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Abstract

This paper investigates a mixed regular—singular stochastic control problem where
the drift of the dynamics is quadratic in the regular control variable. More impor-
tantly, the regular control variable is constrained. The value function of the problem
is derived in closed form via solving the corresponding constrained Hamilton—Jacobi—
Bellman (HJB) equation, and optimal controls are obtained explicitly. Applications
and economic interpretations of the general results to two applied problems, from which

the mathematical problem was originated, are discussed.
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1 Introduction

Consider the following controlled process X () := {X () : 0 < t < +o0} with
dX (t) = [uU(t) — aU?(t) — 8]dt + oU(t)dW (t) — dZ(t), X(0—) = . (1)

Here p,a,0,0 are given constants, W(-) is a one-dimensional standard Brownian motion on
a given filtered probability space (2, F, P;F), Z(-) is a nonnegative, non-decreasing F;-
adapted process that is right continuous with left limits, and U(-) is an F;-adapted process
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constrained by
1< U®t) <u,

for some constants | and u. ® = (U(-), Z(-)) is called an admissible control (pair). The
objective is to find an optimal control 7* = (U*(), Z*(-)) that achieves the supremum of

E /O " etaz ), 2)

where 7 = inf{t > 0 : X(¢t) = 0}, over all admissible controls. In the terminology of
stochastic control, U(-) is a regular control whereas Z(-) a singular control. Hence the
problem is one with mixed regular-singular stochastic control.

Study on the model starts with the linear (in the control variable) dynamic case (i.e.,
a = 0), with practical motivations from controlling risks and dividend distributions, as well
as from managing personnel (hiring/firing) policies for cooperations. Explicit solutions for
the special linear case (a = 0,6 = 0) (Radner and Shepp [9], Shepp and Shiryayev [10], and
Jeanblanc-Picqué and Shiryayev [7]) have inspired further studies for the case of a = 0,9 # 0
and its applications in the area of, for example, re-insurance (Asmussen and Taksar [1],
Taksar and Zhou [11], and Choulli et. al. [3]). Later, Asmussen et. al. [2] and Choulli et. al.
[4] investigated a certain non-linear diffusion process for this type of optimization problems
in the context of the excess-of-loss re-insurance. Their parameterization method, however,
relies on the monotonic structure between the drift and the diffusion terms. Most recently,
Guo [5] introduced the nonlinear dynamics (1) motivated by a workforce control problem,
and interpreted the factor a as the “internal competition factor”, a friction coefficient when
the company is over-sized. Her result, obtained under the assumptions that [ = 0 and
u = 400 (i.e., there is no upper bound on the regular control U(-)), demonstrates that the
monotonic structure is necessary neither for explicitly deriving the optimal value function
nor for the concavity of the value solution.

The objective of this paper is to study the control problem (1)—(2) with bounded con-
trols (0 < I < u < 400). Mathematically, the additional constraint would impose great
difficulty in solving the problem. Indeed, as shown in the final results the solution struc-
ture in the bounded control case is very different from, in fact much more complex than,
its unbounded counterpart (see also Remark 14). Besides mathematical curiosity, however,
there are practical motivations for imposing a constraint on U(-). A control upper bound
u normally reflects an explicit limit on the resource the decision-maker (or controller) can
utilize, whereas a lower bound [ > 0 covers the situations where there are institutional or
statutory reasons (e.g., the company is public) that its business activities cannot be reduced
to zero (unless the company faces bankruptcy). This is illustrated by the two specific ex-

amples which we are going to discuss in this paper. In the case of personnel management



where U(t) signifies the number of employees at time t, it is reasonable to assume that a
company has an explicit headcount limitation. In the re-insurance setting, where 1 — U(?)
is interpreted as the re-insurance proportion at ¢, it is natural to restrict U(t) to be in [0, 1].

Supplemented by the knowledge of the solution structure for the unbounded case, our
analysis is led through by some crucial observations/intuitions. Compared with the un-
bounded case, however, the analysis for the bounded one is much more involved.

The rest of the paper is organized as follows. Section 2 presents the mathematical model
and some preliminaries, and divides the problem into 6 cases according to the key parameter
values. Section 3 is devoted to a detailed analysis and complete solution for the main case,
whereas Section 4 is for other cases. In Section 5 the special case when § = 0 is discussed.
Applications of the general results to two examples, personnel management and re-insurance
business, along with their economic insights, are given in Section 6. Finally, Section 7

concludes the paper.

2 Mathematical Model

We are given a filtered probability space (2, F, P; F;) and a one-dimensional standard Brow-
nian motion W (-) (with W(0) = 0) on it, adapted to the filtration F;. The system equation

under consideration is
dX(t) = [uU(t) — aU2(t) —dldt + oU(t)dW (t) — dZ(t), X(0—) =z, (3)

where y,a,0 > 0 and § > 0 are given parameters, and x > 0 is the initial state. The control

in this model is described by a pair of F;-adapted measurable processes 7 = (U(-), Z(+)) =
(U(t), Z(t);t > 0). A control m# = (U(-), Z(-)) is admissible if [ < U(t) < u, Vt > 0, and
Z(t) > 0 is non-decreasing, right continuous having left limits, where 0 < | < u < +00 are
given scalars. We denote the set of all admissible controls by A. Given an admissible control

policy 7, the time of bankruptcy is defined as
r=7":=inf{t > 0: X(t) = 0}. (4)
We make the convention that
X(t)=0Vt>1". (5)

Our objective is to find 7 € A so as to maximize the performance index

J(z,7) = E /0 e mtdz () (6)



over A, where r > 0 is an a priori given discount factor. Define the value function
V(z) =sup J(z, ). (7)
TEA

To solve this problem, our starting point is the dynamic programming Hamilton—Jacobi—
Bellman (HJB) equation:

{ max {1 — v'(z), max;<y<u[502U%0" (z) + (U — aU? — 6)v/(z) — rv(z)]} =0, Vz >0,
v(0) = 0.

(8)

The ultimate importance of the HJB equation lies in the following verification theorem:
Lemma 1 Ifv is a twice continuously differential concave function of (8), then V(z) < v(z).

Proof: The proof of [11, Theorem 5.3] readily applies to the present case. O

The idea of solving the original stochastic control problem is to first find a concave,
smooth solution to the HJB equation (8), and then construct a control policy whose perfor-
mance functional coincides with this solution. Then, the above verification theorem estab-
lishes the optimality of the constructed control policy.

Hence, all we need to do is to find a concave, smooth solution to the HIB equation (8).
While we could have presented such a solution immediately without any explanation, we
choose to unfold the process of tracking down the solution for the benefit of the readers.

Before starting our analysis, we present the following property of the value function V,
defined by (7).

Proposition 2 If uyU — aU? — § < 0VU € [l,u], then V(z) = z Yz > 0.

Proof: Clearly J(z,7n*) =z if 7* = (U*(), Z*(-)) with Z*(t) = z and U*(-) being arbitrary.
So it suffices to prove J(z, ) < x for any admissible control w. To this end, let X (-) be the

state trajectory corresponding to any given admissible control = = (U(-), Z(-)). Since

X(t)= ax+ [j[uU(s) — aU?(s) — d)ds + [, oU(s)dW (s) — [, dZ(s)
= x—Z(t) + Z(0=) + [3[uU(s) — aU?(s) — 8lds + [ aU(s)dW (s),

and pU(s) —aU?(s) — § < 0 due to the assumption, it follows that

M(t) =X((t)—xz+ Z(t)— Z(0-)



is an JF;-supermartingale. Then,

o) = B0 =B 0 X0 o 207)
= BT etdM(t) — B [T et dX (1) < —B [T etdX (¢
= z—rE[je ’” (t)dt

.

IN

This completes the proof. [l

Remark 3 Although our focus throughout the paper concerns only the quadratic case, the
forgoing proof is readily extended to the case where the quadratic form pU — aU? — § is
replaced by a general continuous function f(-) for which f(U) < 0 for any U € [I,u]. On the
other hand, the result of Proposition 2 is intuitive. When the outlook for growth is negative

the best way is simply to get all the initial endowment and run.

Since the assumption of Proposition 2 holds true when u? < 4ad, we may exclude this

trivial case from consideration by assuming the following throughout this paper:
p? > 4ad. (9)
Considering [I,u] N [25 a-], we may categorize several cases to be investigated:

e Case 1: %‘5<l<u<2ﬁ

Case 2: | < 2 <y < L.
w 2a

Case 3: %‘5<l<ﬂ<u;

Case 4: [ < 2 < £ <y

e Case 5: [ > £ and f(I) > 0 where f(z) = px —az® —§ > 0 ;

2a’
e Case 6: u < %‘5, and f(u) > 0 where f(z) = pz — az? — § > 0.
Among these cases, Case 1 is the most difficulty one that requires a comprehensive study.

Therefore, we will first deal with Case 1 in details, and then present results for all the other

cases, mentioning the necessary amendments.



3 Solution for Case 1: QM—(S <l<u<ik

First of all, by its very definition the value function V' (z) must be non-decreasing in z. Our
focus is therefore to find a non-decreasing, concave smooth function v which is the solution
to the HJB equation (8). Remark that, although the concavity is not yet proved at this
moment (it will be proved after the solution is found), our principle is to keep track of the
concavity of the (possible) solution.

Let v be a candidate for the solution to (8) that we are searching for, and z* := inf{z >
0:v'(z) = 1}. In view of the concavity of v as well as the form of (8), z* € [0, +o00] with
v'(z) > 1 for z < z* and v'(z) =1 for z > z*.

First our attention is on z < z*. The HJB equation (8) reduces to

{ max;<y<u[302U%0"(z) + (uU — aU? = 6)v'(z) — rv(z)] =0, 0 <z < z*, (10)

v(0) = 0.
Our first objective is to find
1
U*(z) := argmaxlSUSu[§02UQU"(x) + (uU — aU? = 6)v'(z) —rv(2)], 0<z<az*. (11)

It follows from the continuity of v"(z) that U*(z) is continuous in z. To get the expression
for U*(x) define

1
O(x) := argmax,oo<U<+oo[502U2v"(x) + (uU — aU? = §)v'(z) — ro(z)], 0 <z <z (12)

Then clearly

Lo 0(z) <l
U'(z) =< 0(z), | <6(z)<u, (13)
u, 0(z) > u.

Now, applying the zero-derivative condition to (12) we obtain
[ — 2a8(x)]v'(z) + o0(x)v" () = 0, (14)
which gives

00) = oo sy 00 < (19

If it turns out [ < f(x) < u then substitute the above to (10). After some manipulation we
get (recalling that v'(z) > 1 for 0 < z < z¥)
2ro(z) 26

o) =y o (16)




Now, taking z — 0+ we have by (16) that §(z) — 2;4_5 < I, whereas taking z — z*— we have
by (15) that 8(x) — 5= > u. This along with (13) shows that there exists 0 < z; < 25 < 27
so that

L 0 <<,
U'(z) =< 0(x), 71 <z < 9, (17)
U, Ty <z < z¥

Keeping in mind that the desired value function v'(z) is strictly positive near the neigh-
borhood of 0, concave, and will have linear growth when x — oc.

Next, we are going to determine the values of z1,x9 and z*. It will be carried out by
solving the HJB equation (8) in several intervals, and then “paste” all the solution segments

nicely by the principle of smooth fit.

Step 1: z € [0, 2]
When 0 < z < 2, we have U*(z) = [. Therefore, (10) reads

%02521)”(56) + (ul — al®> = 8)v'(z) — rv(z) = 0, v(0) =0.

The general form of the solution is

v(r) = A(e™® — P1?), 0< 2 < 1, (18)
where
—(pl —al®> = 6) + I —al? —6)%+ 2ro2i?
o )+ vl ) | (19)
o4l
—(pl — al®> = 6) — [ —al? — 0)? + 2ro?(?
P )= = aP =) | o0
o?l
Here A is a constant to be determined later.
Step 2: =z € (z1,%2)
When z € (21, x3), we have U*(z) = 0(x). Using (16) we have
1
—rv(z) + (5/10(3:) —0)v'(z) = 0. (21)
Taking derivative on the above equation and then combining with (14), we arrive at
18/ (z) — 2r]0(z)0* = [p — 2a0(z)][pb(z) — 24]. (22)

Here, the boundary condition 6(x;) = | will determine 6(x), once z; is solved. This, in turn,
will define x5 by setting 6(z3) = u. At last, v(x) can be obtained on (z,z2) by solving (21)
together with the boundary condition at zo (which will be available in Step 3 below).

7



Step 3: =z € [xq,2%)
When z, < x < 2* we have U*(x) = u. Therefore, (10) specializes to

%JZUQU"(JC) + (pu — au® — §)v'(x) — rv(x) =0,

for which we have

v(z) = Be®® + Ce™®, 2, <z < 1, (23)
with
B Cau? — &)+ —au? — 02 ¥ 2ro2u?
gy - e =0+ ;5:2 au? = 0) + 2ro*u?. (24)

—(pu — au? = 8) — \/(pu — au? — §)2 + 2rou?

b= - (25)
Here B, C' are unknown constants to be determined.
Step 4: z € [z*, +00).
In this case, since v'(x) = 1, we have
v(z) =z +v(z’) — 2" (26)

with z* to be determined.

Step 5: Determine zy,x9,2* A, B,C, and 6(z). To this end, we apply the principle of
smooth fit to v(x) at x = x1, x9, x*, respectively.

First off, at x = z1, we have
v(zi+) = v(z—), v'(z1+) = (z1-). (27)

Applying these conditions to equations (18) and (21) (and noting (z;+) = [), we obtain

a1z T TA(quIl — eﬁlxl)
Ay e — pref™) = s (28)

Lemma 4 z; > 0 for x, determined by (28).

Proof: We first verify that

r = Bi(zul = 9)
r—aq(sul —0)

> 1. (29)



Indeed, since 5; < 0 and %,ul — 9 > 0 we have r — ﬂl(%,ul —§) > 0. Using the expressions of
a; and f as given by (19) and (20) respectively, one has

(on — 50(%@ _§) > 0.

This proves (29). Hence from (28) we conclude

1 7”—51(%.“1_5)}
T = lo > 0. 30
T i )
[
Next, we determine U*(x) = 0(x) on (z1, z5).
Lemma 5 The unique strictly increasing solution 0(x) to the following equation
18’ (z) — 2r]0(z)0” = [ — 2a0()][16(z) — 24],
(31)
0(.’1}1) = l,
can be determined by the following
2a
6 - 0] o) ~ Hoh = K exp |- 250~ (52)
where x1 is given by (30),
G — 27‘a2+,u2+4a6+\/(2r02+u2+4a5)2716au25
- dap ’
H = 2r02+u2+4a67\/(2r02—|—u2+4a6)2716au26
- dap ’
and
K= (G-1)ou(l— H)o-n,
Proof: First, we show H < 2 <[ <y < 5. < G. Indeed,
"o 2ro? + p? + 4ad — /(2ro? + p? + 4ad)? — 16ap25
dap
- 2ro? + p? + 4ad — /(2ro? + p? — 4ad)?
dap
2
o
A similar proof yields ;- < G. Since | < §(x) < u whenever z € (x1,27), we have
H<0(z) <G, z€(x1,z9). (33)



Now, after some manipulations the differential equation (31) can be rewritten as

0(x)db(x) _ 2a
G = 0(2)][0(z) — H] o

Taking integration from z; to z and taking (33) into account we obtain (32).

To show that 6(z) is a strictly increasing function of z, let £(z) := (G—2) o (z—H)foLH,
H < z< (. Since &'(z) = —2(G — z)Gfinl(z— H)*G%Hf1 < 0, £(2) is strictly decreasing on
z € (H,Q). However, {(0(z)) = K exp [—24(z — x1)], hence 6(z) is strictly increasing in z.

g

Now define
Zo :=inf{z > z,(0(x) = u}. (34)
One can express o explicitly by setting z = x5 in (32) and then solving for z,:
o[ G G-1 H |- H
=+ 1 . log [ =21
w2 x1+2a[G—HOg(G—u> G—H0g<u—H>] (35)

By the very definition (34) and the strict monotonicity of #(z) it is clear that xo >

since | # u.
Having found z; and x5, we are now in the position to find A, B, C' and z*. First, smooth
fit at x = x5, together with (21), yields

—rv(z2) + (%,uu —0)v'(z2) =0 (36)

since 6(z3) = u. Using (23), we get
1
—r(Be®® 4 CeP?*2) 4 <§uu - 5) (Bape®2®2 + CByeP?%2) = 0,
or equivalently,
1 1 5
B |=r+ (gpu = 0)ag| e + C =1 + (Suu = 6)f| €7 = 0. (37)

Remark 6 It follows from (14) that the smooth fit condition at x = x; as given in (27)
implies v"(z1+) = v”(z;—), namely, v thus obtained in fact is C? at z;. Similarly, v is C?

at zo.

On the other hand, smoothness at x = z* dictates

v'(z*=) =1,v"(z"=) = 0. (38)



As a consequence, we see

BaZe®® 4 Cp2eP” =0, (39)
Bape™™ 4 CBpe™ = 1. (40)
(From (37) and (39) it follows
—-C 2 . Lou—90)—
I a_ge(obfﬁz)iv — az(f’uu ) Te(a2*ﬁ2)w2 (41)
B B Bolgpu—06) —r
Hence,
* 1 a2ﬂ2(2“ 6) 7'/82 (ag—ﬂz)zz
x az—P2 log [ a3B2(5pu—08)— ra%e (42)
rat i og im0
- 2T qy— ,32 g a2z (suu—0)—rad |
Before we proceed, we must verify the following
Lemma 7 z* > x5 for z* given by (42).
Proof: In view of (41) it suffices to show that
a(spu—06)—r o}
> 2
Bo(zpu—0) —r = B
or equivalently (noting that f85(3pu — 6) —r < 0)
2 1 2 1
By |aa §,uu—(5 —r| <a; | §uu—5 —r|.
Indeed,
2 1 2 1
o | P2 §MU—5 —r| =B | E,UU—(S -
1
= (a2 — B) [( My — ) azfy — 1(02 + 52)]
=2r  2(pu — au® = 9§)
= ( ﬁ?) [( uu — 6) o202 r o212
2r(a — B
= %(iuu —au®) >0
because of u < 4-. This proves the desired claim. O
Once z* is determmed, we solve (39) and (40) to obtain
Bo
B=— _ 43
ag(ag — fBa)e® 43)
(8%
C= . 44
Ba(ag — fBo)eP2® 4

11



Lemma 8 There is a unique non-decreasing function v(x) that solves the following equation

on [x1,T2):

{ —ro(z) + (3u(x) — O)v'(x) = 0, = € [31,5), (45)

v(xq) = Be®2®2 4 Cef2e2,

Proof:  First note that $uf(z) — 8§ > sul — & > 0 since f(z) is non-decreasing on [z1, z2).

Thus (45) has a unique solution

v(z) = wv(xg)exp (— L Wdy)

= (Bt CP ) exp (= [T pptidy) s @ € [, )

(46)

Clearly it is a non-decreasing function. 0

Finally, we can now determine A. The continuity of v at z; indicates that

A(ealm _ eﬂlml) — U(331—) — U(x1_|_) — (Beazzz + 06/32$2) exp (—/ 17dy> .
n 3H0(y) —0

Thus,

Be2®2 4 (P22 . 1
A= — — dy). 47
o (- [ =) 4

To summarize, we have now obtained a solution to (8) as follows:

A(ealx - eﬂlw); 0<zr < X1,
QT2 Bax2 [T r <
o(z) = (Be*2®2 4 C'eP2%2) exp ( N %ua(y)fady> , 11 <1 < 19, (48)
Be®® 4 CeP2®, Ty < x < ¥,
T — o 4+ Be®® + CeP2*", T > xk,

where, respectively, o; and f; are given by (19) and (20), oy and B2 by (24) and (25), 0(x)
determined by (32), z1, 22 and z* by (30), (35) and (42), and A, B and C by (47), (43) and
(44).

Lemma 9 v(z) as given by (48) is a twice continuously differentiable concave function with
v(0) = 0.

Proof:  First, that v(z) is C' comes from the construction, via the smooth fit principle.
Moreover, from the explicit expression (48) it is evident that v(z) is C? on each of the
intervals (0,z1), (21, %2), (z2,2%) and (z*,00). Now, the C? property of v(z) at z; and z,
follows from Remark 6, and that at z* is seen directly from (48). Secondly, that v(0) =0

is obvious. Concavity on each of the intervals other than [z, z5) is evident by the explicit

12



expressions of v(x). On [z, z9), recall that v satisfies (14). Thus v"(x) < 0 on [z1, x9) since
v'(z) > 0 and g — 2af(x) > p — 2au > 0. Finally, concavity on the whole positive half line

follows from the continuity of its derivatives at the turning points z, xo and z*. O

Now we construct the optimal control policies based on the solutions to the HJB equa-
tions. There are two components, U(-) and Z(-), in a control. From the foregoing analysis,
the first component U(-) is obtained in a state feedback form:

L 0<z <1,
U'(z) =4 0(x), 1 <z < 29, (49)
u, X2 SIIS.'L'*,

where the critical reserve levels z; and x9, together with the function #(z), are specified in
(48). To determine the other component Z(-), we need to involve the so-called Skorohod
problem for the one dimensional diffusion. Let (X*(t), Z*(¢);¢ > 0) be a solution to the
following Skorohod problem on ¢ > 0:

dX*(t) = [uU*(X*(t)) — aU*2(X*(¢t)) — 6)dt + ocU*(X*(t))dW (t) — dZ*(t), X(0—) = =,

X*(t) < z*,

Jo~ Tixrw<anydZ7(8) = 0,

(50)
where U*(z) is given by (49) and z* by (42). Equation (50) essentially determines the
diffusion process X*(-) reflected at z* via a so-called regulatory process Z*(-) (see, e.g., [6])-
Existence and uniqueness of a solution pair (X*(¢), Z*(t);t > 0) to such a Skorohod problem

follows from Theorem 3.1 in [8].

Theorem 10 Let v be the concave, twice continuously differentiable solution of the HJB
equation (8) given by (48), and (X*(t), Z*(t);t > 0) be a solution to the Skorohod problem
(50). Then * = (U*(X*(t)), Z*(t);t > 0) is an optimal control for the problem (3)-(6), and

v equals the value function V.

Proof: In view of Lemma 1 the proof of this result is the same as that of [11, Theorem 5.3].

[]

Remark 11 By now, it is clear that the threshold ;- does not come arbitrarily. In fact,
it is the level for which the optimal value function were about to change its concavity, had
it not been the regulatory process at z* (see equation (14)). This also suggests that, the
very feature of our mixed regular-singular control problem, which in general more difficult
to solve than its regular control counterpart, helps us in overcoming the difficulty of the
nonlinearity of the underlying model and in deriving the optimal control policy. Thanks to
the regulatory process Z(x) at z*, we are able to keep the concavity of the function and

yield the optimality.

13



4 QOther Cases

All the other cases can be regarded as degenerate cases of the main case, Case 1, that we
have solved. Since the computation is similar and in most cases substantially simpler, we

simply present the results, mentioning the necessary changes.

4.1 Case 2: <P <y< £
o 2a

In this case, by virtue of (16), we have

2
1< _p0)<u. (51)
©
Hence (17) should be modified to
<
U () = { O(z), 0<z< x, (52)
U, To < x < %

In other words, z; appearing in Case 1 degenerates to 0. As a consequence, §(z) for 0 < z <
xo can be obtained by modifying the initial condition of (31) by 6(0) = %‘5. Therefore, 6(z)
can be determined by the following

_H 2
(G — 0(z)]e°7 [0(z) — H]e 7 = K, exp(—a—”;x), 0< < a, (53)
where
2 2 _H
K, = (G- 6)@(_5 — H)e-1,

I 1

Accordingly, o must be revised to

G G-—2 H 2% _ g
_T 3 log [ 2~ . 4
G—HOg<G—u> G—HOg(u—H (54)

Now, we can present a solution to (8)

0.2

2a

T9 =

Q22 Bax2 _ [T r
(Be*®> 4 C'eP*®) exp ( N %M(y)iddy> , 0< <o,
v(r) = 4§ Befr + Ce*?*, Ty < x < ¥, (55)

T — z* + BeP?® 4 Ce®®, T >z,

where, respectively, ay and By by (24) and (25), 0(x) by (53), z2 and z* by (54) and (42),
and B and C by (43) and (44).
Finally, in this case the optimal regular control is given by (52) and the optimal singular

control Z*(-) is the corresponding regulatory process at z*. Notice that in this case U*(x) €
2, u].
I
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. 20
4.2 Case 3: 7<l§%§u

In this case, it follows from (15) that

M *
< — = < u.
1< o0 O(z*) <u (56)

Hence

U*(z) =

{ l, 0<z <, (57)

O(z) 0<uz<zx*

Thus, x5 in Case 2 degenerates to x* in the present case. The point x; is determined by
exactly the same formula, (30). Moreover, z* can be obtained by setting 6(z*) = 5 where
f(z) is given by (32). Hence

L [ G (G-l H | (1-H (58)
TNt la-H B\g_£) T Ge-H®\E_H)|

2a 2a
On the other hand,

vizg)=z—a"+ A, >z

for some constant A;. Noting that U*(z*—) = 6(2*—) = 42 and substituting it to (10), we

get
e )

A
! dar

(59)

To proceed, we solve equation (45) with the terminal condition changed to v(z*) = A; and

obtain

*

o(z) = Ay exp (- / md@ e lmLa). (60)

Thus, (47) should be modified to

A1 z 1
A= ——— — —Fdy | . 61
ec1TL — efimi op ( /ml %ué’(y) -9 y) (61)

To summarize, we have the following solution to (8) in this case:

Ae® — eh17), 0<z<uay,
v(z) =< Ajexp (— I, mdw , T <z <z1¥ (62)
.T—.Z'*+A1, sz*;

where oy, (1, 0(z), z1, and x* are as in (19), (20), (32), (30), and (58) respectively.

The optimal regular control is (57) and the optimal singular control Z*(-) is the corre-

L,

sponding regulatory process at x*. Notice that in this case U*(x) € [, 5;

15
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4.3 Case 4: [ < L < g <u
In this case,
U'(z) =60(z), 0<z<z"

Therefore, similar arguments as in Cases 2 and 3 lead to

U(.T): Alexp (_fa: Wdy), 0S$<x y (63)
SC—.T*+A1, -sz*a
where A; is given by (59), 6(z) by (53), and
Y= 1 B log | 4 : 64
! 2a[G—HOg(G—% G-H °*\L_-H (64)
The optimal regular control is U* (z) = #(z) V0 < z < z* and the optimal singular control
Z*(-) is the corresponding regulatory process at z*. Notice that in this case U*(x) € %, 2]

4.4 Case5: [> 4 and f(l)=pl—al> -6 >0

First it is easy to see that Case 5 defined earlier is equivalent to [ > 5= and f(I) > 0. In this

case, since §(z*) = 3- < I, we have

U(z) =1, 0<z<z"
Thus

v(z) = A(eM® — M12), 0 <z < 2, (65)
where a; and ; are defined by (19) and (20) respectively. Smooth fit at z* yields
{ Ao e — pef12") =1,

A(a2en®” — B2efra™y =,

Solving the above equations leads to

+ _ log(8?)log(a})

R )

aje®1t* _pgefre*

Hence, a solution to (8) is

Ale®® — phrz < *
v(x):{ (e eh), 0<z<z¥, (67)

T — 2" + A(e®® — P 1 > 27,

where z* and A are defined in (66).
The optimal regular control is U*(z) = V0 < z < z* and the optimal singular control

Z*(-) is the corresponding regulatory process at z*.
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4.5 Case 6: u < %‘5 and f(u) = pu —au®—§ >0
In this case, we have

U'(z) =u, 0<z<z"
By a completely parallel analysis to that for Case 5, we obtain

A(e®2® — ef2m), 0<z <%,
v(z) = . .
T —a* 4+ A(e®® — €27 1 > ¥,

where
T~ = 108(ﬂ§)_10g(a§)

az—lﬂz (69)

- a26a2m* _/326323:* ’

with ae and 3y defined in (24) and (25).
The optimal regular control is U*(z) = v V0 < z < z* and the optimal singular control

Z*(-) is the corresponding regulatory process at z*.

Before we conclude this section, we have the following remark.

Remark 12 We see that in all the cases (including Case 1 dealt with in the previous section),
the optimal regular control U*(-) has the minimum value !’ = max{l, %‘5} and the maximum
value v’ = min{u, 2-}. Since U*(-) can be understood to be the one controlling the risk, /'
and v’ are the minimum and maximum risks to be taken, respectively. Also, we can conclude
from the solutions obtained that the optimal risk range is such that it should be as close to
the interval [%‘5, 4-] as possible.

5 A Special Case: § =0

The special case when § = 0 is an interesting case that warrants additional attention. Prac-
tically it corresponds to the no-debt situation (see Section 6 below). Theoretically, the value
function becomes completely explicit.

For simplicity, we only present the result for the main case 0 <1 < u < 5. In this case,

equation (31) specializes to

0'(2) + 20(z) — 5 =0, (70)
9(331) = l,
which has the solution
2a 2 2 2
B(z) = Ke 5% + “‘;Tm (71)
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where K = —eo?™ (M - l) < 28 Getting (x2) = u, we obtain

2au
o? “2;:12;:02 —1
To = X1 + 2—a log W .
ap
With the expression of (x), the resulting solution to the HJB equation becomes explicit

as well. Indeed, with the aid of (21), we have

@2 [T 1
Llwmdx u ., o)™

After simple calculation, we get

)7

2
2ro
ez—g(z—ml) — 1+ 2aul > u242r02

2_&2 2
“(95):”(551)( 2aulur0

u2+2ro?

Going through a similar smooth-fit procedure, we get the following result.

Theorem 13 If6 =0 and 0 <l <u < -, then

1) The optimal regular control U*(x ) is given as a feedback control

l, 0<z <,
2 2 2 2 2a
* _ Be+2ro uo2ro® =2 (z1—x)
U (‘T) - 2au ( 2ap l)602 y 1 ST < Ty,
u, T2 S X S l'*,

and the optimal singular control Z*(-) is the requlatory process at x*, where

_ 1 plp1
T = a1—pf1 IOg (rffulal) )

) ££2-2{—2r0' .
Ty =71 + 3 log 2—&':(7—“ , (72)
2ap
Bar—spuas
z _x2+042 ﬂ21 g(a r——uu,B2)
2) The value function is
( A(emw _ eﬁlz), 0<z< 1,
27"0'2
eo Q(W z1) —14 220,&[ 24270
A(eT — Brz +2ra2 <
V)= AN T  m<o<am,
- o Ba(z—x*) _ B2 as(z—z*) %
52(0422 ﬁz) B az(a2*ﬁ2)e ’ ’ To < x < I¥,
| z— 2" +°‘jj£2, T >z,
where ay, b1, a0 and Py are as defined in Section 3, and A is such that
25 (@a—m1) _ 4 2apl u?ﬂi‘a’iz
A(ea1$2 _eﬂmz) e -1+ u2+2rg? _ (07 eﬂz(m—w*)_ ﬁQ ea2(z2—z*)
uz%f«frl(,z Ba(cte — Ba) (g — B2)
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Remark 14 By now we can tell some fundamental difference between the results in this
paper and those in [5]. First of all, in [5] (where the control constraint is absent) the optimal
control and the value function are dictated by one single critical state level x*, whereas in
our case they are determined by z* as well as two additional points, z; and zo. (It is also
interesting to note that x; and x5 are both no greater than z*.) Moreover, even the point z*
in this paper is qualitatively different from the one in [5]. To see this, consider the simple
case where § = 0 and then compare Theorem 13 with [5, Theorem 3|. One easily sees that
our z* — 0 as u — 0, meaning that z* shifts to the left with the additional upper control
constraint. On the other hand, consider Case 5. It follows from (66) that z* — oo when

[ — o0, suggesting that z* moves to the right with the additional lower control constraint.

6 Applications and Economic Interpretations

Besides its obvious mathematical interest, the study of the constrained nonlinear control
problem (1)—(2) not only fits the needs of applications, but also provides some interesting
implications and insights for practice. In this section we discuss two applications.

6.1 Hiring and firing

The problem (1)—(2) can model a dynamic optimization problem involving personnel decision
and dividend distribution policy [10, 5]. Specifically, X (¢) is the cash reserve of the firm under
consideration and U(t) the number of hires both at time ¢, and Z(¢) is the total dividend
distributed up to time t. Moreover, pu is the expected net profit per head with risk factor o,
and ¢ is the debt rate. Finally, a is the so-called internal competition factor, introduced in
[5], to reflect the counter-productivity phenomenon of over-hiring.

It was shown [5] that, when [ = 0, u = 400, the maximum size of the company is 5- and
the minimum size is QM—‘S under an optimal personnel policy. This is consistent with our Case 4:
I < 2“_5 < 3o < u. Namely, when the affordable workforce level is sufficiently high, the higher
the debt, the larger the minimum number of employees that the firm must maintain. On
the other hand, “too many people may be counter-productive”: the less efficient a company
(viz. the greater the friction a), the smaller the maximum number the company should keep.

However, since in this paper U(t) is constrained, the optimal policy is largely different
from that in the unconstrained case. To start with, if the debt rate 6 and/or the personnel
friction a are too large (compared with the potential profit) so that pu? < 4ad, then Proposi-
tion 2 suggests that the best policy would be to “take the money and run”; that is, to declare
bankruptcy immediately distributing the whole reserve as dividend. If this is not the case,

then the optimal hiring/firing policy is determined by two critical reserve levels: x; and z,.
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The values of z; and z, are in turn dictated by the allowable range of the workforce level (I
and u), the debt—profit ratio (%) and the profit—friction ratio (£). If the firm has very little
debt as well as very little friction compared to the potential profit so that QM—‘S <l<u<i;
(Case 1), then both the critical reserve levels, z; and z,, are positive and finite. In this
case, the firm will hire the minimum number of employees when the reserve is below x, then
gradually increase the hiring when the reserve is between z; and x5, and finally take in the
maximum number of employees when the reserve reaches or goes beyond level x,. Clearly,
the above policy matches the intuition and common practice.

Personnel policies for other cases can be discussed similarly. We only mention that when
U(t) is restricted beyond the desirable interval [QN—‘s, 3c] (Cases 5 and 6), then the optimal
hiring strategy is to stay as close as possible to this interval. This is again very reasonable
and intuitive.

On the other hand, the optimal dividend policy is always of a threshold type with the
threshold being equal to z*. In other words, the reserve should be kept below x* while
distributing any excess as dividends. ;From our explicit solutions presented earlier we also
see that the maximum workforce level is always reached before dividend distributions ever

take place.

6.2 Preferred re-insurance

In the area of re-insurance, Taksar and Zhou [11] viewed the linear diffusion model (i.e.,
a = 0) as a continuous-time approximation of the well-known Lundeberge-Cramer compound
Poisson model for insurance claims. There, 1 — U(¢) is interpreted as the proportion of
the insurance premium to be diverted to the third party (the re-insurer) at t, and other
parameters have the same interpretations as those in the forgoing workforce model. There
is a natural constraint on U(t), namely, 0 < U(¢) < 1. Because the risk and profit are
hypothesized as linearly dependent, hence the name of the “proportional re-insurance”.
Proportional re-insurance is a simple and nice model that captures, to a certain extent, the
essence of the complex re-insurance practice. Nevertheless, it is an obvious oversimplification
of reality. For example, although risk and return should be highly positively correlated, over-
risking is not necessarily the recipe for high return. This leads to questions as to how an
optimal strategy would change when the risk and return are not linearly (or, monotonically)
dependent on each other. Moreover, while a risk-averse re-insurer may have its preferred
risk level and impose additional service charge on firms seeking services beyond the target
level, other re-insurer may demand additional charges for those seeking services with risk
level lower than its preferred level as an aggressive move to gain market shares. This leads
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to the consideration of the following equation:
dX (t) = [aU(t) — a(U(t) — p)? = 8]dt + aU (t)dW (t) — dZ(t), X(0-) = z. (73)

Here p is the preferred reinsurance level imposed by the re-insurer and a is the additional
rate of charge for the deviation from the preferred level (the quadratic term ensures that
larger deviation is penalized more heavily). Note that in this model U(t) is constrained to
be | < U(t) < u. Hence, when u > 1 the insurance company can take an extra insurance
business from other companies (that is act as a reinsurer for other cedents).

We see that (73) is a special case of (1) with u = fi+2ap,§ = §+ap?. Recasting the main
mathematical results obtained in the previous sections, we obtain some new and intriguing
insights. First, the general stay-in-business condition p? > 4ad translates into ji? + 4apji >
4ad. This shows that whether an insurance company should initially run the business at
all depends not only on the potential profit fi, but also on the choice of the preferred level
p (which, as discussed earlier, is sometime set by its counter-party — the reinsurer). An
appropriate choice of p may provide incentive for both parties in the re-insurance business.
Second, with an optimal reinsurance policy (which is essentially an optimal risk control
policy) the maximal level of the optimal control U*(t) is min{u, 222} = min{u,p + £}.
Hence, if the upper bound u < p+ %, then one should stick to this upper bound constraint.
However, whenever feasible (i.e., u > p+ 2“—(1), one should be aggressive instead of risk-averse.
In fact, one could exceed p by as much as 2"—a ., From an economic point of view, since a
surcharge a is imposed by the re-insurer for deviation from the preferred level, it is better
to take more risk and (hopefully) get more return, as long as the business is lucrative.
This in turn shows that although p may be chosen by a reinsurer, the risk control can be
flexibly adjusted by the insurance company according to its individual business situation.
This may serve as another incentive for the adoption of the scheme of “re-insurance with
risk preference”.

Finally, economic interpretation of the explicit optimal policies obtained for the reinsur-
ance model can be elaborated in a way similar to the workforce level. Details are left to the

interested readers.

7 Concluding Remarks

In this paper we have studied the optimization problem with a controlled diffusion process
and have obtained explicit solutions via solving a Hamilton—Jacobi-Bellman equation. A
natural question is what the optimal solution will be if one changes the form of pz — ax? —§
into other quadratic forms such as pz —ax?+46? This question turns out to be a more complex
one than expected. We feel that it is relevant to the fact that when U(#) is unbounded, the
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value function is singular with respect to § at 0 (see [5]). Moreover, taking this particular
form of px — az? + ¢ implies V(0) > 0. This means that at x = 0 with no endowment one
may have non-zero profit and this in some sense is an arbitrage opportunity in the case of re-
insurance, hence practically unrealistic and undesirable. However, complete understanding
of this particular case as a mathematical problem as well as of its implications in practice
remains an interesting open problem.

Also, a choice of the preferred level in the reinsurance model may be settled through
negotiations between the cedent and the reinsurer, which is itself an interesting research
topic from a game theoretic viewpoint.
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