R U {—o0}:

k k
3(P):= inf [K'(R+ PY " DiD)K +2(B+_ C;D;)PK],

j=1 j=1
k k
®_(P):= jnf [K'(R+ PZ: DiD;)K —2(B + Z: C;D;)PK].
= =
Remark 5.3 Since 0 € I', we must have
., (P)<0, & (P)<0, VP€eR. (26)
k
On the other hand, & (P) and ®_(P) have finite values if (R + PZ D;Dj)‘r > 0. Indeed, in this
j=1

case there exist constants a; = a1(P) > 0 and as = a(P) > 0 such that

k k
(0]}
K'(R+ PZD;DJ-)K +2(B+ Y. C;D;)PK > a1 |K|” - as|K| = a1 |K|(| K| — a_i),
7=1 j=1

If |K| > —2, then the above expression is positive. Taking (26) into consideration we conclude
aq

k

k
B, (P) = i|nf| [K'(R+PY_ DiD)K +2(B+_C;D;)PK] > —cc.
Kel,|K|<22 : ‘
W =ay J=1 J=1

Hence, ® (P) is finite. The same is true for ®_(P).
Next, we define the following two sets:
k k
Pyi={PER|24+ Y CHP+Q+8,(P) >0, (R+PZD;DJ')‘F > 0},
Jj=1 Jj=1

& k
P {PGR‘(2A+ZC]2)P+Q+(I>—(P) >0, (R-{-PZD;D]')‘F > 0}.

i=1 i=1

The following is the main result of the section, which characterizes the well-posedness of Problem
(LQ) by the nonemptiness of the sets P, and P-.

Theorem 5.1 Assume that system (1) is conic stabilizable. Then Problem (LQ) is well-posed if
and only if Py # 0 and P_ # 0. Moreover, in this case

V(zo) > Py(zf)* + P_(z5)?, Vzo€R, VP, €Py, P_e€P_. (27)

10



Proof : First we prove the “if” part. For any zg € R let z(-) be the solution of (1) under an
arbitrary u(-) € Uy,. Pick any P, € P, and P_ € P_. By Lemma 3.2, we have

E/0 [Qz(s)? + u(s)' Ru(s)]ds
= PU(sf)+ P (55)’ — EIPyzt (]~ BIP = (1))

t k k
+E /0 [Qu()? + (24 + 3 CHPyart (97 + (24 + Y C)P_a (5)?
j=1

K L ! (28)
+u(s) [R+ Lia(s)>0) P+ Y DjDj + La(s<o)P- D DD;]ufs)
=1 =1
k ’ ko
+2(B + Z C;Dj)u(s)Przt(s) —2(B + Z C;Dj)u(s)P_x~ (s)}ds
j=1 j=1

Denote by 1(z(s), u(s)) the integrand on the right hand side of (28) and fix s € [0,¢]. If z(s) > 0,
then write u(s) = Kz(s) (note that K may depend on s). Since u(s) € ' and T is a cone, we have
K €T'. Hence at s, bearing in mind that 1(;(5)<0) = 0, we have

P(x(s), u(s))
k k

= Qz(s)’+ (24 + Z C’f)P+a:(s)2 + K'[R+ Py Z D;-Dj]Kx(s)2
Jj=1 Jj=1
+2(B + X, C;D;) K Pya(s)?
k

k k
= [24+> C)HP,+Q+K'(R+P.> DiD)K +2(B+ Y C;D;)KPyla(s)’ (29)
J=1 Jj=1 j=1
k
> [24+) CHPL +Q+ ®(Py)]a(s)’
j=1
> 0.

If z(s) < 0, then write u(s) = —Kz(s). Again K € I'. A similar argument as above yields
k
p(z(s),u(s)) 2[4+ Y C))P- +Q + D_(P_)]z(s)” > 0
j=1
at s. Finally, if z(s) = 0 at s, then
k
W(a(s), u(s) = u(s)[R + P Y DLD;Ju(s) > 0.
7j=1
The preceding analysis shows that it always holds that ¥ (z(s),u(s)) > 0, Vs € [0,t]. Consequently,
it follows from (28) that

B [[1Qu(s)? +uls) Ru(s)lds 2 Py (o) + P- (s )? — BIPy* () ~ BIP-a~ (1)),

Letting t — +oo and noting that u(-) is conic stabilizing, we obtain

t
Teoiu() =, lim B [ Qu(s)* + u(s) Ru(s)lds

0
> Py (z§)” + P (25 ).
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Since u(-) € Uy, is arbitrary, we conclude V(zg) > Py (zf)? + P_(zy)? > —oc. Hence Problem
(LQ) is well-posed.

To prove the “only if” part, suppose that the LQ problem is well-posed. Then by Proposition
5.1 the value function has the following representation:

V(z) = Py(z")? + P_(z7)?, Vz€R.

We want to show that Py € P, P_ € P_. To this end, applying the optimality principle of the
dynamic programming and noting the time-invariance of the underlying system, we obtain

Py (zg)® + P-(zq)?

< E { / [Qu(t)? + (e Ru]dt + Pyt (W] + P [x—<h)]2} , (30)
0
Vh >0, Vu(-) € Uy,, Yo € R.

Using the above and applying Lemma 3.2, we obtain
h
E/ $(x(s), u(s))ds > 0, Vh > 0, Yu(-) € Uy, Vzo € R, (31)
0

where, as before, the mapping v is defined via the integrand on the right hand side of (28). Set
zo > 0 and take the following control

w(t) im K, 0<t<1,
W7 Kyt () + K 2= (1), t>1,

where K € T is arbitrarily fixed and K,z (t)+K_z (t) is a conic stabilizing feedback control which
exists due to the stabilizability assumption. Clearly u;(-) € Uy, and let z;(-) be the corresponding
state. Since z1(s) = o and u1(s) = K as s — 0, P-a.s., we have

P(21(s), ua(s))

k k k
= (244> CHPL +Qlaf +2(B+ Y CjD;)KPyzo + K'(R+ P, Y _ DiD))K,
j=1 j=1 j=1
ass >0, P—as.

Thus appealing to (31) the dominated convergence theorem yields

0< LB JI gl (s),ui(s)ds k k

k
= (244 CHPy +Qlzi +2(B+ Y C;D;)KPyzo + K'(R+ Py D}D))K,
7j=1 7j=1 7j=1
as h — 0.

k
Letting 9 — 0 we obtain K'(R + P Z D:D;)K > 0. The arbitrariness of K € I' then implies
j=1
k
(R + Py ZD;-Dj)‘F > 0. On the other hand, take zy > 0 and consider the following feedback
7j=1
control

wn(t) = Kzt(t)+ Kz (t), 0<t<]l,
2T Kpat() + Koz (8), t>1,

12



where K € T and K € I are arbitrarily fixed. Let z2(-) be the state under us(-). Noting z2(s) — zo
and uy(s) = Kz3 (s) + Kz5 (s) = Kxg as s — 0, P-a.s., we obtain

«ﬁ(wz(s),:z(s)) . .
= [24+4) CHPL+Q+K'(R+ Py Y DiDj)K +2(B+ Y C;D;)KP; |z}
j=1 j=1 j=1

ass—0, P—as.

An analysis similar to the preceding one leads to

k k k
24+ CHP. +Q+K'(R+P. Y DiD;)K +2(B+ > C;D;)KP; > 0.

Jj=1 j=1 j=1
k
Since K € T is arbitrary, we arrive at (24 + Z CJZ)P+ +Q+ ®.(P;) > 0. So far we have shown
j=1

P, € P,. Similarly, we can prove P_ € P_.
Finally, the inequality (27) has been proved in the proof of the “if” part. O

Remark 5.4 From the above proof we see that the stabilizability assumption is in fact not neces-
sary for the “if” part of the theorem.

Remark 5.5 The above theorem tells that the positive definiteness or positive semidefiniteness of
@ and R are not necessary for Problem (LQ) to be well-posed.

Corollary 5.1 If R‘F >0 and Q > 0, then Problem (LQ) is well-posed.

Proof : In this case 0 € P NP_. O

Proposition 5.2 P, and P_ are both conver sets (hence they are both intervals). Moreover,
if system (1) is stabilizable and Problem (LQ) is well-posed, then P, and P—_ each has a finite
mazimum element.

Proof : The convexity of P, and P_ are clear noticing that the functions &4 (P) and ®_(P) are
concave in P. To prove the existence of the finite maximum elements, we note that Proposition 5.1
provides

V(zo) = P (zf)* + P*(z;)?, Vzo €R, (32)
for some P}, P* € R. Moreover, the proof of Theorem 5.1 implies P} € P, and P* € P_. Hence
it follows from (27) that P} and P* are the maximum elements of P, and P_ respectively. O

Remark 5.6 Proposition 5.2 indicates that if system (1) is stabilizable and Problem (LQ) is well-
posed, then the infimum value of problem (LQ) or, equivalently, the P, and P_ in the representation
of the value function as stipulated in Proposition 5.1, can be obtained by solving the following two
mathematical programming problems respectively:

Maximize P
k
(244> CHP+Q+2,(P) >0,
j=1 (33)

subject to k

(R+PY_DjDy)| >0,
j=1

13



and
Maximize P
k
24+) CHP+Q+2_(P) >0,
j=1 (34)

subject to k

(R+ PZD;D,.)‘F > 0.
j=1

5.3 An Algorithm

Theorem 5.1 stipulates that it suffices to check the nonemptiness of P, and P_ or, the feasibility of
the problems (33) and (34), in order to verify the well-posedness of a given LQ problem. However,
it is sometimes hard to check numerically the aforementioned feasibility because, on one hand, the
functions @, (-) and ®_(-) in general do not have analytical forms, and on the other hand, the

constraint (R + PY*_, D'D;)| > 0 is usually very hard to verify for a general cone I' (except
J=1"53%37 | p g

second-order cones for which the constraint can be reformulated as an LMI; see [29, Theorem 1]).
In this subsection we give an algorithm that can check the well-posedness more directly. First
we need a lemma.

Lemma 5.1 Assume that Problem (LQ) is well-posed. Given K. € Ky and K_ € K_. Set

~ Q+K' RK. ~ Q+K' RK_
P_|_ = —W and P_ = —m Then

P, <P, VP, €P,, and P_.< P_,VYP_eP_. (35)

Proof : By their definitions P, and P_ satisfy respectively

k k k
24+ CHPL+Q+ K (R+ P, DiD;)K;+2(B+>_ C;D;)K P, =0 (36)
j=1 j=1 j=1

and

k k k
244> CHP-+Q+K' (R+P-> DiD)K_—2(B+Y C;D,)K_P_=0. (37
j=1 j=1 j=1

Take a feedback control u(t) = K,z (t) + K_x~(t), which is stabilizing by Theorem 4.1 (bearing
in mind the definitions of £ and K_), and let z(-) be the corresponding state with z(0) = z.
Then a similar calculation as in (28) yields

E/O [Qz(s)? + u(s)' Ru(s)]ds

) i . i ¢ (38)
= Pi(zf)* + P_(z5)? — E[Pra™(t)?] - E[P_z™ (t)*] + E/0 P(x(s),u(s))ds,

where 9(z(s),u(s)) is as the integrand on the right hand side of (28) with P, and P_ replaced by
P, and P_ respectively. However, u(s) = K, z(s) whenever z(s) > 0; hence

P(z(s), u(s))

k k k
[(2A+) CHP, +Q+ K\ (R+ P, DiD;)K, +2(B+ Y _ C;D;)K Pyla(s)?
j=1 j=1 j=1

=0
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in view of (36). Similarly based on (37) one can show that 1 (z(s),u(s)) = 0 whenever z(s) < 0. It
then follows from (38) that

E /Ot[Qac(s)2 + u(s)' Ru(s)]ds = Py(zf)* + P_(zy)? — E[Pyz7(t)?] — E[P_z~ ()%
Since u(-) is stabilizing, we have

J(zo;u(-)) = lim E

Jim B [ [Qu(s)? + u(s) Ru(s)]ds = Po(af)? + P (a7)".
o Jo

By virtue of Theorem 5.1, we conclude

Py (zf)? + P_(z5)? J (o5 u("))

> V(zo) > Py(zd)? + P_(x5)?%, VP € Py,VP_€P_.

This proves (35). O

We now assume that (1) is conic stabilizable. According to Theorem 4.1 there exist K, € T’
and K_ € T" such that F, (K;) < 0 and F_(K_) < 0. Take 6 > 0 sufficiently small with § <
min{—Fy(K),—F_(K_)}. Calculate

!
M}’ pw (39)

Q+ K'RK}
7, (K)

1 .
Pj_):: min {— F_(K)

= min {—
Fi(K)<-4¢

F_(K)<—§

In view of Lemma 5.1, PS) (respectively Pﬁl)) is a (very tight) upper bound of P, (respectively
P_) under the well-posedness assumption. As a consequence, if Problem (LQ) is well-posed, then

k k
it is necessary that (R + PS) Z D;-Dj)‘F >0 and (R+ rY Z D;-Dj)‘F > 0. Now, calculate

PO = min P. (40)
(R+P Y5 D\D;)) 20

j=1

Then we know that points of P, (respectively P_), if any, must lie between P(©) and Pj_l) (respec-
tively Pﬁl)). Inspired by the above discussion, we have the following algorithm.

Step 1. Applying Theorem 4.1-(iii) to obtain K, K_ € I' with F. (K;) < 0 and F_(K_) < 0. Set
0 := min{e, —F, (K),—F_(K_)}, where ¢ is a very small number allowed by the computer.

Step 2. Calculate P{") and P via (39). Ieither (R+P{" ©5_; D;D;)| < 0or (R+PY ¥k, DID;)
0 holds, stop and Problem (LQ) is not well-posed.

Step 3. Calculate P(¥) via (40).

Step 4. If there exists a P € [P(O),PS)) satisfying L (P) > 0, then go to Step 5; otherwise, stop
and Problem (LQ) is not well-posed.

Step 5. If there exists a P € [P(O),Pg)) satisfying L_(P) > 0, then stop and Problem (LQ) is
well-posed; otherwise, stop and Problem (LQ) is not well-posed.
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5.4 Well-posedness Margin

In view of Remark 5.5, Problem (LQ) may still be well-posed when R is indefinite or even negative
definite. That said, it is clear that R cannot be too negative for the well-posedness. Therefore, it is
interesting to study the range of R over which Problem (LQ) is well-posed, given that all the other
data is fixed. Specifically, define

r* := inf{r € R | Problem (LQ) is well-posed for any R € S™*"™ with R > rI}, (41)

where inf () := +00. The value r* is called the well-posedness margin. By its very definition, r* has
the following interpretation: Problem (LQ) is well-posed if the smallest eigenvalue of R, Ayin(R),
is such that A\, (R) > 7*, and is not well-posed if the largest eigenvalue of R, A4z (R), is such
that A\pez (R) < 7r*.

It follows from Theorem 5.1 that, provided that system (1) is stabilizable, the well-posedness
margin 7* can be obtained by solving the following nonlinear program (with P and r being the
decision variables):

Minimize r
( k
24+ ) CHP+Q+24(P,r) >0,
j=1

k
subject to (24 + Z C]?)P +Q+®_(Pr) >0, (42)

=1
k

(I + PZD}D]-)‘F > 0,
\ j=1

where
k

k
4 (P,r) = inf [K'(rI + P> DiD;)K +2(B+»_C;D,)PK],

j=1 j=1
k k

®_(P,r) = inf [K'(rI + PZI DiDj)K —2(B + 21 C;D;)PK].
J= J=

Notice, again, that it is hard to solve the preceding mathematical program as, in addition to the
difficulty associated with the last constraint, ® (P, r) and ® (P, r) in general do not have analytical
forms. In the following, we provide an explicit lower bound of r*.

Theorem 5.2 Assume that system (1) is stabilizable. Then 7 := max{r,,7_} is a lower bound of
the well-posedness margin, where

( AQ

i >
| Sk (BE RERy @20 A
Ty 1= 1§ AQ 0 <0 (43)
) 1 )
[ supkex, AF+(K) —AK'K}
and ) 0
i >
_ e (P (K) = KKy 1920
Sl A if Q <0 e
) 1 < b
X SupKe’C_{F,(K) — )\K’K}
k
' = i ! 'D;K > 0.
with A= | _inf K ;D]DJK >0
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Proof : Suppose Problem (LQ) is well-posed with R = —rI, » € R. Then Py # (). Since system

K'K
(1) is stabilizable, we can take a K € K. It follows from Lemma 5.1 that P := —% is an
+
k
upper bound of the nonempty set P,. Because (rI + P, Z D}Dj)‘r >0, VP, € P, we conclude
i=1
k k
(rI + PZD;-D]-)‘F > 0, which is equivalent to r + PK' Y D’D;K >0 for any K € T, |K| = 1.
j=1 j=1
K'K A
Hence 7 + PX > 0. Substituting P = —% we obtain r > F (&) ?AK'K' Since K € K4

is arbitrary, we obtain easily that » > r,. Similarly, we have r > r_. Our analysis implies
that Problem (LQ) is not well-posed whenever the largest eigenvalue of R, Apqz(R), is such that
Amaz (R) < 7. Hence 7 is a lower bound of the well-posedness margin r*. O

6 Optimality

This section is devoted to solving the optimal LQ control problem under consideration. We will
first introduce two algebraic equations, in the spirit of the classical Riccati equation (for the un-
constrained LQ problem), along with the notion of the so-called stabilizing solution. Then the
optimality of Problem (LQ) is addressed via the stabilizing solutions of the two algebraic equa-
tions.

We impose the following assumptions in the rest of the paper.

Assumption 6.1 System (1) is conic stabilizable.
Assumption 6.2 Problem (LQ) is well-posed.

6.1 Extended Algebraic Riccati Equations (EARE’s)

In this subsection we define the two algebraic equations that play a key role in solving Problem

k
(LQ). Denote R := {P € R|(R+P Z D;-Dj)‘F > 0} and consider the following two functions from

j=1
R to R:
k k
£+(P) := argmin [K'(R+ P > DiD,)K +2(B+_ C;D;)PK],
=1 =1
ch ]k
§-(P) := argmin [K'(R + P> DiD,)K —2(B+»_C,;D;)PK].
j=1 j=1

Note that the minimizers above are uniquely achievable due to a similar argument in Remark 5.3
and the fact that I' is closed. Moreover, it is evident that both £, (-) and {_(-) are continuous on
R.

Define a pair of functions L, and L_ from R to R:

k
Ly(P):=(24+ ) C})P+Q+ 2, (P),

=1

k
L (P):=(24+)» C})P+Q+2 (P).

Jj=1
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The following two equations

k
Li(P)=0, (R+P) DjD;)| >0, (45)
j=1
k
L_(P) =0, (R+PZD;-DJ-)‘F >0 (46)
j=1

are called extended algebraic Riccati equations (EARE’s). Note that the constraint (R+P Z D;Dj) ‘F >
i=1

0 is part of each of the two equations; so the EARE’s are not exactly equations in strict sense. Also,

being an algebraic equation, each of them may admit more than one solutions, or may admit no

solution at all. Remark that, the EARE’s introduced here both reduce to the same stochastic

algebraic Riccati equation extensively studied in [2].

Definition 6.1 A solution P of EARE (45) (respectively (46)) is called a stabilizing solution if
€+ (P) € K4 (respectively € _(P) € K_).

It should be noted that the EARE’s may not admit any stabilizing solution (see Proposition 6.1 in
Section 6).
Before we conclude this subsection, we present several lemmas.

Lemma 6.1 We have the following inequalities
(P — P)[F4 (64 (F2)) — Fi(§4(P1))] <0, (47)
(P — P)[F_(§-(P2)) — F-(¢-(P1))] <0, (48)
Li(P) — Ly(P1) < (P — P)Fy (¢4 (1), (49)
L_(P) — L_(P) < (P, — P)F_(¢-(P1)), (50)

for any P, P, € R.

Proof : Denoting v; := &, (Py) and ve := £, (P,), we have

k k
vy(R+PLY_ DiD;)va +2(B+ Y C;D;)Pivy — &, (Py) > 0,

i=1 i=1
Vi(R+ Py DiDj)vr +2(B+ Y C;D;)Pyvy — &, (P2) > 0.
i=1 i=1

Then, adding the two inequalities up, we get

k k
[vh(R+ P1 Y DiDj)vs +2(B+ Y C;D;)Pivs] — &4y (P)
=1 =1
’ k ’ k
> @4(P) —[i(R+ P ) DjDj)ui +2(B+ ) C;Dj)Puil.
j=1 Jj=1
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Recall that the infimum in ®, (F;) is achieved by v;, ¢ = 1,2; hence the above yields

k k
(P, — P)[vy S DiDjvs +2(B+ Y C;D;)us]

j=1 j=1
k k

< (P— P} Y DiDjur +2(B+ Y _ C;Dj)vi].
j=1 j=1

This is equivalent to (47). Similarly we can prove (48).
Next, we calculate

Li(P) — Ly(Py)
k

= 24+ CH(P—P) + 2, (P) — &, (P)

" k
(244> CH(Py— P) +vi(R+ P, »_DiD;)u,

Jj=1 Jj=1

k

+2(B+ Y _ C;D;)Pyvy — 34 (P1)

i=1

IA

k k k
= (P—P)[(24+ ) CH +v, > DjDjvui +2(B+ Y _ C;D;)vi]
7j=1 j=1 7j=1
= (P —P)F(6(P)).
This proves (49). Similarly we can show (50). O

Lemma 6.2 Assume P, € R and P, > P;. If £.(Py) € K4 (respectively é&_(Py) € K_) then
£+ (P2) € Ky (respectively E_(P) € K_).

Proof : Since P, > P; it follows from (47) of Lemma 6.1 that
Fi(§+(P2)) — Fi(6+(P)) <0.

As F (£4(P1)) < 0 we have F ({4 (P2)) < 0 implying &4 (P2) € K. Similarly we can prove the
assertion for K_. 0

Lemma 6.3 If there exists P4(_0) € R (respectively P° € R) with £+(Pj(L0)) € K4 (respectively
§_(P°) € K_), then Ly(-) (respectively L_(-)) is strictly decreasing on [Pio),—l-oo) (respectively
(P2, +00)).

Proof : Take P, > P, > Pio). It follows from Lemma 6.2 that Fy ({4 (P1)) < 0. On the other
hand, it is clear that P;, P» € R. Hence Lemma 6.1 yields

Li(P) — Ly(P1) < (P — P)Fy(§4(P1)) <0.
This proves that L4 (P2) < Ly(P;). Similarly we can prove the assertion for L_(P). 0

6.2 Optimality of LQ Problem via EARE’s

In this subsection we prove that stabilizing solutions of (45) and (46), if any, lead to a complete
and explicit solution to Problem (LQ).
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Theorem 6.1 If EARE’s (45) and (46) admit stabilizing solutions P and P* respectively, then
the following feedback control

u'(t) = £ (P} (t) + - (P2)z™ () (51)
is optimal for Problem (LQ) with respect to any initial state xo. Moreover, the value function is
V(zo) = Pi(zf)* + P*(z5)?, Vzo € R. (52)

Proof : Since P} solves (45), we have

pr_ Q& (PYRE(PY)
+ Fy(6+(P1)) '

Similarly,
imilarly. . __Q+§7(Pj)’R§f(Pf)

o F(&-(P2))
Moreover, {4 (P}) € K4,& (P*) € K_ as both P} and P* are stabilizing solutions. Thus the proof
of Lemma 5.1 yields V(zg) < J(zo;u*(-)) = Pi(zg)? + P*(zy)% On the other hand, P} € P,
and P* € P_. Hence it follows from Theorem 5.1 that V(z¢) > P} (z{)? + P* ()% Therefore,
V(z0) = J(zo;u*(-) = Pi(zg)” + P(zq)%. o

The above proof has also shown the following result.

Corollary 6.1 If EARE’s (45) and (46) admit stabilizing solutions P} and P* respectively, then
P} = max{P|P € P.} and P* = max{P|P € P_}. As a result, (45) and (46) each has at most
one stabilizing solution.

Corollary 6.1 guarantees that any stabilizing solution is the maximal solution of the respective
EARE’s. This result is in parallel with the unconstrained case (see, e.g., [3, Theorem 2.3]).

Note that the converse of Theorem 6.1 is not necessarily true. The following example shows
that the existence of solution to the EARFE’s is not necessary for the LQ problem to be attainable
with respect to any initial state.

Example 6.1 Consider the following LQ problem

“+oo
Minimize  J(wo;u(+)) = E/ [lz(t)]* — |u(t)|?]dt

d?ésf)_: [—2(t) + w(®)]dt + [—2(t) + u(t)]dw(t),

(53)
subject to {

where all the variables are scalar-valued and I' = R. This example was originally discussed in [33,
p. 817, Example 6.1]. It was verified in [33] that the system is stabilizable, and the LQ problem is
attainable with respect to any zy (in fact there are infinitely many optimal feedback controls). But
both EARE’s (45) and (46) in this case reduce to —p+1 =0, —1+ p > 0, which clearly admits
no solution at all.

In spite of the preceding remarks and example, the following result shows that under an addi-
tional assumption, the EARE’s indeed admit stabilizing solutions if Problem (LQ) is attainable.
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k
Theorem 6.2 Assume that there exist Py € Py and P_ € P_ such that (R + PZD D;) | >0
j=1
for P =Py, P_. If Problem (LQ) is attainable with respect to any xy € R, then EARE’s (45) and
(46) admit stabilizing solutions P} and P* respectively. Moreover, any optimal control with respect
to a given xo must be unique and represented by the feedback control (51).

Proof : The proof of Proposition 5.2 yields that, under Assumptions 6.1 and 6.2, the value function
can be represented as (32), where P} and P* are the maximum elements of P, and P_ respectively.
Moreover, by the assumption we have

k
* ! . *
(R+P+§DjDJ)‘F>0, (R+ P* leDD ‘ > 0. (54)
Now, for any zyp € R let z*(-) be the solution of (1) under an optimal control u*(-) € Uy, which
exists by the attainability assumption. Then a similar calculation to that of (28) leads to

/ [Qu"(s)? + u*(s) Ru* (s)]ds

(55)
= P+ P )~ BP0~ BP0+ [ o)),

where (z*(s),u*(s)) is the same as the integrand on the right hand side of (28) with P, and P_
replaced by P} and P* respectively. Letting ¢ — 400 and noting that «*(-) is stabilizing, we obtain

V(wo) = J(zo;u"()) = lim E | [Qa"(5)” + u”(s) Ru*(s)]ds
+oo

= P{(z3)* + P*(20)* + E ; P(z(s), u"(s))ds.

Recalling that V(zo) = P} (z{)? + P*(zy)? and that 4 (z*(s),u*(s)) > 0 (via the same proof of
Theorem 5.1), we conclude

P(z*(s),u"(s)) =0, a.e. s€[0,+0), P—as.

Fix s € [0, +00) satisfying the above equality. If 2*(s) > 0, then we can write u*(s) = K(s)z*(s)
where K (s) € I'. Going through the same analysis as in (29), we obtain

0 =4(a"(s),u"(s))

=[(24 + Z CHP; +Q+K(s)(R+ P} Z DiD;)K(s) +2(B + Z C;D;)K (s)P]z*(s)?
> [(24 + Z C2P} + Q + @4 (P})]a*(s)?
> 0. =

Thus, all the inequalities above become equalities and, noting that z*(s) # 0, one has K(s) =
£+ (P7) and L (P}) = 0. As a result, u*(s) = K(s)z*(s) = {4 (P})z*(s) at s when z*(s) > 0.
Similarly, we can prove that u*(s) = —{_(PZ)z*(s) at s when z*(s) < 0, and L(PX) = 0. To
summarize, we have shown that any optimal control u*(-) can be represented by (51), and hence
the uniqueness of optimal control follows. On the other hand, we have also proved that P} and P*
are solutions to EARE’s (45) and (46) respectively. Moreover, they must be stabilizing solutions
because u*(-), which is now represented by (51), is a stabilizing control. O
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Remark 6.1 Theorem 6.2 shows that the existence of stabilizing solutions to EARE’s (45) and (46)

is almost necessary for the attainability of Problem (LQ). The only exception, as also demonstrated
k

by Example 6.1, is the “singular” case when (R + P Z D;-Dj)‘r = 0 for all elements P in at least
j=1
one of the sets P, and P_.

6.3 Existence of Stabilizing Solutions to EARE’s

Theorem 6.1 asserts that if one can find stabilizing solutions to the EARE’s, then the original
optimal LQ control can be solved completely and explicitly, in terms of obtaining the optimal
feedback control as well as the value function. The next natural questions are, then, when the
EARE’s admit stabilizing solutions and how to find them. These are the issues that we are going
to address in this subsection. Indeed, we will identify and discuss three cases when the EARE’s do
have the stabilizing solutions.

Theorem 6.3 If there exist Pio), pO satisfying

k
Li(PY) >0, (R+PY Y DjDy)| >0, (56)
7j=1
k
L-(PY) >0, (R+ PO DiDy)| >0, (57)
j=1
and . o
Fi(e(PY) <0, F (e (PY)) <o, (58)

then EARE’s (45) and (46) admit unique stabilizing solutions P} and P* respectively.
Proof : If L+(Pj(L0)) = 0, then P4(_0) is the stabilizing solution to (45) and we are done. So let us

k
assume that L (Pj_o)) =(24+) C]?)Pio) +Q + <I>+(PJ(FO)) > 0, namely,
j=1

Py (6 (PO)YPO + @+ ¢, (P)Re, (PY) > 0.

Since F (§+(Pj(LO))) < 0, we have

_Q+& (PR (PY)
Fi(4(PY))

By Lemma 6.2, we have £+(Pi1)) € K+ because PS) > Pio). Moreover,

PO < =P, (59)

k
Ly(PY) = 24+ CHPY +Q+ 3, (PY)

i=1

k k
24+ Y CHPY +Q+ & (PO)(R+ PV Y DiDjer (P (60)

=1 =1

k
+2(B+ Y C;D;) P, (PY)

Jj=1

IN

= 0,
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where the last inequality was due to the very definition of Pf). Now, if L+(P§r1)) = 0 then PS) is
the stabilizing solution of (45). If L+(P4(_1)) < 0, then, noticing that L (-) is a strictly decreasing (by

Lemma 6.3) continuous function on the interval [Pio),PS)] along with L (Pio) > 0, we conclude
k

that there exists a unique P} € (Pio), PS)) such that L (P}) = 0. Clearly (R+P7 Z D;Dj) ‘F > 0,
j=1
and & (P}) € K4 thanks to Lemma 6.2. Hence P} is the stabilizing solution of (45).
The proof for the existence of the stabilizing solution to (46) is completely analogous. Finally,
the uniqueness of the stabilizing solutions follows from Corollary 6.1. O

Theorem 6.4 If there exist Pj_o), PEO) satisfying

k
Lo (P?) >0, (R+ Py DiDy)| >0, (61)
j=1
and
k
L-(PY) >0, (R+ POy DiDy)| >0, (62)
j=1

then EARE’s (45) and (46) admit unique stabilizing solutions P} and P* respectively.
Proof : Take K, € K, which exists by the stabilizability assumption. Set
py._ Q@+ K RK,

= 63
i Fy(Ky) (63)
k
It follows from Lemma 5.1 that PJ(rl) > Pio) since Pj(Lo) € P;. Hence (R + Pj_l) ZD;'DJ')‘F > 0.
7j=1
Moreover,
k
Li(PY)y = 4+ )Py +Q+ e (PY)
N k
< 24+ )PV +Q+ K, (R+ P> DiD)K, (64)
j=1 j=1
k
+2(B+ ;D) PV K,
j=1
= 0.
Applying Lemma 6.1 and noting that L (Pj_o)) > 0 we get
0 1 0 1 1
0< Ly (PO) — Ly (P < (PO — PO)F, (6.(PI)). (65)
Hence F+(§+(P_$_1))) <0or §+(P_$_1)) € K. Now set
5 _ Q& (P RE(PY)
PP = SASE L SASE 20N (66)

1
Py (64+(P))
k
Again by Lemma 5.1 we obtain P? > P{ and, therefore, (R + P{’ 3" D}D;)| > 0. On the
7j=1

other hand, the fact that L+(Pj(L1)) < 0 can be rewritten as Pf) < PS) in view of the relation
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(66). Moreover, similar analysis to that for PS) above leads to L+(Pf)) <0, and §+(PJ(F2)) e Ky
or Fy (£4(PP)) <.
In general, we construct iteratively the following sequence
. POYRe, (PO
FL(&4(P17))

An induction argument shows that Pio) <...< PJ(:H) < PJ(:) e < Pil), (R+P$) Z D;-Dj)‘r > 0,
j=1
L+(Pf)) < 0, and §+(Pf)) € Ky, 1 = 1,2,---. Since the sequence {PP} is decreasing with
a lower bound P4(_0)’ there exists P7 € R so that P} = lim Pf). Moreover it is clear that (R +
1—>00

k k
P ]Z_l D;D;)| > (R+P{ ; D;D;)| > 0. On the other hand, L (P}) < 0 since each L (P{") <
0. Thus argument similar to (65) yields £, (P}) € Ky or Fi(£4(PY)) < 0. As a result, we can
_Q+ & (PY) RE(P)
F(&+(PY))
This shows that P is the stabilizing solution to (45). Similarly we can prove that (46) admits the
stabilizing solution. O

pass limit in (67) to obtain P} = , which is equivalent to L, (P}) = 0.

Remark 6.2 Recall that Theorem 5.1 characterizes the well-posedness of Problem (LQ) by the
nonemptiness of the sets P, and P_. Theorems 6.3 and 6.4 spell out two important cases when
EARE’s (45) and (46) have stabilizing solutions and, therefore, Problem (LQ) can be completely
solved with explicit solutions. These two cases are specified in terms of existence of certain “special
elements” of the sets P, and P_. Specifically, the case with Theorem 6.3 is one when each of P,
and P_ has a “stabilizing element” in the sense that (58) holds. On the other hand, Theorem
6.4 asserts that the nonemptiness of the interiors of P, and P_ is sufficient for the existence of
stabilizing solutions to the EARE’s. In view of the fact that the nonemptiness of P, and P_ is the
minimum requirement for the underlying LQ problem to be meaningful, the sufficient conditions
respectively given in Theorems 6.3 and 6.4 are very mild indeed.

Remark 6.3 The proof of Theorem 6.4 constitutes an algorithm for finding the stabilizing solutions
to the EARE’s. In fact it is given by the iterative scheme (67) with an initial point (63). On the
other hand, although the proof of Theorem 6.3 has not given an explicit algorithm for computing
the stabilizing solutions, one can use a middle-point algorithm to find them based on the proof.
Alternatively, one may use the same iterative scheme (67) with the initial point, PJ(FI), given by
(59). It can be proved using almost the same analysis as that in the proof of Theorem 6.4 that
the constructed sequence converges to the desired point, P. The only argument that needs to be
modified is that for proving &, (Pf) € K. In this case, £ (P}) € K4 is seen from the facts that

Py > Pj(Lo) and §+(P§L0)) € K4 along with Lemma 6.2.
Finally we present the results on the definite case @@ > 0 and R‘F > 0 (including the so-called

singular case when R is allowed to be singular).

Theorem 6.5 Assume Q@ > 0 and R‘F > 0. Then the EARE’s (45) and (46) admit unique
stabilizing solutions P} and P* respectively under one of the following additional conditions.
(i) @>0 andRF>O.
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k
(i) Q =0, R‘F >0, and 24+ > C2 #0
j=1

k
(iii) Q > 0, R‘r >0, and ZD;DJ-‘F > 0.
j=1

Proof : (i) In this case PSLO) =prP0 =9 satisfy the assumption of Theorem 6.4.
k
(ii) If 24 + Z Cf < 0, then take Pj(Lo) = P9 = 0. We see that L+(Pj(L0)) = L_(PEO)) =Q=0
j=1
k
and F+(§+(Pi0))) = F,(é“,(PSO))) =24+ ZCJQ < 0. Thus the assumption of Theorem 6.3 is

=1
satisfied.

If 24 + Z 0]2 > 0, due to the stabilizability assumption there is 0 # K, € K;. Set P4(_1) =
j=1

K. RK
TR As Fy(KL) <0, R‘P >0 and K # 0, we have P{") > 0. Define

CF(Ky)

pl+) . _ §+(P(Z ) Rf+( )
i
(§+( ")

Then a similar analysis to that in the proof of Theorem 6.4 leads to 0 < --- < PSH) < Pf) e <

L i=1,2,--. (68)

ok
PS), (R+ Pf) Y DiDj) ‘ >0, L. (P P )) <0, and §+( ) € Ky,i=1,2,---. Hence there exists
j=1

k
P} > 0 so that P} = lim P{". Morcover (R + P}y DjD;)| > R| > 0. Note that at this
j=1

12— 00

point we can no longer apply the same argument as that used in the proof of Theorem 6.4 to
conclude F (¢4 (PY)) < 0, because the element 0, which substitutes the point P4(_0) of Theorem 6.4,
does not satisfy L, (0) > 0. To get around, let us suppose F ({4 (P})) = 0 (recall that it always
holds that Fy (¢4 (P*)) < 0 since Fy (¢4(P\Y)) < 0). Multiplying (68) by Fy (£, (P\”)) and then
passing to limit, we obtain £ (P}) Ré;(P}) = 0, resulting in &, (P}) = 0. Thus F, (&4 (P})) =
2A + Zle C? > 0, which is a contradiction. This proves that F. (£, (P})) < 0. The rest of the
proof is the same as that of Theorem 6.4.
(iii) First note for any P > 0,

0

v

®,(P)
k

k
!
jnf K'RK + P inf [K ZDDK+2 B+210D K]
J

v

k

k
. !
P inf [K ZD DK +2( B+210D K].
J

Hence lim &, (P) = 0. Since @ > 0, we have by the definition of L (-) that there exists PJ(FO) > 05so

P—0+

k
that L (P\”) > 0. On the other hand, it is clear that (R+ P\" ZD ;)| > P> DiD;| >o0.
j=1
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Consequently Theorem 6.4 applies. O

k
One may be curious about what happens if Q = 0, R - > 0, and 24 + ZCJQ = 0 (refer to
Jj=1
Theorem 6.5-(ii)). It turns out that in this case the EARE’s never admit stabilizing solutions.

Proposition 6.1 Neither (45) nor (46) admits any stabilizing solution when Q = 0, R‘F >0, and

k
24+ C7=0.

j=1

Proof: By Assumption 6.1, there exists 0 # K € K, and 0 # K_ € K_ since F(0) = F_(0) = 0.
Denote K¢ :=¢K, and K¢ :=¢K_ for e € (0,1]. Then K¢ €I" and K¢ €T.

— K
%,1} € (0,1]. Then

For any fixed P; >0, set & := min { 2K' RK,
+

LuPy) =0(P) k
< (K3)'(R+ Py Y DiD;)K5 +2Py(B+ Y C;D;)K}
j=1 =1
! k ! k
< 5{6KerK+ + PiK, S DiD;Ky +2(B+ . CJ-DJ-)K+]}

P i=1
—PLF(Ky)
<e [W(KQRKH + PLF(Ky)
e
= §P+F+(K+)
<0.

This implies that there exists no positive solution to EARE (45).

k

Next, for any fixed Py < 0 with (R + Py Z D;Dj)‘F > 0, set
j=1

_IPJF (K )

2K' RK

€:= min{ ,1} € (0,1]. Then

Li(Py) =24 (Py) .

k
< (K°)(R+Py Y DiDj)K® +2P,(B+ Y C;Dj)K*

j=1 j=1
k k
< e{eKLRK_ +|P4|[K. S D}D;K_ —2(B+ ZC]-DJ-)K_]}
j=1 j=1
_|P+|F— (K—) !
i il i ~ F (K.
<o | TS (kK )+ (P ()
3
= 5 |P|F-(K-)
<.

Hence there is no negative solution to EARE (45).

Finally, when P, = 0, we do have L, (P;) =0 but F}(£4+(Py)) = F1(0) =0. So Py =0 is not
a stabilizing solution either.

Similarly, we can prove the non-existence of stabilizing solution to EARE (46). O
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Although the conclusion of Proposition 6.1 does not necessarily lead to the non-existence of
optimal feedback control for the corresponding LQ problem (refer to Section 6.2), the following
example shows that the latter could indeed occur.

Example 6.2 Consider the following L(Q problem

+oo
Minimize  J(zo;u()) = E / rlu(?)|?dt
0

dz(t) = [az(t) + bu(t)]dt + cz(t)dw(t),
z(0) = zo,

(69)
subject to {

where all the variables are scalar-valued, T =R, 2a + ¢ =0, b> 0, and r > 0. It is easy to verify
that the problem is stabilizable and well-posed. Take a feedback control u®(t) = —ez®(t) for € > 0.
Under this control the state satisfies

Ell‘g(t)|2 _ e(2a+c2—2bs)txg _ 6_2b6t$%.

Hence u® is stabilizing. Moreover, the cost under this control is

400 2,2
J(w0; w5 () = €2r°B / j2°(0)2at = e,
0

Letting ¢ — 0 we see that V(zg) = 0, Vzo € R. Note that this value cannot be attained if 2y # 0,
“+0o

for whenever E / r|u*(t)|?dt = 0 it is necessary that u*(t) = 0, a.e.t > 0. However, this control,
0

u*(t), is not stabilizable when zy # 0. In other words, the LQ problem is not attainable with
respect to zg # 0.

Remark 6.4 Theorem 6.5-(i), (ii), Proposition 6.1 together with Example 6.2 give a complete
answer to the question of optimality for Problem (LQ) in the classical definite case @@ > 0 and

R‘P > 0. Moreover, Theorem 6.5-(iii) addresses the case when R is possibly singular. Note that

this case occurs often in financial applications (where typically R = 0).

Remark 6.5 In view of Theorem 6.1, under the respective assumptions of Theorems 6.3, 6.4 and
6.5, Problem (LQ) has the optimal feedback control (51) and the value function (52). Moreover,
as per Remark 5.6, in these cases the stabilizing solutions P} and P* can also be obtained, in
addition to the preceding algorithms, by solving the mathematical programs (33) and (34) if the
corresponding constraints are tractable.

7 Numerical Examples

To numerically calculate optimal solution to Problem (LQ) one needs to carry out two steps: the
first is to check the conic stabilizability and the well-posedness, and the second is to find the
stabilizing solutions to the EARE’s. The procedures for the first step are depicted in Sections
4 and 5.3, whereas that for the second part is described in Section 6. Here we give an example
to illustrate the whole process (where we used the computing tool, Scilab, to carry out all the
calculations).

Example 7.1 Consider Problem (LQ) with m = k =3, ' = R3, and the dynamics coefficients as
follows:
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A = 2.00, B = (=50 —100 200),
C,=-084, D;=(685 —8.78 0.68),
Co=—3.78, Dy= (1122 13.24 14.53),
Cy=0.849, Dy=(—198 —544 —2.32).

3 3
The eigenvalues of ZD;DJ- are 1.5880509, 126.23912 and 547.84943. So ZD;-DJ- is positive
j=1 j=1
definite in this case. The cost parameters are
0 0 0
Q=10, R=]1 0 =50 O
0 0 4.0

Hence this is an indefinite L.QQ problem.
To solve this problem, we first apply Theorem 4.1-(iii) (note that in this example the constraint
Ke Ri is also an LMI) to obtain stabilizing feedback gains

0.5435353 0.0816967
K, =] 05307289 |, K_ =] 0.0562570
0.0701460 0.7185273

Next we use the algorithm in Section 5.3 to find out that Problem (LQ) is well-posed. Fur-
3

thermore, when P{” = P = 0.1, the eigenvalues of R+ 0.1 x 3 D} D; are 1.641309, 10.293806
j=1
3
and 54.632545; hence R + 0.1 * ZD;D]- > 0. On the other hand, L,(0.1) = 1.6073676 > 0 and
i=1
L_(0.1) = 4.0651986 > 0. According to Theorem 6.4, Problem (LQ) has an optimal feedback
control. Now we use the algorithm given in the proof of Theorem 6.4 to obtain the optimal control
and optimal value. First, set the initial values Pj(Ll) and PV by using K, K_ and formulas similar
to (63), respectively. They are

PY = 1.1814412, P = 13.167238.

By the iterative formula (67), we obtain

0.2889240
Py =0.1225762, ¢ (Py)=| 0.4918755 |,
0
0
P* =0.1561608, & (P*) = 0
0.5875815
Therefore, the optimal feedback control is
0.2889240 0
u*(t) = | 0.4918755 |zt (¢) + 0 z(t),
0 0.5875815

with the optimal cost

J*(z0) = 0.1225762 x (z)? + 0.1561608 * (75 )>.
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In the next example we demonstrate the calculation of a lower bound of the well-posedness
margin (refer to Section 5.4).

Example 7.2 With the same values of the coefficients A, B, C;, D;, j = 1,2,3, and @ in
Example 7.1, we want to compute a lower bound of the well-posedness margin r*.

According to Theorem 5.2, we first calculate A = 176.7313. Next we have 7, = —9.434553 and
7 = —6.4967141. Hence, the lower bound of the well-posedness margin is ¥ = —6.4967141. Note
that, as seen in Example 7.1, the problem is still well-posed when one of the eigenvalues of R is —5.

8 Conclusion

In this paper, an indefinite stochastic LQ control problem in the infinite time horizon with conic
control constraint is studied. Several key issues, including conic stabilizability, well-posedness
and optimality are addressed with complete solutions. In particular, two algebraic equations, the
EARE’s, are newly introduced, in lieu of the classical algebraic Riccati equation, whose stabilizing
solutions give rise to the explicit forms of the optimal feedback control and the value function. It
is also seen that the representation of the value function given by Proposition 5.1 serves as the
technical key to all the main results of this paper, which motivates the utilization of the cerebrated
Tanaka formula.

It should be stressed again that the approach in this paper crucially depends on the special
structure of the problem. One main assumption is that the state of the system is one-dimensional.
While the conclusion of Proposition 5.1 appears to hold, mutatis mutandis, for the problem with
multi-dimensional state variable, it seems that an analogy of Lemma 3.2, if any, would be far more
complicated. This makes the multi-dimensional problem very challenging. Another structural
property of the model is that the dynamics of the system is homogeneous (in state and control)
and the cost contains no first-order term of the state variable as well as no control-state cross
term. As a result, our approach will fail, say, for the case when there is no state and control
dependent noise, but rather that with fixed variance. Solving these kind of problems calls for
different techniques. Finally, an even more difficult problem is the stochastic LQ control with state
constraint.

Acknowledgment. We thank the three anonymous reviewers for their careful reading of an earlier
version of the paper and for their constructive comments that led to an improved version.
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