I o : MASTER SET |

MATHEMATICS OF OPERATIONS RESEARCH
Val. (), No, 0, Month 1996
Printed in USA.

DETERMINISTIC NEAR-OPTIMAL CONTROLS. PART II:
DYNAMIC PROGRAMMING AND VISCOSITY
SOLUTION APPROACH

XUN YU ZHOU

Near-optimization is as scnsible and important as optimization for both theory and
applications. This paper concerns dynamic near-optimization, or near-optimal controls, for '
systems governed by deterministic ordinary differential equations, and uses dynamic pro- &
gramming to study the near-optimality. Since nonsmoothness is inherent in this subject, the c&ém (5“@_
viscosity solution approach is employed to investigate the problem. The dynamic program- ; ‘«{

ming equation is derived in terms of e-superdifferential /subdifferential. The relationships \&e& g 1
among the adjoint functions, the value functions, and the Hamiltonian along near-optimal /J _

trajeclories arc revealed. Verification theorems with which near-optimal feedback controls B
can be constructed are obtained. Cik/

1. Introduction. By a near-optimal control we mean a control whose objective
function value comes within a small neighborhood ‘of the optimal one. Studying
near-optimal controls makes as good sense as studying optimal controls for both
theory and applications. Sec the Introduction in Part I (Zhou 1995) of this scries for a
detailed argument and justification of establishing a general theory of ncar-optimal
controls.

In Part I (Zhou 1995), necessary and sufficient conditions for near-optimal controls
arc derived in lerms of ncar-maximum conditions of the Hamiltonian. Thesc resulls
are parallel to the classical Pontryagin maximum principle in exact-optimality
(Pontryagin et al. 1962). It is well known that another important approach in optimal
control theory is the Bellman dynamic programming (Bellman 1957). Can we apply
dynamic programming to ncar-optimality? Since nonsmoothness is inherent in this
subject, how can we apply it?

As the second in a scrics of papers on near-optimal controls, this paper tries to
answer the above questions. We are concerned with systems described by determinis-
tic ordinary diffcrential cquations (ODEs). As is well known, the classical dynamic
programming theory does not have a rigorous foundation, because it is based on the
smoothness assumption of the value function, which is not satisfied even in the
simplest situations. To handle such nonsmooth phenomena, people have been led to
study differential properties of nondifferentiable functions, or, nonsmooth analysis.
Beginning in the 1970s and 1980s respectively, two remarkable bodies of nonsmooth
analysis, namely, Clarke’s generalized gradient (Clarke 1973) and Crandall and Lions's
viscosity solution (Crandall and Lions 1983) have been extensively developed, and have
been found extremcly powerful in dealing with optimal control problems; sce Clarke
(1990), Lions (1982) and Fleming and Soner (1992). In this paper, we shall ecmploy the
viscosity solution approach and derive the dynamic programming equation in terms of
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the so-called &-superdifferential and e-subdifferential that are particularly cffective
for studying ncar-optimal controls. Further we reveal some important relationships
among the value function, the adjoint function and the Hamiltonian along any
near-optimal trajectorics. At last, we prove verification thcorems for near-optimality,
which can be used to construct near-optimal feedback controls.

The plan of the rest of the paper is as follows. In §2, we set up the problem and
give some preliminary definitions and results. In §3, we introduce the e-superdif-
ferential /subdiffercntial and derive a nonsmooth version of the Hamilton-Jacobi
equation. In §4, we investigate the relationship among the value function, the adjoint
function, and the Hamiltonian. Seet-ienfs concerns the verification theorems for
necar-optimality. Finally, §6 concludes the paper. !

2. Preliminaries. Let us consider the following optimal control problem. Given
(s,y) € [0,T] X R4, we are to

(2.1) minimize J(s, y;u(-)) = [ L(t, x(1), u(r)) dt + h(x(T)),

i(t) =f(e,x(2),u(t)), ae.te[sT],

22 subject to
(2.2) j {x(s) ot
over the sct of admissible controls U, [s, T'] = {u(-)lu(-) is a Lebesgue measurable
function from [s, T] to T), where T is an arbitrary given compact sct in R*

We denote the above problem by C,, to recall the dependence on the initial time s
and the initial state y. The value function is defined as

(2.3) V(s,y) = inf{J(s, y;u(-)): u(:) € U, [s,T]}.

The control problem under consideration in this paper is that of finding a control
in U, [s, T}, for any initial (5, y) € [0, T] X R that minimizes or “nearly” minimizes
J(s, y; u(-)) over U, [s, T]. In this connection, we need the following definitions.

DEFINITION 2.1.  Any pair (x(+), u(-)), where x(:) is the solution of (2.2) corre-
sponding to u(-) € U, [s, T}, is called an admissible pair with respect to the initial
(s, y). An admissible pair (£(-), #(+)), or simply &(-), is called optimal with respect to
(s, y), if &4() achieves the minimum of J(s, y; u(-)).

DeriNiTION 2.2. For a given &> 0, an admissible pair (x“(-), u°(-)), or simply
u®(-), is called e-optimal with respect to (s, y) if

(s ysut()) = V(s y)| s e

DEerINITION 2.3.  Both a family of admissible pairs {(x“(-), u“(-))) parameterized by
£>0 and any element (x°(-),u°(-)), or simply u“(), in the family, are called
near-optimal with respect to (s, y) if

|J(s,y;u‘(-)) - V(s,y)| <r(e)

holds for sufficiently small &, where r is a function of & satisfying r(e) — 0 as
& = 0. The estimate r(e) is called an emor bound. If r(e) = ce® for some &> 0
independent of the constant ¢, then u“(:) is called near-optimal with order &’

In the above definitions, the terms “admissible,” “optimal,” “e-optimal,” and
“near-optimal” are dependent of the initial time s and initial state y. In the sequel,
however, the phrase “with respect to (s, y)” may be omitted if no confusion would
oceur.

"
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In contrast with the above defined controls, usually called open-loop, the definition
of feedback controls are given below, following Fleming and Rishel (1975).

DEFINITION 2.4. A measurable function # from [0,T) X RY to T is called an
admissible feedback control if for any (s, y) € [0,T] x R* there is a unique solution
x(:; 5, y) of the following equation

i(1) = f(t,x(2),u(r,x(1))), ae.t& [s,T],
24) {x(s) =y.

An admissible feedback control u is called optimal (resp. near-optimal with order €°)
if (x(;s,y),uC,xC;s,y)) is optimal (resp. near-optimal with order &°) for the
problem C,, for each (s, y), where x(+; 5, y) is the solution of (2.4) corresponding
to u.

Notation. Wec make use of the following notation in this paper:

a*: = max{a,0) for any real-valued number a;

a”, = max(—a, 0} for any real-valued number a; A\
a - B: the inner product of any two vectors a and B; Y

lak = la,| + -+ +la,| for any vector a = (ay,...,a,);

A*: the transpose of any vector or matrix A;
o(y): a function of y such that lim,_ lo(y)/yl = 0;
p,: the (conventional) derivative of a function p with respect to the
variable x;
C((s, T); R*): the Banach space of Ré-valued continuous functions on [s, T
endowed with the maximum norm;
L3([s, T} R%): the Hilbert space of R“valued square-integrable functions on

[5,7] endowed with the L*norm;
C(X): the set of all’continuous functions on X gt .. ]
Scedar— verlee
CY(X): the sct of alliontinuously erentiable functions on X; il

C,C,i=1,2,...: multiplicative constants required in the analysis.

Assumptions. The following basic assumptions will be in force throughout this
paper:

(A1) f: [0,T] X R*xT - R* and L: [0,T] X RYX T - R' are measurable in
(¢, x, u), continuously differentiable in x for each (¢, u), and there exists a constant

C > 0 such that for p=f, L,
(2.5) | p(t, x,u)| < C(1 + |x]),
(2.6) | p(t, x,u) = p(t, &', w)| +] oot 2,u) = pu(t, %', u)]|
< C(lx = x'| + lu — ).
(A2) h: R - R is continuously differentiable, and
(2.7) [a(x)| < C(1 + |x),
(2.8) [(x) = ()| +|h(x) = h(x)] < Clx = X'l

REMARK 2.1. By (2.5) with p = f, it is easy to sec using Gronwall’s incquality that
for every solution x(-) of (2.2), we have

(2.9) sup |x(t)| < [C(T —5) + ly[]e€T.

sstsT
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Now that the control problem has been formulated, we shall proceed to recall some
definitions and results that are useful for our subsequent analysis. First we state
Ekeland’s variational principle (Ekeland 1974).

LeEmma 2.1.  Let (S, d) be a complete metric space, and p(-): § = R’ be lower-semi-
continuous and bounded from below. For & = 0, suppose u® € § satisfies

p(u®) < inf p(u) + &.
ues
Then for any A > 0, there exists u* € S such that
p(u*) < p(uf),
d(u*,u®) < A, and
p(u?) < p(u) + -i-d(u,u"), forallu € S.
From now on in this section, let us assume that the initial time s and initial state y

are fixed. Since the control region T is closed, U, [s, T] becomes a complete metric
space when endowed with the metric

(2.10) a(u(),u()) = [lue) = w (o)l

For any u(-) € U,[s, T] and the corresponding state trajectory x(-), we define the
adjoint function #(-) as the one satisfying the adjoint cquation
d(r) = =f(t,x(0),u(8)) (1) = L1, x(0), u(1)),
p(T) = h(x(T)).

Since f,, L, and h, are bounded by C by Assumptions (A1) and (A2), there exists a
constant C, > 0 that is independent of w(-) such that

(2.11)

(2.12) sup |w(0)] = Cy.

s<isT

Moreover, it is clear that ¢(-) € C((s,T]; R%), and we have the following estimate:
(2.13) W) = w(r)| < C(C, + Dl — 1.

The above definition of adjoint functions leads to an operator ¥ from U,ls, T]to
C((s, TL R?) as follows:

$(v) = ¥(u()).
The following result, sometimes called the adjoint equality, is well known.

LemMA 2.2. Forany t € [5,T), g € L*(s,T; R), and a € R®, denote by z, , ()
the solution of the following linear equation;

Zga(r) = £l x(r),u(r)) 2, ,0(r) +8(r), ae.re[nT],

Z:;g.a(‘) = .

A
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Then for y(-) = ¥(u(-)), we have

JTEr 300,87 21,0 (r) i+ RHTD) 25T

= w(e) ot [T0(r) 8(r) e

ProOF. The result is rcadily seen by differentiating ¥(r)-z, , .(r) and then
integrating from ¢ to 7. O :

3. Dynamic programming. Optimal control has been extensively studied via é)
dynamic programming and the viscosity solution approach. The so-called superdiffer- et st
ential and subdifferential, which are nonsmooth versions of the conventional deriva-
tive, play a central role in the approach. However, in order to study ncar-optimality, (5]1414.(_/
we may utilize some “perturbed” version of the superdifferential /subdifferential, & 2 Ins /; ?
precisely defined as follows. . A=
Let Q be an open subset of some R and v: Q = R be a continuous function. @,
DeriNimioN 3.1, The s-superdifferential (resp. e-subdifferential) of v at £ € Q,
denoted by D (%) (resp. D u(%)), is a set defined by

lx = %]

D} (%) = {p € lim sup u(x) = o) —p-(x—%) < .s).
(resp.
D; (%) = {p e Rflimint( -} = ~¢}.)

REMARK 3.1. The idea of e-superdiffercatial/subdifferential originates in
Ekeland and Lebourg (1976), while the definitions were given explicitly by Crandall
and Lions (1985), although those authors used the notion to study optimality.

REMARK 3.2. Dju(%) (resp. D7 u(£)) is a subset of D7 (%) (resp. DS (X))
More precisely, we have

(3.1) Dfu(%) = () DS w(%) and Du(%) = () D, w(%).

£>0 e>0

Here D}v and D] v denote the superdifferential and subdifferential, respectively.

LemMA 3.1. A vectorp € D} (%) (resp. p € D w(£)) if and only if there exists
¢ € C(Q) N C(Q) such that

¢(£) = v(x),
é(%) =p, and
$(x) > (resp. <) v(x) — elx =%, foranyX#x¢€ 0.

PrOOE. We only prove the statement for the e-superdifferential, the sub case
being similar.
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First, note that the “if” part is clecar. We only prove the “only if” part. Suppose
p € D} ,u(%). Define a function w on Q as follows:

max{v(x)—u(x) pr—=%) } Satd
w(x) = lx - 2|
£, x=x, d A
f’- (x-x)
It is obvious that liminf, _ ; w(x) > £. On the other hand, due to the fact that f

€ D} v(%), we have \/
o(x) = o(5) = pa-2d) o)

lx — £|

limsupw(x) < max{ lim sup

i =
It follows that w € C(Q) and lim, _, ; w(x) = &. Define

p(r) = sup (w(x)—¢£)=0, forr>0,and

lx—#|sr
B(x) = f:"“"p(r) dr+ |x — 2.
It is easy to see that 8 € C(Q) N C'(Q) and
B(£) =0 and B(£)=0.
Moreover, noting that p is nonnegative and nondecreasing, we have

B(x) = frzl‘_f'p(r) dr + |x — 2

= p(lx = 2)x — £ + |x = £
> (w(x) — &)lx = | + |x - :_ﬂ’

2 0(x) —v(k) —pla==_) —elx - %+ |x -2

Let ¢(x) = B(x) + (%) + ptx—=—=). Then ¢ is a function that satisfies the desired
properties of the lemma. D

_ Lemma 32. If peD, v(x) (resp. p € D7 (%)), then there is a sequence Brn |
K‘L/ (x,, ) € Q X R such fhm'p,, € D} u(x,) (resp. p, € D7 u(x,), x, = %, andfar any Tipfet Jor Lo
a > 0, it holds that |p, — pl < (1 + rx)s for suﬁ'c:enrfy Imgeg b b pema—

: % Proor. We only prove the superdifferential case. § =

atrer ., o For p € D .u(%), take ¢ as determined by Lemma 3.1. Since ¢(x) — v(x) + glx | € het, € £t Cop
beve 135 % — %l attains a strict minimum at £, the function ¢(x) — v(x) + &y|x —.tI2 +1/mg] . )
L e ol attains a minimum at some x, € Q for suff'cu:ntly Iarge with x, = £ Let p, be] —ee s "L}~
_—; E the gradient of ¢(x) + &V/lx — £I* + 1/p2 at X, name y, /E 7
2 ﬁ!((snjer( ‘é Cha..

Py = ‘ﬁ(xu) +&

Lé’u‘lmdi 3L

. A ¢l pree }

Viz, - .fi‘ B 1/g2
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Then p, € Dfu(x,) and |p, — pl < |¢(x,) = $(£)] + &. The result then follows
from the fact that ¢ € CHQ). o

Before presenting the main result in this section, let us introduce an additional
assumption, which will be effcctive from now on.

(A3) f and L are continuous in (t, x, u).

REMARK 3.3. The value function V is globally Lipschitz continuous in (¢, x) under

(A1)-(A3); see Lions (1982).
In what follows, we shall use D, V(¢ x) to denote the s-superdifferential with

respect to (¢, x), and D] V(1 x) the (partial) e-superdifferential with respect to x,

etc.
Define the Hamiltonian

H(t, x,u, ) = =¢-f(t,x,u) = L(t, x,u),

for (¢, x,u, ) € [0,T] X R X I' X R%.
THEOREM 3.1. For any (t, x) € (0,T) X R and any & > 0,

—p+ supH(t,x,u,q) < [C+1+Clxlle, forany(p,q) €D}, V(1,x),

uel
(32)
—p+ supH(t,x,u,q) 2 —[C+1+Clxlle, forany(p,q) €D;, V(t, x),

uel

where C Is the same constant as in Assumption (Al).

Proor. Suppose (p, q) € D}, V(¢ x). By Lemma 3.2, there exists (¢, x,, ., q.)
such that (p,,q,) € D,fo{r,,,x,,) (¢,,x,) = (¢, x) and for any a > 0, it holds that
|p, = pl + lg, = ql = (1 + a)e for sufficiently large n. Since V¥ is a viscosity solution
to the following Hamilton-Jacobi equation (cf. Lions 1982):

(33) ~ V(t,x) + sup H(t, x,u,¥(t, %)) = 0,
uel

we have

o SUPH(r,.,x.,,u q,) < 0.

ll'E
Since |f(t, x, u)| < C(1 + |x[), simple calculation leads to

—p + supH(t,x,u,q9) < (1+ a)[C+1+Clx]le.

uel

The desired inequality follows by letting a — 0.

Similarly we can prove the sub case. O

REMARK 3.4. By (3.1), the incqualities /\(3'2) imply that V' is a viscosity solution to
the HJ equation (3.3). The above proof shows that vice versa. Therefore, Theoren 3.1
is actually equivalent to the fact that V is a viscosity solution to the HJ equation.

4. Value function and adjoint function. In optimal control theory, the maximum
principle and the dynamic programming are deeply related via the adjoint function,
the value function and the Hamiltonian along the optimal trajectories (cf. Berkovitz
1974 and Fleming and Rishel 1975). Such relationships for deterministic controls have
been further investigated by using viscosity solution theory (Barron and Jensen 1986,
Zhou 1990 and Cannarsa and Frankowska 1991) as well as Clarke’s generalized
gradient (Clarke and Vinter 1987).

AeTED @
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As for near-optimality, various e-maximum principles for some selected near-
optimal controls were obtained by Ekeland (1974) and Gabasov, Kirillova and
Mordukhovich (1983). Recently, an e-maximum principle for any near-optimal con-
trol has been derived in Part I of this series (Zhou 1995) in some integral form of the
Hamiltonian. In this section, we shall study the corresponding relationships between
the e-maximum principle derived in Zhou (1995) and the dynamic programming
derived in §3 along any near-optimal trajectory.

First, let us prove the following lemma that may be called Principle of e-Optimality.
Note that throughout this section, the initial time s and the initial state y are fixed.

LemMA 4.1, If (x°(:), u®(")) is an e-optimal pair for the problem C,, then for any
te(sT],

8 X. Y. ZHOU

V(t, x°(1)) = ]:TL(r,x‘(r),u‘(r)) dr + h(x*(T)) — &.
PROOE. We first prove that for any fixed a > 0,
(4.1)  V(t,x°(1)) zfrrL(r,x‘(r),u‘(r)) dr + h(x*(T)) = (1 + a)e.
Suppose (4.1) is not true. Then there is u(-) € U,,[¢, T] such that
I, 54(1); () < V(6,x5(0)) + we < ["L(r,x(),u*(r)) dr + h(x(T)) = .

Construct () € U, [s, T] as follows:

. furr), rels),
fhod= u(r), reltT].

Then

I(s,y;i(-)) =];‘L(r,x‘(r),u'(r))dr+1(:,x=(:);u(-))
< LTL(r,x‘(r),u‘(r)) dr+ h(x*(T)) — ¢

= (s, y;ut()) - £ S V(5,0),

contradicting the definition of the value function V. Therefore, (4.1) is true. Since
a > 0 is arbitrary, we get the desired result by letting «a = 0. o©

THEOREM 4.1.  Suppose (x°(:), u*(-)) is an e-optimal pair for the problem C.,. Then
there exists a constant C, > 0, depending only on the constant C in Asswmptions
(A1)-(A2), such that for any t € [s, T}, there is z = z(t) € RY satisfying

|z -x°(t)| < Ve and y*(t) € D¢z V(1. 2),

where s <(-) = W(u®(-)) is the corresponding adjoint function.
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Proor. For simplicity, we assume that h = 0. For x € RY, let x(-; x) be the
solution of (2.2) with initial time ¢, initial state x, and control u*(-)l,r;- Then, for any
rel:,T]

x(r;x) = x°(r)

=z —xe(r) + [1£(6,(0;),u(0)) = £(0,x"(0), u*(6))] 40
=x—x%(1) + [f‘.(a.x‘(ﬁ),u‘(ﬂ))(x(ﬂ;x) —x°(6)) do

+ [ TR0 25(0) + a(x(0:%) =°(8)),4(6))

—£,(0,x°(8),u(8))] da(x(0;x) —x°(0)) do. |
On the other hand, by the Principle of ¢-Optimality (Lemma 4.1), we have a L{.Y'&M é\ M_Q:.(i
V(I,I) = V(f,x‘(f)) i !;ge,e “K}lg/ /ﬂ___ v
s fT[L(’-x(f;I)|u‘(f)) — L(r,x*(r),u’(r))] dr+ ¢ 0.K. 6:7 S

. /“i.ln.(-;-a'...,,-‘,£"._-{'_L

- erx(’*I;(’),“‘(r)) (x(r;x) —x°(r)) dr {‘-'"""(“'ﬂ' ( Scmictun
' H d’( ?t/ (~.",‘;_, L:, !
-

+£T‘L1[L;(r,.t‘(r) + a(x(r;x) —x°(r)),u*(r)) s el as

—L(r,x°(r),uc(r))] da- (x(r;x) —x°(r)) dr + &.
By the adjoint equality (Lemma 2.2), we may rewrite the above inequality as

(4.2) V(t,x) = V(t,x()) < ¢(1) - (x —x*(1)) + n(t,x) + &,

where
T, 3
n(t,x) = ["[mi(r;x) + m(rix)] dr, with | i
ni(rix) = (1) - [ x() + a(x(rix) = 24(r)),u (7)) e
0 &zms/) s
~f(r, x5(r), ut(r)] da(x(rix) —x°(r), 7
| (See albove

ma(rix) = [LL(rx°(r) + a(a(rix) =2 (1) 7(1)

—L,(r,x‘(r),u‘(r))] da-(x(r;x) —x°(r)).
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Note that by Assumptions (A1) and (A2), n(r, x) is continuous in x and n(r, x“(r)) = 0.
Now fix ¢ and let

p(x) = =V(t,x) + $=(1) - (x = 2°(1)) + (1, ).
Then (4.2) is cquivalent to
p(x%(t)) < p(x) + &, foranyx € R".

By Ekeland’s principle (Lemma 2.1), there exists z = z(¢) € R” such that

(4.3) |z = x°(1)| < Ve,
and
(4.4) p(z) < p(x) + Velx —z|, forany x € R%.

We can rewrite (4.4) as
(4.5) V(1,x) = V(t,z) < (1) - (x—2) + n(t,x) = n(t,z) + Velx — z|.
Now let us estimate |
m(r; x) — ma(r; 2)
= [IErx() + a(arsx) = 5(0)e()
—L.(r,x°(r),u’(r))] da- (x(r;x) = x(r; z))
+'I:[L,(r,x‘(r) + a(x(r;x) —x°(r)),u(r))
=L, (r,x°(r) + a(x(r; 2) —x"(r)),u‘(r))] da-(x(r;z) —x*(r))
= B, + B,, say.
By Assumptions (A1)-(A2), we have
|8 < Cylx = x(1)]|x — 2l
< Gy(lx =z| +|z = x4(2) |)Ix — 2l
< Glx - zI* + Cyvelx — zl,
and
|B5] < Cylx(r; z) —x(r; x)| |x(r; 2) = x°(r)| < CsVelx — zl.
Thus we obtain

|na(r; %) = ma(r; 2)| < Cylx = zI + (Cy + C5)Velx — zl.
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Similar inequality holds for |n,(r; x) = n,(r; 2)| and, therefore, |n(t, x) = n(t, 2)l. So
(4.5) gives

V(t,x) = V(t,z) S ¢°(1)(x—2) + C,Velx = z| + o(lx — zI),
which implies that y“(t) € D¢, 7.Vt z). The proof is now completed. O
THEOREM 4.2. Suppose (x°(-), u(-)) is an e-optimal pair for the problem C,,. Then
there exists a constant Cg > 0, depending only on the constant C in Assumptions
(A1)~(A2), such that for almost all t € [s, T), there is (y, z) € [5,T] X RY satisfying
(4.6) 7 ly = tl +|z = x°(1)| <Ve and ‘
z), [

k_-——-———(H(?,x‘(?),u‘(ﬂ»d"(?))u!"(v)) € D¢, 0.V (7

where H is the Hamiltonian.

PROOF. Once again, we assume that i = 0. For (7, x) € [t,T] X RY, let x(+; 7, x)
be the solution of (2.2) with initial time 7, initial state x, and control u®( iz, 73 Then,
for any r € [7, T,

x(r;v,x) —x°(r)

- [; —x°(1) - j"f(e,x‘(ﬂ),u‘(ﬂ)) dﬂ]
+f[f(0,x(9;-r,.r),u‘(9]) — £(0,5°(0),u°(0))] 6

- [e= = 0.0 w0 0]
+ffa(ﬂ,x"(ﬂ).u‘(ﬁ'))(-‘-'(ai"'s-‘] ~x%(0)) 40

+j:rfol[fl.(8,x‘(8) + a(x(8; 7, x) —x°(8)), u(8))

~£,(8,%°(8),u*(0))] da(x(0; 7, x) —x°(6)) 4.
On the other hand, by Lemma 4.1, we have
¥izx) = V(t, x(1))

< —f"L(r,x‘(r),w(r)),{r .
+fT[L(r,x(r; XY ufE)) = L(r.x.‘(r), ut(r))] dr+ e
g F 3 £ dr T £ £ &
= —-j;L(r,x (r),u(r)),+ fr L(r,x*(r),u®(r)) - (x(r;7,x) —x°(r)) dr A/

[

+f:.f[]l[Lx(r, I‘(r) + Q(I(f; Ty I) _x‘(r)),u.‘(r))

—L,(r,x"(r),u‘(r))] da-(x(r;t,x) —x°(r)) dr + &.



. ' MASTER <f
12 X. Y. ZHOU o tﬂ \)ET
By the adjoint cquality, we have
V(r,x) = V(t,x%(1))

(4.7) ¢
< ye(7)" [x -x°(t) - ];L(r,x‘(r),u'(r)) dr] + (7, x) + &,
where

(. x) = f:[ﬁ,(r;x) + @,(r; x)] dr, with

rsx) = v<0) - [L0n 240) + alx(rin, ) =2 (), ()
il 2 ()t ()] daa(rinx) —x(1),

Fa(r; x) = ]:[L,'(r,xf(r) + a(x(r; 7, %) —x4(r)),u"(r))
=L,(r, x‘(r),u‘(r))] da-(x(r;7,x) —x(r)).
It is casy to see that 7(r, x) is continuous in (7, x) and 7(t, x4(1)) = 0. Define
o1, %) = =V(7,x) + pe(r) - [x - x°(t) — f'ff(r,xf(r).uf(r)) dr] (2(/(-%81, (}4,%

. ez 4
-fL(r,x‘(r),u‘(r)) dr + 7(7,x). /‘/2 /’hs/{) A(

t é;’. k ‘
Then (4.7) is equivalent to

p(t,x°(1)) < p(r,x) + &, forany (r,x) € [s,T] X R".

By Ekeland’s principle, there exists (y, 2) € [s,T] % R4 such that
(4.8) ly =t +]z = x°(1)| = Ve,
and
(49) p(7,2) = p(7sx) + Ve(lr— vyl +|x —z[), forany (r,x) €[5, T] % R,

We can then rewrite (4.9) as

V(r,3) = V(1,2) § =4e(n) - [ (e () ()

— [ L, x5 (r) e (r)) dr + 9 () - (x = 2)
(4.10) v

c) ) 2200 = [ )

+ (7, x) = Ay, 2) + Ve (Ir— vl +lx = zl).
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Now let us estimate .
I(we(r) = we () - (x = =)l
<|ye(r) = e (Mx =2l +ge(r) = ¥5(N)]]z - x*(1)]
< C(Cy + Dlr— yllx =zl + C(C, + )Welr— vl (by (2.13))
<o(lr— yl+1x—2l) + C(C, + 1)Velr = v, .

and

(4e(e) = ) - [Ter ) ]

<|b(z) - wml\ff(nx‘(r)m‘(r)) dr

+|ye(7) - w‘('y)l\Lff(r,x‘(r),u‘(r)) dr

. < Cyelr= yl+ Cylr = yI2.
Similar to the proof of Theorem 4.1, one can also prove that
|7(r, x) = Ay, 2)| = cyle(lr =yl + lx = zl) +o(lr = yl + |x = z).
Therefore, (4.10) gives
V(r,x) = V(1,2)  H(y, x(0), w5 (r), 45 (N) (7= 7) + ye(y)(x—2)
+ Ce(lr = yl+lx— zl) +o(lr— yl+lx - zl),

which implies (H(y, x*(y), wc(y), Wy ¥(y)) € D¢, 7.0, Wy, z). The proof is
now completed. O

REMARK 4.1.  Results similar to Theorems 4.1 and 4.2 in the context of optimal
controls have been obtained in Zhou (1990), which basically concerns the relationship
between the maximum principle and the dynamic programming along optimal trajec-
tories. The results in this section give the corresponding relationship in some
neighborhood of ncar-optimal trajectories. It should be noted that due to (3.1), the
results here cover those in Zhou (1990).

Let us now give an application of Theorem 4.2,

TueoreM 4.3. Suppose that (x(),u®(")) is an e-optimal pair for the problem Ci,,
and that u®(:) is Lipschitz continuous. Then there exists a constant Cy > 0 (possibly
dependent of the Lipschitz bound of u*(-)) such that for almost allt €[s,T),

(411)  H(t, x5(1), (1), (1)) = umgﬂ(:,f(:),u,.:ﬁ(:)) - Cy/e.
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ProoF. By Theorem 4.2, for ae. t € [s, T, there is (v, 2) such' that (4.6) holds.
Applying Theorem 3.1, we have

—H(y,x°(7),u(7), ¥°(y)) + S“II’_H(%LH, w(y)) < [C +1+Clzl]CyVe.

It is then easy to get the desired result by virtue of the estimate in (4.6) as well as the
Lipschitz continuity of ¢ “(-) and #°(). ©

REMARK 4.2. Theorem 4.3 is a necessary condition of near-optimality in a point-
wise form, which is better than Theorem 3.1 in Zhou (1995), as the condition there is
in an integral form. Note that the assumption that u®(-) is Lipschitz (in time ) is not
very restrictive. Unlike with optimal controls, which is bang-bang for many linear
systems and therefore not continuous in time, Lipschitz near-optimal controls exist in
general; see Example 5.2 in §5. On the other hand, although the constant Cy may
depend on the Lipschitz bound of u*(-), one may have a priori information about the
bound for some sclected controls. A good example is the so-called L-admissible
control obtained by Gabasov, Kirillova and Mordukhovich (1983) which turns out to

be piecewise constant in our case.

5. Verification theorems. In optimal control theory, the verification theorem
plays an important role in testing for the optimality of a given control, and in A{_)é/u'»
constructing optimal feedback controls. Nonsmooth versions of the verification theo-

rem within the framework of viscosity solution have also been obtained by Zhou i M_,.;M./

N

(1993). In this section, we shall see that verification technique applics to ncar-opti-

mality as well. s

Let Q € R* be an open sct. For £ € Q and fe_}?{wc denote by /(%; ¢) the & Mu/’
(one-sided) directional gradient (along £) of v at £, namely p K

N
e . u(®+hE) —u(R)
i) = ,
26y = Jim S

whenever the right-hand side limit exists.

LEMMA 5.1.  Suppose U(&; ) exists for a given £ € Q and & E/R‘. Then,
(5.1) sup pré-elélsv(£:6) < inf p- €+ elél, S —

peED W(3) -~ . peED 0(%) ¥ il

o »il eVete § 4
where sup{D] = —=, jﬁ{@[: 459, detebe i e
PrROOF. The result is clear if £ = 0. So we assume £ # 0. For any p € D} w(%), .

I o(f+hé) —u(X) —hép
k98 HIE| &

hence ¢/(#; £) < p- &+ &l €| This implies the right-hand side of (5.1). Similarly for
the left-hand side. ©

TueOREM 5.1. Let (x°(-),u®(:)) be a given admissible pair for the problem
C,,. Suppose that there is a constant C,, such that for a.e. t € [s,T), there exists

(p“(0), q°(1) € D}, W(t, x“(1) satisfying _
(5.2) pe(1) < H(t,x°(1),u®(¢),q°(1)) + Cys,

€,

then (x¢(-),u°(-)) is a near-optimal pair with order &.
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ProoF. We shall set f<(1) = f(r, x4(1), u(r)), ete. to simplify the notation. Since
both V and x¢ arc Lipschitz, ¢ = V(t, x4(1)) is differentiable almost everywhere. Fix
r e [s, T] such that d¥(t, x“(t))/dtl;, exists, that limy, . g5 J7H"fE(0) dt = f7(r), and
that (5.2) holds. Then,

V(r+h,x(r+h)) - V(r,x°(r))
i I

d
GV x(O)mr = lim,

V(r +h,x°(r) + frﬁhf‘(r)_dr) - V(r,x%(r))
h

h—=0+

V(r+h,x(r) + hfé(r) +o(h)) — V(r,x°(r))
h

I
=
8

h=0+

(5.3) g MrthxE(n) hf:(r)) — V(r, x%(r))
1

h=0+

(by Lipschitz property of V)
= V'((r,x°(r)); (L. f5(r)))
< p#(r) +q°(r) -f() + 6(1 +1£°(1)]) (by Lemma 5.1)
<p(r) +q°(r) f(r) +e(1+C+ Clx*()1)
< —L5(r) + Cpe (by (52)).
It follows that
V(T, x°(T)) = V(s,y) = LT%V(I,x‘(I))I,-rdrs - [Ty dr + Cue(T = 9),
which implies

IJ(s,y;u(?)) = ITL‘(r) dr+ h(x*(T)) < V(s,y) + Cy&(T - 5).

This proves the theorem. O
REMARK 5.1. The condition (5.2) implies that

(5.4) H(t,x°(1),u(1),q°(1)) = Tgﬁ(r,x‘(t),u,q‘(r)) - Cy 6.

This is easily scen by Theorem 3.1:

—p*(t) + supH(1, x%(t),u,q°(1)) s (C+1+ Clx¢(t))e < Ciz 8,

uel’
which yields (5.4) under (5.2).
Now let us give a parallel result in terms of D i

TueoREM 5.2, Let (x°(-),u(:)) be a given admissible pair for the problem C,,.
Suppose that there is a constant Cyy such that for a.e. t €[s,T), there exists

Yl e A A
viLit ol

r
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(pe(1), q“)) € D;, (1, x°(1)) satisfying
(5.5) pe(1) s H(t,x°(1),u"(1),q°(1)) + Cu

then (x°(-), u®(+)) is a near-optimal pair with order &.

7 <
Proor. Fix r € [s, T] such that dv(t, x(1))/dt],., exists, lhat) /JM'&/?C‘)

lim, . g5 Jpf5(0) dt = £4(r), and that (5.5) holds. Then, /wma(,w
d _ V(r=h,x*(r—h)) - V(r,x%(r)) A ESE“:’_ ‘..m?
REV(f'x‘(r))lx-r = —hl—l»gL 7 QFM? ¢
Cerp
g V(r = b, x5(r) = Juf*(r) dr) = V(r, x°(r))
h—0+ h 7{*—'3 a{"re:.c...f“
_ "'ﬁ]_i,‘;‘,( V(r—h,x*(r) = h):(r)) - V(r,x°(r)) .S-(.'M'u,j [ccbe oK
(5-6) = —V'((r,x*(r)): (=1, =f*(r)))
< - max [—p—q-f(r)] + e +|f(N)

(p.q)eDVir,x*(r))

[ £Eer]

min [p+q-fo(r)] +e(l+
(p.q)ED Vi, x*(r))

1l

< p(r) +q°(r)-fo(r) + e(1+C+ clxe(r)l)
< —L¢(r) + Cyse.

The desired result therefore follows exactly as in the proof of Theorem 5.1. O
ExAMPLE 5.1. Consider a deterministic production planning problem with a sin-
gle machine producing a single type of products. Let x(¢) and u(z) denote the surplus

(state variable) and the production rate (control variable) at time ¢ € [0, T, respec- :
tively. Suppose that the demand rate is a constant z. The dynamB is d‘-"- L A St LS? .

J.,(!) = u(f) - X(.f) =, ﬁ[ﬁL ns {
i Lo

a@/lv's.._l’:( f,(_ I:-,{

’yﬂh“

The cost function is
J(s,yiu() = f:(wu) +bxm (1)) dt,

where a, b = 0, representing the inventory cost and the backlog penalty, respectively.
The machine has a maximum production rate k, which is assumed to be larger than z.
It is well known that the optimal policy for such a problem is the so-called
zero-inventory policy, namely, the feedback control given as follows:

0, ifx>0,
u(t,x) = {k, ifx<0,
z, ifx=0.
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The value function can therefore be easily calculated to be

et

%, ifxao,%+fs}".

ax(r—r)ﬂ%az('f‘—z)’, ifx>0,§- +t>T,
V(f,x)":‘{ 2 -

-2—(fx—_—zj, ifoO,k_xz+t$T,

—bx(T = 1) = $b(k = 2)(T = 1), ifx<0,7—5 +!>T.

\

Now let us consider an e-inventory policy, & being a sufficiently small positive
number, defined as follows:

0, ifx>e,
u(t,x) ={k, ifx<e,
z, ifx=e.

Intuitively, this policy should be ncar-optimal. Now let us verify this by Theorem 5.1.
For simplicity, consider the problem with initial time 0 and initial state 0. Under the

feedback u“(t, x), the state and the control trajectories are '
- i
((k—=2z)t,k), ifOsr%k—_,;, < f
(x°(2),u"(2)) = -
(&,2), if p=z st=<T.

For 0 <t < &/(k — 2), take (p=(r), ¢“()) = (V{t, x°(2]), Ve, x6(6)) =
(0, alk — 2)t/z), then it is easy to obtain that

0=p°(t) < H(t,x‘(!),u‘(t),q’(r)) + 5'233.
Similarly, one can show that
pe(t) < H(t, x°(2),u’(t),q°(1)) +ae, for 'E%z- gt=<sT.

Thus the e-inventory policy for the problem C,, is indeed near-optimal with

order &.
Now let us describe how to construct near-optimal feedback controls by the

verification theorems obtained.

THEOREM 5.3. Let u® be an admissible feedback control, and p* and q° be two
ineasurable functions of (t, x) satisfying

s # i Qtdf.l-aa.-f.
(p*(1,%),q°(1,%)) € DL,V (1.%) UD;,,,Vch,x)- ) Foavoat ﬁfi

If /62_1 a b i baals

07/(_’ Q}-f?o :

for all (t,x) €[0,T] X R, then u® is near-optimal with order &. LK.

(5.7) pe(t,x) < H(t, x,u’(t, x),q°(t,x)) + Cye
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PrROOE. Let x°(-) be the state corresponding to u® with a fixed initial (s, y), and
let p=(t) = p*(t, x°(1)) and ¢“(r) = ¢°(s, x“(1)). Since (pc(r), ¢°(1)) €
D, V(t, x*(t) U D, V(t, x*(t)) and (5.7) holds, we can obtain either (5.3) or (5.6)

for a.c. t, depending on whether (p*(¢), g°(t)) € D!, .V (1, x4(0)) or (p(1), q°(1)) €
D~ V(t, x(t)). Therefore, the result follows from the proofs of Theorems 5.1 and

&L x

52, B
By Theorem 5.3, one can obtain a near-optimal feedback control by choosing

appropriate u(t, x) that satisfies (5.7) for each (¢, x). The following is an example.
ExaMpLE 5.2. For the production planning model in Example 5.1, an e-inventory
policy has been shown to be near-optimal. Note it is still a bang-bang type control,
just like the optimal zero-inventory policy. Let us now try to select a near-optimal
feedback control that is Lipschitz continuous in the state. To this end, we note that

( axu ¥ x
= foaﬂ,g-l-!ST,
a(T - t)u, ifx>0,2+1>T,
V(t, x) — H(t, x,u,V,(t,x)) = { _ _
: E%:;l, ifx<0, 7= +1=T,
b(T = ) (k - w), ifx<0, 7= +t>T.

Thercfore the minimum value of ¥(t, x) — H(t, x, u, V,(t, x)) over u € [0, k] is 0. By
Theorem 5.3, any fecedback control that attains a near-minimum value of V(¢, x) —
H(t, x,u, V,(t, x)) for each (¢, x) is near-optimal. The following is one such control
with order &:

0, ifx> e,
. .f_k—z &

u;(!'x) - SI Z, 1 < z 851 &, /
k, ng—k;za <

This control is in fact a “Lipschitz modification” of the zero-inventory control.

6. Concluding remarks. By studying near-optimality, it is possible to greatly
simplify the optimization process with only a small loss in the objective of the
decision-makers. In this paper, we applied the dynamic programming approach to
deal with near-optimal controls in terms of a small parameter &. Here & may appear
in two different situations. First, it may reflect the loss in the objective value allowed
by the decision-maker, who may have set this “tolerance level” before he or she
started to seek a ncar-optimal policy. Second, £ may be a parameter representing the
complexity of the original decision problem that can be approximated by samp-k<. slex
models as & is sufficiently small. For the second situation, two good examples are
hierarchical production modcls studied by Scthi, Zhang and Zhou (1994) and Scthi
and Zhou (1994), and discrete approximation studied by Gabasov, Kirillova and
Mordukhovich (1983) and Mordukhovich (1988).

In this paper, we cmployed viscosity solution theory to handle the inhcrent
nonsmoothness occurring in the dynamic programming approach. As mentioned in
the Introduction, another important framework of nonsmooth analysis is Clarke’s
generalized gradient, which is indeed where the name of “nonsmooth analysis”
originates. The theory of generalized gradient has proved very uscful in treating



57 (o P T SR L S
l?lf:b’lt—li \_,e:

DETERMINISTIC NEAR-OPTIMAL CONTROLS. PART I 19
deterministic controls with state constraints. The nonsmooth versions of the maximum
principle, dynamic programming, and their relationships for optimal controls have
been well established within this framework (Clarke 1990 and Clarke and Vinter
1987). We belicve that the theory can also be applied to ncar-optimal control
problems, particularly those with state constraints. This remains an interesting and
challenging rescarch problem.

The reason we choose the framework of viscosity solution to study ncar-optimality
in this series of papers is twofold. First, “viscosity solution” and “gencralized
gradient” are two different frameworks of nonsmooth analysis (see discussions in
Frankowska 1989 and Zhou 1993), each having its own advantages and disadvantages.
It is certainly desirable to derive results in one consistent framework. Second, we
intend to study stochastic near-optimal controls in this series of papers. In order to
apply dynamic programming to stochastic controls of diffusion type, one has to work
with second-order derivatives. Note that the extension from first-order to second-order
superdifferential /subdifferential is obvious and straightforward (Lions 1983), while it
is not the case for generalized gradient. Indeed, there have been many different
versions of generalized second-order derivatives introduced for different purposes.
Recently, Haussmann (1992) proposed a generalized Hessian based on Brownian
motion. Clearly this notion targeted solving the stochastic control problem. Later,
Haussmann (1994) devcloped a kind of generalized solution of the HIB equation
within his framework of gencralized Hessian. However, the study of this new notion
and its applications is yet to be comprehensive. On the other hand, there has been a
rather extensive study on unifying the maximum principle and dynamic programming
in stochastic controls by using the viscosity solution approach (Zhou 1991), but there
is no similar study in the language of generalized gradient according to our knowl-
edge. Consequently, we think that viscosity solution may be as well a better frame-
work to deal with stochastic near-optimal controls, which will be a subject of our
forthcoming papers.
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