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Abstract

This paper is concerned with optimal control of stochastic linear systems involving fractional
Brownian motion (FBM). First, as a prerequisite for studying the underlying control problems,
some new results on stochastic integrals and stochastic differential equations associated with
FBM are established. Then, three control models are formulated and studied. In the first two
models, the state is scalar-valued and the control is taken as Markovian. The problems are
either completely solved based on a Riccati equation (for Model 1 where the cost is a quadratic
functional on state and control variables) or optimality is characterized (for Model 2 where the
cost is a power functional). The last control model under investigation is a general one where the
system involves the Stratonovich integral with respect to FBM, the state is multi-dimensional
and the admissible controls are not limited to Markovian. A new Riccati-type equation, which is
a backward stochastic differential equation involving both FBM and normal Brownian motion,
is introduced. Optimal control and optimal value of the model are explicitly obtained based on
the solution to this Riccati-type equation.
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1 Introduction

Stochastic processes with long memory have been studied in the literature. One important class of
such processes is the fractional Brownian motion (FBM). In recent years there has been considerable
research interest on stochastic calculus for FBM. A central issue is to define a proper stochastic
integral with respect to the FBM. Attempts were made in Lin [25] and Dai and Heyde [6]; however
the stochastic integrals defined in [25], [6] do not satisfy the familiar zero-mean property as opposed
to the normal Brownian motion counterpart. More recently, Duncan, Hu and Pasik-Duncan [9]
employed the Wick calculus to define a fractional stochastic integral whose mean is indeed zero.
This property is very convenient for both theoretical development and practical applications. A
substantial stochastic calculus was established for this new integral in [9].

It is natural and interesting to study the optimal control of systems driven by fractional noises,
namely, systems described by stochastic differential equations involving FBM. Some such control
problems as well as their applications in mathematical finance have been studied in [3], [15], [20],
[22], within the framework of the fractional calculus of [9].

On the other hand, a classically important class of stochastic control problems is the so-called
linear—-quadratic (LQ) control, where the system is linear with respect to the state and control
variables and the cost functional is quadratic in the two variable. Such a problem can often be
solved explicitly by solving a relevant Riccati equation. While stochastic LQ control for systems
driven by the (normal) Brownian motion (i.e., the systems are perturbed by the usual “white
noise”) is a classical problem on which a vast amount of research works have been documented,
there have recently been renewed interest on the problem, in the form of the so-called “indefinite
stochastic LQ control”. See [1], [4], [5], [23], [28], [29] and the references therein.

This paper represents the first attempt, to our best knowledge, in systematically solving some
optimal control problems on linear systems driven by FBM, including LQ control with fractional

noises. The controlled systems under consideration include
dCL't = (Atitt + Btut)dt + (Ctil,'t + Dtut)thH , Lo =T is given, (11)

and
dzy = (Ayzy + Byug)dt + (Cyzy + Dyuy) o thH, To =x is given, (1.2)

where A;, By, C; and Dy are given (matrix-valued) stochastic processes, {W/ ¢ > 0} is an FBM
of Hurst parameter H € [1/2,1), and dW} and odWH are the It6 and Stratonovich integrals,
respectively, as defined in [9]. Our problem is to minimize a cost functional under the constraint
(1.1) or (1.2).

The above problem, in its greatest generality, seems to be too difficult to solve at the moment
owing to the long range dependence of the FBM. In this paper we propose and study three special
models. The first model is for system (1.1) where the state z; is one dimensional, D, is absent, and

the cost functional is quadratic. Moreover, we consider optimal control among the class of linear



Markovian controls, namely, the ones of the form
Uy = Ktilit, (13)

where K is a deterministic (matrix-valued) function of ¢. (Notice that linear Markovian control
constitutes an important control class due to its mathematical simplicity and ease of implementa-
tion. Also it is well known that the optimal stochastic L.QQ control with normal Brownian motion
turns out to be a linear Markovian control.) In this case, the optimal control (or equivalently the
optimal K;) is found based on the solution to a Riccati equation. This Riccati equation is solvable
by using the classical theory. Thus for this special yet interesting control model we obtain a com-
plete solution to the LQ problem with fractional noises. The second model is more general than
the first one in that D; #Z 0 and the cost functional is of a power form. Remark that the presence
of Dy is a crucially different and difficult feature even in the normal stochastic LQ control (see [29]
for detailed discussions). For this second model we use the technique of calculus of variation to
obtain an integral equation that the optimal K; must satisfy. We then demonstrate how to solve
this integral equation in several special cases. The last control model under study is an LQ problem
where the system is governed by (1.2), the state variable is multi-dimensional and the admissible
controls are not limited to being Markovian. However D; is assumed to be identically zero. We
introduce a Riccati-type equation, which is a backward stochastic differential equation involving
integrals with respect to both FBM and normal Brownian motion. Assuming the solvability of
this equation along with some technical conditions, we derive an optimal control along with the
optimal value based on the completion-of-square technique. As a by-product the optimal control is
in the form of linear Markovian type. We also illustrate how we obtain such a Riccati-type equation
heuristically using the method of approximation.

It is worth mentioning that study on stochastic control problems with

fractional noises will inevitably involve stochastic calculus on FBM, the associated stochastic
integrals and differential equations. However, a rich, complete theory on such calculus is still lacking
due to the fact that the very definition of the fractional stochastic integral we are employing was
introduced only very recently [9]. Therefore, in this paper we spend some effort in deriving results
on fractional stochastic calculus that are necessary for studying the subsequent control models.
Some of the results are new and interesting in its own right.

The remainder of the paper is organized as follows. Section 2 is devoted to fractional stochastic
calculus useful for the sequel. Three different control models are treated in Sections 3,4 and 5

respectively. Finally, Section 6 concludes the paper with some remarks.

2 Fractional Stochastic Calculus

This section presents stochastic calculus on fractional Brownian motion that is necessary for the
control problems under investigation in this paper. Most of the results are new and interesting in

its own right from the point of view of fractional calculus.



2.1 Fractional Brownian motion

In this subsection we outline some of the notation and results on fractional Brownian motion. The
primary reference in this regard is [9]. Let Q = Cy(0,7;R) be the Banach space of real-valued
continuous function on [0, 7] with the initial value zero and the super norm. There is a probability
measure P on (Q,F), where F is the Borel g-algebra on 2, such that on the probability space
(2, F, P) the process {W/ ,0 <t < T} defined as

WH (w) = w(t), Yw € Q
is a (one-dimensional) Gaussian process with mean
EWH =w{ =0, Vtelo,T],

and covariance )
E (Wiwh) = 3 (7 + 52 — |t — ), V5 € [0, T).

This canonical process {W;# ,0 < ¢t < T} is called a (standard) fractional Brownian motion (FBM)
of Hurst parameter H. In this paper H € [%, 1) is fixed. An FBM with H = % reduces to the
(normal) Brownian motion.

An FBM generates a filtration {F;, 0 < ¢t < T} with F = o{WH,0 < s < t}. Throughout
this paper, only the canonical process and the associated filtered probability space (Q2,F , P; F),
as described above, are used. Also notice that the FBM is assumed to be one-dimensional only
for notational simplicity; there is no essential difficulty with a multi-dimensional FBM where each
component is a one-dimensional FBM with the same Hurst parameter H.

The following lemma is useful (see [7], [13], [26]).

Lemma 2.1 An FBM W} with H € (1,1) can be represented as
t
wH = / Z(t,s)dWs, (2.1)
0
where {W;,0 <t <T} is a one-dimensional Brownian motion, and

1 1l g t H—L H—3
Z(t,s):=(H — §)cHs2 / ro T2 (r —8)7 2dr,
S

RN
with cg = \/%M (T(-) is the gamma function). Moreover, Wy and W} generate the

same filtrations.

Similar to the Brownian motion, the FBM is not differentiable almost surely. As the “derivative”
of a Brownian motion is usually refereed to as white noise, that of an FBM is refereed to as fractional

noise.



For a fixed H € (3,1), denote a function ¢ : [0,7] x [0,T] — R, by
B(s,t) == H(2H —1)|s — t|*H 2, Vs,t € [0,T], (2.2)

and let Li([(), T)) be the Hilbert space of Borel measurable, scalar-valued functions f such that

TrT
2 = /0 /0 $(s, ) f rdsdt < oo, (2.3)

with the norm |f|4; see [11], [12], [13] for a detailed discussion on this space. The inner product on
Lé([O,T]) is denoted by (). Define a mapping ® on Li([O,T]):

T
(@g); := /0 $(t,5)gsds, Vg € L2(0,T)). (2.4)

Then one can define the ¢-derivative of a random variable F' € LP(Q2, F, P) (p > 1) in the direction
of ®g, where g € Li([O,T]), by

1 .
Doy F(w) := lim - {F(w +0 [ (Bg)uan) - F(w)} (2.5)
6—00 0
if the limit exists in LP(Q, F, P). Moreover, if there is a process {DXZF, 0 < s < T} satisfying
T
Dg,F = / [DFFlg,ds as., Vge L3(0,T)), (2.6)
0

then F is said to be ¢-differentiable and DX F is termed as the Malliavin derivative of F. Refer to
[9],[19] for more information about the Malliavin derivative.

Finally, we remark that if H = 1/2, then the function ¢(-,-) should be replaced by the Delta
function §(-,-) satisfying

/T/Té(s,s')f(s,s')dsds':/Tf(s,s)ds, Vi(, ) € LN0,T] x [0,T)).
0 0 0

2.2 Stratonovich integrals

Next, let us discuss on the Stratonovich stochastic integral, which will be dealt with later in this

paper. First of all, let X; be a semimartingale of the form

t t
X, = Xo +/O fsds+/0 g5 dWs,

where {W,,0 < s < T} is the Brownian motion given by Lemma 2.1 and X, a deterministic
constant. If f,g € L%(0,T), where L%(0,T) denotes the set of scalar-valued, Fi-adapted, square
integrable processes on [0,7], then it is well known that (see, e.g., [21, Chapter III})

t t 1 rt
/XsodWs:/ Xdes+§/ gsds, Vte€[0,T), (2.7)
0 0 0
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where fg X, o dWy denotes the Stratonovich (symmetric) integral with respect to the Brownian

T 1 T
E (/ X;so0 dWs> =_-E / gsds . (2.8)
0 2 Jo

However, if a process Y; is given as

motion W,. As a result,

t t
Vi=Yo+ [ fuds+ [ gawl, (2.9)

where the stochastic integral with respect to the FBM Wk is defined as in [9], then we have a quite

different result.

Theorem 2.2 Let f; and gs satisfy the following conditions:
T T
E / |fs|?ds < 0o, sup E |gs|’ds < oo, and E / |ngs|2ds < 0, (2.10)
0 0<s<T 0
and Y; be given by (2.9), where H € (3,1). Then

t i
/Ysodws:/ Y,dW,, Vi e [0,T). (2.11)
0 0

As a consequence, we have

t
E /YsodWs] 0. (2.12)
0

Proof Under the condition (2.10) on f and g we see that Y; is well-defined (see [9]). Let 7 : 0 =
to < t1 <te <--- <ty =t, be a partition of the interval [0, ¢]. By definition,

n—1

t . 1
/0 Yi0dW, = |7]rl\I£0]§) 5 (Y;:k + Ytk+1) (Wtk+1 - Wtk)
n—1 n—1 1

= I Y, Wy, ., — W, i — (Y., - Y)Wy, ., — W,
|7rl\I—I>10k§0 (2 ( th+1 tk) + |7rl\I—I>IOI;) 2 ( th+1 tk) ( tp41 tk)

:= lim I; + lim Iy,
|7|—0 |7|—0

where the limit is taken in the sense of “in probability” and |7| := maxo<g<p—1(tx+1 — t). It is

easy to see by the definition of the It6 integral that the first term I; converges to f(f Y dWs.

To consider the second term I, we estimate E |Y;, o Yy \2. From the definition of Y; it follows

E |V, —Y%/[> < 2E /j“l fsds i + 2E ‘/;M gsdWH i
= 2(I3 —I—kLL) . '
It follows from (2.10) that
L<E /t:“ fo2ds - |tps1 — bl (2.13)

6



Moreover, by virtue of the It6 isometry ([9, Theorem 3.9]), we have
tht1  [lrtl b1 o 2
o= [T () dsd+E [ [ ol gsds]
tr tr tg
= Is+ Iy

The assumption of the theorem and the definition of ¢ yield

th+1  fle+1
Iy < C/ / o(t, s)dsdt
17 tr
< Cltger — te]*,

where (and elsewhere) C' is a generic positive constant that may vary from place to place. On the
other hand,

bet1 g oo
IGSE /t |Ds gs| d8-|tk+1—tk|.
k
Combining the above computations, we conclude that there is a constant C' such that
E |Y'tk+1 - Ytk‘Q < C|tk+1 - tk|2H + Uk|tk+1 - tk'a (2'14)

where
Bt g H, |2
Upi=E [ (5P + DI g s,
k

Therefore,

n—1
2E I, < ZE |Ytk+1 - Ytk| |Wtk+1 - Wtk|
k=0

n—1
911/2 911/2
< Z []E |Ytk+1 _Y;fk| ] [E |Wtk+1 - Wtk| ]
k=0
n—1 § n—1 9 1/2
< O (ther — )2+ C Y [Uk(tisr — t)]? [E Wiy — Wi ]
k=0 k=0
= I;+ 1y
It is easy to check that
L n—1
I, < —t,)H 3 —
7 < Coglkngfq(tkﬂ tk) 2 I;)(tk_H tk) —0

and

n—1
g < CY U;/Q(tk+1 —tx)
k=0

n—1 12 mq 1/2
C (Z Uk> (Z(tk-l-l — tk)2>
k=0

k=0

IA

T
< CIE [ (fP +1DFgufds] 2] 2 = 0.
0

7



This implies that I converges to 0 in L' (€2, F, P) and, consequently, in probability. This completes
the proof. O

Remark 2.3 Whereas Theorem 2.2 is useful in Section 5, it is interesting in its own right. In
particular, we see that (2.11) is different from the case when the integrand is a semimartingale; see
(2.7). On the other hand, one has a different formula than (2.11) if the integration there is replaced
by one with respect to the FBM WH (under different conditions on the integrand though); for
details see [9, Theorem 3.12].

Remark 2.4 Since the Stratonovich type integral can be represented by using the It6 type integral
([9]), equations (2.9) and (2.10) are still true if Y; is represented as Stratonovich integral

t t
Yi=Yo+ [ fuds+ [ goodw!
0 0
under some mild conditions on f and g. Details are left to the interested readers.

2.3 Multiple integrals

In this section we recall some results from [9] on multiple integrals. These results are needed in
this paper and we refer to [9] for more detail.
A function f : [0,7]" — R is called symmetric on [0,7"]" if

f(sil""asin) = f(sl""asn), (31,---,Sn) € [O,T]na
for any permutation (i1,42,---,ip) of (1,2,---,n). Denote

Li([O,T]") := {f:[0,7]" — R is measurable and symmetric in its arguments,
1£15 5= (f: F)o < oo},

where

(f,9)¢ = /[OT]2n¢(U1,U1)¢(U2,02)---¢(unavn)f(ul,uz,---,un)

g(v1,v2,- -, vp)durdusg - - - dupdvidvs - - - dop, .

If fe Lé([O,T]"), then the multiple It integral

L(f) = Lao(f) = /0<t t <Tf(t1’...’tn)th€1...thZI
Sy hins

- F(tr, - ta)dWE - aw
0<ty <---<tn <T



is well-defined, and (see [9, Lemma 6.6]!)

(f,9)p ifn=m
E (In(f)Im(9) = { (2.15)
0 if n # m.

The following result concerns the Malliavin derivative of a multiple integral.
Theorem 2.5 We have
DI Tafa) = s ([ #lor) faar)dr) , Vi € Z3(0,7T), (2.16)
where for any 0 <r <T, fo_1(r) denotes a function of n — 1 variables given by
fo-1(r)(s1y- -y 8n1) == fuls1, -+ 8n-1,7) -
Proof Foralld € Rand h € Li([O,T]), one has

L(fa)(WH + 6 / h(s)ds)

— L(f)WH) +52/ (51, 5 ) AW - dTT, - W h(s)dsy + o(8)

<31,-,sn<T
= L(f)WH) +6n /0 L 1 (fa 1 (r))h(r)dr + o(8),

where dﬁ/\sk means that dW,, term is taken off the product. Thus
T
DagF = [ Lucs(fus(r)@g(r)dr

= /Inlfnl /¢8T s)dsdr.

By the definition of D (see (2.6)) we have

T
DEL(f)) = n /0 $(s,7)Ln 1 (fu 1 (r))dr

= nl, 1 </0T qﬁ(s,r)fnl(r)dr) . (2.17)

O

We also need to employ the multiple Stratonovich integrals. For this we first recall the definition

of the k-trace Tr’(; Let f € Li([O, T1™). For any positive integer k < n/2, the k-trace of f is defined
as a function of n — 2k variables:

Tf];sf(tl,“',tn—%) = / f(s1,82,+, 8061, 52k, 1, , tn—2k)
[0 T]2k

B(s1,52)P(s3,54) - - - P(S2k—1, Sok)ds1 - - - dsop

'There is a typo in [9, Lemma 6.6]: the factorial n! is missing from the term (f, g4 on the right hand side of (6.5)
there.




if the right hand side is integrable.
The multiple Stratonovich integral

Sn(f) ESn,T(f) = / f(t1,---,tn)oth?---othiI
0<t1,+otn <T
— n!/ Fltr,eee ta) o dWH - o dW [
0<ty <<t <T

is well defined, and one has the following Hu-Meyer formula (see [16]-[18] and [9, Equation (6.10)])

n!
Sn(f) = k;[%] mfnf% (Tl‘gf) . (2.18)

2.4 Stochastic differential equations with FBM

As the dynamics of the control problems under consideration in this paper is described by stochastic
differential equations (SDEs) with FBM, we need first to study linear fractional SDEs in this section.

Introduce the following two linear equations

d.’Et == AtiL‘tdt + Ct:l:tthH
{ (2.19)
9 € R? be given and deterministic,
and
d.’I?t = Ata:tdt + Ct.’IJt o thH
{ (2.20)
Ty € R? be given and deterministic,

where dW} and odW}! denote respectively the It6 type and Stratonovich type differentials, in the
sense of [9].

Theorem 2.6 If A; and C; are measurable and essentially bounded deterministic functions in t,
then equation (2.19) admits a unique solution. Moreover, the solution satisfies

sup E 7P < o0, Vp>1. (2.21)
0<t<T

Furthermore, the solution x. has a continuous modification.

Proof The results when H = % are clearly true by virtue of the classical SDE theory for normal
Brownian motion. So we assume H > % Let ¥(t,s) denote the fundamental solution associated
with the deterministic part of equation (2.19), namely, U(, s) satisfies

d
qu(t,s) = AV(t,s), 0<s<t; U(s,s)=1,

where I denotes the identity matrix. Since A; is uniformly bounded in ¢, it is routine to prove,
via Gronwall’s inequality, that W(¢, s) is uniformly bounded in (¢,s). This in turn implies, via the

above equation, that U(t, s) is Lipschitz in ¢ with a Lipschitz constant independent of (¢, s).
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The equation (2.19) is thus equivalent to the following equation
t
zy = U(t,0)zg + / U(t,s)CsxsdWH . (2.22)
0
Replacing the z, in the integral by this equation we have
t
zy = YU(t0)zo —I—/ T(t,s)CsU(s,0)zodWH
0
! . H o H
+ /O T(t, 55)Cs, /O (s, 81)Cy, 5, AW HAWH
Repeatedly applying this procedure, we obtain

t
Ty = \I!(t,O):co—l—/O U(t,s)CsU(s,0)zodWrH

o0

+ Z/O W(t, 52)Ca U, 5n1)Cay_s -+~ (52, 51)Coy U (51, 0)modWH - aWH.

Sn
n=2"0<81< <5<t

(2.23)
Now we are going to show that (2.23) is convergent in L?((2, F, P) for any fixed ¢. Denote
f'n,t(sla Ty Sn) = \Ij(ta Sn)canj(sn, Snfl)CSn_1 o C52\P(82, 31)051@(317 O):L.O ) (224)

where 0 < 81 < --- < s, < t. We also use the notation fi = fi(.,...,-) to denote the symmetric

extension of f,,; to the domain [0,¢]”, namely,

fvtz(sla e ’sn) = \Ij(t’ Sin)csin\D(sin’sin—l)osin,l O \Il(siza Sil)C \P(sil,O)mo

Siz 81'1

if 55 <84, <---<'s;,, where 41, -+ , 4y is a permutation of 1,2,---,n.
By virtue of the underlying assumption it is easy to see that there is a positive constant K,
depending on t, such that

sSup |f7€(31""’3n)| SK?
0<51,,5, <t

The right hand side of (2.23) can be rewritten as

oo

1
2= Z‘;ﬁ nt(fh)
where
Li(f}) = / ffl(sh"',sn)dWsIf . "dWin
0<5s1,,8n <t

is the multiple It6 integral defined in Section 2.3. It follows from (2.15) that

E|Z[* = Zo(nl')QE [In,t(frtz)]Q
= > e
n=0 """



By its definition (see Section 2.3), we have

< :ufﬁ)d’ = /[0 f2n ¢(817t1) Tt d)(snatn)fé(sl, Ty Sn)fé(tl, ree ,tn)dsl s dSndtl v dtn

AN

Kfn/ , d(s1,t1) -+ d(Sn,tn)dsy - - - dspdty - - - diy,
[0,¢]>™

< K",

where K is a generic constant (depending on t) whose values may vary. This leads to

<1
2 2n
n=0
Hence the right hand side of (2.23) converges in L?(Q, F, P), and =, is well defined.
Next we show that [J Csz;dW . is well defined for each ¢ € [0,T], where . is defined by (2.23).

Let us prove this for ¢ = T, the other case being similar. From [9, p.591] there are several conditions
to define [ Cyx;dW/. Let us check

T
E / |DH(Cyz,)Pds < o0
0

Other conditions are routine and easier to check. Since C; is a bounded deterministic function of

t, it suffices to verify

T
E / IDH 1, %dt < oo (2.25)
0
To this end, recall that f is the symmetric extension of fy,(¢;-,...,-) defined by (2.20). With this
notation we have
Tt = Z _'In,t(fn) :
= n!

Its Malliavin derivative is given by, appealing to Theorem 2.5,
H,. _ o ¢
Ds Iy = 3:1: (n — 1)!In*1,t (/0 ¢(8,7‘) n—l(r)d”) .

Therefore we have

B Dfaf = 3 ot s [ ot gt ()i,

n=1

Since f! is bounded on [0, 7], i.e.,
|fal < K7

we have
[ o1, [ gt g g

12



t
< /) /0 ﬁ]<51,"',sn—1<t frtz(sla Ty 8n—1, Tl)frtl(tla sy tp—1, ’1"2)
0<ty, ety _1 <t
d(s1,t1) - P(Sn—1,tn—1)ds1dty - - - dsp_1dty,_1dridrs|
< Kp

where and in what follows we shall use K1 to denote a generic constant which depends only on T’

and may be different in different places. Consequently we have

sup E |DHzy? < Kr. (2.26)
0<5,t<T

This implies easily (2.25).
Next, to obtain the estimate (2.21) we use a hypercontractivity inequality. Define the number

operator I'(c), where a € R, as

o o0
D(@)F =Y o"In4(gn), if F=>Y Ingn),

where g, € Lé([O,t]”) with 3% I, +(gs) convergent in L?(Q,F, P). Nelson’s hypercontractivity
theorem (see [8], [14]) yields

(=)

Now for the f! defined earlier, we set

p) 1/p < (]E |F|2)1/2 Vs

o0
(p—1)"
Zip = Tfn,t(fﬁ)-
n=0 )
By the same estimate for Z; we obtain
E |Zt,p|2 < 00.

However, noting that I'(==)Z;, = Z; and applying the hypercontractivity inequality to F = Z; ,,
? g p—1 P g D

we have 12
(E |z:/P)'/? = (B |2,))"/? < (IE |Zt,,,\2) < o0, Vp>2.

The inequality (2.21) when 1 < p < 2 follows from the Cauchy-Schwartz inequality.

Finally, to see that z. has a continuous version, we estimate E |z; — z,/2. We shall need the
uniform Lipschitz condition of ¥(¢, s) in ¢ which was proved earlier. From the expression (2.23) it
follows that

xy — s = U(t,0)z9 — U(s,0)zo + Z % [In,t(fé) - In,s(fré;)] .
n=1""

13



By the orthogonality of different chaos we have

oo 1 9
Blo—aif = [9(00z0 ~ U020+ 3 = [Tarlh) = Tuslf)]
=1 :
2 = 2
< [ 0)m0 = W5, 00w’ + 32 5 [Tnsl77) — Tasl£7)]
n=1 '
+3° o L) — L)
n=1
o
= Il-l-z IQn+Z—I3n
where
t s 2
I2,n = E [In,s(fn) - In,s(fn)]
2
= E [Ins(f!— £2)]
Now it is straightforward to see that
Ly < n!KR|t—s|*.
Denote by T),(s,t) the region
To(s,t) == {0<s1 <+ <8 <t}\{0< 81 <+ <8y <5}
UP_5{0 < 81 < oo <8 < 8,851 <00 < 8y <t}
=1 Ul Tnk(s,t)
Then
1 1 2
WI?),TL = ’I’L')Q [ nt(fn) In,s(fn)]
2
- E l/ (51, n)dWS’f---deZ]
Tn(s, t)
= / o L 51 s bt )1, 1)l o)t - sy

< / / t 81,777, n)fn(tatla'”’tn)¢(817t1)"'¢(8natn)d31dt1 dsndtn
k] 0 nk(s t) n] (s:t)
< \// / 51, 5n) sty 1) (51, 81) -+ B(5my tn)ds1dlr - - - dsmdlt
k,j=0 n k S, t n k s t)
\// / fn(tasla'“7Sﬂ)fn(t;t17"'7tn)¢(317t1)"'¢(Sﬂ7tn)d81dt1"'dsndtn'
Tn,j(s,t) Tn,j(s,t)
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It is easy to check that for all 0 < k <mn — 1, we have
/ / P51, sm) fult 1, - tn) (51, 11) - - Sy b )dsrdty - - - dsndty
Tn,k(syt) Tn,k(sat)

= /)<81<---<sk<T s<spp1<-<sp<t f”(t’ Sy ’S”)f”(t’ RER ,tn)¢(81,t1) o ¢(S”’t”)d31dt1 o dsndin
0<ty <<t <T ° s<tp < <tn<t

1
K’nt_ 2H
F(n = g irit =l

< |t—sPHKR/nl.

This concludes that )

1
W 3,71 S HK%'t — S|2H .

Observing that
I < Krlt—s]?,

we obtain
E |z — $s|2 < Krlt — 3|2H .

Since 2H > 1 we see that z; has a continuous version by the Kolmogorov lemma. This completes

the proof of the theorem. O

Remark 2.7 There has been some study on fractional stochastic differential equations (see for
example [27], [24] and the references therein). However, we could not find any result on the type of
equation (2.19) in the literature. When the equation is one-dimensional, explicit representation of
the solution was obtained in [3], [19]; see also Theorem 2.11 below. Here we have used the Wiener
chaos expansion approach to handle the multi-dimensional case. Note that the LP estimate of the

solution (2.21) is also new.

Theorem 2.8 If A; and C; are measurable and essentially bounded deterministic functions in t,

then equations (2.20) admits a unique solution.

Proof Similar to the argument in proving Theorem 2.6, a solution candidate to equation (2.20) is

Y; = Z/ U (t,5,)Cs, U(sn,8n-1)Cs,_; - - U(s2,51)Cs, ¥(s1,0)zq 0 de ---0 dWsIf . (2.27)
0 /0<s1 < <an <t

Fix t. Since
Sp 1= / U(t, sn)Cs, Y (sn, $n—1)Cs, ; *+ ¥(s2,51)Cs; U(s1,0)z0 0 dWSIII RS dWSIi,
0<s1 < <8 <t

n=0,1,2,---, are not orthogonal, we consider the convergence in Li(Q, F, P). We have

00 00 0 1/2
E[V <Y EISI<D (EIS.?) .
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Defining fy, ; as in (2.24), we can write
Sn:/ fn,t(sla"'asn)Ode"'Ode.
0<s1< <8 <t

As before let f! be the symmetric extension of f,; to [0,#]". Since A and C are bounded, we have
|fn,t(31, -++,8p)| < K7} for some constant K7 depending only on T'.
With these notation we have

1
Sn = E n,t(fé)a
where
Sus(f1) = / (st 8n) 0 dWH oo dWH
0<81, 80 <t

By the Hu-Meyer formula (see (2.18)) we have

n!

Sut(fe) = Y i In—2kit ( Tfkft) .
' T ] ; ¢dn
kgn/22 El(n — 2k)!
Therefore
B ISP = Y kg (2.29)
ni\Jn - 2k (1-N2(0y — ! nlg - )
oy 22k(EN2(n — 2k)!
But
| AL = /KSI,___,S%Q octirtn ot dn (81,8250 Samy 1, ot 2k)
0<ty, o<t~ 0<t),ost! o) <t

Su(r1,ray e Top et _op)B(51, 52) -+ P(S2k—1, S2k)

B(r1,m2) - drok—1,2k)P(t1, 1) - - -

¢(tn—2ka t,n_zk)dsld'rl et dSde’l‘detldtll et dtn—det,n_zk

S K’jn—' 0< sy, 89, <t 0<ty, bt _op<t ()ZS(SI’ 82) T ¢(82k—1’ SZ.’C)

0<ty, - tgp <t 0<t’1,---,t’n_2k<t

P(r1,72) - - P(rok—1, T2k ) P(t1, 1) - - -

¢(tn—2ka t;l_%)dsld’l"l cee dSde’l"gkdtldtll cee dtn_gkdt;l_%

< K7}.
Therefore
Kn
E|S |2 < . =r
" lcgzn/z (kD)2(n — 2k)!
K7
= nl

Thus Y; is well-defined. It is now routine to verify that Y; is the solution to (2.20). a
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Remark 2.9 Unlike with the case of It6 integral (see Theorem 2.6), it remains an open problem
whether the solution in Theorem 2.8 has a continuous modification.

Remark 2.10 The nonhomogeneous versions of (2.19) and (2.20) are

{ dzy = (Ayme + fo)dt + (Cray + g)dW,H
(2.29)
o € R? be given and deterministic,
and
{ dzy = (Aywy + fo)dt + (Coay + go) 0 AW
(2.30)
x9 € R? be given and deterministic,

respectively, where f; and g; are generally random processes. One may also use the Wiener chaos
expansion technique to study the solvability of these equations, taking the “fundamental matrix”
associated with the homogeneous versions (2.19) or (2.20) as the starting point. However, much
more involved technicalities will have to be gone through. Details are left to the interested readers.
Note that for studying the first and second control models in the sequel, equations (2.19) and (2.20)
suffice since only Markovian type of controls are to be considered.

The following theorem gives an explicit expression of the solution to (2.19) in the one-dimensional
case. Note that the result was proved in [3] using the Wick product. Here we give a different yet

simple proof.

Theorem 2.11 Let n = 1. If A; and C; are measurable and essentially bounded deterministic

functions in t, then the solution of (2.19) can be represented as

t t 1 rt rt
Ty = T exp [/ CsdWH +/ Agds — 5/ / é(s,8")CsCydsds'| . (2.31)
0 0 0 Jo

Proof Define
Yt 1= exp(fot CsdWH),

2 := woexp{fy Asds — 5 [y [y $(s,8")CsCydsds'}
= zgexp{ [y Asds — [§ [ (s,5")CsCyds'ds},
Ty = Yi2t.

It suffices to prove that z; satisfies (2.19). To this end, noting that C; is deterministic, we can
apply a simplified It6’s formula ([9, Corollary 4.4]) to get

t
dy, = CoyedW + Cpy, / (t, s)Csds dt. (2.32)
0

*There is a typo in [9, Corollary 4.4]. The last expression on page 599 of [9] should be
2 s
fot g—mé(s,ns)as fo (s, v)avdvds.
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Hence,
di‘t = d(ytzt) == ytZt[Atdt - fg gb(t, SI)CtCsIdSI dt]
2 [CdWH + Cy [F $(t, 5)Csds di]
= Ayzdt + thitthH.

This completes the proof. |

The following two lemmas are useful in the sequel. In particular, the first one represents the

Malliavin derivative of the solution (2.31).

Lemma 2.12 Let x; be the solution of (2.19) under the assumptions of Theorem 2.11. Then
t
Dz, = wt/ #(t,s)Csds, VYt € [0,T], a.s. (2.33)
0
Proof Equation (2.19) is understood as

t t
T = I +/ Agxids +/ CswdesH.
0 0

From the explicit expression (2.31) of the solution we could compute its Malliavin derivative.

However, here we supply a simpler method. By [9, Theorem 4.2], we have
D,l.qa:t = /Ot Astmsds + /Ot Cstxdef + /Ot o(r,s)Cszsds, Vr,t €[0,T], a.s.
Fix 7. Denote z; := D x;. Then the above equation can be written as
dzy = Apzdt + CyzedWH + ¢(r, 1) Chaydt (2.34)

with zg = 0. We want to solve this equation to find Dﬁ z;. Try the solution of the form z; := pyx;

where p; is deterministic and differentiable with py = 0. Then

dét = ,bt:ctdt + ptAt:ctdt + ptCtIEtthH
== p.t!Etdt + Atgtdt + CtthWtH - (235)

Comparing equation (2.35) with (2.34) we conclude that if p; = ¢(r,t)Cy, then z; would be equal

to prz+ owing to the uniqueness of solution to (2.34). This implies that

t
m=£¢%ﬂ@%-

The proof is completed. O

Lemma 2.13 Let x; be the solution of (2.19) under the assumptions of Theorem 2.11, and p; and

Cy be continuously differentiable deterministic functions in t. Then

i
d(psx?) = 2 |pedt + 2A;pedt + 2p,Cy / B(t, 8)Csdsdt + 2CpdWH | (2.36)
0
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Proof Again it suffices to consider the case when H > % We apply Ito’s formula ([9, Theorems
4.5]) to pyx?. In order to do so we need to check the following conditions:

1) E supg<g< [Arzi] < 00
2) E fOT|Ctzth{a:t|2dt < 00;

3) There is @ > 1 — H such that E |Cyz; — Cszs|? < K|t — 5|2* where |t — s| < § for some § > 0
and ]im‘t,s|_)0E |Dt}I(Ct‘/Et — CS:I“S)|2 = O’

4) The function f(t,z) := p;z? has bounded derivatives.
Remark that the condition 4) can be replaced by the following (see [13])
4’) The function f(¢,z) has polynomial growth in z.

To prove 1), we use (2.31) to conclude

t
sup |Apzy| < KTexp{ sup | CdeSH|} .
0<t<T o<t<T Jo

The condition 1) thus follows easily ([10]). Next, combining (2.33) and (2.21) we derive the condition
2).
To prove 3), since Cy is continuously differentiable, it suffices to show that

E |z; — x4 < K|t — s|>*
and

lim E |Df (z; —z5)]*> = 0.

[t—s|—0
The first inequality (with « = H > 1— H) was proved in the proof of Theorem 2.6, and the second
equality is seen immediately by the fact that DH z, = fg ¢(r, s)Csds which was proved in the proof
of Lemma, 2.12.
Finally, the condition 4’) is obvious. Now applying [9, Theorem 4.5] we conclude

d(pt:vf) = ptx?dt + 2pt:17td:L‘t + 2ptct.1‘tDtH.’I)tdt

t
= ptmfdt + 2Atptx§dt + ZCtpta:?thH + 2ptCtm§ / o(t, s)Csdsdt
0
t
= a7 |pydt + 2A;pedt + 2piCy / gb(t,s)Csdsdt—l—QCtptthH] , (2.37)
0

where the second equality is due to Lemma 2.12. This proves the lemma. O
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3 Control Model 1: Scalar State, Quadratic Cost, and Markovian
Control

We start with our first control model in this section. The controlled dynamics is given by the
following It6 type SDE where the state is scalar-valued:
dzy = (Ayzy + Byug)dt + (Cyzy + Dyuy)dWH
{ 1)
o €ER be given and deterministic,
where A;, B; := (B},--+,B™), C, and D; := (D},---,D/), 0 < t < T, are given essentially
bounded deterministic functions of ¢. A control, u; = (uf,---,u*)*, 0 < t < T, where * denotes
the matrix transpose, under consideration in this section is taken to be of the Markovian linear
feedback type, namely,
uy = Ky, (3.2)

where K; := (K},---, K[™)* is an essentially bounded deterministic function of . Such a control is
also referred to as an admissible (Markovian linear feedback) control in this section.

Under each admissible control u; = Kz, the system (3.1) reduces to the following linear SDE

dzy = (A + BiKy)zydt + (Cy + Dy Kz dWH
(3.3)
{ 9 €R be given and deterministic.
Hence K. itself, also termed as the feedback gain, can be regarded as a control.
For every initial state x¢p and admissible control u; = Kyx;, there is an associated cost
J(z0,u.) = J(z0, K.) = E /0 Y (Qu? + ul Bpug)dt + G| | (3.4)

where z. is the solution of (3.3) under the control u. or equivalently K. (note that the unique
solvability of (3.3) under a given K. is ensured by Theorem 2.6), Q; and R; are given essentially
bounded deterministic functions in ¢, and G is a given deterministic scalar. Qur optimal stochastic
control problem is to minimize the cost functional (3.4), for each given xy, over the set of all

admissible Markovian linear feedback controls.
Theorem 3.1 Assume that for a.e. t € [0,T], D; =0, Q¢ > 0, and R; > 61 for some given § > 0,
and G > 0. Then the following Riccati equation

{pt +2pi[Ar + Ct [y (t,5)Cids] + Q — ByRy ' Byp =0
(3.5)

pr=G

admits a unique solution p. over [0,T] with p; > 0 Vt € [0,T]. Moreover, the optimal Markovian

linear feedback control for the problem (3.8)—(3.4) is given by

’&,t = Kt.’lﬁt, with Kt = —R;lngt . (36)

Finally, the optimal value of (8.4) is poz?.
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Proof The unique solvability of the (classical) Riccati equation (3.5) was proved in, e.g., [29, p.
297, Corollary 2.10]. Next, for any admissible control u; = K;x;, applying Lemma 2.13 to the
equation (3.3) with Dy = 0, we get

t
d(pz?) = z? [pt + 2p;(A¢ + By K;) + 2p,C; / #(t, S)Csds] dt + 222 CipedWH
0
Taking integration from 0 to T" we get
T t T
pTx% = powg -l-/o :Ef [pt + 2p (A + BiKy) + 2ptCt/0 gb(t,s)C’Sds] dt + 2/0 x?CtptthH.

Denote f; := z?Cyp;. It follows from (2.21) that

T T
/ / 8(s,OE |f,fildsdt < co.
o Jo
On the other hand, D!z, = z; fot @(t,s)Csds by virtue of Lemma 2.12. So again by (2.21) we have

sup E |DfzyP <00 Vp>1.
0<t<T

This implies that f; satisfies the condition of [9, Theorem 3.9] leading to E fOT ftdW# = 0. Hence

T t
E I:pTQ:%—v] = pO:I,'g +E /0 .'I,'% I:pt + 2pt(At =+ Bth) + 2ptCt/0 (f)(t, s)Csds] dt.

Since pr = G, we obtain

T
J(zo, K.) = pozi+E /0 x7 |y + 2pi (A + BiKy) + (Q¢ + K} Ry K)

t
+2pt0t/ o(t, s)Cst] dt
0
2 T, t
— pad+E /O 2 lpt + 294 As + 2p,C /0 b(t,5)Cyds + Qs (3.7)
+(K; + R, ' Bfpy)*Ry(K; + R, ' Bipy) — BthlBikH%] dt

T
— poil +E /O (K, + R;'B}p)* Ry(K, + Ry \Blpy)dt, (3.8)

where the last equality was due to the Riccati equation (3.5). Equation (3.8) shows that the cost
function achieves its minimum when K; = —R, ' B}p;, with the minimum value being poz3. This
proves the theorem. O

Remark 3.2 It is interesting to note that the Riccati equation (3.5) corresponds to the following
LQ control problem with (normal) Brownian motion:
Minimize (3.4)
{ dz, = (Ayzy + Byuy)dt + Cyz,dW,
subject to
9 €R be given and deterministic,
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where C; = \/QCt 3 #(t,s)Cyds assuming that C; [J $(t,s)Csds > 0 for all t > 0; see [4]. This
suggests that, in the current setting, the LQ control problem with FBM is equivalent (in the sense
of sharing the same optimal feedback control and optimal value) to an LQ control problem with
Brownian motion where the diffusion coefficient of the state is properly modified.

4 Control Model 2: Scalar State, Power Cost, and Markovian
Control

In this section we consider a more general model (than the one tackled in the previous section)

where the dynamics is given by (3.1) but the cost functional is of the following form

T m
J(zg,u.) = J(zg,u(-)) =E {/0 [Quzf + Y Rij(t)us(t)Piu;(t)P]dt + Gw%} ) (4.1)
ij=1
where o, 3; (i = 1,2,---,m), v € R are given, Q; and Ry = R(t) = (R;;(t))1<i,j<m are given
essentially bounded deterministic functions in ¢, and G is a given deterministic scalar. Moreover,
we assume that (R;;())1<ij<m is positive definite for each ¢ € [0,7]. Here we interchangeably

denote a control variable as

ug = u(t) = (uf, -, u™)* = (ui(t), -, um(t)*

for notational convenience. The problem is to find the extreme or optimum (i.e., minimum or
maximum) of J(zg,u.), for each fixed £y € R, over the set of all admissible Markovian linear
feedback controls of the form u; = Kz, subject to (3.1). With this type of controls we can write
J(xg,u.) = J(xg, K.) as in the previous section. Note that whether the cost functional (4.1) assumes
a minimum or maximum (or both) depends on the problem data, in particular the ranges of «, 3
and . The objective of this section is to derive necessary conditions for a solution to the extreme

problem.

Lemma 4.1 For any admissible Markovian control uy = Kyxy, where

K, = K(t) = (K1(t), -+, K (t))*, the corresponding cost has the following representation:
T m
J(w0, K) = /0 [QOur+ 3 Rij(H)Ki ()P K;(1)" Op, 5, 1t + GO, (4.2)
ij=1
where for any k € R,
(')n,t = @,@,t(ﬂl‘o,K.)

= zGE exp {ﬂfot (As + BoK,)ds + 55 [ [ 8(s,8') (Cs + DoK,)(Cor + Ds:st)dsds'}- (4.3)
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Proof Substituting the feedback control u; = Kz into (3.1) we obtain
dzy = (At + BiKy)zidt + (Cy + Dy Ky)z dWi (4.4)

By Theorem 2.11, this equation can be solved explicitly as follows

t t
T = :I:Oexp{ / (Cs + D K)dWF + / (As + BsK,)ds
0 0

- / t / 45, 5) (Cy + DyK,)(C + Dstsf)dsds'} - (45)

Let & € R. Since & [} (Cs + DsKs)dWH is Gaussian, we have

E exp{s [§(Cs + DsK)dW}} = exp{ir’E | [§(Cs + D;K,)dWH|?}
= exp{5” [y Jo $(s,5)(Cs + DyK,)(Cy + Dy Ky)dsds'}

where the last equality is due to [9, Theorem 3.10]. It then follows from (4.5) that

t 2 t t
Eaf = a5E exp {” / (As + B.K.)ds + “—" / / ¢(s,8")(Cs + D K,)(Cyr + Dy Kyr)dsds'
0 0o Jo
= G)n,t(mO; K) = G)n,t . (46)
The desired representation (4.2) thus follows immediately. O

Theorem 4.2 If Ky = K(t) = (K1(t),---, Ky (t))* achieves an extreme for the problem (3.1) and
(4.1), then it must satisfy the following equation

T T rt
aBs/ Qt@a,tdt-l-(6¥2 —a)/ / QRtO414(s', 8)Cy Dsds'dt

s ] 0

T rt B
+(? - a) / / Q1Oasd(s', 8) Dy Ky Dyds'dt + 2R(s)
t
+ Z / i ( PiK;(t)% 951j,t[5z'j35+ (85 — Bij) /0 ¢(s',5)Cy Dsds'
t,j=1
t

+(ﬂ§j — Bij) /0 qb(s',s)Ds,stDsds'] dt

T
9GO, 7B, + (72 — 7)GO 1 /0 (s, 5)Cy D,ds’

+(v* —7)GO, 1 / ! ¢(s',s) Dy Ky Dsds' =0, a.e. s€[0,T], (4.7)
0
where
Bij = Bi + Bj (4.8)
and
R(t) = (Y ARy ()KL (1) 1K) 0,4, Zﬂm mi () Km ()7 K(4)%0p,.1) . (4.9)
Jj=1
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Proof Since K. attains the extreme value, it necessarily holds

d
T (K +et) - 0 (4.10)

for all £. € C*°(0,T;R™), where C*°(0,T; R™) denotes the set of all smooth (R™-valued) functions
on [0,7].

To compute the above derivative (4.10) we need to first compute £ 04 (zo, K. + €£.) which
=0
is given by :
d ¢ ) t gt
d—gga,t(ﬂUo,K- + &) = Og a/ Bsésds + (a —a)/ / ¢(s,8")DsKsDy&gdsds'
o 0 0 Jo
t ot
+(a? — a)/ / ¢(s,8")CsDyydsds' 3 . (4.11)
0 Jo
Consequently,
d . T ¢ t ot
Ly ee) = / Q1Oas! @ / Byyds + (02 — ) / / (s, 5')Cs Dy ydsds’
de o 0 0 0 Jo

+(o? — ) /t /t¢>(s,s’)DsKstfgs,dsds’}dt
0 Jo
+2 f: /OT BeRey (K1) K (0 €10, il (4.12)

i,y=1

[T Bi k. (4\i !
+i§1/0 R;j (1) Ki(t)™ K;(t) Gﬁij,t{ﬁij/o Bi&,ds
t t
+(ﬂz2_7 - /BZJ)/O /0 ¢(S, SI)Cstlfsldsdsl
t t
e —e) [ ] ¢(s,s')DsKstfésfdsds'}dt
T T T
+H @%T{V | Bitds+ (2 =) [ [ 4(s,)C.Dy g dsds
+(y* =) /OT /OT ¢(8,8’)D5K3Dsf£sfdsds’} (4.13)
T t t t
= ‘/0 Qt(—)a,t{a/o Bs&sds + (CM2 - CY)/O /) ¢(S, SI)CSDslfsldsdsl
+(a? — a) /t /t <]5(s,s')DsKstrﬁs/dsds'}dt
0 J0

+2 /0 ' R(t)&dt (4.14)
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t
+ Z/ 1] J(t)ﬁjeﬂm,t{ﬂlﬂ/o Bsfsds

3,j=1

+(ﬁ% B ﬁ”) /0 /0 ¢(3’ SI)Cst’gs’desl

t prt
+(ﬁ%_ﬂl])‘/0 /0 ¢(3’Sl)DsKst’fs’deSI}dt

T T T
+G®%T{’Y/ By&sds + (7% — ) / / ¢(s,8)CsDyydsds'
0 0o Jo

T T
+(2 =) /0 /0 ¢(s,s’)DsKstf£sfdsds'}.

Using the Fubini theorem

we obtain

T t ot T T gt
/ / / g(t,s,s)dsds'dt = / / / g(t, s, s)ds'dtds
o Jo Jo o Js Jo

iJK+£)

/OT{QB/ Q1Oa,rdt + (a _a/ /QtGaﬂbs s)Cy Dyds'dt
+m2_a/'/c%@mﬂs@DﬂQDdaﬁ+ﬂa)

+ Z/ R’L] j(t)ﬁj6ﬂ1+ﬂj,t[ﬁij35

,Jj=1
o t
+(85 — Bij) /0 ¢(s', 5)Cy Dsds’
t
+(8% - By) /0 #(s',5) Dy Ky Dyds']dt

T
+wmﬂﬂﬁw%—w0@ﬂ/'aa@@@ﬂy
0

T
+(Y =GO [ (S, S)Dsts'Dst'}fsds =0.
0

Since &, is arbitrary, we obtain the desired equation (4.7).

The necessary condition (4.7), albeit complicated, is very general.

special (yet interesting) cases where this condition can be greatly simplified.

(4.15)

(4.16)

(4.17)

a

Let us now discuss two

Case 1. Suppose there is no running cost, i.e., @ = 0 and R; = 0. However G # 0 and v # 0
(otherwise the problem would become trivial). This kind of situations arise often in the financial
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portfolio selection models where only the terminal wealth is of concern (see, e.g., [23, 29]). In this
case the condition (4.7) reduces to

T T
(y—1) / ¢(s',8)Dy Kyds' Dy + (y—1) / ¢(s',5)Cyds' Dy + By =0, ae. sc[0,T]. (4.18)
0 0

The above equation (4.18) (with K. being the unknown) is reduced to the Carleman type equation
in the following way. Rewrite (4.18) as

T T
l(7 - 1) /0 ¢(SI’S)KS'Ds’d3, + (7 - 1) /0 ¢(5,’3)Cs’d3,] Ds; = —B;s.

Since the term inside the bracket is a real-valued function, a necessary condition that (4.18) has a

solution is

T T A
/ ¢(317 S)Ks’Ds’dsl + / ¢(Sla S)Cs’dsl = ) (419)
0 0 1-7v
where ); is a real-valued function satisfying
A.D, = B,.
Equation (4.19) is equivalent to (noting that ¢(s,t) = ¢(¢, s))
T As T
/ #s K Dydt = 12~ / (t, 5)Cydt (4.20)
0 - 0

This equation, with K.D. being the unknown, is of the following general Carleman type:

T
/0 ¢(z,y)h(y)dy = g(=),

where ¢ is a given function, i is the unknown function to be determined by this equation and
é(z,y) = H(2H — 1)|z — y|?" 2. The solution of this equation can be expressed explicitly as

T
h(z) = —aHiv%*H% / [ww_l(w - i17)%7Hi 2 (w — z)%ng(z)dz] dw,
T

where

B I'(2—-2H) _

~ 2HT(: + H)I(3 — H)3’

see [11], [12], [13]. Applying this general formula to (4.20) we obtain K.D.. Note that in general

K. may not be unique if its dimension is strictly great than 1.

amg :

A particular case for equation (4.18) is when v =1 or Dy = 0, a.e. s € [0,7]. In this case
(4.18) implies that it is necessary (for there to be an extreme achieved by a Markovian control)
that B; = 0, a.e. s € [0,T]; hence the system (3.1) becomes uncontrolled and the cost functional

(4.1) is constant-valued.
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Case 2. Suppose a = fB;; =7 # 0 Vi,j. Then (4.7) specializes to

2 ~ T m
aR(S) +Bs/ Oat (Qt + Z Rij(t)Ki(t)ﬂin(t)ﬂj> dt

ij=1

+(a—1)D / ' /0 t Oa,td(s',5)(Cy + Dy Ky) (Qt + i Rij(t)Ki(t)ﬂin(t)ﬁf> ds'dt

ij=1

T
+GO,, 1 lBs + (a— l)Ds/ (s, 8)(Cy + DSIKs,)ds'] =0, ae. s€[0,7T)]. (4.21)
0

Ifa=vy=2and B; =0; =1 Vi,j (ie., the usual LQ case), then the above equation can be
further simplified to

T
K;R;0; + B / O4(Q¢ + K; R K;)dt
S
T t
4D, / / 0:1(s',8)(Cy + Dy Ky)(Qs + K} R Ky)ds'dt
S 0

T
+GOr |B, + D, / ¢(s',5)(Cy + DyKy)ds'| = 0,0 s €[0,T],  (4.22)
0

where O; := Oy;.

Therefore, in the LQ case where the state is scalar and D; # 0, one needs to solve the functional
differential equation (4.22) in order to obtain an optimal Markovian feedback control. Recall that
in Section 3 we have derived a Riccati equation (3.5) for the LQ control when D; = 0. Let us now
show that (3.5) can also be recovered from (4.22) under the assumptions of Theorem 3.1. To this
end, first note that (4.22) reduces to the following when D; = 0:

T
K*R,0, + B, / 04(Qs + KIR,K})dt + GB,Or =0, ae. s € [0,T). (4.23)
Define .
Ps i = @S—l [/ Gt(Qt + K:Rth)dt + G@T , (424)
S
and
K := —R;'Blp;. (4.25)

It is clear that K. defined above satisfies the necessary condition (4.23). Now we derive the equation

that governs p.. Multiplying (4.24) by ©;, and then take derivative in s, we obtain
$sOs + 5O + 0,(Qs + K} R K,) = 0. (4.26)
However, (4.6) gives (noting D; = 0)

. 5
O, = 0 [2(A; + BsK;) +2(Cs + D Ky) / ¢(3731)(CS’ + Ds’Ks’)dsl . (4.27)
0
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Plugging (4.27) into (4.26), noting (4.25), and manipulating, we get that p. satisfies the Riccati
equation (3.5) (that pr = G is evident from (4.24)).

It should be noted that the above derivation only shows that K. defined by (4.25), where p. is
the solution to the Riccati equation (3.5), satisfies the necessary condition of an optimum. Hence,
it can by no means supersede Theorem 3.1.

Another interesting case for the necessary condition (4.22) is when H = 3 (i.e., the Brownian
motion) whereas Dy # 0. In this case ¢(s,t) = (s, t), the Dirac delta function, and (4.22) becomes

T
K!R,0, + [B, + (C, + K:D*)D,] / 0.(Q, + K R K,)dt
S

+GO7 [Bs+ (Cs+ K;D:)D,] =0. (4.28)
Let .
ps = 0! l / 04(Qs + K] Ry Ky)dt + G@T] , (4.29)
S
and
RsKs = - [B: + D:(Cs + DSKS)] Ds (430)
or equivalently
Ky = —(Rs + psDiD,) B! + DiCylps (4.31)

assuming that Rs + psD} D, is invertible. On the other hand, in the present case O, satisfies
0, =0, [2(,43 + B,K,) + (Cs + DSKS)Q] . (4.32)

Going through the same argument as above we can show that p. follows

Ps + (2As + Cf)ps +Qs — (Bs + C:DS)(RS +psD:DS)71(B: + D:Cs)pg =0,
pr =G, (4.33)
R;+psDiD; > 0.

This is the standard (stochastic) Riccati equation (see [4]).

5 Control Model 3: Vector State, Quadratic Cost, and General
Control with Stratonovich Integral

In the two models previously studied, it is assumed that the state is scalar-valued and only the type
of Markovian feedback controls is considered. In this section, we investigate a general model where
the state is multi-dimensional and admissible controls are not necessarily Markovian. In addition,
all the coefficients are allowed to be stochastic processes. The system is described by the following

linear dynamics

{ dICt == (Atl‘t + Btut)dt + CtiEt o thH
(5.1)

9 € R? be given and deterministic,
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where A;,C;,0 <t < T, are n X n matrix-valued F;-adapted stochastic processes, B;,0 <t < T, is
an n X m matrix-valued F;-adapted process. An admissible control u;, 0 <t < T, is an R™-valued
Fi-adapted process such that (5.1) has a unique solution. Notice that, different from the previous
two models, the Stratonovich type integral is involved in the dynamics.

Let Q; and R;,0 <t < T, be given n X n and m X m matrix-valued F;-adapted stochastic

processes respectively, and G be an n xn Fr-measurable random matrix. Define the cost functional
T
J(xzg,u.) :=E l/ (x} Quzy + uj Rywy)dt + o3 Gor | . (5.2)
0

The optimal stochastic control problem is to minimize the cost functional (5.2), subject to the

dynamics (5.1), over the set of all admissible controls for each given z.

5.1 Optimal control

In this subsection we present the solution to the optimal control problem formulated above. Let W;
be the Brownian motion in the representation of the FBM WtH as given by Lemma 2.1. Introduced

the following matrix-valued backward stochastic differential equation (BSDE):

{ dP; + (A;P; + P, Ay + Q; — PLByR; ' B} P,)dt + (C; P; + P,Cy) o dWH — AydW; =0
(5.3)
Pr=G.

This is a Riccati type of equation. A pair of n X n matrix-valued F;-adapted processes, (P, A.), is
called a solution of (5.3) if they satisfy

P,= G+ [/ (A;P, + P,A, + Q. — P.B,R, ' B} P,)dt
+ [L(CtP, + P,Cy) 0 dWH — [T Ay dW;, ace. t € [0,T],

with all the integrals above well defined. Notice that, different from a standard BSDE (see [29]),
equation (5.3) involves simultaneously both the Brownian motion and the FBM.

Now, assume that the Riccati equation (5.3) admits a solution (P, A.) € L%(0,T;R" ") x
LZ(0,T; R"™*") with A. being a semimartingale of the form

t t
A= Ao+ / O,ds + / =,dW, (5.4)
0 0
where ©; and =, are continuous JF;-adapted processes. Then
d(A, W) = Edt,

where the bracket (A, W) denotes the quadratic variational process corresponding to A; and W;.

Hence we may rewrite the Riccati equation (5.3) as

dP, = —(A} P+ P, Ay + Q — P,BiR; ' B{ P,)dt
—(C; P+ P,Cy) o dWH + Ay o dW, — 1E,dt (5.5)

Pr

I
@
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Let u. be any given admissible control and z. be the corresponding state process. Applying the It6
formula for the Stratonovich differential ([9, Theorem 4.7]), we have

d(z; Pixy) = (Awzy + Byuy)* Puxydt + x Cf Py o thH
—z} (A} P, + PiA; + Qi — PLB;R; ' B} Py)xdt — %metmtdt
—z;(C; P, + P,Cy)xy 0 thH + zf Ayxyd° Wy
+z; Py(Aizy + Byuy)dt + z7 P.Cyxy 0 thH
= |2} B; P, — 2}(Q1 — PB,R; ' Bf P)wy) dt

1
—§$Z5t$tdt + Il?:AtiL't o th . (56)
Integrating from 0 to T and taking expectation, we get

E [o5-Pror] = siPomo +E J§ [2uf Bf P, — o(Qu — PB/R, "B} P)m] dt

- (5.7)
—%]E fOT .’L‘Z:,t.'Etdt +E [fOT .’I)ZAtiL't o th] -

In view of the relation between the It6 integral and the Stratonovich integral [9, Theorem 3.12], we

have

t t

Ty = o +/ (Aszs + Bsug)ds +/ Csxs 0 dWSH
0 0
t t
= zo+ / [Aszs + Bsus + Df(Csms)]ds + / CscvdesH.

0 0

Writing it in component form we have
. . t . t .
$§:$6+/0g;ds+/0hidWS}I, 1=1,2,---,m,

where ¢’ is the ith component of Az + Bsus + DX (Csz,) and RY the ith component of Csz,. By
the It6 formula ([9, Theorem 4.6]) we have

d(ziz]) = aigldt + zihldWH + z]gidt + z]hidw
+hi DE zidt + hiDH 2l dt
= gldt +hlaw !
where
g = wig] +xlg, + W D{'z) + hDy'z}
and

h = zihl + zlhi.
We also write dA; in component form:

dAY = ©Ydt + E9dw,, 1<i,j<n.
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Then taking into account that dW;dW = 0 (which can be proved by the same estimate as that in
the proof of Theorem 2.2), we have

AN i) = A g dt + AVRY AW + 2izl 0V dt + zial SV dw, .
Taking the sum over ¢ and j and then integrating, we obtain
t t t
zi Ay = x5 Mozo +/ Mds +/ NdeSH +/ =z dWy,
0 0 0

where i
My:= 3 (AYg¥ + 2iai0¥), N, := AR,
iyj=1
Setting
Y, = ai Aoz + /Ot M,ds + /Ot N,dwH (5.8)
which is of the form (2.9). Assuming that the processes M, and N; satisfy the conditions (2.10),
then it follows from Theorem 2.2 that

T
]E/ Yso0dW,=0.
0

On the other hand the well-known relation between the Itd and Stratonovich integrals for Brownian
motion yields (see [21])

T t 1 T
E / (/ w:Eswdes> odW;| = =E / i Eyzedt .
0 0 2 Jo

Therefore we obtain

T 1 T
E / .T?At.’l?t ] th = —-E / wIEt.Ttdt .
0 2 Jo
It then follows from (5.7) that
T
E [s5Pror] = E [sf Pozo| +E / (20} B} Pisy — 7 (Qu — PB,R; ' B} P)my] dt.
0
Hence
T
J(zo,u) = wiPyzo+E / (2u} B} Puy + u} Ruy + o} P,B.R; B} Py dt
0
T *
= 2Pz +E / (ut + R;lBt*Ptxt) R (ut + R;lBt*Pta:t) dt.
0
Assuming that R; > 0, the minimum of the above functional is achieved when u; = —R; 1B,§" Py
with the minimum value being zjPyzo, provided that the control u; = —R; le‘Pta:t induces an

admissible control.

Summarizing, we have obtained the following result.
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Theorem 5.1 Assume that R; > 0, a.e. t € [0,T], a.s., and that the Riccati equation (5.3) admits
a solution (P.,A.) € L%(0,T;R"™"™) x L%(0,T; R"*") with A. being a semimartingale of the form
(5.4). Moreover, assume that the process Y; defined by (5.8) satisfies the conditions (2.10) and that
(5.6) holds. Then, the stochastic control problem (5.1)-(5.2) is solvable and the optimal control 4.
must be of Markovian feedback type, given explicitly by

iy = —R; ' B} Pyxy (5.9)

provided that the control 4. (5.9) is admissible. Moreover the minimum wvalue is achieved as

J(.’E(), ’&) = IESP()IC().

Remark 5.2 Even in the case when the system is driven by Brownian motion, to the best of our
knowledge, equations involving the Stratonovich type integral (5.1) have not been considered in

the literature of stochastic LQ control.

Remark 5.3 In the Brownian motion case, the Riccati equation is a deterministic differential
equation when all the coefficients A;, B, and C; are deterministic (see [4]). However, In the FBM
case, the Riccati equation (5.3) is still stochastic even when all the coefficients are deterministic.

5.2 Origin of Riccati equation

In the previous subsection we established the optimal solution to the control problem (5.1)—(5.2)
by making use of the Riccati equation (5.3). The approach is a standard completion-of-square
commonly employed for LQ control once the Riccati equation is in place. However, one may be
curious how (5.3) was derived in the first place. In this subsection we present, in a rather formal
way, how we get (5.3).

We first approximate the underlying FBM using an adapted convolution approach of Malliavin
(see also [18]). Set W} = 0 for s < 0. Define

1 rt
Wﬂ%:—/ WhHds. (5.10)
€ Jt—e
The derivative of W/* is
He _ 1 (oom H
Wi =~ (Wi —wt,) . (5.11)

Approximate the stochastic differential system (5.1) by
& = Avaf + Buw + Coay W™ = (A + CW{")a; + By, . (5.12)

The above can be regarded as a controlled linear system with the normal Brownian motion (but

the diffusion coefficient is zero) and random coefficient in drift. Consider a LQ control problem
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with the dynamics (5.12) and cost functional (5.2). The corresponding Riccati equation, following
[4], is

dP; + [(Ay + CW) Pg + Pe(Ay+ CW%) + Qo — P BRT B P | dit — AW, =0,
P; =G.
(5.13)
Arranging this equation properly, we get

{ dPf + (A} Pf + PfA, + Q; — PEB.R; ' By Pf)dt — AsdW, + CF PEW, " dt + PEC, W, dt = 0,
P;r =G.

(5.14)
A (formal) limiting equation of (5.14) is exactly the Riccati equation (5.3) introduced earlier. It
should be noted that it is hard to prove the convergence of the equation (5.14). Fortunately, once
we have obtained the Riccati equation, albeit formally, we can then use the completion of square
technique to solve the original control problem, as shown in the previous subsection.

It is also worth noting the difficulty in dealing with the following controlled system

{ d.’I)t = (Atl‘t + Btut)dt + (Ctl‘t + Dtut) o thH
(5.15)

Ty € R” be given and deterministic
g

instead of (5.1). Going through the same approximation procedure as above, we get that equation

(5.13) now becomes

dP* + [(At + C WS Pe + Pe(Ay + CWEF) + Qt] dt
—P¢(B; + DWF)R, (B, + D,W/F)* Pedt — AsdW, = 0.

Rearranging, we have

dP; + [AfPf + PP AL+ Qu — PE(By+ Dy Ry (B, + DyW,) P dt
—AedW, + CrPEW /[ dt + PECW /[ dt
PED * petirH-€ € * peyiyHe € -1 e (117 H:e 2 _
—Pf DR, B PiW,"" — Py BuRD; PgW/"* — P DR D, P (W) dt = 0.

When D; # 0, the term (WtH’5)2 dt presents, whose limit does not exist. This explains the difficulty
to study the case when D; # 0.

Let us conclude this section by remarking that the discussion in this section, to some extent,
is rather formal, in the sense that Theorem 5.1 depends upon the existence of solution to the
Riccati equation (5.3) along with some required (very technical) conditions of the solution. Never-
theless, the highlight of this section is indeed the introduction of the new equation (5.3), which is
a highly unconventional BSDE involving stochastic integrals with respect to both the normal and
fractional Brownian motions. Research on this type of equations, as we believe, will prove to be

very interesting and challenging from both the BSDE and fractional analysis points of view.
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6 Concluding Remarks

In this paper we have attempted to systematically tackle an important class of stochastic control
problems with linear dynamic systems involving fractional Brownian motion. Three specific control
models have been studied. It should be noted that the results in this paper are far from complete.
Indeed the paper is intended to be more inspirational — in the sense that it will inspire more
researches along the line — than exhaustive and conclusive. Many interesting and challenging
problems remain open. The foremost one is the optimal control over the set of general controls —
not necessarily that of the Markovian controls. The reason is that the FBM has the long range
dependence; hence it is natural to expect that the optimal control would not only depend on the
present time, but on the past as well. In fact, we conjecture that the optimal control is generally
linear but non-Markovian (in a special case, this fact has been proved in a recent paper [22]). In

particular, it is interesting to seek the optimal control in the class of the following controls

t
up = / K(t,s)zsds.
0
We will study such problems in the forthcoming papers.

Acknowledgment: We thank the two anonymous referees for their careful reading of an earlier
version of the paper and for their constructive comments that led to an improved version. In
particular, we are grateful to one of the referees for bringing the paper [22] to the authors’ attention.
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