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Abstract

This paper presents the class of weighted discount functions, which contains the discount

functions commonly used in economics and finance. Weighted discount functions may

describe the discounting behavior of groups, uncertainty about what discount rate to use,

present-biased time preferences, and all of these simultaneously. As an application, we study

investment behavior under weighted discounting and come up with the following general

result: Greater group diversity, greater parameter uncertainty, and more present-biased

time preferences lead to delayed investment or, equivalently, more risk-taking.

Keywords: diversity, hyperbolic discounting, investment, parameter uncertainty, time inconsis-

tency, weighted discounting

JEL codes: D81; D90; G11
∗Ebert: Frankfurt School of Finance and Management, Department of Economics, Adickesallee 32-34, 60322

Frankfurt, Germany. E-mail: s.ebert@fs.de. Wei: Department of Actuarial Mathematics and Statistics, Heriot-
Watt University, Edinburgh, Scotland, EH14, 4AS, UK. E-mail: wei.wei@hw.ac.uk. Zhou: Department of
Industrial Engineering and Operations Research, Columbia University, New York, NY 10027, USA. E-mail:
xz2574@columbia.edu. An earlier version of this paper circulated under the title “Discounting, Diversity, and
Investment.” We thank an associate editor, two anonymous referees, Thomas Epper, Chiaki Hara, Oliver G.
Spalt, Ivo Welch, Wei Xiong, and seminar audiences at Berkeley, Frankfurt School, Columbia University, Ham-
burg, USI Lugano, Tilburg, Singapore Management University, the National University of Singapore, Academia
Sinica, and St. Gallen for helpful comments. We also thank conference participants of the 2017 Winter Workshop
on Operations Research, Finance and Mathematics in Sapporo, Japan, and of the European Finance Association
Annual Meeting in Mannheim, Germany. Ebert gratefully acknowledges financial support through a Veni grant
by the Dutch Science Foundation (NWO). Wei gratefully acknowledges financial support through Oxford–Nie
Financial Big Data Lab. Zhou gratefully acknowledges financial support through a start-up grant at Columbia
University and through Oxford–Nie Financial Big Data Lab.



1 Introduction

How do individuals, firms, and public entities make investment decisions? The standard approach

to measure the attractiveness of an investment is to choose some fixed discount rate and compute

its net present value (NPV), that is, the sum of its discounted expected cash flows. This paper

relaxes some of the simplifying assumptions of this approach.

First, we take into account that investment decisions may be taken by a group of people,

rather than by a single individual. Even if a single decision-maker (DM) owns all the decision

power, she may still attach some weight to the opinions of others when making her decision.

CEOs consult with board members, experts, and friends. In modern societies, the members of

a household make important decisions together. Also, presidents collect the opinions of party

members, advisers—or, sometimes, their spouses.

The second issue we address in this paper is the “perennial dilemma of what discount rate

to use” (Weitzman 2001, abstract). Attempts to resolve the “discount rate dilemma” go back

at least to Ramsey (1928). Knowledge of the appropriate discount rate is of great practical

interest for policy decisions, in particular for those concerned with the very long run. Examples

include measures against climate change, pension reforms, the level of public debt, investment in

infrastructure, or investment in education. (See Gollier 2014 for a recent discussion of issues in

sustainable investment and cost-benefit analysis.) Weitzman’s survey evidence from more than

2,000 economists—including 52 Nobel prize winners—shows a widely dispersed distribution of

what discount rate should be used to evaluate investment.1 Our model incorporates this evidence

by allowing for group diversity, which is reflected by differences of opinion about the appropriate

method of discounting.

Third, in addition to group disagreement, we allow for the possibility that individuals (in-

cluding those in a group) may be uncertain about what discount rate to use and/or have present-

biased time preferences. As we show, there is a close connection between the discounting behavior
1Frederick et al. (2002) review the experimental literature on time preferences, and Falk et al. (2016) present

survey evidence representing 90% of the world population. Both studies report substantial heterogeneity in
discounting behavior.
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of groups and that of present-biased discounters (such as hyperbolic discounters). We provide a

necessary and sufficient condition that clarifies the exact relationship. Therefore, we allow for

both inter-personal disagreement and intra-personal disagreement (i.e., parameter uncertainty)

about what discount rate to use. From a modeling point of view, there is no essential difference

between group discounting and present-biased discounting, and thus all results in this paper may

be applied to both contexts and have proper implications and interpretations.

Fourth, our model takes into account the value of timing an investment optimally, as put

forward in the real options approach originally proposed by Brennan and Schwartz (1985) and

McDonald and Siegel (1986). For example, in some situations it can be beneficial to wait and

see rather than to decide for or against an investment right away. The real options literature

has neither investigated the investment decisions of groups nor given answers to the discount

rate dilemma and parameter uncertainty regarding what discount rate to use. This paper makes

progress regarding all three issues. Moreover, we contribute to a recent and growing literature on

the importance of team diversity for financial outcomes in general.2 To the best of our knowledge,

our paper offers the first theoretical contribution that establishes a connection between team di-

versity and investment decisions. At the same time, our results show that existing results on

investment behavior and time-inconsistency (discussed below) have a corresponding interpreta-

tion in terms of team diversity. A contribution to behavioral finance is that our analysis extends

the seminal real option result from McDonald and Siegel (1986) from exponential discounting to

present-biased discounting, like general hyperbolic discounting.

The research reported in this paper was initially triggered by a simple observation, being

that the hyperbolic discount function can be represented as the weighted sum of a continuum

of exponential discounters, with the weighting distribution being the exponential one. This
2As Manconi et al. (2016) point out, examples include studies on the effects of women on boards (e.g., Adams

and Ferreira 2009; Ahern and Dittmar 2012; Adams 2015; and Kim and Starks 2016), studies on CEO power vis-
á-vis the board (e.g., Adams et al. 2005; Fahlenbrach 2009; and Bebchuk et al. 2011), studies on the nationality
of board members (e.g., Masulis et al. 2007), studies on variation in expertise and prior work history (e.g., Güner
et al. 2008), and studies that combine several characteristics into an index (e.g., Giannetti and Zhao 2019; and
Bernile et al. 2016). Manconi et al. (2016) show that investing in firms with diverse executive teams is highly
profitable. Our paper suggests that heterogeneity in time preferences may be an explanation for why diversity
matters, as this heterogeneity has important consequences for a team’s investment decisions.
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motivated us to define and characterize a new class of discount functions called weighted discount

functions. It turns out that, subject to some assumptions, this class of discount functions allows

for a unified approach to the above four issues (group diversity in time preference, parameter

uncertainty regarding the discount rate, present-biased time preferences, and inclusion of the

option value of investment). We remark that the study of investment (and the study of investment

in a real options model in particular), is merely one possible application of weighted discounting.

We detail this application in this paper, because it illustrates well the power of the approach to

generate economic insights. Weighted discounting, however, may yield new results for, and offer

new perspectives on, many other economic problems that involve a temporal dimension. These

results may be of normative relevance (in the paradigms of group decisions and intra-personal

uncertainty, respectively) as well as of descriptive relevance (when studying present-biased time

preferences and the resulting time-inconsistency and self-control issues).

For the sake of concreteness, we illustrate the main idea of weighted discounting within

the group decision paradigm and (for now) suppose that all group members are exponential

discounters who are certain about what discount rate to use. Member i (i = 1, . . . , n) favors

discount rate ri, and thus her discount function is given by e−rit. The group’s weighting distribution

F (r) assigns a weight to each member or, equivalently, to each (positive) discount rate r. Letting

f denote the probability mass function of F, the group’s weighted discount function is given by

hF (t) =
n∑
i=1

f(ri)e−rit. (1)

The idea of averaging discount functions to model social or group preferences goes back to seminal

articles such as those of Marglin (1963) and Feldstein (1964). As will be explained, weighted

discounting corresponds to utilitarian aggregation with weights given by f. In Section 2, we

provide a comprehensive analysis of the class of weighted discount functions by presenting a

number of results about their importance, prevalence, and other properties. In particular, we

explain how properties of the weighting distribution F translate into properties of the discount

function hF , and vice versa. Most results in Section 2 are variations or generalizations of existing
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results (sometimes restricted to specific members or a subclass of the weighted discount functions)

or are applications of more abstract results from the statistics literature on stochastic orders. To

the best of our knowledge, however, no unified treatment of weighted discounting has been given.

By overcoming various technical difficulties, our results in Section 2 apply to the large class of

weighted discount functions as defined in this paper, and their proofs are short and simple.

The first main contribution of Section 2 is to introduce a notion of group diversity and to

show how greater group diversity reflects in a group’s discount function. Our notion of group

diversity is naturally suggested by the definition of a weighted discount function. We define a

group as being more diverse if its weighting distribution is “more dispersed” than that of another

group. Intuitively, greater group diversity means that there are stronger differences of opinions

among its members about what discount rate to use. For example, a group is more diverse if its

weighting distribution is obtained as a mean-preserving spread (Rothschild and Stiglitz 1970) of

the weighting distribution of the group in comparison. While we obtain results for much more

general comparisons of weighting distributions—in particular, for weighting distributions that can

be compared in terms of (an arbitrary degree of stochastic) dominance, see Fishburn (1980)—in

our interpretations we often focus on the special case of our results that concern diversity. We

show that greater group diversity (a property of the weighting distribution F ) unambiguously

translates into a more elevated discount function hF . That is, more diverse groups discount less

heavily. Likewise, we obtain a result that shows that more patient groups as defined recently by

Quah and Strulovici 2013) have a more elevated discount function. Moreover, we show that all

weighted discount functions exhibit decreasing impatience, as defined by Prelec (2004).

The second main contribution of Section 2 is to clarify the importance and prevalence of

weighted discount functions. Souzou (1998) noted that we may also think of the weighted

discount function in equation (1) as belonging to a single individual—an exponential discounter

with constant impatience—who is uncertain about what discount rate to use. Therefore, a

weighted discount function may reflect not only inter-personal (that is, group) disagreement, but

also intra-personal disagreement. Then a more dispersed weighting distribution corresponds to
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greater parameter uncertainty (rather than group diversity).

Now, one might wonder whether some of the commonly used discount functions can be

written as weighted discount functions. That is, for a given discount function h, does there

exist a distribution of opinions/a distribution reflecting uncertainty about what discount rate to

use, F, such that the resulting group discount function is given by h = hF ? The necessary and

sufficient condition for a discount function to be of the weighted form is given by a mathematical

result known as Bernstein’s Theorem, which roughly says that the derivatives of the discount

function are alternating in sign.

The first insight derived from the application of Bernstein’s Theorem is that the observation,

that a present-biased discount function may be represented as a group discount function, is rather

the rule than the exception. Consequently, our class of weighted discount functions is large. We

show that exponential (Samuelson 1937), pseudo-exponential (Ekeland and Lazrak 2006), hy-

perbolic (Harvey 1986), proportional (Mazur 1987; Harvey 1995), and generalized hyperbolic

(Loewenstein and Prelec 1992) discount functions are all weighted discount functions.3 As ex-

plained in Section 2, it may even be argued that “all of the commonly used discount functions”

are weighted discount functions.

With this in mind, consider a group whose members are weighted discounters (not neces-

sarily exponential) themselves. Note that the weighted average of weighted discount functions

(being a weighted average of exponential discount functions) is still a weighted average of expo-

nential discount functions, and thus a weighted discount function. Therefore, for example, the

discount function of a group of hyperbolic discounters (and/or other weighted discounters) is

also a weighted discount function. This weighting iteration argument, as we call it, shows that

Assumption 1 in Weitzman (2001, pp. 263–264), which restricts groups to “experts thinking

in terms exponential discounting,” and which Weitzman refers to as “enormously simplifying,”

is not required. His approach to resolve the discount rate dilemma applies more generally to
3The extension of quasi-hyperbolic discounting (Phelps and Pollak 1968; Laibson 1997) to continuous time

(Harris and Laibson 2013) are likewise weighted discount functions. Bleichrodt et al. (2009) provide an overview
of discount functions used in the literature. The two new discount functions with decreasing impatience proposed
in that paper are also weighted discount functions.
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groups of non-exponential discounters—as long as they belong to our class of weighted discoun-

ters. Furthermore, the mathematically simple weighting iteration argument shows that weighted

discounting may capture group diversity, parameter uncertainty, and present-biased time pref-

erences at the same time. In summary, weighted discounting arises for a number of economic

reasons, and most existing intertemporal models implicitly assume weighted discounting already.

Our results in Section 2 thus speak to a number of applications in economics and finance.

As mentioned before, investment in a real options model—the topic of Sections 3 and 4—is

merely one possible application of weighted discounting that we chose to detail in this paper. This

application illustrates well that thinking in terms of weighting discounting can bring significant

advancements to a research field, both mathematically and economically.

The previously mentioned result that weighted discount functions exhibit decreasing impa-

tience constitutes the main challenge in studying a group’s investment decision. Except for

the trivial case in which the group consists of a single member who discounts exponentially

and without any parameter uncertainty—the case in which the weighted discount function is

exponential—the decision problem becomes time-inconsistent (Strotz 1955). For that reason,

in our study of group investment behavior and/or parameter uncertainty, we find ourselves fac-

ing similar difficulties known from the behavioral literature on timing (or stopping) decisions

under time-inconsistency (e.g., O’Donoghue and Rabin 1999). We show how insights from be-

havioral finance can contribute to our understanding of rational investment decisions that are

taken collectively or under parameter uncertainty.

We study the group’s decision problem within the intra-personal game framework (e.g, Phelps

and Pollak 1968; Laibson 1997). When making its decision, the group takes into account that its

future selves may not agree with the planned investment decision. We thus define equilibrium

rules of investment timing that are not deviated from by the group’s future selves and, given

this restriction, maximize the discounted value of investment. The main result of the technical

Section 3 is a theorem that characterizes the equilibrium stopping behavior under weighted

discounting. Equilibrium behavior is obtained as the solution to a system of Bellman equations,
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which offers intuitive interpretations. Its equations reflect the fact that time-inconsistency is the

consequence of inter- or intra-personal uncertainty about the discount rate. The system involves

more constraints on the potential investment opportunity set the greater this uncertainty is.

While our general results hold for arbitrary payoff or utility functions, and for stopping

problems that are not specific to investment, in Section 4 we focus on the Bellman system of the

standard irreversible investment problem (as in, e.g., Dixit and Pindyck 1994). In that case, the

investment decision amounts to when to invest, namely, when to pay a fixed cost in exchange for

the receipt of the present value of some project that evolves according to a geometric Brownian

motion. For arbitrary weighted discount functions, we derive the unique threshold strategy that

describes investment behavior. This means that it is desirable to invest once the project value is

at or beyond a certain level, and to wait if it is beneath that value.

The investment threshold can be derived in closed form. Interestingly, it involves the weight-

ing distribution F, but not the weighted discount function hF directly. This illustrates the

mathematical virtue of writing discount functions in their weighted form—even if they already

admit a nice analytical representation, like hyperbolic discounting—as some economic results

may involve this weighting distribution. Having solved the investment problem for the large

class of weighted discount functions, we can provide the most comprehensive analysis of the

importance of time preferences for investment behavior to date. Turning to the comparative

statics of investment behavior (i.e., the level of the investment threshold), we show that higher

investment cost, expected growth of the project value, and project value volatility all lead to a

higher threshold (i.e., later investment). This result generalizes extant results for exponential

discounting to arbitrary weighted discount functions. Most interestingly, we can offer general

results on the impact of group diversity, parameter uncertainty, and present-bias on investment

behavior.

We proceed to show that greater group diversity and/or parameter uncertainty lead to later

investment. Waiting longer to make a decision when disagreement and/or uncertainty is strong

seems consistent with daily observations. Note that later investment—as characterized by a
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larger investment threshold—comes along with more risk-taking. Rather than taking a bird in

the hand (the current value of the project), a more diverse group goes for two in the bush (a

potentially higher project value in the future). The main driver behind the result that greater

group diversity and/or greater parameter uncertainty lead to later investment and more risk-

taking is the more elevated discount factor of a more diverse group or a more uncertain investor,

as established in Section 2.

Another result on the comparative statics of investment shows that weighted discount func-

tions with greater decreasing impatience—which induces a stronger present bias—also lead to

later investment and more risk-taking. This statement relies on the reasonable ceteris paribus

assumption that the discount functions in comparison share the same initial rate of time pref-

erence (Prelec 2004). This point is subtle and explained in more detail later. As a concrete

illustration of this matter and our results on investment behavior more generally, we offer a de-

tailed and somewhat exhaustive treatment of the investment behavior under the seminal model

of generalized hyperbolic discounting (Loewenstein and Prelec 1992). We obtain clear-cut results

for how the two parameters of the generalized hyperbolic discount function—which determine

the level of decreasing impatience and the initial rate of time preference, respectively—affect in-

vestment. Taken together, therefore, the unified perspective on diversity, parameter uncertainty,

and present bias offered through weighted discounting yields an unambiguous result: Greater

group diversity, parameter uncertainty, and/or time-inconsistency all lead to later investment

and more risk-taking.

2 Weighted discount functions

In this section, we formally define the class of weighted discount functions and then introduce

our notions of dominance and diversity in time preferences. While—for sake of concreteness—in

our interpretations we often refer to the group decision paradigm, the discussion likewise applies

to the two other settings outlined in the introduction: intra-personal uncertainty about what

discount rate to use and present-biased time preferences. We also illustrate the importance and
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prevalence of weighted discounting.

2.1 General definition of weighted discount functions

The following definition extends equation (1) to distributions of opinions that may be continuous.

Definition 1 Let h : [0,∞) → (0, 1] be strictly decreasing with h(0) = 1. h is a weighted discount

function if there exists a cumulative distribution function F concentrated on [0,∞) such that

h(t) =
∫ ∞

0
e−rtdF (r). (2)

F is called the weighting distribution of h.

A weighted discount function is thus defined as a weighted average of exponential discount

functions with different discount rates r. Mathematically, if the weighting distribution F has a

density (or probability mass) function f, the corresponding weighted discount function is the

Laplace transform of that density function. If F is a simple distribution, equation (2) becomes

equation (1) in the introduction.

2.2 Prevalence and examples of weighted discount functions

As an introductory example, consider the so-called pseudo-exponential discount function (Eke-

land and Lazrak 2006; Karp 2007) given by

h(t) = δe−rt + (1− δ)e−(r+λ)t where λ > 0, r > 0, 0 < δ < 1, (3)

which may describe a group with just two opinions, r and r + λ, having weights δ, and 1 − δ,

respectively. The corresponding weighting distribution F in equation (2) is a step function and

can be written as

F (x) =


0, x < r

δ, r ≤ x < r + λ

1, x ≥ r + λ.

(4)
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Figure 1: Two discount functions and their respective weighting distribution
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Notes. The left panel shows a pseudo-exponential discount function hG with parameters r = 0.025 and
λ = 0.05 as well as an exponential discount function hF with parameter r = 0.05. The right panel shows
the corresponding weighting distributions G and F. The left panel further illustrates that G has a more
elevated discount factor than group F, i.e., hG(t) ≥ hF (t) for all t ≥ 0. Namely, group G discounts less
heavily at any future time t. In Section 2.3 below, we show that this is a consequence of group G being
more diverse than the single-member group F.

The corresponding probability mass function takes the jump sizes of F, which are δ and 1− δ, as

the weights of opinion r and r + λ, respectively. When δ = 1, the pseudo-exponential discount

function is reduced to the exponential discount function, h(t) = e−rt. The weighting distribution of

standard exponential discounting with rate r is thus degenerate, that is, given by a step function

with a single jump of size 1 at r. Figure 1 plots a pseudo-exponential and an exponential discount

function (left panel) as well as their weighting distributions (right panel).

The following theorem is an application of Bernstein’s (1928) Theorem to discount functions

and provides the necessary and sufficient condition—sometimes referred to as complete mono-

tonicity—for a given discount function to be a weighted discount function.4

4Hara (2008) uses the theorem to prove the existence of a representative consumer as well as to establish his
result on decreasing discount rates of heterogeneous groups. Vanden (2015) applies the theorem in an asset-pricing
context when deriving a stochastic discount factor.
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Theorem 1 (Bernstein’s Theorem Applied to Discount Functions) A discount function

h is a weighted discount function if and only if it is continuous on [0,∞), infinitely differentiable

on (0,∞), and satisfies (−1)nh(n)(t) ≥ 0, for all non-negative integers n and for all t > 0.

Bernstein’s Theorem can be used to verify that the discount functions mentioned in the intro-

duction are indeed weighted discount functions. Brockett and Golden (1987) refer to the class of

increasing utility functions with derivatives that alternate in sign as the class that contains “all

commonly used utility functions.” We may just refer to the class of weighted discount functions

as the class that contains “all commonly used discount functions.”5

While every weighting distribution F defines a discount function hF—and while most discount

functions are weighted discount functions—both the weighting distribution and the weighted dis-

count function being available in closed form is rather the exception than the rule. In particular,

for many weighting distributions, it may not be possible to compute the integral in Definition 1

explicitly, and, likewise, for a given weighted discount function hF , it may not be possible to

recover the weighting distribution F in closed form. The results in this paper, however, do not

depend on whether a closed form expression of either the discount function or the weighting

distribution is available. For example, even though the weighting distribution of the CADI func-

tion in Bleichrodt et al. (2009) may not be obtained in closed form, the results on investment

behavior in Sections 3 and 4 apply and can be evaluated numerically. Likewise, the discount

function obtained from a Weibull distribution may not be available in closed form, nevertheless,

we can study the investment decisions of a group with Weibull-distributed opinions over discount

rates.

There are also some weighting distributions that lead to explicitly expressible weighted dis-

count functions (and vice versa). We already gave the example of the pseudo-exponential discount

function, which corresponds to a binary weighting distribution. This important example is easily
5Ebert (forthcoming) characterizes the derivatives of the discount functions through risk-taking behavior over

time risks (the risk of something certain happening sooner or later). Since Brockett and Golden (1987) refer
to increasing utility functions with derivatives that alternate in sign as mixed risk averse, Ebert (forthcoming)
calls the discount functions that are decreasing with derivatives that alternate in sign—i.e., the weighted discount
functions—anti-mixed time risk averse. Ebert (forthcoming) does not investigate the weighting representation in
Definition 1, nor does he study group decisions, parameter uncertainty, or dynamic decisions such as stopping.
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generalized to finitely many group members, whose opinions are multinomially distributed. Even

though not mentioned by Weitzman (2001), the weighted discount function obtained from the

Gamma distribution (with proper re-parametrization as below) coincides with that of Loewen-

stein and Prelec (1992).6 In particular, the generalized hyperbolic discount function with pa-

rameters α > 0, β > 0 can be written as (the first expression repeats the original definition of

Loewenstein and Prelec 1992)

h(t) = 1
(1 + αt)

β
α

=
∫ ∞

0
e−rtf(r; β

α
, α)dr (5)

where

f(r; k, θ) = rk−1e−
r
θ

θkΓ(k) (6)

denotes the density function of the Gamma distribution with parameters k and θ, and where Γ(k)

denotes the Gamma function evaluated at k; that is, Γ(k) =
∫∞

0 xk−1e−xdx. A simpler example is

given by the discount function studied in Mazur (1987) and Harvey (1995), which corresponds

to the special case of Loewenstein and Prelec (1992) where α = β. In that case, equation (5)

becomes

h(t) = 1
1 + αt

=
∫ ∞

0
e−rt

( 1
α
e−

1
α
r

)
dr, (7)

which shows that the weighting distribution of this hyperbolic discount function is given by the

familiar exponential distribution with mean α.

As a final example, one can obtain the uniform-uncertainty discount function of Souzou (1998)
6Hara (2008) further elaborated on the connection between the Gamma distribution and hyperbolic discount-

ing.
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from a uniform distribution of opinions over an interval [r, r] :

h(t) =


1, if t = 0

e−rt−e−rt
t(r−r) , if t > 0

=
∫ r

r
e−rt

1
r − r

dr.

We now present an economically important observation that results from the mathematically

simple fact that any weighted average of weighted discount functions is still a weighted discount

function. This implies that our results are not restricted to groups of exponential discounters.

Instead, we may consider groups with some or all members being hyperbolic or CADI, because

the latter—as just shown—are also weighted discount functions. Likewise, we may consider

groups of individual discounters, each of whom is uncertain about what discount rate to use.

By iterating the argument, it follows that the group discount function of individuals who are

(i) weighted discounters and (ii) uncertain about which parameters to use is (still) a weighted

discount function. We formalize this “weighting iteration argument” in Appendix B, where we

also give an example.

Before concluding this section, we note that in Definition 1 and throughout this paper, the

weighting distribution F is exogenous. This is a reasonable assumption when weighted discount-

ing is supposed to capture intra-personal uncertainty about what discount rate to use. Similarly,

when interpreting the results of this paper in the context of present-biased discounting, the

weighting distribution is naturally exogenous in the sense that it is implicit from the discount

function being assumed. In the group decision context, however, the assumption of an exogenous

weighting distribution necessitates that the aggregation rule used in forming the weighted dis-

count function is known and specified a priori. This assumption of our paper also underlies that

of Weitzman (2001), who infers the weighting distribution from a histogram of surveyed opinions.

An a priori determined weighting distribution seems appropriate for social cost-benefit analysis

(e.g., investment in environmental projects). In the general case of group decisions in firms,

however, it may be more realistic to endogenize the weighting distribution by considering more

complex aggregation rules. Jouini and Napp (2007) and Hara (2008) consider complete compet-
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itive markets in which all DMs have exponential but heterogeneous discount functions. One of

their results is that the consensus belief is, in fact, a weighted discount function if all the DM’s

utility functions are logarithmic. Moreover, in a simple setting, Jouini et al. (2010, Proposition

5.1) derive an aggregation rule explicitly. Recently, motivated by the works of Koopmans (1960)

and Weitzman (2001), Chambers and Echenique (2018) develop an axiomatic approach to time

preference aggregation and refer to Weitzman’s (and thus our) approach as utilitarian.7 Natu-

rally, it is interesting to extend the analysis of the present paper to more complex aggregation

rules that endogenize the weighting distribution.

2.3 Dominance and group diversity

In this subsection, we establish a notion of comparative group diversity in time preferences.

Greater group diversity will be captured by a more dispersed weighting distribution G of the

corresponding weighted discount function hG. We show that a more diverse group has a more

elevated discount factor (i.e., it discounts less heavily at any future time) than a less diverse

group. In fact, we obtain a much more general result that says that less “dominant” weighted

distributions—which include the more diverse ones—have a more elevated discount factor.

Recall that, in the expected utility model, a second-order stochastically dominating distri-

bution is preferred, for example, by all DMs whose utility functions are increasing and concave.

Roughly speaking, these DMs dislike decreases in mean and increases in variance. Accordingly,

less second-order stochastically dominant distributions have lower mean and a higher variance

than the distribution in comparison. The following, more general stochastic dominance notion

is in the spirit of Fishburn (1980).8

Definition 2 ((Infinity-stochastic) dominance.) Let F and G be weighting distributions of

weighted discount functions hF and hG, respectively. We say that hG (G) is less (infinity-
7Consider i = 1, 2, . . . , n exponential discounters with discount rates ri who experience utility u(x) from an

outcome x that is received at time t. Utilitarian aggregation with importance weights wi yields aggregate utility∑n
i=1 wie

−ritu(x) = (
∑
wie
−rit)u(x) := h(t)u(x), and h is a indeed a weighted discount function. In particular,

the weighting distribution defining h is given by the probability mass function f(ri) := wi (cf. equation (1)).
8Our definition is technically different from Fishburn’s, in that his definition is based on the so-called iterated

integrals. In the case of bounded supports of the distributions in comparison, the definitions are equivalent.
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stochastically) dominant than hF (F), denoted as G �∞SD F, if ∫∞0 u(x)dF (x) ≥
∫∞

0 u(x)dG(x), for

all integrable functions u whose derivatives alternate in sign; that is, sgn u(n)(x) = (−1)n+1 for

any n ∈ N+, x ∈ (0,∞).

A distribution that is less (infinity-stochastically) dominant has a lower mean, or equal mean

and higher variance, or equal mean and variance and lower skewness . . . as the distribution in

comparison. Dominance is the “weakest” of the well-known stochastic dominance orders in the

sense that any finite stochastic dominance order (i.e., first-order stochastic dominance, second-

order stochastic dominance, and so on) implies it.

The generality of the dominance ordering can make the interpretations of results on less

dominant groups unspecific and difficult.9 In particular, dominance may—but need not—rank

distributions by their dispersion. As an example, the weighting distribution that yields 0.02 and

0.04 with equal probability is more (less) dominant than the less dispersed weighting distribution

that yields 0.01 (0.05) for certain. Consequently, the dominance order is too general for the

purpose of ranking groups according to their diversity. Definition 3 below, which is inspired

by Ekern’s (1980) concept of more nth-degree risk, imposes restrictions on the definition of

dominance so that it can be interpreted in terms of diversity. For n = 2, Definition 3 says that

G is a mean-preserving spread of F (thus having equal mean and larger variance than F ; see

Rothschild and Stiglitz 1970), and for n = 4, it says that G is an outer risk increase of F (thus

having equal first three moments and larger kurtosis than F ; see Menezes and Wang 2005).10

Definition 3 (Greater group diversity.) Let F and G be weighting distributions of weighted

discount functions hF and hG, respectively. We say that hG (G) is more diverse than hF (F)

if there exists an even number n ∈ N such that ∫∞0 u(x)dF (x) ≥
∫∞

0 u(x)dG(x), for all integrable

functions u whose nth derivative is negative for any x ∈ (0,∞).
9This is different from the case of ranking monetary risks, which is commonly done using a stochastic dominance

order. In that case, a more dominant distribution is often regarded as being preferable, and thus speaking of
“dominance” is intuitive. At least in the context of this paper, we find it difficult to argue for a distribution over
discount rates to be “preferable” over another one.

10One may argue that also other special cases of dominance than those described in Definition 3 could be
interpreted in terms of diversity. Definition 3 could thus be considered a conservative notion of diversity. Our
mathematical results throughout apply to the general notion of dominance (see Fact 1), and thus the precise
choice of the diversity definition is merely of relevance as concerns their interpretation.
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Comparing Definitions 2 and 3 immediately yields the following:

Fact 1 (More diverse groups are less dominant.) If weighting distribution G is more di-

verse than weighting distribution F, then G is less dominant than F.

Consequently, if we prove a result on the behavior of less dominant groups, as a special case, we

obtain a result on the behavior of more diverse groups. The following result, a variation of a

result in Fishburn (1980), shows that dominance is the weakest order that allows for a complete

characterization on the ordering of the group discount factors.11

Theorem 2 (Less dominance is equivalent to a more elevated discount factor.) Sup-

pose F and G are weighting distributions and the corresponding discount functions are given by

hG and hF , respectively. Then

G �∞SD F if and only if hG(t) ≥ hF (t), ∀t ≥ 0. (8)

The latter property of a more elevated discount function is central to many results of this paper.

Figure 1 above illustrates Theorem 2 through the fact that the pseudo-exponential discount

function hG lies above the exponential discount function hF at all times. Indeed, in that example,

G is less dominant than F. In particular, G is more diverse than F as the binary distribution G

in Figure 1 constitutes a mean-preserving spread of the degenerate distribution F. The intuition

behind the proof for this special case is that exponential functions are convex so that, by Jensen’s

inequality, averaging two discount factors whose discount rates average 5% results in a discount

factor larger than a single exponential discount factor with a rate of 5%.

An important, though trivial, special case of Theorem 2 is when both F and G are degenerate

so that hF and hG are exponential discount functions. The equivalence (8) then says that group

G has a smaller discount rate if and only if it has a larger discount factor. In other words, in
11Mathematically equivalent results for mixed risk averse utility functions (i.e., increasing utility functions with

derivatives that alternate in sign) are found in Brockett and Golden (1987) and Thistle (1993), even though
Thistle’s result is based on Fishburn’s definition of infinity stochastic dominance and only holds for distributions
with finite support. Since the weighting distributions of many important discount functions (like the hyperbolic)
have infinite support, the assumption of a finite support would be too restrictive for our purposes.
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the exponential discounting case, comparing discount factors is equivalent to comparing discount

rates. For general discount functions, however, comparing discount factors is not equivalent

to comparing expected discount rates. For weighted discount functions, Theorem 2 establishes

the necessary and sufficient condition for ordering discount factors: Ordering discount factors is

equivalent to comparing their weighting distributions in the dominance sense.

2.4 Decreasing impatience and other properties of weighted discount

functions

In this section, we relate dominance (equivalently, the property of an elevated discount function)

to two well-known and important concepts in the literature on time preferences. In particular,

weighted discount functions allow for new insights regarding the notions of decreasing impatience

and patience.

Definition 4 (Decreasing impatience (Prelec 2004).) A discount function h satisfies de-

creasing impatience (DI) if Prelec’s (2004) measure of decreasing impatience,

P (t) = −(ln h(t))′′
(ln h(t))′ ,

is non-negative.

The following result shows that weighted discounting necessitates decreasing impatience in the

sense of Prelec (2004).12

Proposition 1 (Weighted discount functions imply decreasing impatience.) All weighted

discount functions imply decreasing impatience.
12This result generalizes and refines Weitzman’s (2001) observation on time-varying discount rates, which is

restricted to Gamma-distributed opinions F. Jackson and Yariv (2014, 2015) show that with any heterogeneity
in time preferences, utilitarian aggregation necessitates a present bias. Gollier and Zeckhauser (2005) and Jouini
and Napp (2007) have noted that heterogeneity results in time-varying discount rates and time-inconsistency,
and Hara (2008) shows that the rate of pure time preference is decreasing under heterogeneity. Unlike these
papers, we provide results on the classic concept of decreasing impatience as originally characterized by Prelec
(2004), which is not cited in the other articles. Hara (2008, Example 2), however, proves a result in the spirit of
Proposition 1 in the context of hyperbolic discounting.
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It is well known that non-exponential discounting induces time-inconsistency. Proposition 1

clarifies that, more specifically, (non-exponential) weighted discounters are time-inconsistent due

to decreasing impatience. The assumption of weighted discounting thus imposes a restriction on

the type of time-inconsistency considered—the one consistent with present bias and the majority

of empirical evidence. Yet, it should be kept in mind that it is not possible to study other

causes of time-inconsistency within the realm of weighted discounting (in particular, increasing

impatience and future bias).

Before presenting a relationship between decreasing impatience and dominance in Proposi-

tion 2 below, we give an important interpretation of the mean of a weighting distribution, that

is, of the weighted mean of the discount rates employed by a group. It is easily shown that (see

also the proof of Proposition 2) for a weighted discount function hF we have

∫ ∞
0

rdF (r) = −(hF )′(0)
hF (0) = −(hF )′(0). (9)

The middle expression in (9) is, by definition (cf. Prelec 2004, p. 524), the group’s initial rate of

time preference; that is, the rate of time preference at time zero. Therefore, the expectation of a

weighting distribution F (the average discount rate used) equals the initial rate of time preference

of the corresponding discount function hF (indicating how quickly the discount factor declines at

time zero). Note that present bias is caused by strictly decreasing impatience—regardless of the

initial rate of time preference. In order to obtain a comparative statics (i.e., a ceteris paribus)

result with respect to present bias, therefore, we need to keep the present (i.e., the initial rate of

time preference) constant. We obtain the following result.

Proposition 2 (Greater present bias implies less dominance.) Consider weighted dis-

count functions hF and hG with equal-mean weighting distributions F and G and measures of

decreasing impatience PF and PG, respectively. If PG(t) ≥ PF (t) for all t ≥ 0, then G is less

dominant than F.

The proof in the appendix has the following graphical intuition. If G (i) has a lower average
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discount rate (i.e., has a discount function that decreases less at time zero) and (ii) has impatience

decreasing more strongly at any time (i.e., is more convex in the sense of Prelec’s measure), then

hG must always lie above hF . By Theorem 2, then, G is dominated by F.

Finally, we clarify how our notion of greater diversity relates to that of greater patience, as

recently put forward by (Quah and Strulovici 2013).

Definition 5 (Comparative patience (Quah and Strulovici 2013).) The discount function

hG exhibits more patience than another discount function hF if

hG(t)
hF (t) is increasing in t.

Quah and Strulovici (2013, Proposition 1) provide the following choice-based characterization of

greater patience.

Proposition 3 (Choice-based characterization of greater patience (Quah and Strulovici

2013)). Two discounted payoff maximizers with (not necessarily weighted) discount functions

hF (t) and hG(t) are choosing between receiving fixed amounts π1 at time t1 and π2 at time t2,

where π1 > 0, π2 > 0, and t2 > t1 ≥ 0. Then hG exhibits more patience than hF if and only if

whenever F chooses π2, then G also chooses π2.

The following proposition shows that our results on the behavior of less dominant groups hold,

in particular, for more patient groups.13

Proposition 4 (More patient groups are less dominant.) More patient groups are less dom-

inant.

The converse is not true.14 For the intuition, by Theorem 2, group G being less dominant than
13Proposition 4 coincides with a result from the statistics literature, saying that the Laplace ratio order induces

the Laplace order; see, for example, Shaked and Shantikumar (2007, Theorem 5.B.10). We are not aware of any
article applying this result, or assigning meaning to it, in the context of time preferences.

14A concrete counterexample is given by hG(t) = 0.5 exp(−at) + 0.5 exp(−bt) and hF (t) = 0.5 exp(−at) +
0.5 exp(−ct), where 0 < a < b < c. It is straightforward to verify that hG(t) ≥ hF (t) so that, by Theorem 2,
group G is less dominant than F. Moreover, hG(0)/hGF0), hG(t) > hF (t) for t > 0, and limt→∞ hF (t)/hG(t) = 1.
Thus, hG(t)/hF (t) cannot be increasing in t.

19



F means that

hG(t) ≥ hF (t)⇐⇒ hG(t)
hF (t) ≥ 1⇐⇒ hG(t)

hF (t) ≥
hG(0)
hF (0) . (10)

Therefore, when G is less dominant, the ratio of discount factors in Definition 5 need not increase,

but it must be smallest at time zero. Similarly, greater diversity would require the prediction for

choice outlined in Proposition 3 to hold only for t1 = 0 and t2 = t rather than for all 0 ≤ t1 < t2,

illustrating that less dominance is a weaker requirement than (and thus a consequence of) greater

patience.

3 Equilibrium stopping under weighted discounting: Gen-

eral results

We believe that writing discount functions in their weighted form may yield new perspectives

on numerous economic (and associated mathematical) problems. The remainder of the paper

is concerned with illustrating this point for one particular class of dynamic decision problems.

In this section, we provide a general result on stopping decisions under weighted discounting.

Section 4 will make use of this result to obtain new economic insights into the well-known real

options investment problem.

We assume that the group whose stopping or timing decision we study is sophisticated with-

out commitment. Sophistication refers to the assumption that the group—unless it is given

by a single person—is aware of the time-inconsistency that results from decreasing impatience

(Proposition 1). The assumption of no commitment means that the group, even though an-

ticipating the desire to change its decision later, lacks the self-control to go through with the

initially optimal decision once its preferences have changed due to time-inconsistency. As in

the behavioral literature (e.g., O’Donoghue and Rabin 1999), the group’s stopping decision is

modeled as an intra-personal game. Following Strotz (1955) and many others since, equilibrium

behavior is obtained as the solution to a system of Bellman equations. The main result of this
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section, Theorem 3, specifies such a Bellman system for an arbitrary weighted discount function.

Readers not interested in further technical details (in particular, in the precise equilibrium

definition and the Bellman system characterizing equilibrium behavior in a continuous time stop-

ping problem under weighted discounting), may skip the remainder of this section and proceed

with Section 4.

3.1 Dynamics

Let (Ω,F ,P) denote a complete probability space that supports a standard Brownian motion

(Wt)t≥0 with its natural filtration {Ft}t≥0. Let X = {Xt}t≥0 denote the payoff value process, and

suppose that its dynamics are given by

dXt

Xt
= b(Xt)dt+ σ(Xt)dWt, X0 = x0 (11)

where the bounded function b describes the instantaneous conditional expected percentage change

in X per unit of time and the bounded function σ is the instantaneous conditional standard

deviation per unit time.15 X may describe the accumulated wealth when gambling in a casino,

the project value in a real options setting, or the value of a stock or of the underlying of some

derivative. The payoff of investment at time t is given by some payoff function G : [0,∞) → R.

In the next section, we will focus on G(Xt) = Xt − I where I ∈ R+ describes the investment cost.

The results in this section, however, are derived for general payoff (or utility) functions G.

3.2 Stopping rules and equilibrium

We first define stopping rules and the corresponding (induced) stopping times.

Definition 6 A stopping rule is a function of time and the process value, u : [0,∞) × [0,∞) →

{0, 1}, where 0 indicates “continue” and 1 indicates “stop.” For any time t ≥ 0, each stopping
15See Karatzas and Shreve (2006) for the usual technical conditions that need to be imposed on b and σ. The

results in this paper can be generalized to more complicated processes.
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rule u defines a stopping time τ tu after t, via

τ tu = inf{s ≥ t, u(s,Xs) = 1}. (12)

Let h denote a given weighted discount function with corresponding weighting distribution F.

Consider some time t ≥ 0 and refer to it as “self t” of the group. We assume that the discount

function of self t is given by ht(s) := h(s − t), s ≥ t. This means that self t treats calendar date

t as the present, which is also reflected by the fact that ht(t) = 1. Moreover, the specification

that ht(s) = h(s− t) means that group preferences are time-invariant (e.g., Halevy 2015) and, in

particular, that the weighting distribution F does not depend on calendar time.16 If Xt = x, self

t seeks to maximize the weighted discounted payoff from its investment decision according to the

stopping rule u :

J(t, x;u) = E[h(τ tu − t)G(Xτ tu)|Xt = x]. (13)

Since h exhibits decreasing impatience (Proposition 1), the preferences of the selves change over

time. In particular, self 0 is more patient at time t than self t is at time t. This may lead

to the selves preferring a different choice of u. In general, each self t can only choose current

(time-t) behavior, that is, u(t, x). Plans when to stop (i.e., stopping times) made by self t may

be overthrown by a group’s future self s > t.

Given a stopping rule u and a self t ≥ 0, we can define the following stopping rule to be used

from t on:

uε,a(s, x) =


u(s, x), if s ∈ [t+ ε,∞)

a if s ∈ [t, t+ ε),
(14)

where ε > 0 and a ∈ {0, 1} are fixed. This stopping rule uε,a coincides with the self t’s original

stopping rule u except for the (short) time interval [t, t + ε). On that interval, uε,a is either
16The point of this assumption is to illustrate that time-inconsistency of the group arises even if the (non-

degenerate) distribution of opinions about what discount rate to use, F, does not change with time. It would
be interesting to study decisions for non-constant, possibly endogenous dynamics of F. In this first treatment of
stopping under weighted discounting, we focus on the simplest case in which F is independent of calender time.
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constantly 0 or constantly 1. We call uε,a the (ε, a)-deviation from u.

Given the infinite horizon and the stationarity of the process X, we need to consider only

stationary stopping rules u, which are functions of the state variable x only. To see this, let us

rewrite the objective functional (13) of the group as

J(t, x;u) = E[h(τ tu − t)G(Xτ tu)|Xt = x]

= E[h(τ 0
u)G(Xτ0

u
)|X0 = x]

= J(0, x;u).

(15)

Hence, each self t faces the same decision problem, which only depends on the current state

Xt = x but not on time t directly. We can thus identify group self t by the current state Xt = x

of the process and drop the time index from its objective functional

J(x;u) = E[h(τu)G(Xτu)] (16)

where τu = inf{s ≥ 0, u(Xs) = 1}. The stopping rule u in equation (16) is now stationary, namely it

is independent of time t. The argument above thus shows that any given non-stationary stopping

rule has a unique stationary version such that the equality (15) holds. With a slight abuse of

notation, we still denote this stationary stopping rule as u, which is now a function of the process

value x alone. The sophisticated group anticipates the disagreement between its current and

future selves. Therefore, it searches for a stopping rule û that all possible future selves x are

willing to go through with; that is, no future self x wishes to deviate from û. In other words, the

group plays a game with its future selves, and behavior is described by the equilibrium of that

game.17

17Definition 7 is consistent with the equilibrium definition studied in time-inconsistent control problems (see
Ekeland and Pirvu 2008; Björk et al. 2014) when interpreting a stopping rule as a binary control. Moreover,
Definition 7 is in line with Strotz’s (1955) “strategy of consistent planning,” nowadays better known as an “intra-
personal equilibrium.” More specifically, the Strotzian solution stipulates that for any given self t : (i) all the
future selves will commit to the strategy and (ii) any deviation from the strategy will make the deviating self
t worse off. In a continuous-time setting, however, any fixed t (or, equivalently, a state x in the setting of this
paper) alone has no influence whatsoever on the final payoff function because it has a measure of zero. Therefore,
in order to capture the condition (ii) above in continuous time, one considers a small “alliance” of self t : the
interval [t, t+ε). The (ε, a)-deviation, uε,a, is, then, a strategy for which the alliance [t, t+ε) deviates to a while all
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Definition 7 (Equilibrium stopping rule) The stopping rule û is an equilibrium stopping

rule if

lim inf
ε→0

J(x; û)− J(x;uε,a)
ε

≥ 0 (17)

where uε,a is the (ε, a)-deviation from û with ε > 0 and a ∈ {0, 1}.

Note that uε,a is well defined only when it, together with û, is non-stationary; see (14). However,

we have explained earlier that each non-stationary stopping rule has a unique stationary version,

due to the infinite horizon and the stationarity of the process X. Hence, in the above, both û

and uε,a are understood to be the stationary versions. Intuitively, condition (17) says that every

future self (characterized by wealth x) prefers û over deviating according to uε,1 or uε,0 for the

short time ε during which it has decision power.

3.3 Equilibrium characterization

We now present the main result of this section, a general method to find equilibrium stopping

rules and the corresponding stopping times under weighted discounting.18

Theorem 3 (Equilibrium Characterization) Consider the performance functional (16) with

weighted discount function h(t) =
∫∞

0 e−rtdF (r), a stopping rule û, and functions w(x; r) = E[e−rτûG(Xτû)]

and V (x) =
∫∞

0 w(x; r)dF (r). Let A = 1
2σ(x)2x2 ∂2

∂x2 + b(x)x ∂
∂x and suppose that (V,w, û) solves

max{AV (x)−
∫ ∞

0
rw(x; r)dF (r), G(x)− V (x)} = 0, (18)

û(x) =


1 if V (x) = G(x)

0 otherwise,
(19)

subject to V (0) = max{G(0), 0}. Then û is an equilibrium stopping rule, and the value function of

the problem is given by V (x); that is, V (x) = E[h(τû)G(Xτû)].

selves beyond t+ ε stay committed to û. Definition 7 posits that such a “deviation-in-alliance” from equilibrium
is worse in a first-order sense.

18The value function V in the theorem must satisfy some regularity conditions that are not restrictive from an
economic point of view.
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To interpret Theorem 3, let us call

S = {x ∈ [0,∞) : V (x) = G(x)} and C = {x ∈ [0,∞) : V (x) > G(x)}

the stopping region and continuation region of the stopping problem, respectively. Then, the

equilibrium stopping rule û can be written as

û(x) =


1 if x ∈ S

0 if x ∈ C,
(20)

and the corresponding stopping time given by

τû = inf{s ≥ 0 : Xs ∈ S},

with X0 = x.

Equations (18)–(19) constitute the so-called Bellman system, a system of coupled equations.

Note that (19) is an equation (rather than a definition of û) since its right-hand side involves V,

which in turn depends on û through w(x; r). Therefore, the equilibrium stopping rule û is part of

the solution of the Bellman system.

In the remainder of this section, we explain the intuition behind the Bellman system and how

the assumption of weighted discounting makes its way into the result. Theorem 3 tells us how we

can obtain an equilibrium stopping rule û or, equivalently, the values of x ∈ S, where the group

will stop, and the values x ∈ C, where it will continue. The function w(x; r) = E[e−rτûG(Xτû)]

depends on the equilibrium stopping rule and describes group member r’s expected discounted

payoff in equilibrium when the current value of the process is x. If the group consists of just

one member with discount rate r, then V (x) = w(x; r); that is, the value function V is given by

that member’s expected discounted payoff and equation (18) becomes the well-known Bellman

equation (e.g., Dixit and Pindyck 1994): max{AV (x)− rV,G(x)− V (x)} = 0.19

19Note that the equation above is independent of û and can be solved once the model primitives are given. Then,
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Now consider the case of several group members. Along the equilibrium stopping rule û, the

value function V (x) can be written as

V (x) = E[h(τû)G(Xτû)] = E[
∫∞

0 e−rτûdF (r)G(Xτû)]

=
∫∞

0 E[e−rτûG(Xτû)]dF (r)

=
∫∞

0 w(x; r)dF (r).

(21)

This calculation shows that the weighted form of the discount function carries over to the value

function. Moreover, it clarifies the motivation behind defining the function w(x; r). To derive

the Bellman equation (18), we first write down the differential equation describing w and then

exploit the relationship between V and w derived above. More specifically, because w features

standard exponential discounting, it satisfies

Aw(x; r)− rw(x; r) = 0, x ∈ C

with the boundary conditions w(0; r) = 0 and w(x; r)|S = G(x)|S . The latter is the value-matching

condition. Note that w(x; r) does not satisfy a smooth-pasting condition. This is because group

member r’s discounted expected payoff is not maximized in equilibrium; only the value function

itself is. Since V is the weighted average of the w, by integrating the differential equation of w

against F, V must satisfy

∫ ∞
0

(Aw(x; r)− rw(x; r)) dF (r) = 0, x ∈ C

⇐⇒
(
A
∫ ∞

0
w(x; r)dF (r)

)
−
∫ ∞

0
rw(x; r)dF (r) = 0, x ∈ C

⇐⇒AV (x)−
∫ ∞

0
rw(x; r)dF (r) = 0, x ∈ C.

Equation (18) is then obtained by comparing the value of continuation and stopping.

û is obtained immediately from equation (19). In other words, in that case, equation (19) is decoupled from—and
thus not a part of—the Bellman system. Therefore, we are back to the classical case of a single Bellman equation.
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4 Investment behavior under weighted discounting

This section applies the general stopping result from Section 3 to solve the the standard irre-

versible investment problem of Brennan and Schwartz (1985), McDonald and Siegel (1986), and

Dixit and Pindyck (1994) for general time preferences as given by an arbitrary weighted discount

function. After generalizing well-known comparative statics results from exponential to weighted

discounting, we present new results on the impact of group diversity, parameter uncertainty, and

present bias on investment behavior.

4.1 Economic setup

Consider the opportunity to invest in a project. The payoff process X of the underlying project

follows a geometric Brownian motion,

dXt

Xt
= bdt+ σdWt. (22)

Investment in X can be made at any time t at cost I so that G(x) = x − I. The performance

functional of the group, whose time preferences are described by a weighted discount function

h—being obtained from some weighting distribution F—is then given by

J(x;u) = E
[∫ ∞

0
e−rτudF (r)(Xτu − I)

]
. (23)

To ensure the well-posedness of the problem, let

b < inf{r ∈ [0,∞) : F (r) > 0}. (24)

When F is a step function jumping at r = r0 (the exponential discounting case), condition (24)

is reduced to the standard condition b < r0 (e.g., Dixit and Pindyck 1994, p.141).20

20Economically, the more general condition (24) ensures that each member in the group has a non-exploded
performance functional, which, in turn, ensures that the performance functional of the group as a whole does
not explode. In Appendix C, we provide a formal result on the sufficiency and necessity of the well-posedness
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4.2 The decision to invest: The investment threshold under weighted

discounting

By solving the Bellman system described in Theorem 3 explicitly for the real option setting

specified in Section 4.1, we obtain the following result.

Proposition 5 (Investment behavior under weighted discounting.) Consider a weighted

discounter with weighting distribution F. Investing once the process X hits the investment thresh-

old x∗ given by

x∗ =
∫∞

0 µ(r)dF (r)∫∞
0 µ(r)dF (r)− 1I, (25)

where

µ(r) =
−(b− 1

2σ
2) +

√
(b− 1

2σ
2)2 + 2σ2r

σ2 , (26)

constitutes the unique one-sided threshold equilibrium strategy.

Note that the expression for the investment threshold, equation (25), involves the weighting dis-

tribution F, but not the corresponding discount function hF directly. Therefore, if one studied

investment under, say, generalized hyperbolic discounting, without involving the weighted rep-

resentation, it would seem very difficult to arrive at the solution. Recalling the notation from

equation (5)), equation (25) becomes

x∗ =

∫ ∞
0

µ(r)r
β
α
−1e−

r
α

α
β
αΓ(βα)

dr

∫ ∞
0

µ(r)r
β
α
−1e−

r
α

α
β
αΓ(βα)

dr − 1
I. (27)

More generally, the fact that the explicit solution to a problem may involve the weighting distri-

bution rather than the weighted discount function illustrates a possible virtue of writing discount

functions in their weighted form, even if the resulting expression looks complicated at first sight.

Let us also compare our general result for weighted discounting to the standard result for

exponential discounting. The investment threshold for exponential discounting is easily recovered
condition (24).
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from equation (25) by letting h(t) = e−r0t, so that we obtain the well-known

x∗ = µ(r0)
µ(r0)− 1I.

4.3 The impact of the economic environment on investment behavior

Before we turn to the impact of discounting behavior on investment, we note that the investment

threshold x∗ in equation (25) depends on the project return rate and volatility (through the

function µ(r) in equation (26)), as well as on the entry cost I. The following proposition generalizes

well-known results from the real options literature under standard, exponential discounting, to

weighted discount functions.

Proposition 6 (Comparative statics for entry cost and project dynamics.) Suppose that∫∞
0 µ(r)dF (r) is finite.21 Then

(i) x∗ is greater than the entry cost I,

(ii) x∗ increases with the entry cost I, and

(iii) x∗ increases with the return rate b and volatility σ of the project dynamics.

In the remainder of this section, we conduct an in-depth analysis of how differences in discounting

impact investment behavior.

4.4 The impact of dominance on investment behavior

The following result clarifies the impact of the group decomposition (i.e., the impact of the

weighting distribution F ) on the investment decision. In particular, it shows that less dominance

(and thus greater diversity in particular) leads to later investment.

21If not, then x∗ = I, which means that the group invests in the project whenever the payoff process is greater
than the entry cost.

29



Proposition 7 (Less dominant groups invest later.) Suppose F and G are weighting dis-

tributions. Then

G �∞SD F =⇒ xG∗ ≥ xF∗ ,

where xG∗ (xF∗ ) is the investment threshold defined by equation (25), with the weighting distribution

G (F ).

Less dominance is equivalent to a more elevated discount factor (Theorem 2). Theorem 2 and

Proposition 7 thus imply the following:

Corollary 1 (More elevated discount factors imply later investment.) Consider weighted

discount functions hF and hG with weighting distributions F and G. Then

hG(t) ≥ hF (t) for all t ≥ 0 =⇒ xG∗ ≥ xF∗ ,

where xG∗ (xF∗ ) is the investment threshold defined by equation (25), with weighting distribution

G(F ).

Note that Proposition 7 makes an assumption on the weighting distribution F, while Corollary 1

makes an assumption on the discount function hF , and both propositions’ implication is on the

investment threshold x∗ in equation (25). Because x∗ is expressed in terms of the weighting dis-

tribution F rather than in terms of the corresponding weighted discount function hF , the proof

of Proposition 7 is relatively simple, while a direct proof of Corollary 1 is quite complicated. We

present the direct proof in the appendix, because a comparison with the simple proof of Propo-

sition 7 illustrates the mathematical virtue of writing discount functions in the weighted form.

Moreover, the more complicated proof contains an additional result that we state separately.

Lemma 2 in the appendix offers an alternative and less intuitive, semi-analytical expression for

x∗ in equation (25), which involves the original discount function hF rather than the correspond-

ing weighting distribution F.

We now illustrate the quantitative impact of dominance and group diversity on the investment

thresholds through an example. To this end, let us consider the pseudo-exponential discount
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Table 1: Parameters used for the scenarios in Figure 2

r λ δ M SD S

Benchmark 0.0825 0 1 0.0825 0 0
FSD 0.0525 0 1 0.0525 0 0
SSD 0.03 0.045 0.5 0.0525 0.0225 0
TSD 0.0075 0.0562 0.2 0.0525 0.0225 -1.5000

Notes. The table defines the four scenarios denoted by Benchmark, FSD, SSD, and TSD studied in Figure 2.
Each scenario is characterized by a different parametrization of the weighting distribution of a pseudo-
exponential discount function as defined in equation (4). The parameters of the weighting distribution are
shown in columns two to four, while the remaining three columns show its mean M, standard deviation
SD, and standardized skewness S. The scenarios are chosen such that the weighting distribution in scenario
Benchmark is less (first-order stochastically) dominant than scenario FSD, which in turn is less (second-
order stochastically) dominant than scenario SSD, which in turn is less (third-order stochastically) dominant
than scenario TSD.

function from equation (3) once more. In particular, the decision-making group consists of two

members with discount rates r and r + λ > r and whose weights in the decision process are δ

and 1 − δ, respectively. The fact that the corresponding weighting distribution given by (4) is

binary allows for a simple and intuitive characterization of stochastic dominance relationships

through statistical moments. In particular, the weighting distribution with parameters δ, r, and

r + λ can be re-parametrized in terms of its mean M, standard deviation SD, and standardized

skewness S (see Ebert 2015 for the closed-form expressions). Moreover, it can be shown that

a binary distribution first- (second-, third-) order dominates another binary distribution with

lower mean (greater variance, lower skewness), given that the other two moments are the same.

In the following, we can thus conduct comparative statics with respect to the moments of the

weighting distribution, rather than having to deal with more complicated stochastic dominance

shifts.

Figure 2 plots the value function of the real option investment problem under pseudo-

exponential discounting with four different weighting distributions that differ in their first three

moments. Table 1 shows the parameters for each of the four scenarios. The weighting distri-

bution of the Benchmark scenario first-order stochastically dominates that of the FSD scenario,
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Figure 2: The impact of dominance and diversity on investment behavior
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Notes. The figure illustrates that less dominance leads to a riskier investment decision (i.e., to stopping
later, at a higher threshold level). xi∗ denotes the threshold for scenario i (i = B,FSD, SSD, TSD) which
is defined in Table 1. The figure also plots the value function for each scenario, whose intersection with the
payoff schedule determines the threshold. xB∗ < xFSD∗ means that we have later stopping under exponential
discounting for smaller discount rates (i.e., less first-order stochastic dominance). xFSD∗ < xSSD∗ means
that a group of two individuals who disagree about the discount rate stops later than a (more second-order
stochastically dominant and, in particular, less diverse) single individual whose discount rate corresponds
to the group average. xSSD∗ < xTSD∗ illustrates that a group that is less (third-order stochastically)
dominant—which means that there is one member with low weight in the decision but with an extremely
low opinion about the appropriate discount rate—stops later than the dominating group whose weighting
distribution has equal mean and variance but is more symmetric. The project drift and volatility assumed
are b = 0.01 and σ = 0.2, respectively. The project entry cost is set to I = 1.
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because it has a larger expected discount rate, while standard deviation and skewness of the

discount rate distribution are the same. Figure 2 shows that the FSD value function is larger

than the Benchmark value function, which implies a larger investment threshold: xFSD∗ > xB∗ . It

is not surprising, of course, that a lower discount rate leads to later investment.

Next, the weighting distribution of the SSD scenario is less (second-order stochastically)

dominant than that of the the FSD scenario. In particular, the SSD weighting distribution is

more diverse than that of the FSD scenario. Indeed, the SSD weighting distribution has greater

variance than the weighting distribution of the FSD scenario but identical mean and skewness.

Figure 2 confirms that greater diversity leads to later investment: xSSD∗ > xFSD∗ . Finally, the

figure illustrates that a weighting distribution with lower skewness—that is, with less (third-

order stochastic) dominance—results in later investment: xTSD∗ > xSSD∗ . This means that if one

of the group members has small weight δ, but a strong opinion in favor of a very small discount

rate, this results in later investment compared to when the weights on group members are more

symmetric, given that the group mean and standard deviation of the discount rate are the same.

Turning to the interpretation of our results in terms of present bias, Proposition 2 and Propo-

sition 7 yield the following result.

Corollary 2 (More present-biased groups invest later.) Consider weighted discount func-

tions hF and hG, with equal-mean weighting distributions F and G and measures of decreasing

impatience PF and PG, respectively. Then

PG(t) ≥ PF (t) for all t ≥ 0 =⇒ xG∗ ≥ xF∗ ,

where xG∗ (xF∗ ) is the investment threshold defined by equation (25), with weighting distribution

G(F ).

As an illustration of Corollary 2, we show that we get unambiguous predictions for how investment

depends on the preference parameters α and β of the famous generalized hyperbolic discounting

model (recall equations (5) and (6)). From Prelec (2004, p.524), we know that α captures

33



decreasing impatience, because P (t) = α
1+αt . The parameter β captures the investor’s initial rate

of time preference or, equivalently, the group’s weighted mean opinion about the appropriate

discount rate (cf. (9)): ρ(0) =
∫∞

0 rdF (r) = β.

Corollary 3 (Comparative statics for generalized hyperbolic discounting.) Consider the

generalized hyperbolic discount function h(t;α, β) = 1
(1+αt)

β
α

, with α, β > 0. Then the investment

threshold x∗ defined by equation (25)

(i) increases with the degree of decreasing impatience, α, and

(ii) decreases with the group weighted mean opinion about the discount rate, β.

Figure 3 illustrates the quantitative impact of the parameters α and β on the investment threshold

x∗. Consistent with Corollary 3, we indeed see that greater decreasing impatience (captured by

α) leads to later investment (left panel of Figure 3), while a greater mean of the weighting

distribution (captured by β) leads to earlier investment.

4.5 Comparing the investment behavior of weighted and exponential

discounters

Does time-inconsistency—as it arises with weighted discounting due to strictly decreasing impatience—

result in sooner or later investment compared to investment under standard, time-consistent ex-

ponential discounting? We obtain the following result, which compares the investment threshold

of three time-consistent and an arbitrary weighted discounter.

Proposition 8 (Comparing the investment behavior of weighted and exponential

discounters.) Consider a weighted discount function hF , with weighting distribution F. Let

rmin = inf{r ∈ [0,∞) : F (r) > 0} and rmax = sup{r ∈ [0,∞) : F (r) > 0}, and ravg =
∫∞

0 rdF (r) refer

to the average discount rate implied by F. Then

xrmax
∗ ≤ xravg

∗ ≤ xF∗ ≤ xrmin
∗ ,
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Figure 3: The impact of decreasing impatience, α, and the weighted mean of the group discount
rate, β, on the investment threshold under generalized hyperbolic discounting (Loewenstein and
Prelec 1992)
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Notes. The figure plots the variation of the investment threshold with respect to the degree of decreasing
impatience α (left panel) and the weighted mean of the group discount rate β (right panel). Both graphs
use the parameters b = −0.01, σ = 0.2, I = 1. In the left graph, β = 0.14. In the right graph, α = 0.22.
The parameter range well covers empirical estimates (e.g., Abdellaoui et al. 2010; Attema et al. 2016).

where xF∗ denotes the investment threshold defined by equation (25), with discount function hF .

Likewise, xrmax
∗ (xavg∗ , xrmin

∗ ) denotes the investment threshold defined by equation (25), with expo-

nential discount function having discount rate rmax (ravg, rmin).

The result that a group invests earlier (later) than a person whose discount rate is larger (lower)

or equal than that of every group member seems expected. The outcome of the comparison with

an exponential discounter who uses the same discount rate on average is an application of our

main comparative statics result (Proposition 7) that less dominance leads to later investment.

In particular, F is a mean-preserving spread of the constant equal to its mean, ∫∞0 rdF (r), and

thus is more diverse and less dominant.

Grenadier and Wang (2007) argue that time-inconsistency (due to present-biasedness) leads

to earlier investment. It can be shown that this result stems from a comparison analogous to
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that underlying the last inequality of Proposition 8.22 In the last paragraph of this section, we

will argue that a comparison based on the middle inequality in Proposition 8 is more appropriate

so that, in fact, present-biasedness and time-inconsistency lead to later investment.

While the last inequality of Proposition 8 generalizes Proposition 4 of Grenadier and Wang

(2007), the other comparisons in Proposition 8 are also conceptually new.23 The question now

is: In order to study the impact of time-inconsistency on investment behavior, which of the three

exponential discounters—all of which are time-consistent—is the weighted, time-inconsistent

discounter best compared to? While it seems intuitive that ravg constitutes a more “balanced”

choice than either of the two extreme discount rates rmin or rmax, the choice of ravg can also be

given firm decision-theoretic support. In order not to confound the effect of time-inconsistency

on investment behavior with that of the initial rate of time preference (recall the discussion

preceding Proposition 2), the initial rate of time preference of the time-inconsistent DM and the

time-consistent DM in comparison should be the same. This is only the case for an exponential

discounter with discount rate ravg, because the initial rate of time preference of a weighted

discounter is given by (recall equation (9))

ρF (0) =
∫ ∞

0
rdF (r) = ravg.

In summary, the time-inconsistency introduced through present-biased weighted discounting

leads to later investment.
22More specifically, Grenadier and Wang (2007) consider a stochastic version of the quasi-hyperbolic discounting

model, which was later shown to be equivalent to pseudo-exponential discounting by Harris and Laibson (2013).
For the case of pseudo-exponential discounting (equation (3)), we have rmin = r, ravg = δr + (1− δ)(r + λ), and
rmax = r + λ. Therefore, the last inequality of Proposition 8 indeed generalizes Proposition 4 in Grenadier and
Wang (2007), from pseudo-exponential to arbitrary weighted discounting.

23Note that, at the time, Grenadier and Wang (2007) could not exploit the equivalence of their quasi-hyperbolic
discounting model with the pseudo-exponential discounting model pointed out later by Harris and Laibson (2013).
That equivalence suggests a comparison with rmin (being a combination of the two quasi-hyperbolic discounting
parameters β and δ.). Likewise, the weighted representation of discounting is analyzed only in this paper. Given
the state of research in 2007 and before, therefore, the idea to compare with ravg was not obvious at all.
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5 Conclusion

We have introduced the class of weighted discount functions, which includes all of the most

commonly used discount functions. Weighted discount functions may describe the discounting

behavior of groups, uncertainty about what discount rate to use, present-biased time prefer-

ences such as hyperbolic discounting, and, through an iteration argument, all of these things

simultaneously.

We have collected a number of results on the class of weighted discount functions. Their

definition suggests a natural notion of group diversity in time preferences. We show that greater

group diversity results in a more elevated discount function so that more diverse groups discount

outcomes at any future time by less. We study the implications of group diversity for investment

in a real options framework and find that greater group diversity leads to delayed investment.

This delay in investment comes with greater risk. The same result applies to investment under

intra-personal uncertainty about what discount rate to use: Greater parameter uncertainty leads

to delayed investment and more risk-taking. These results are the consequence of an equilibrium

stopping result for arbitrary weighted discount functions. Our most general result also clarifies

investment behavior in a single-person setting where the DM is, for example, a hyperbolic dis-

counter. This paper thus further contributes to the theoretical literature in behavioral economics

and finance by solving the long-standing investment problem under hyperbolic discounting (and

many other parametrizations that imply present-biased preferences). Contrary to existing re-

sults, we illustrate that time-inconsistency arising from present-biased time preferences leads to

delayed rather than premature investment.

On a more general level, our analysis shows that exploiting the link between parameter

uncertainty about what discount rate to use, present-biased time preferences, and collective time

preferences can offer valuable insights. Investment and equilibrium stopping in a real option

setting, as studied in the later sections of this paper, are merely one possible application. Any

result on the class of weighted discount functions necessarily makes implications for either of the

three fields, thereby illustrating how these seemingly diverse literature streams can benefit from
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one another.

A Proofs

A.1 Proof of Theorem 2

Suppose first that G �∞SD F . Note that u(x) := −e−xt defines a mixed risk averse utility function

(i.e., is increasing with derivatives that alternate in sign) on [0,∞) for each fixed t > 0. For this

u, hF (t) ≤ hG(t), ∀t ≥ 0 follows from the integral inequality in Definition 2

Now suppose that hF (t) ≤ hG(t) for all t ≥ 0. For any mixed risk averse utility function u, the

first derivative of u satisfies the assumptions of Bernstein’s Theorem (Theorem 1). Thus, there

exists a distribution function Fu such that u′(t) =
∫∞

0 e−tsdFu(s). For 0 < a ≤ x, it follows that

u(x) =
∫ x

a
u′(t)dt+ u(a)

=
∫ x

a

∫ ∞
0

e−tsdFu(s)dt+ u(a)

=
∫ ∞

0

∫ x

a
e−tsdtdFu(s) + u(a)

=
∫ ∞

0

1
s

(e−as − e−xs)dFu(s) + u(a).

Hence,

∫ ∞
0

u(x)dG(x) =
∫ ∞

0

∫ ∞
0

1
s

(e−as − e−xs)dFu(s)dG(x) + u(a)

=
∫ ∞

0

1
s

(e−as −
∫ ∞

0
e−xsdG(x))dFu(s) + u(a)

=
∫ ∞

0

1
s

(e−as − hG(s))dFu(s) + u(a).

Comparing with the analogous expression for F, because hF (t) ≤ hG(t) for all t ≥ 0, it follows

that G �∞SD F. This completes the proof.
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A.2 Proof of Proposition 1

We need to show that P (t) = − (lnh(t))′′
(lnh(t))′ ≥ 0. The claim immediately follows from the following

result, which derives a novel representation of Prelec’s measure of decreasing impatience for

weighted discount functions.

Lemma 1 Consider a weighted discount function hF , with weighting distribution F and measure

of decreasing impatience PF . Then

PF (t) = V[ξt]
E[ξt]

where ξt is a random variable with distribution function Fξt(x) =
∫ x

0
re−rtdF (r)∫∞

0
e−rtdF (r)

.

Proof of Lemma 1. The result follows from two simple calculations. First,

−(ln h(t))′ = −h
′(t)
h(t) =

∫∞
0 re−rtdF (r)∫∞
0 e−rtdF (r) = E[ξt]

and, second,

(ln h(t))′′ =
(
h′(t)
h(t)

)′
=
(∫∞

0 re−rtdF (r)∫∞
0 e−rtdF (r)

)′

=
∫∞

0 r2e−rtdF (r)∫∞
0 e−rtdF (r) −

(∫∞
0 re−rtdF (r)∫∞
0 e−rtdF (r)

)2

=E[ξ2
t ]− E[ξt]2 = V[ξt].

A.3 Proof of Proposition 2

Let ρi = −(ln hi)′, i = F,G, denote the rate of time preference of weighting distributions F and G.

We prove the more general result that only requires that the mean of F is equal or larger than

that of F. This assumption yields (hF )′(0) = −
∫∞

0 rdF (r) ≤ −
∫∞

0 rdG(r) = (hG)′(0), so that

ρF (0) = −(hF )′(0)
hF (0) ≥ −

(hG)′(0)
hG(0) = ρG(0). (28)
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Since Pi = −ρ′i
ρi

= −(ln ρi)′, i = F,G, the assumption that F exhibits less DI than G; that is,

PF (t) ≤ PG(t)∀t ≥ 0 can be restated as

(ln ρF (t))′ ≥ (ln ρG(t))′. (29)

Therefore, (28) and (29) together imply that ln ρF (t) ≥ ln ρG(t),∀t ≥ 0, which is equivalent to

ρF (t) ≥ ρG(t), ∀t ≥ 0. (30)

Since ρi = −(ln hi)′ and hi(0) = 1, i = F,G, we have ln hF (t) ≤ ln hG(t), and the result follows from

Theorem 2.

A.4 Proof of Proposition 4

By assumption, hG

hF is increasing. The claim follows from equation (10) and Theorem 2.

A.5 Proof of Theorem 3

We have proven in equation (21) that

E[h(τû)G(Xû)] =
∫ ∞

0
w(x; r)dF (r) ≡ V (x).

It now suffices to show that û is an equilibrium stopping rule, namely, that it satisfies equa-

tion (17), subject to condition (14) in Definition 7.

In the case of X0 = 0, due to the boundedness of b and σ, the process X will always stay

at 0. Hence the stopping rule û, determined by the boundary condition V (0) = max{G(0), 0}, is

trivially an equilibrium stopping rule.

In the case of X0 = x > 0, if a = 1, then J(x;uε,a) = G(x). Due to the Bellman equation (18),

we have V (x) ≥ G(x). This shows that equation (17) is satisfied.

We now turn to the case of a = 0. For notational convenience, we define τ tu = inf{s ≥ t :
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u(Xs) = 1}, ∀t > 0, where X0 = x. Noting that, by construction, τuε,0 ≡ τ εû, we have

J(x;uε,0) =E[h(τuε,0)G(Xτuε,0
)]

=E[h(τ εû − ε)G(Xτ εû
)] + E[(h(τ εû)− h(τ εû − ε))G(Xτ εû

)]

=E[E[h(τ εû − ε)G(Xτ εû
)|Xε]] + E[(h(τ εû)− h(τ εû − ε))G(Xτ εû

)]

=E[V (Xε)] + E[(h(τ εû)− h(τ εû − ε))G(Xτ εû
)]

=E[V (Xε)] + E
[(∫ ∞

0
e−rτ

ε
ûdF (r)−

∫ ∞
0

e−r(τ
ε
û−ε)dF (r)

)
G(Xτ εû

)
]

=E[V (Xε)] +
∫ ∞

0
(e−rε − 1)E[e−r(τ εû−ε)G(Xτ εû

)]dF (r)

=E[V (Xε)] +
∫ ∞

0
(e−rε − 1)E[E[e−r(τ εû−ε)G(Xτ εû

)|Xε]]dF (r)

=E[V (Xε)] +
∫ ∞

0
(e−rε − 1)E[w(Xε; r)]dF (r).

Therefore,

lim inf
ε→0

J(x; û)− J(x;uε,0)
ε

= lim inf
ε→0

V (x)− E[V (Xε)]
ε

+ lim inf
ε→0

∫ ∞
0

(1− e−rε)
ε

E[w(Xε; r)]dF (r)

=− (AV )(x) +
∫ ∞

0
rw(x; r)dF (r) ≥ 0,

where the inequality follows from the Bellman equation (18). This completes the proof.

A.6 Proof of Proposition 5

The proof is structured into three parts. In Part 1, we derive the explicit expression of the

investment threshold, equation (25). In Part 2, we verify that this threshold is indeed part of a

solution to the Bellman system in Theorem 3. In Part 3, we prove that this threshold is unique.

Proof of Part 1 (derivation of the investment threshold). First, in equilibrium, each member

of the group uses the same stopping rule. This yields the value matching condition on w(x; r)

for all r ≥ 0. With the infinitesimal generator of the geometric Brownian motion being A =
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1
2σ

2x2 d2

dx2 + bx d
dx , for x < x∗, we obtain as usual (e.g., Dixit and Pindyck 1994, p.141ff) that

1
2σ

2x2wxx(x; r) + bxwx(x; r)− rw(x; r) = 0, (31)

with boundary conditions w(0; r) = 0 and w(x∗; r) = x∗−I. Letting µ(r) denote the positive square

root of the fundamental quadratic

1
2σ

2µ2 + (b− 1
2σ

2)µ− r = 0,

the solution to the ordinary differential equation (31) is given by

w(x; r) =
(
x

x∗

)µ(r)
(x∗ − I), x < x∗,

and the explicit expression for µ(r), equation (26), follows immediately. Second, the equilibrium

stopping rule maximizes the weighted average of the w(x; r), which is given by

V (x) =
∫ ∞

0

(
x

x∗

)µ(r)
dF (r)(x∗ − I). (32)

The smooth-pasting condition is thus not imposed on w but on the value function V :

∫ ∞
0

wx(x∗; r)dF (r) = 1.

This condition is used to identify the triggering threshold x∗; that is,

∫ ∞
0

(
x

x∗

)µ(r)−1 µ(r)
x∗

dF (r)(x∗ − I)|x=x∗ = 1.

Solving for x∗ yields equation (25).
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Proof of Part 2 (x∗ is part of a solution to the Bellman system). We prove that the triple

(V e(x), we(x; r), û(x)) =


(V (x), w(x; r), 0) if x < x∗,

(x− I, x− I, 1) otherwise


solves the Bellman system (18)–(19) with its boundary condition, as specified in Theorem 3.

Then, û must be an equilibrium stopping rule, V e the corresponding value function, and (an)

equilibrium behavior is given by stopping once the process X hits x∗.

From the boundary condition w(0; r) = 0, it is easy to see that V (0) = 0, which satisfies the

boundary condition V (0) = max{0, x − I}|x=0. On the continuation region (0, x∗), since V (x) =∫∞
0 w(x; r)dF (r) and since w(x; r) follows the ordinary differential equation (31), we have

∫ ∞
0

[1
2σ

2x2wxx(x; r) + bxwx(x; r)
]
dF (r) =

∫ ∞
0

rw(x; r)dF (r)

⇐⇒1
2σ

2x2Vxx(x) + bxVx(x)−
∫ ∞

0
rw(x; r)dF (r) = 0.

To obtain the Bellman equation (31), it remains to check that

V (x)− (x− I) > 0 (33)

on the continuation region (0, x∗) as well as that

1
2σ

2x2(x− I)xx + bx(x− I)x −
∫ ∞

0
r(x− I)dF (r) ≤ 0,

or, equivalently, ∫ ∞
0

(r − b)xdF (r) ≥
∫ ∞

0
rIdF (r) (34)

on the stopping region [x∗,∞). As regards inequality (33), due to condition (24), we have that

µ(r) > 1 and thus V (x) is a convex function. Then the linearity of the payoff function, together

with the value matching and smooth pasting conditions, yields inequality (33).

As regards inequality (34), since b < inf{r ∈ [0,∞) : F (r) > 0}, the function ∫∞0 (r− b)xdF (r) is
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increasing in x. Therefore, we only need to prove inequality (34) at x = x∗. If b ≤ 0, the fact that

µ(r) > 1 yields the inequality immediately. Hence, for the remainder of the proof we can assume

that b > 0.

At x = x∗, inequality (34) becomes

∫ ∞
0

(r − b)
∫∞

0 µ(r)dF (r)∫∞
0 µ(r)dF (r)− 1dF (r) ≥

∫ ∞
0

rdF (r).

As µ is a concave function and because µ(r) > 1 for all r > b, we have

∫ ∞
0

(r − b)
∫∞

0 µ(r)dF (r)∫∞
0 µ(r)dF (r)− 1dF (r) ≥ (rm − b)

µ(rm)
µ(rm)− 1 , (35)

where rm =
∫∞

0 rdF (r). Finally, it remains to prove that

(rm − b)
µ(rm)

µ(rm)− 1 ≥ rm, (36)

which is equavalent to rm− bµ(rm) ≥ 0. For any r ≥ b, define f(r) = r− bµ(r). A simple calculation

yields that

f ′(r) = 1− b√
(b− 1

2σ
2)2 + 2σ2r

≥ 1− b

b+ 1
2σ

2 ≥ 0.

Note that f(b) = 0. Therefore, f(r) ≥ 0, which yields inequality (36). This completes Part 2 of

the proof.

Proof of Part 3 (Uniqueness of the investment threshold). Suppose x̄ is an equilibrium

investment threshold. We have to show that x̄ = x∗. A stopping rule that induces x̄ is given by

ū defined by ū(x) = 0 if x < x̄ and ū(x) = 1 otherwise. Let V̄ (x) := J(x; ū).

It follows from the proof of Part 1 that the smooth pasting principle (i.e., D−x V̄ (x̄) = D+
x V̄ (x̄) =

1, where D−x V̄ (x̄) = limx→x̄− V̄x(x) and D+
x V̄ (x̄) = limx→x̄+ V̄x(x)) yields a unique solution. Hence,

if we can prove that the value function V̄ is obtained by the smooth pasting principle, then the

conclusion that x̄ = x∗ follows.
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To complete the proof, it suffices to exclude the following possibilities: (a) x̄ =∞, that is, the

stopping region is empty; (b) x̄ = 0, that is, the continuation region is empty; and (c) x̄ ∈ (0,∞)

and D−x V̄ (x̄) 6= D+
x V̄ (x̄). This is because only when one of these possibilities occurs does V̄ not

satisfy the smooth pasting principle.

Proof that (a) is impossible: x̄ 6= ∞. If not, we have τū = ∞. Then the well-posedness

condition (24) ensures that e−r∞(X∞ − I) := lim supt→∞ e−rt(Xt − I) = 0, which implies that

V̄ (x) = 0. Therefore, for x0 > I, we have that

lim inf
ε→0

J(x0; ū)− J(x0; ūε,1)
ε

= lim inf
ε→0

0− (x0 − I)
ε

= −∞,

where ūε,1 is the deviation stopping rule defined in equation (17). This contradicts the definition

of an equilibrium stopping rule and thus x̄ 6=∞.

Proof that (b) is impossible: x̄ 6= 0. If not, it is easy to see that

J(x; ūε,0) =
∫ ∞

0
E[e−rε(Xε − I)|X0 = x]dF (r) =

∫ ∞
0

xe(b−r)εdF (r)−
∫ ∞

0
e−rεIdF (r)

and J(x; ū) = x− I. Then some simple algebra yields that

lim inf
ε→0

J(x; ū)− J(x; ūε,0)
ε

=
∫ ∞

0
(r − b)xdF (r)− I

∫ ∞
0

rdF (r).

Note that condition (24) yields that ∫∞0 (r − b)dF (r) > 0. Therefore lim infε→0
J(x;ū)−J(x;ūε,0)

ε < 0, if

x <
I
∫∞

0
rdF (r)∫∞

0
(r−b)dF (r)

, which shows that x̄ 6= 0.

Proof that (c) is impossible. Suppose that x̄ ∈ (0,∞) and D−x V̄ (x̄) 6= D+
x V̄ (x̄). Since V̄ (x) ≥

x− I and V̄ (x̄) = x̄− I, we have

D−x V̄ (x̄) < 1. (37)
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Similar to the proof of Theorem 3, we have that for any x > 0,

lim inf
ε→0

J(x; ū)− J(x; ūε,0)
ε

= lim inf
ε→0

V̄ (x̄)− E[V̄ (Xε)|X0 = x̄]
ε

+
∫ ∞

0
rw̄(x; r)dF (r),

where w̄(x; r) = E[e−rτū(Xτū − I)|X0 = x].

Then it follows from (generalized) Ito’s formula (see, e.g., Chapter 3 of Karatzas and Shreve

2006) that

lim inf
ε→0

J(x̄; ū)− J(x̄; ūε,0)
ε

= lim inf
ε→0

1
ε
E
( ∫ ε

0
(−bXsD

−
x V̄ (Xs)−

1
2σ

2X2
sD
−
xxV̄ (Xs))ds

− 1
2(D+

x V̄ (x̄)−D−x V̄ (x̄))Lx̄ε |X0 = x̄
)

+
∫ ∞

0
rdF (r)(x̄− I)

= lim inf
ε→0

1
ε
E
( ∫ ε

0
(−bXsD

−
x V̄ (Xs)−

1
2σ

2X2
sD
−
xxV̄ (Xs))ds|X0 = x̄

)
− lim sup

ε→0

1
ε
E
(1
2(1−D−x V̄ (x̄))Lx̄ε |X0 = x̄

)
+
∫ ∞

0
rdF (r)(x̄− I), (38)

where the process Lxt is the local time of {Xt}t≥0, D
−
xxV̄ (x) = limy→x− V̄xx(y), and D+

xxV̄ (x) =

limy→x+ V̄xx(y). Moreover, by Tanaka’s formula (see, e.g., Chapter 3 of Karatzas and Shreve

2006), Lxt can be written as

Lxt = 2(Xt − x)+ − 2(X0 − x)+ − 2
∫ t

0
IXs≥xdXs,

and thus

E[Lx̄ε |X0 = x̄] = 2E[(Xε − x̄)+ −
∫ ε

0
bXsIXs≥x̄ds|X0 = x̄].

Using standard calculations it is easy to see that

E[(Xε − x̄)+|X0 = x̄] = x̄e−bεN(d1)− x̄N(d2)

where N(x) = 1√
2π
∫ x
−∞ e

− 1
2y

2
dy, d1 = b+ σ2

2
σ

√
ε, d2 = b− σ

2
2

σ

√
ε.
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Therefore,

lim
ε→0+

1
ε
E[(Xε − x̄)+|X0 = x̄] = lim

ε→0+

x̄σ

2
√

2πε
=∞. (39)

Then it follows from (37), (38), and (39) that

lim inf
ε→0

J(x̄; ū)− J(x̄; ūε,0)
ε

= −∞,

which shows that ū cannot be an equilibrium and thus completes the proof.

A.7 Proof of Proposition 6

Statements (i) and (ii) are trivial, and hence we focus on statement (iii). Since x∗ is decreasing

with respect to A, which is the weighted average of the µ(r) defined in equation (26), we only

need to check the monotonicity of µ(r) with respect to b and σ2.

For any fixed r > b, we redefine µ(r) as a function of b and σ2, denoted by ν(b, σ2). By simple

calculation, we have

∂ν

∂b
= 1
σ2

−1 +
b− 1

2σ
2√

(b− 1
2σ

2)2 + 2σ2r

 ≤ 0 and

∂ν

∂σ2 = 1
σ4
√

(b− 1
2σ

2)2 + 2σ2r

(
b

√
(b− 1

2σ
2)2 + 2σ2r + 1

2σ
2b− b2 − σ2r

)
.

If b ≤ 0, it is easy to see that ∂ν
∂σ2 ≤ 0. If b > 0, since b < r, define f(r) = b

√
(b− 1

2σ
2)2 + 2σ2r +

1
2σ

2b− b2 − σ2r. Then, after some algebra, we have

f ′(r) = bσ2√
(b− 1

2σ
2)2 + 2σ2r

− σ2 <
bσ2√

(b− 1
2σ

2)2 + 2σ2b
− σ2 = bσ2

b+ 1
2σ

2 − σ
2 < 0.

Then ∂ν
∂σ2 < 0 follows from f(b) = 0. This completes the proof.
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A.8 Proof of Proposition 7

Let X and Y be two random variables with distributions FX and F Y , respectively. Then the

investment thresholds can be written as

xX∗ = E[µ(X)]
E[µ(X)]− 1I and xY∗ = E[µ(Y )]

E[µ(Y )]− 1I,

where µ is defined by equation (26). The main idea of the proof is to note that µ satisfies

sgn µ(n) = (−1)n+1 for all n ∈ N+; that is, µ(r) can be interpreted as a mixed risk averse “utility

function over discount rates.” Then by definition of infinity stochastic dominance, F Y �∞SD FX

implies that E[µ(X)] ≥ E[µ(Y )]. This yields the conclusion and completes the proof.

A.9 Proof of Corollary 1

The result follows from Proposition 7 and Theorem 2, but here we give the direct proof motivated

in the main text. We first prove the following lemma, which is of its own interest. It provides

a semi-analytic representation of the investment threshold x∗ in terms of the weighted discount

function hF (rather than in terms of its weighting distribution F, as does equation (25)).

Lemma 2 (Threshold in terms of the discount function rather than the weighting

distribution.) Consider a weighted discount function hF with weighting distribution F, which

yields the investment threshold x∗ in equation (25). Then

x∗ =
max{−2(b− 1

2σ
2)

σ2 , 0}+B

max{−2(b− 1
2σ

2)
σ2 , 0}+B − 1

I, (40)

where

B = 1√
2πσ

∫ ∞
0

t−
3
2 e−

(b− 1
2 σ

2)2

2σ2 t(1− hF (t))dt. (41)

Proof of Lemma 2. Using some algebra, it can be shown that

∫ ∞
0

µ(r)dF (r) =
−(b− 1

2σ
2)

σ2 +
√

2
σ

∫ ∞
0

√
r + CdF (r), (42)
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where C = (b− 1
2σ

2)2

2σ2 . Note that
√
r + C can be written as

√
r + C = 1

2
√
C

∫ r

0

1√
1 + 1

C s
ds+

√
C. (43)

Moreover,
1√

1 + 1
C s

=
∫ ∞

0
e−stf(t; 1

2 ,
1
C

)dt, (44)

where f(t; 1
2 ,

1
C ) is the density function of the Gamma distribution with shape parameter 1

2 and

scale parameter 1
C ; that is,

f(t; 1
2 ,

1
C

) = 1√
π
C

1
2 t−

1
2 e−Ct.

Next, we plug equation (44) into equation (43) to obtain

√
r + C = 1

2
√
π

∫ r

0

∫ ∞
0

t−
1
2 e−Cte−stdtds+

√
C

= 1
2
√
π

∫ ∞
0

t−
1
2 e−Ct

∫ r

0
e−stdsdt+

√
C

= 1
2
√
π

∫ ∞
0

t−
3
2 e−Ct(1− e−rt)dt+

√
C.

Hence,

∫ ∞
0

√
C + rdF (r) =

∫ ∞
0

1
2
√
π

∫ ∞
0

t−
3
2 e−Ct(1− e−rt)dtdF (r) +

√
C

= 1
2
√
π

∫ ∞
0

t−
3
2 e−Ct(1−

∫ ∞
0

e−rtdF (r))dt+
√
C

= 1
2
√
π

∫ ∞
0

t−
3
2 e−Ct(1− hF (t))dt+

√
C.

Finally, we plug the last equality into equation (42) to obtain

A =
−(b− 1

2σ
2)

σ2 +
|b− 1

2σ
2|

σ2 + 1√
2πσ

∫ ∞
0

t−
3
2 e−

(b− 1
2 σ

2)2

2σ2 t(1− hF (t))dt

= max{
−2(b− 1

2σ
2)

σ2 , 0}+ 1√
2πσ

∫ ∞
0

t−
3
2 e−

(b− 1
2 σ

2)2

2σ2 t(1− hF (t))dt,

49



which completes the proof of the lemma.

We now turn to the proof of Corollary 1. From equation (41) in Lemma 2, it follows, because

hF ≥ hG, that BF ≤ BG, with Bi (i = F,G) defined in equation (41). Then, from equation (40) in

Lemma 2, it follows that the investment threshold is decreasing in the factor B, which completes

the proof.

A.10 Proof of Corollary 2

The result is an immediate consequence of Proposition 2 and Proposition 7.

A.11 Proof of Corollary 3

Consider two hyperbolic discount functions hi (i = F,G) with parameters αi and βi and measures

of decreasing impatience Pi(t). To prove (i), suppose that βF = βG and αF ≤ αG. Note that

βF = βG implies that the expectation of F is equal to that of G and

αG ≥ αF ⇐⇒
αG

1 + αGt
≥ αF

1 + αF t
⇐⇒ PG(t) ≥ PG(t). (45)

Therefore, part (i) follows from Corollary 2. To prove (ii), suppose that βF ≤ βG and αF = αG.

Note that βF ≤ βG implies that the expectation of F is no less than that of G, and, analogously to

the computations in (45), we find that αF = αG yields PG(t) = PG(t). Thus, part (ii) also follows

from Corollary 2.

A.12 Proof of Proposition 8

Note that we have the following relationship (the second inequality follows from Theorem 2, as

F is more diverse than its mean ravg) :

e−rmaxt ≤ e−ravgt ≤ hF (t) =
∫ ∞

0
e−rtdF (r) ≤

∫ ∞
0

e−rmintdF (r) = e−rmint.
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Therefore, the result follows from Corollary 1.

B Groups of non-exponential discounters

In this section, we formalize the “weighting iteration argument” and illustrate it through a

concrete example. Consider an individual, i, with weighted discount function

h(t; i) =
∫ ∞

0
e−rtdF (r; i)

where F (r, i) denotes the weighting distribution used to build the discount function h(t; i). A

non-degenerate distribution F (r; i) may reflect his uncertainty about what discount rate to use.

Alternatively, a non-degenerate F (r; i) may reflect individual i’s present-bias. For example, if

F (r; i) is Gamma-distributed, we know that individual i is a generalized hyperbolic discounter.

We are interested in the discount function of a group of such individuals. As before, the group

may consist of a finite number or a continuum of individuals. In either case, we let the indices i

referring to the individuals be non-negative. Let us denote the discount function of this group by

h̄(t). The weights of the individual group members are given by the weighting distribution G(i).

If the number of individuals is finite, then the probability mass function g(i) of G(i) gives the

percentage weight of group member i; that is, h̄(t) =
∑
i g(i)h(t; i). In the general case, we have

h̄(t) =
∫ ∞

0
h(t; i)dG(i). (46)

The following proposition shows that h̄(t) belongs also to the class of weighted discount functions.

Proposition 9 The group discount functions of weighted discounters are weighted discount func-

tions. In particular, there exists a distribution F̄ over exponential discount rates r such that

h̄(t) =
∫ ∞

0
e−rtdF̄ (r).

Moreover, F̄ can be computed as F̄ (r) =
∫∞

0 F (r; i)dG(i).
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Proof. The result follows from the following computation:

∫ ∞
0

e−rtdF̄ (r) =
∫ ∞

0
e−rtd

(∫ ∞
0

F (r; i)dG(i)
)

=
∫ ∞

0
e−rt

∫ ∞
0

dF (r; i)dG(i)

=
∫ ∞

0

∫ ∞
0

e−rtdF (r; i)dG(i)

= h̄(t).

We close this section with a simple example that illustrates the notation above and analyzes the

investment behavior of a group of non-exponential discounters within the real options framework

of Section 4. Consider a group of just two members i = 1, 2 who receive weights δ ∈ (0, 1) and 1−δ,

respectively. Therefore, G in equation (46) is the weighting distribution of a pseudo-exponential

discount function (see equation (4)). Moreover, suppose that both members are hyperbolic

discounters with the parametrization of Mazur (1987) and Harvey (1995) and parameters α1 and

α2, respectively,

h(t; i) ≡ h(t;αi) = 1
1 + αit

.

From equation (7), these are weighted discount functions with exponentially distributed weighting

distributions. That is, in the notation above, F (r; i) ≡ F (r;αi) = 1− e−
r
αi , and the corresponding

density functions are given by f(r; i) ≡ f(r;αi) = 1
αi
e
− 1
αi
r
. Therefore, by Proposition 9, the

discount function of the group defined in equation (46),

h̄(t) ≡ h̄(t;α1, α2) = δ
1

1 + α1t
+ (1− δ) 1

1 + α2t
,

is also a weighted discount function. For that reason, our results on group investment behavior in

Section 4 also apply to this group of “behavioral” investors. In order to compute the investment

threshold of this group, we need to know its weighting distribution F̄ . By Proposition 9, its

cumulative density function is F̄ (r) ≡ F̄ (r;α1, α2) = δ
(
1− e−

r
α1

)
+ (1 − δ)

(
1− e−

r
α1

)
, and the

corresponding density function is given by f̄(r) ≡ f̄(r;α1, α2) = δ 1
α1
e
− 1
α1
r+(1−δ) 1

α2
e
− 1
α2
r
. Therefore,
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by equation (25), the triggering threshold can be computed as

x∗ =

∫ ∞
0

µ(r)(δ 1
α1
e
− 1
α1
r + (1− δ) 1

α2
e
− 1
α2
r)dr∫ ∞

0
µ(r)(δ 1

α1
e
− 1
α1
r + (1− δ) 1

α2
e
− 1
α2
r)dr − 1

I.

C On the well-posedness condition (24)

The following proposition shows that equation (24) is indeed the necessary and sufficient condi-

tion for our generalized real options investment problem to be well-defined.

Proposition 10 If condition (24) holds, then ∀x ∈ [0,∞),

sup
τ∈T

E[
∫ ∞

0
e−rτdF (r)(Xτ − I)] <∞.

If b > inf{r ∈ [0,∞) : F (r) > 0}, then ∀x ∈ R+,

sup
τ∈T

E[
∫ ∞

0
e−rτdF (r)(Xτ − I)] =∞.

Proof. For the sake of convenience, we denote r0 = inf{r ∈ [0,∞) : F (r) > 0}. When b < r0, by

standard option pricing arguments, we have

0 ≤ sup
τ∈T

E[e−rτ (Xτ − I)] ≤ sup
τ∈T

E[e−r0τ (Xτ − I)] <∞,

for X0 = x ∈ (0,∞), r ≥ r0. This yields

sup
τ∈T

E[
∫ ∞

0
e−rτdF (r)(Xτ − I)] ≤

∫ ∞
0

sup
τ∈T

E[e−rτ (Xτ − I)]dF (r)

≤ sup
τ∈T

E[e−r0τ (Xτ − I)] <∞.

Here, the second inequality follows because of ∫∞0 dF (r) = 1. When b > r0, consider the case of

τ∗ =∞. Then for any r ≥ b, E[e−rτ∗(Xτ∗ − I)] ≥ 0; for any r < b, E[e−rτ∗(Xτ∗ − I)] =∞. Moreover,
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when b > r0, F (b−) > 0, so that

sup
τ∈T

E[
∫ ∞

0
e−rτdF (r)(Xτ − I)] ≥

∫ b

0
E[e−rτ∗(Xτ∗ − I)]dF (r) =∞.

This completes the proof.
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