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Abstract

This paper quantifies the notion of greed, and explores its connection with leverage and
potential losses, in the context of a continuous-time behavioral portfolio choice model under
(cumulative) prospect theory. We argue that the reference point can serve as the critical param-
eter in defining greed. An asymptotic analysis on optimal trading behaviors when the pricing
kernel is lognormal and the S-shaped utility function is a two-piece CRRA shows that both the
level of leverage and the magnitude of potential losses will grow unbounded if the greed grows
uncontrolled. However, the probability of ending with gains does not diminish to zero even as
the greed approaches infinity. This explains why a sufficiently greedy behavioral agent, despite
the risk of catastrophic losses, is still willing to gamble on potential gains because they have a
positive probability of occurrence whereas the corresponding rewards are huge. As a result an
effective way to contain human greed, from a regulatory point of view, is to impose a priori
bounds on leverage and/or potential losses.
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1 Introduction

“Greed” as a non-technical term is fairly subjective and vague1. In economics literature the notion
of greed probably dates back to Adam Smith in 1776 (Smith 1909–14) – although he did not
explicitly use the term – via his vision of “invisible hand”. To mathematically analyze greed it is
important to first make precise the notion “greed”. In this paper, we quantify greed, and explore its
connection with leverage and potential losses, in the context of a behavioral portfolio choice model
under Kahneman and Tversky’s cumulative prospect theory (CPT). As Hersh Shefrin notes, “the
notion of greed is usually shorthand for a series of distinct psychological phenomena” (Shefrin
and Zhou 2009). Greed is a psychological phenomenon; so it is only natural to conceptualize and
investigate it in the framework of behavioral finance, in particular CPT, which posits that emotions
and cognitive errors influence our decisions when faced with uncertainties, causing us to behave in
incompetent and irrational ways.

We will build our theory of greed upon the recent results of Jin and Zhou (2008), where a
continuous-time CPT portfolio selection model featuring general S-shaped utility functions2 and
probability distortion (weighting) functions is formulated and solved. The study on continuous-
time CPT portfolio selection is quite lacking in the literature; to the authors’ best knowledge there
exist only two papers, Berkelaar, Kouwenberg and Post (2004) and Jin and Zhou (2008). In both
papers3 it is concluded that, with an exogenously fixed reference point, a CPT agent will take
gambling strategies, betting on the “good states of the world” while accepting a loss on the bad,
if the reference point is sufficiently high (due to excessive aspiration, unrealistic optimism, high
expectation or over-confidence). Moreover, such strategies must involve substantial leverage.

The reference point in CPT holds the key in defining and analyzing greed, because a higher
reference point is consistent with the common perception on greed as a very strong wish to get
more of something. However, a mere strong desire to get more than one’s fair share is not what
greed is all about. Greed is always accompanied by aggressive actions so as to fulfil the desire. The
significance of the reference point in CPT is that it divides between the gains and losses, and hence
dictates whether an agent is risk-averse or risk-seeking. In other words, the higher the reference
point the more likely the agent is to be a risk-taker, and hence the greedier she is. This suggests

1Oxford English Dictionary defines “greed” as “intense and selfish desire for food, wealth, or power”.
2These are called value functions in the Kahneman–Tversky terminology (Kahneman and Tversky 1979, Tversky

and Kahneman 1992). In this paper we still use the term utility function so as to distinguish it from the term “value
function” commonly used in dynamic programming.

3We base the greed analysis of the present paper on the model and results of the latter, which is more general – in
particular it includes probability distortions – than the former.
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that greed can be represented by the level of reference point and, consequently, the corresponding
risk-seeking behavior4.

The leverage and potential losses inherent in an optimal CPT trading strategy have been en-
dogenously derived in Jin and Zhou (2008) where the reference point is fixed, which enables us
to study their asymptotic properties as the greed becomes infinitely strong. In this paper, we carry
out an asymptotic analysis on the benchmark case when the pricing kernel is lognormal and the
S-shaped utility is a two-piece CRRA. This case is sufficiently representative to support the gen-
erality of the results drawn. The results show that both the level of leverage and the magnitude
of potential losses will grow uncontrolled as the greed becomes infinitely strong, as one would
naturally expect.

An intriguing finding is, however, that the probability of ending with good (gain) states does
not diminish to zero even as the greed approaches infinity. This result is quite counter-intuitive.
The gain is defined with respect to the reference point; hence ending up with a gain state gets
more difficult as the greed (and hence the reference point) soars. As a result, it would seem only
reasonable that the probability of achieving gain states should decline as greed grows. A closer
examination, however, reveals that the agent’s trading strategy would become more aggressive
with a stronger greed, which offsets the increased difficulty of reaching a gain state. Hence the
riskier consequence of a greedier agent’s trading behavior is reflected by the increased magnitudes
of potential losses, not by the increased odds of having losses. On the other hand, this result does
explain why a sufficiently greedy behavioral agent, despite the risk of catastrophic losses, is still
willing to gamble on the gain states because they have a positive probability of occurrence whereas
the corresponding rewards are huge5.

An economic interpretation of these asymptotic results is that leverage and potential losses will
be unbounded if greed is allowed to grow unbounded. Consequently, an effective way to contain
human greed, from a regulatory point of view, is to impose a priori bounds on either leverage or
potential losses or both in a financial investment decision model.

The novelties of this paper compared to Jin and Zhou (2008) are the following. Conceptually,
this paper quantifies the term “greed”, and establishes its connection to “leverage” and “potential
losses”. Technically, the paper presents an asymptotic analysis when E[ρB] → ∞, based on the
results of Jin and Zhou (2008), through rather involved probabilistic and analytic arguments. As
a by-product we will also derive some new results; e.g. we will solve the two-piece CRRA case
with different powers. In summary, this paper is significantly different from Jin and Zhou (2008)
in motivations, techniques and results.

4One might argue that greed could be also quantified and analyzed via a neoclassical portfolio selection model, such
as the expected utility maximization, by introducing an additional aspiration constraint (e.g. a very high mean target
or a guaranteed probability of achieving a high wealth level). Such a neoclassical treatment of greed, however, would
have a critical drawback that it does not capture the psychological anomaly – the risk-taking behavior – inevitably
associated with greed.

5Think about what many banks and insurers had done before the 2007-2010 financial crisis.
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The rest of this paper is arranged as follows. In Section 2 we review the CPT portfolio choice
model and its optimal terminal wealth profile derived in Jin and Zhou (2008), which sets the stage
for the subsequent analysis on greed. Section 3 motivates and gives precise definitions of greed,
leverage and potential losses. In Section 4 we perform an asymptotic analysis on greed for a model
when the pricing kernel is lognormal and the S-shaped utility is a two-piece CRRA. Depending on
whether the powers of the two pieces of the utility function are the same or not, the analysis are
quite different. Yet, the results have essentially the same economic interpretation: as the agent’s
greed becomes infinitely strong, the limiting probability of having gains is constant and positive,
while both the leverage and potential losses diverge to infinity. Section 5 proposes a modified CPT
portfolio selection model where leverage and/or potential losses are a priori capped. The paper is
finally concluded in Section 6.

2 A Behavioral Agent’s Strategies

In this section we briefly review the optimal terminal wealth profiles of a CPT agent, derived in Jin
and Zhou (2008), and then motivate the problem of the present paper.

Let T be a fixed terminal time and (Ω,F , P, {Ft}t≥0) a filtered complete probability space on
which is defined a standard Ft-adapted m-dimensional Brownian motion W (t) ≡ (W 1(t), · · · ,Wm(t))T

with W (0) = 0. It is assumed that Ft = σ{W (s) : 0 ≤ s ≤ t}, augmented by all the null sets.
Here and throughout the paper AT denotes the transpose of a matrix A.

There is a market where there are m+ 1 assets being traded continuously. One of the assets is
a bank account whose price process S0(t) is subject to the following equation:

(2.1) dS0(t) = r(t)S0(t)dt, t ∈ [0, T ]; S0(0) = s0 > 0,

where the interest rate r(·) is an Ft-progressively measurable, scalar-valued stochastic process with∫ T

0
|r(s)|ds < +∞, a.s.. The other m assets are stocks whose price processes Si(t), i = 1, · · · ,m,

satisfy the following stochastic differential equation (SDE):

(2.2) dSi(t) = Si(t)
[
µi(t)dt+

m∑
j=1

σij(t)dW
j(t)

]
, t ∈ [0, T ]; Si(0) = si > 0,

where µi(·) and σij(·), the appreciation and volatility rates, respectively, are scalar-valued, Ft-
progressively measurable stochastic processes with∫ T

0

[
m∑
i=1

|µi(t)|+
m∑

i,j=1

|σij(t)|2]dt < +∞, a.s..

Set the excess rate of return vector process

e(t) := (µ1(t)− r(t), · · · , µm(t)− r(t))T
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and define the volatility matrix process σ(t) := (σij(t))m×m. Basic assumptions imposed on the
market parameters throughout this paper are summarized as follows:

Assumption 1.

(i) There exists c ∈ IR such that
∫ T

0
r(s)ds ≥ c, a.s..

(ii) There exists a unique IRm-valued, uniformly bounded, Ft-progressively measurable process
θ(·) such that σ(t)θ(t) = e(t), a.e.t ∈ [0, T ], a.s..

It is well known that under these assumptions there exists a unique risk-neutral (martingale)
probability measure Q defined by dQ

dP

∣∣∣
Ft

= e
∫ t
0 r(s)dsρ(t), where

(2.3) ρ(t) := exp

{
−
∫ t

0

[
r(s) +

1

2
|θ(s)|2

]
ds−

∫ t

0

θ(s)TdW (s)

}
is the pricing kernel or state density price. Denote ρ := ρ(T ). It is clear that 0 < ρ < +∞ a.s.,
and 0 < Eρ < +∞. Furthermore, the following assumption is in force throughout this paper.

Assumption 2. ρ admits no atom.

Consider an agent, with an initial endowment x0 ∈ IR (fixed throughout this paper), whose
total wealth at time t ≥ 0 is denoted by x(t). Assuming that the trading of shares takes place
continuously in a self-financing fashion, x(·) satisfies

(2.4) dx(t) = [r(t)x(t) + e(t)Tπ(t)]dt+ π(t)Tσ(t)dW (t), t ∈ [0, T ]; x(0) = x0,

where π(·) ≡ (π1(·), · · · , πm(·))T is the portfolio of the agent with πi(t), i = 1, 2 · · · ,m,

denoting the total market value of the agent’s wealth in the i-th asset at time t. A portfolio π(·) is
said to be admissible if it is an IRm-valued, Ft-progressively measurable process with∫ T

0

|σ(t)Tπ(t)|2dt < +∞ and
∫ T

0

|e(t)Tπ(t)|dt < +∞, a.s..

An admissible portfolio π(·) is said to be tame if the corresponding discounted wealth process,
S0(t)

−1x(t), is almost surely bounded from below (the bound may depend on π(·)).
The market in this paper is arbitrage-free and complete having a linear pricing rule with the

pricing kernel ρ (i.e. a contingent claim X paid at T is priced as E[ρX] at t = 0). Note that in our
model the agent is a “small investor”; so her CPT preference only affects her own utility function
– and hence her portfolio choice – but not the overall market. In particular, it does not affect the
pricing rule, E[ρX], of the market6.

6Asset pricing under behavioral preferences in continuous time remains a significant open problem, which is cer-
tainly beyond the scope of this paper.
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The agent’s risk preference is dictated by CPT. Specifically, she has a reference point B at the
terminal time T , which is a lower bounded, FT -measurable random variable7. The reference point
B determines whether a given terminal wealth position is a gain (excess over B) or a loss (shortfall
from B). It could be interpreted as a liability the agent has to fulfil (e.g. a house downpayment), or
an aspiration she strives to achieve (e.g. a target profit aspired by, or imposed on, a fund manager).
The agent’s utility (value) function is S-shaped: u(x) = u+(x

+)1x≥0(x)−u−(x
−)1x<0(x), where

the superscripts ± denote the positive and negative parts of a real number, u+, u− are concave
functions on IR+ with u±(0) = 0, reflecting risk-aversion on gains and risk-seeking on losses.
There are also probability distortions on both gains and losses, which are captured by two nonlinear
functions w+, w− from [0, 1] onto [0, 1], with w±(0) = 0, w±(1) = 1 and w±(p) > p (respectively
w±(p) < p) when p is close to 0 (respectively 1).

The agent’s preference on a terminal wealth X (which is an FT -random variable) is measured
by the prospective functional

V (X −B) := V+((X −B)+)− V−((X −B)−),

where V+(Y ) :=
∫ +∞
0

w+(P (u+(Y ) ≥ y))dy, V−(Y ) :=
∫ +∞
0

w−(P (u−(Y ) ≥ y))dy. Thus, the
CPT portfolio choice problem is to

(2.5)
Maximize V (x(T )−B)

subject to (x(·), π(·)) satisfies (2.4), and π(·) is admissible and tame.

To solve (2.5) we need only to find the optimal terminal wealth by solving

(2.6)

Maximize V (X −B)

subject to


E[ρX] = x0

X is FT − measurable and lower bounded.

If X∗ solves (2.6), then the optimal portfolio to (2.5) is obtained by replicating X∗. Note the lower
boundedness constraint in (2.6) corresponds to the requirement that the admissible portfolios be
tame.

We introduce some notation related to the pricing kernel ρ. Let F (·) be the cumulative distri-
bution function (CDF) of ρ, and ρ̄ and ρ be respectively the essential lower and upper bounds of ρ,
namely,

7In Jin and Zhou (2008) it is assumed that B = 0 without loss of generality as the reference point therein is fixed.
In the present paper, a critical issue we want to address is how the reference point would affect the agent behavior and
hence her strategies; so we need to take B as an explicitly present exogenous variable.
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(2.7)
ρ̄ ≡ esssup ρ := sup {a ∈ IR : P{ρ > a} > 0} ,

ρ ≡ essinf ρ := inf {a ∈ IR : P{ρ < a} > 0} .

The following assumption, inherited from Jin and Zhou (2008), will be henceforth enforced.

Assumption 3. u+(·) is strictly increasing, strictly concave and twice differentiable, with the Inada
conditions u′

+(0+) = +∞ and u′
+(+∞) = 0, and u−(·) is strictly increasing, and strictly concave

at 0. Both w+(·) and w−(·) are non-decreasing and differentiable. Moreover, F−1(z)/w′
+(z) is

non-decreasing in z ∈ (0, 1], lim infx→+∞

(
−xu′′

+(x)

u′
+(x)

)
> 0, and E

[
u+

(
(u′

+)
−1( ρ

w′
+(F (ρ))

)
)
w′

+(F (ρ))
]
<

+∞.

By and large, the monotonicity of the function F−1(z)/w′
+(z) can be interpreted economically

as a requirement that the probability distortion w+ on gains should not be too large in relation to
the market (or, loosely speaking, the agent should not be over-optimistic about huge gains); see
Jin and Zhou (2008), Section 6.2, for a detailed discussion. Other conditions in Assumption 3 are
mild and/or economically motivated.

We now summarize the main results of Jin and Zhou (2008) relevant to this paper8, which are
stated in terms of the following two-dimensional mathematical program with the decision variables
(c, x+):

(2.8)

Maximize v(c, x+) = E
[
u+

(
(u′

+)
−1

(
λ(c,x+)ρ
w′

+(F (ρ))

))
w′

+(F (ρ))1ρ≤c

]
−u−(

x+−(x0−E[ρB])
E[ρ1ρ>c]

)w−(1− F (c))

subject to


ρ ≤ c ≤ ρ̄, x+ ≥ (x0 − E[ρB])+,

x+ = 0 when c = ρ, x+ = x0 − E[ρB] when c = ρ̄,

where λ(c, x+) satisfies E[(u′
+)

−1( λ(c,x+)ρ
w′

+(F (ρ))
)ρ1ρ≤c] = x+, and we use the following convention:

(2.9) u−

(
x+ − (x0 − E[ρB])

E[ρ1ρ>c]

)
w−(1− F (c)) := 0 when c = ρ̄ and x+ = x0 − E[ρB].

Theorem 1. Let (c∗, x∗
+) be optimal for Problem (2.8). We have the following conclusions:

(i) If X∗ is optimal for Problem (2.6), then {X∗ ≥ B} and {ρ ≤ c∗} are identical up to a zero
probability event.

8Some of the results there will actually be enhanced (with proofs) in the present paper.
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(ii) The following solution

(2.10) X∗ =

[
(u′

+)
−1

(
λρ

w′
+(F (ρ))

)
+B

]
1ρ≤c∗ −

[
x∗
+ − (x0 − E[ρB])

E[ρ1ρ>c∗ ]
−B

]
1ρ>c∗

is optimal for Problem (2.6).

This result is a part of Theorem 4.1, along with (4.6), in Jin and Zhou (2008). The explicit form
of the optimal terminal wealth profile, X∗, is sufficiently informative to reveal the key qualitative
and quantitative features of the corresponding optimal portfolio9.

The following summarize the economical interpretations and implications10 of Theorem 1,
including those of c∗ and x∗

+:

• The future world at t = T is divided by two classes of states: “good” ones (having gains)
or “bad” ones (having losses). Whether the agent ends up with a good state is completely
determined by ρ ≤ c∗, which in statistical terms is a simple hypothesis test involving a
constant c∗, à la Neyman–Pearson’s lemma (see, e.g., Lehmann 1986).

• The optimal strategy is a gambling policy, betting on the good states while accepting a loss on
the bad. Specifically, at t = 0 the agent needs to sell the “loss” lottery,

[
x∗
+−(x0−E[ρB])

E[ρ1ρ>c∗ ]
−B

]
1ρ>c∗ ,

in order to raise fund to purchase the “gain” lottery,
[
(u′

+)
−1

(
λρ

w′
+(F (ρ))

)
+B

]
1ρ≤c∗ .

• The probability of finally reaching a good state is P (ρ ≤ c∗) ≡ F (c∗), which in general
depends on the reference point B, since c∗ depends on B via (2.8). Equivalently, c∗ is the
quantile of the pricing kernel evaluated at the probability of good states.

• The magnitude of potential losses in the case of a bad state is a constant x∗
+−(x0−E[ρB])

E[ρ1ρ>c∗ ]
≥ 0,

which is endogenously dependent on B.

• x∗
+ + E[ρB1ρ≤c∗ ] is the t = 0 price of the gain lottery. Hence, if B is set too high such that

x0 < x∗
+ +E[ρB1ρ≤c∗ ], i.e., the initial wealth is not sufficient to purchase the gain lottery11,

then the optimal strategy must involve a leverage.

• If x0 < E[ρB], then the optimal c∗ < ρ̄ (otherwise by the constraints of (2.8) it must hold
that x∗

+ = x0−E[ρB] < 0 contradicting the non-negativeness of x∗
+); hence P (ρ > c∗) > 0.

This shows that if the reference point is set too high compared with the initial endowment,
then the odds are not zero that the agent ends up with a bad state.

9The optimal strategy is the one that replicates X∗ in a Black–Schole way. However, we do not actually need the
form of the optimal strategy in our study below.

10These have not been adequately elaborated in Jin and Zhou (2008).
11Later we will show that P (ρ ≤ c∗) converges to a constant when B goes to infinity. So x∗

+ + E[ρB1ρ≤c∗ ] will
be sufficiently large when B is sufficiently large.
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3 Defining Greed, Leverage and Potential Losses

Next we are to give precise definitions of greed, leverage, and potential losses in the setting of the
CPT portfolio choice model formulated in Section 2.

Greed as a common term holds two defining features: 1) a high desire for wealth, and 2) the
subsequent aggressive action to fulfil the desire. The reference point in CPT, therefore, provides
a key in defining and analyzing greed, in that it divides between the gains and losses, and hence
dictates whether an agent is risk-averse or risk-seeking. In other words, the higher the reference
point the more likely the agent is to be a risk-taker. This suggests that greed can be captured by the
level of reference point and the corresponding risk-seeking behavior.

Notice that if x0 ≥ E[ρB], i.e., the agent’s aspiration is so moderate that she starts in the gain
territory, then she is risk-averse as stipulated by CPT12. Thus the agent’s greed becomes relevant
and significant in portfolio choice only when 0 < x0 < E[ρB].

The preceding discussions suggest that the greed G ought to be quantified in such a way that
it is applicable only when x0 < E[ρB], and that it is a monotonically increasing function of
the reference point B. There could be several ways of achieving these, but a natural and simple
definition of greed is the ratio between what the agent is desperate to achieve – (the t = 0 value of)
the reference point – and what she has to start with, i.e., x0, when x0 < E[ρB].

Our definition of greed per se depends on the market via ρ. One may argue that a notion of greed
should depend on the investor’s preferences alone without involving the financial market. While it
is a valid point, we think that greed indeed interacts with investment opportunities, and the level
of greed is relative to the overall market. An aspiration of 5% annual return is quite moderate in a
bull market, but can be considered to be greedy in a bear one. A greedy person typically becomes
greedier in a bull market (which seems to be one of the reasons behind bubbles and crashes). On
the other hand, in this paper we are concerned with the asymptotic trading behaviors when G goes
to infinity. So we are ultimately interested in the situation when B becomes sufficiently large,
irrespective of the market.

Leverage, on the other hand, can be loosely defined (although there are several definitions) as
the ratio between the borrowing amount and the equity in a venture. To motivate our definition
below, we take for illustration one of the most commonly used financial devices – a mortgage –
where leverage is inherent. Suppose one buys a house of $500K, putting 10% downpayment and
borrowing $450K from a lender. Then

(3.1) 50K(home buyer’s equity) = 500K(total value)− 450K(borrowing amount).

So leverage= borrowing amount
home buyer’s equity = 450

50
= 9. In the context of behavioral portfolio choice when

x0 < E[ρB], since the initial endowment is not adequate to cover what is implied by the reference

12Jin and Zhou (2008), Theorem 9.1, shows that in the case of a two-piece CRRA utility the optimal strategy
is reminiscent of that of a classical utility maximizing agent (albeit with a “distorted” asset allocation due to the
probability distortions) if x0 ≥ E[ρB], where there is no gambling and leverage involved.

9



point, the agent needs to borrow money to fund her portfolios. Hence we can define the leverage
of any given portfolio as the ratio between the t = 0 value of the borrowing amount and the initial
endowment x0. To do this we could examine the cash flow at the terminal time T and then discount
it to t = 0. Specifically, let X be the terminal wealth of a given portfolio starting from x0. Then
we have the following unique decomposition based on gains and losses

(3.2) X ≡
(
(X −B)+ +B)

)
1X≥B −

(
(X −B)− −B

)
1X<B := Xg −Xl.

Here, Xg is the payoff in a gain state while Xl is that in a loss one (see (2.10) for an example of
such a decomposition). Hence (3.2) can be regarded as the agent shorting the amount Xl in order
to fund the long position Xg. Therefore, the leverage is defined to be the ratio between the t = 0

value of Xl and x0.
Finally, the potential loss (rate) can be defined simply as the expected ratio between the t = 0

value of the loss and x0, given that a loss has occurred. Note that the potential loss is fundamen-
tally different from the expected loss, since the former concerns the magnitude of the loss once
a loss does occur while the latter simply averages out everything. So the potential loss could be
disastrously large even though the expected loss is small or moderate. Indeed, Samuelson (1979)
criticized the expected log utility model for its ignorance of the potential losses.

Motivated by the above discussions, we have the following definitions.

Definition 1. Given an agent with an initial endowment x0, an investment horizon [0, T ], and a
reference point B at T , her greed is defined as G := E(ρB)

x0
. For any trading strategy leading to

a terminal wealth position X that decomposes as in (3.2), its leverage is defined as L := E(ρXl)
x0

.

Moreover the potential loss rate of the portfolio is defined as l := E
(

ρXl

x0

∣∣∣X < B
)

.

4 Asymptotic Analyses on Greed

This section explores how the leverage level, the probability of having losses, and the magnitude
of potential losses change when greed monotonically expands to infinity in the setting of the CPT
model formulated in Section 2. In particular we study the benchmark case where ρ is lognormal,
i.e., log ρ ∼ N(µ, σ2) with σ > 0, and the utility function is two-piece CRRA, i.e.,

u+(x) = xα, u−(x) = kxβ, x ≥ 0

where k > 0 (the loss aversion coefficient) and 0 < α, β < 1 are constants. In this case ρ̄ = +∞
and ρ = 0. This setting is general enough to cover, for example, a market with a deterministic
investment opportunity set and Kahneman–Tversky’s utility functions (Tversky and Kahneman
1992).
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In this case, the crucial mathematical program (2.8) has the following more specific form (see
Jin and Zhou 2008, eq. (9.3)):

(4.1)

Maximize v(c, x+) = φ(c)1−αxα
+ − kw−(1−F (c))

(E[ρ1ρ>c])β
(x+ − x̃0)

β,

subject to


0 ≤ c ≤ +∞, x+ ≥ x̃+

0 ,

x+ = 0 when c = 0, x+ = x̃0 when c = +∞,

where x̃0 := x0 − E[ρB] and

φ(c) := E

[(
w′

+(F (ρ))

ρ

)1/(1−α)

ρ1ρ≤c

]
1c>0, 0 ≤ c ≤ +∞.

Note that Assumption 3 implies that φ(+∞) < +∞. Moreover, it follows from the dominated
convergence theorem that limc↓0 φ(c) = φ(0) = 0. So φ is continuous on [0,+∞].

First of all, we note that if α > β, then the objective function of (4.1) is unbounded, since it
converges to infinity as x+ goes to infinity. According to Jin and Zhou (2008), Proposition 5.1,
our original CPT model (2.6) is ill-posed in this case, i.e., the prospective value is unbounded
from above. In general a maximization problem is ill-posed if its objective function is unbounded
from above (and hence the supremum value is +∞). Economically, α > β implies that the joys
associated with large gains (measured by u+(x) = xα for large x) far outweigh the pains of losses
of the same magnitude (u−(x) = kxβ) in the sense that limx→+∞

u+(x)
u−(x)

= +∞; hence the agent
will take an infinite level of leverage leading to an infinitely high optimal prospective value13. Such
a model sets wrong trade-offs among choices, and the agent is led by her criterion to undertake the
most risky investment.

In view of this discussion, in what follows we consider only the case when α ≤ β. The
following function will be useful in our subsequent analysis:

k(c) :=
kw−(1− F (c))

φ(c)1−α(E[ρ1ρ>c])β
> 0, c > 0.

4.1 The case when α = β

We first consider the case when α = β (this is the case proposed by Tversky and Kahneman 1992
with α = β = 0.88). In this case both the mathematical program (4.1) and the corresponding CPT
portfolio selection model have been solved explicitly by Jin and Zhou (2008). Here we reproduce
the results for reader’s convenience:

Theorem 2. (Jin and Zhou 2008, Theorem 9.2) Assume that α = β and x0 < E[ρB].

13This statement is true so long as α > β (even if only slightly), no matter how large k may be. Only when α = β

does the value of k become significant in the model well-posedness. See a discussion in Section 4.1 for details.
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(i) If infc>0 k(c) > 1, then the CPT portfolio selection model (2.6) is well-posed. Moreover,
(2.6) admits an optimal solution if and only if the following optimization problem attains an
optimal solution

(4.2) Min0≤c<+∞

[(
kw−(1− F (c))

(E[ρ1ρ>c])α

)1/(1−α)

− φ(c)

]
.

Furthermore, if an optimal solution c∗ of (4.2) satisfies c∗ > 0, then the optimal terminal
wealth is

(4.3) X∗ =
x∗
+

φ(c∗)

(
w′

+(F (ρ))

ρ

)1/(1−α)

1ρ≤c∗ −
x∗
+ − (x0 − E[ρB])

E[ρ1ρ>c∗ ]
1ρ>c∗ +B,

where x∗
+ := −(x0−E[ρB])

k(c∗)1/(1−α)−1
.

(ii) If infc>0 k(c) = 1, then the supremum value of (2.6) is 0, which is however not achievable.

(iii) If infc>0 k(c) < 1, then (2.6) is ill-posed.

As seen from the preceding theorem the characterizing condition for well-posedness is infc>0 k(c) ≥
1, which is equivalent to

k ≥
(
inf
c>0

w−(1− F (c))

φ(c)1−α(E[ρ1ρ>c])α

)−1

:= k0.

Recall that k is the loss aversion level of the agent (k = 2.25 in Tversky and Kahneman 1992).
Thus the agent must be sufficiently loss averse in order to have a well-posed portfolio choice model;
otherwise the agent would simply take the maximum possible risky exposure even with a fixed,
finite strength of greed.

As described by Theorem 2-(i), the solution of (2.6) relies on some attainability condition of
a minimization problem (4.2), which is rather technical without clear economical interpretation.
The following (new) Theorem 3, however, gives a sufficient condition in terms of the probability
distortion on losses.

Theorem 3. Assume that α = β, x0 < E[ρB], and infc>0 k(c) > 1. If there exists γ < α such that
lim infp↓0

w−(p)
pγ

> 0, or equivalently (by l’Hôpital’s rule), lim infp↓0
w′

−(p)

pγ−1 > 0, then (4.2) must
admit an optimal solution c∗ > 0 and hence (4.3) solves (2.6).

To prove this theorem we need a lemma. Denote g(c) := w−(1−F (c))
(E[ρ1ρ>c])α

, which is a continuous
function in c ∈ [0,+∞).

Lemma 1. (i) If w−(1− F (c0)) ≤ 1− F (c0) for some c0 ∈ (0,+∞), then g(0) > g(c0).

(ii) If there exists γ < α such that lim infp↓0
w−(p)
pγ

> 0, then lim infc→+∞ g(c) = +∞.
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(iii) If lim supp↓0
w−(p)
pα

< +∞, then lim supc→+∞ g(c) = 0.

Proof:

(i) Noting E[ρ1ρ>c0 ] = E[ρ|ρ > c0]P (ρ > c0), we have

g(c0) ≤ 1− F (c0)

(E[ρ1ρ>c0 ])
α
=

(E[ρ1ρ>c0 ])
1−α

E[ρ|ρ > c0]

<
(Eρ)1−α

Eρ
= g(0).

(ii) Denote b := lim infc→+∞
w−(1−F (c))
(1−F (c))γ

> 0, and fix n > 1 such that γ < α/n. By virtue of
the Cauchy–Schwartz inequality there exists m > 1 such that E[ρ1ρ>c] ≤ (Eρm)1/m(1 −
F (c))1/n. Hence

lim inf
c→+∞

g(c) = lim inf
c→+∞

w−(1− F (c))

(E[ρ1ρ>c])α
≥ lim inf

c→+∞

w−(1− F (c))

(1− F (c))γ
lim inf
c→+∞

(1− F (c))γ

(E[ρ1ρ>c])α

≥ b lim inf
c→+∞

(1− F (c))γ

(Eρm)α/m(1− F (c))α/n

=
b

(Eρm)α/m
lim

c→+∞
(1− F (c))γ−α/n = +∞.

(iii) Denote b′ := lim supc→+∞
w−(1−F (c))
(1−F (c))α

< +∞. Then

lim sup
c→+∞

g(c) = lim sup
c→+∞

w−(1− F (c))

(E[ρ1ρ>c])α
≤ lim sup

c→+∞

w−(1− F (c))

(1− F (c))α
lim sup
c→+∞

(1− F (c))α

(E[ρ1ρ>c)α

= b′ lim sup
c→+∞

(
1− F (c))

E[ρ1ρ>c)]

)α

= b′ lim sup
c→+∞

(
1

E[ρ|ρ > c]

)α

≤ b′ lim sup
c→+∞

c−α = 0.

2

Proof of Theorem 3: Write the objective function in (4.2) as

ḡ(c) :=

(
kw−(1− F (c))

(E[ρ1ρ>c])α

)1/(1−α)

− φ(c), 0 ≤ c < +∞.

This function is continuous on [0,+∞). So to prove that ḡ admits a minimum point c∗ > 0, it
suffices to show that ḡ is coercive (i.e., limc→+∞ ḡ(c) = +∞), and that ḡ(0) > ḡ(c) for some
c > 0.
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Indeed, it follows from Lemma 1-(ii) that

lim
c→+∞

ḡ(c) ≥ k1/(1−α)( lim
c→+∞

g(c))1/(1−α) − φ(+∞)

= +∞.

On the other hand, recall that w−(p) < p when p is close to 1. Fix such a p0 ∈ (0, 1) and
take c0 := F−1(1 − p0) > 0. Then w−(1 − F (c0)) ≤ 1 − F (c0). According to Lemma 1-(i),
w−(1−F (c0))
(E[ρ1ρ>c0 ])

α < w−(1−F (0))
(E[ρ1ρ>0]α

. So

ḡ(0) =

(
kw−(1− F (0))

(E[ρ1ρ>0])α

)1/(1−α)

− φ(0)

>

(
kw−(1− F (c0))

(E[ρ1ρ>c0 ])
α

)1/(1−α)

− φ(c0)

= ḡ(c0).

The proof is complete. 2

The conditions of Theorem 3 stipulate that the curvature of the probability distortion on losses
around 0 must be sufficiently significant in relation to her risk-seeking level (characterized by α).
In other words, the agent must have a strong fear on the event of huge losses, in the sense that she
exaggerates its (usually) small probability, to the extent that it overrides her risk-seeking behavior
in the loss domain.

If, on the other hand, the agent is not sufficiently fearful of big losses, then the risk-seeking
part dominates and the problem is ill-posed, as stipulated in the following result.

Proposition 1. Assume that α = β and x0 < E[ρB]. If there exists γ ≥ α such that lim supp↓0
w−(p)
pγ

<

+∞, then infc≥0 k(c) = 0 < 1, and hence Problem (2.6) is ill-posed.

Proof: By Lemma 1-(iii), we have

lim sup
c→+∞

k(c) = kφ(+∞)α−1 lim sup
c→+∞

g(c) = 0.

This implies that infc≥0 k(c) = 0 < 1, and hence it follows from Theorem 2-(iii) that (2.6) is
ill-posed. 2

We highlight another very interesting feature of these results. In the current setting the thresh-
old c∗, which determines the probability of ending up with a good state (as well as that of a bad
one), turns out (as seen from (4.2)) to be independent of the reference point B or the greed G.
Moreover, under the conditions of Theorem 3, c∗ > 0 exists and we have P (X∗ ≥ B) = P (ρ ≤
c∗) > 0. In other words, no matter how strong the agent’s greed is, the good states of the world have
a fixed, positive probability of occurrence. This makes perfect sense, of course, since otherwise the
agent would not gamble on something whose chance of occurrence diminishes to zero.
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However, both the leverage level and the magnitude of the potential losses do indeed increase
to infinity if the greed goes to infinity, as shown in the following theorem.

Theorem 4. Under the assumptions of Theorem 2-(i) or Theorem 3, we have the following conclu-
sions:

(i) The leverage L → +∞ as the greed G → +∞.

(ii) The probability of ending with gains is P (X∗ < B) ≡ P (ρ > c∗), which is independent of
the greed G and is strictly positive.

(iii) The potential loss rate l → +∞ as the greed G → +∞.

Proof: First of all, the optimal solution is given in (4.3) by Theorem 2 or Theorem 3. Fitting
(4.3) into the general decomposition (3.2) we have

X∗
l =

(
x∗
+ − (x0 − E[ρB])

E[ρ1ρ>c∗ ]
−B

)
1ρ>c∗ .

Substituting x∗
+ := −(x0−E[ρB])

k(c∗)1/(1−α)−1
into the above and noting that k(c∗) ≥ infc>0 k(c) > 1 under the

assumption, we have

x∗
+ − (x0 − E[ρB])

E[ρ1ρ>c∗ ]
−B =

−(x0 − E[ρB])

E[ρ1ρ>c∗ ]

k(c∗)1/(1−α)

k(c∗)1/(1−α) − 1
−B

=

(
aE[ρB]

E[ρ1ρ>c∗ ]
−B

)
− ax0

E[ρ1ρ>c∗ ]
,

where a := k(c∗)1/(1−α)

k(c∗)1/(1−α)−1
> 1. Therefore the leverage L as a function of the greed G is

L =
E(ρX∗

l )

x0

=
1

x0

E

[
ρ

(
x∗
+ − (x0 − E[ρB])

E[ρ1ρ>c∗ ]
−B

)
1ρ>c∗

]
=

1

x0

E (aE[ρB]− E[ρB1ρ>c∗ ])− a

≥ (a− 1)
E(ρB)

x0

− a

= (a− 1)G− a → +∞ as G → +∞.

This proves (i). Next, the conclusion (ii) is evident.
Finally, the potential loss l is

l = E

(
ρX∗

l

x0

∣∣∣X∗ < B

)
= E

(
ρX∗

l

x0

∣∣∣ρ > c∗
)

=
E(

ρX∗
l

x0
)

P (ρ > c∗)

≥ (a− 1)G− a

P (ρ > c∗)
→ +∞ as G → +∞,
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where we have utilized the fact that P (ρ > c∗) is independent of G. This proves (iii). 2

4.2 The case when α < β

Next let us consider the case where α < β, which implies that the pain associated with a substantial
loss is much larger than the happiness with a gain of the same magnitude. So the agent is loss averse
in a larger scale than the case when α = β and k > 1. Note that α < β is supported by some
empirical evidences. For instance, Abdellaoui (2000) estimates the median of α and β to be 0.89
and 0.92 respectively.

No optimal solution, as explicit as that with the case α = β, of the CPT model (2.6) has been
obtained in Jin and Zhou (2008) or in any other literature for the case α < β. Hence we have to
first solve (2.6) before carrying out an asymptotic analysis on greed.

As discussed earlier we are interested only in the case when the agent is sufficiently greedy,
namely, when x̃0 ≡ x0 − E[ρB] < 0.

Define a function h(c) = kw−(1−F (c))
(E[ρ1ρ>c])β

, c > 0. The point

(4.4) c1 := sup{c′ ∈ [0,+∞) : h(c′) = inf
c∈[0,+∞)

h(c)},

where we convent sup ∅ := −∞, will be crucial in solving Problem (4.1) or (2.6). Notice also that
c1 depends only on the market (i.e., the pricing kernel ρ) and the agent behavioral parameters on
losses (i.e. w−(·), k and β), and is independent of the reference point or the level of greed G.

The following result characterizes the well-posedness of the problem in terms of the function
h(c).

Proposition 2. Problem (4.1), and therefore Problem (2.6), is well-posed if and only if lim infc→+∞ h(c) >

0.

Proof: First of all, by Jin and Zhou (2008), Proposition 5.1, Problem (2.6) is well-posed if and
only if Problem (4.1) is well-posed. Now, assume that lim infc→+∞ h(c) = 0. For any M > 0, fix
x+ > x̃+

0 such that φ(1)1−αxα
+ > 2M . On the other hand, there is c > 1 such that h(c)(x+−x̃0)

β <

M . Hence, v(c, x+) > φ(c)1−αxα
+ −M ≥ φ(1)1−αxα

+ −M > M . So problem (4.1) is ill-posed.
Conversely, if lim infc→+∞ h(c) > 0, then there are ϵ > 0 and N > 0 so that h(c) > ϵ ∀c > N .

However, hN := inf0≤c≤N h(c) > 0. Hence h := inf0≤c<+∞ h(c) > 0. Consequently, for any
feasible (c, x+),

v(c, x+) ≤ φ(+∞)xα
+ − h(x+ − x̃0)

β

< φ(+∞)xα
+ − hxβ

+

≤ sup
x≥0

{φ(+∞)xα − hxβ} < +∞.
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So (4.1) is well-posed. 2

The next result excludes (c, x+) = (0, 0) from being an optimal solution of (4.1).

Proposition 3. If lim infc→+∞ h(c) > 0, then (0, 0) can not be optimal for Problem (4.1).

Proof: It is easy to check that

1

k
h′(c) =

−w′
−(1− F (c))F ′(c)(E[ρ1ρ>c])

β − w−(1− F (c))β(E[ρ1ρ>c])
β−1[−cF ′(c)]

(E[ρ1ρ>c])2β

= − F ′(c)

(E[ρ1ρ>c])β+1

(
w′

−(1− F (c))E[ρ1ρ>c]− w−(1− F (c))βc
)
.

Since w′
−(1−F (c)) ≥ 1, E[ρ1ρ>c] → Eρ > 0, and w−(1−F (c)) ≤ 1 as c ↓ 0, we have h′(c) < 0

when c is sufficiently close to 0. So h(c) is strictly decreasing in a neighborhood of 0. This means
there exists a c > 0 such that h(c) < h(0), hence v(c, 0) = −h(c)(−x̃0)

β > −h(0)(−x̃0)
β =

v(0, 0). This shows (0, 0) can not be optimal. 2

To find an optimal solution to (4.1), we first fix c > 0 and then find the optimal x+ for
v(c, x+) = φ(c)1−α

(
xα
+ − k(c)(x+ − x̃0)

β
)
.

Lemma 2. For any c ∈ (0,+∞), we have supx∈[0,+∞)

(
xα − k(c)(x− x̃0)

β
)
< +∞, and there

exists a unique maximizer

x(c) = argmaxx∈[0,+∞)

(
xα − k(c)(x− x̃0)

β
)
.

Moreover, we have the following relationship

k(c) =
x(c)α−1α

(x(c)− x̃0)β−1β
,

and hence x(c) is continuous in c.

Proof: Denote f(x) = xα − k(c)(x − x̃0)
β , x ≥ 0. Since α < β and k(c) > 0, we have

limx→+∞ f(x) = −∞; and hence supx∈[0,+∞) f(x) < +∞.
Now, f ′(x) = αxα−1 − βk(c)(x− x̃0)

β−1. Denoting k̃ := βk(c)/α > 0, we have

f ′(x) = 0 ⇔ xα−1 = k̃(x− x̃0)
β−1

⇔ (α− 1) ln x = ln k̃ + (β − 1) ln(x− x̃0)

⇔ (1− α) ln x− (1− β) ln(x− x̃0) = − ln k̃.

Set g(x) = (1−α) ln x− (1−β) ln(x− x̃0), x > 0. Then g′(x) = 1−α
x

− 1−β
x−x̃0

> β−α
x

> 0 ∀x > 0.
Together with the facts that g(0) = −∞, g(+∞) = +∞, we conclude that f ′(x) = 0 admits a
unique solution x = x(c) > 0 which is the unique maximizer of f(x) over x ≥ 0. Moreover,
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the expression of k(c) is derived from g′(x(c)) = 0, and the continuity of x(c) is seen from the
standard implicit function theorem. 2

Recall the number c1 defined in (4.4). In the proof of Proposition 3 we have established that
h(c) strictly decreases in a neighborhood of 0; hence c1 > 0 if c1 ̸= −∞. Meanwhile, the following
result identifies c1 = ±∞, or equivalently, lim infc→+∞ h(c) = infc≥0 h(c), as a pathological case.

Proposition 4. If lim infc→+∞ h(c) = infc≥0 h(c), then Problem (4.1) admits no optimal solution
for any x̃0 < 0.

Proof: If lim infc→+∞ h(c) = infc≥0 h(c), then for any c0 ∈ (0,+∞), we can find c > c0 such
that h(c) ≤ h(c0). Hence for any x ≥ 0,

v(c0, x) ≤ v(c0, x(c0))

= φ(c0)
1−αx(c0)

α − h(c0)(x(c0)− x̃0)
β

< φ(c)1−αx(c0)
α − h(c)(x(c0)− x̃0)

β

≤ φ(c)1−αx(c)α − h(c)(x(c)− x̃0)
β

= v(c, x(c)),

where x(·) is the maximizer as specified in Lemma 2 and the last inequality is due to the definition
of x(c). So if there exists any optimal solution pair (c∗, x∗

+), then c∗ = +∞. The constraints in
Problem (4.1) dictate that x∗

+ = x̃0 < 0, which contracts the requirement that x∗
+ ≥ 0. 2

Proposition 5. If lim infc→+∞ h(c) > 0 and lim infc→+∞ h(c) > infc≥0 h(c), then Problem (4.1)
admits optimal solutions when the agent is sufficiently greedy. Moreover, any optimal solution
(c∗, x(c∗)) of (4.1) must satisfy c∗ ∈ [c1,+∞).

Proof: First note that the agent being sufficiently greedy is equivalent to −x̃0 > 0 being
sufficiently large. In this case, (c, x+) = (+∞, x̃0) is not feasible. On the other hand, (c, x+) =

(0, 0) is not optimal either according to Proposition 3. So we only need to consider c ∈ (0,+∞).
Given lim infc→+∞ h(c) > infc≥0 h(c), we have c1 ∈ [0,+∞). For any c < c1, we see

that φ(c) < φ(c1), h(c) ≥ h(c1). The same analysis as in the proof of Proposition 4 yields
v(c, x(c)) < v(c1, x(c1)); hence the optimal c must be in [c1,+∞) if it exists.

Denote h1 = lim infc→+∞ h(c) > h(c1). Then

lim sup
c→+∞

v(c, x(c)) ≤ max
x∈[0,+∞)

[
φ(+∞)1−αxα − h1(x− x̃0)

β
]
.

By Lemma 2, we can find x∗ = argmaxx∈[0,+∞)

[
φ(+∞)1−αxα − h1(x− x̃0)

β
]
. Notice that x∗

depends on x̃0. Setting k̃ := h1

φ(+∞)1−α , then Lemma 2 gives

k̃ =
α

β

xα−1
∗

(x∗ − x̃0)β−1
=

α

β

(
x∗

x∗ − x̃0

)α−1

(x∗ − x̃0)
α−β.

18



Since k̃ is independent of x̃0 and 0 < α < β < 1, we conclude that x∗
x∗−x̃0

→ 0, or equivalently x∗
−x̃0

→
0 as −x̃0 → +∞.

Denote m = (φ(+∞)/φ(c1))
(1−α)/α > 1 and n = (h1/h(c1))

1/β > 1. Then

lim sup
c→+∞

v(c, x(c)) ≤ φ(+∞)1−αxα
∗ − h1(x∗ − x̃0)

β

= φ(c1)
1−α(mx∗)

α − h(c1)(nx∗ − nx̃0)
β

= φ(c1)
1−α(mx∗)

α − h(c1)(mx∗ − x̃0)
β

+h(c1)
[
(mx∗ − x̃0)

β − (nx∗ − nx̃0)
β
]

≤ v(c1, x(c1)) + h(c1)
[
(mx∗ − x̃0)

β − (nx∗ − nx̃0)
β
]
.

We have proved that lim−x̃0→+∞
x∗

−x0
= 0; so when −x̃0 is large enough, h(c1)[(mx∗ − x̃0)

β −
(nx∗ − nx̃0)

β] < 0. In other words, v(c, x(c)) never achieves its infimum when c is sufficiently
large. On the other hand, we have shown that any c < c1 is not a maximizer of v(c, x(c)) either.
Since v(c, x(c)) is continuous of c, it must attain its minimum at some c∗ ∈ [c1,+∞) for any fixed,
sufficiently large −x̃0 or sufficiently large greed G. 2

Notice that Problem (4.1) may have multiple optimal solutions. It is sometimes convenient to
consider the “maximal solution” of (4.1), denoted by (c∗, x∗

+), which is one of the optimal solutions
satisfying

c∗ = sup{c ∈ [0,+∞) : (c, x+) solves Problem (4.1)}.

The following result gives a complete solution to Problem (2.6) for the case when α < β and
the reference point B (or equivalently the greed G) is sufficiently large.

Theorem 5. Assume that α < β and x0 < E[ρB].

(i) If lim infc→+∞ h(c) > 0 and lim infc→+∞ h(c) > infc≥0 h(c), then the CPT portfolio se-
lection model (2.6) admits an optimal solution if the agent’s greed G is sufficiently large.
Moreover, if (c∗(G), x∗

+(G)) is any maximal solution of Problem (4.1), then the optimal ter-
minal wealth is

X∗(G) =
x∗
+(G)

φ(c∗(G))

(
w′

+(F (ρ))

ρ

)1/(1−α)

1ρ≤c∗(G) −
x∗
+(G)− (x0 − E[ρB])

E[ρ1ρ>c∗(G)]
1ρ>c∗(G) +B.

(ii) If lim infc→+∞ h(c) > 0 and lim infc→+∞ h(c) = infc≥0 h(c), then (2.6) is well-posed, but it
does not admit any optimal solution.

(iii) If lim infc→+∞ h(c) = 0, then (2.6) is ill-posed.

Proof: It follows from Propositions 2, 4, and 5. 2

The following result is a counterpart of Theorem 3, which presents an easy-to-check sufficient
condition for the assumption in Theorem 5-(i).
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Theorem 6. Assume that α < β and x0 < E[ρB]. If there exists γ < β such that lim infp↓0
w′

−(p)

pγ−1 >

0, then (2.6) admits an optimal solution for any greed G, which is expressed explicitly in Theorem
5-(i) via a maximal solution (c∗(G), x∗

+(G)) of (4.1).

Proof: Under the assumptions of Theorem 6, a proof similar to that of Lemma 1-(ii) shows
that lim infc→+∞ h(c) = +∞. Hence, trivially, lim infc→+∞ h(c) > 0 and lim infc→+∞ h(c) >

infc≥0 h(c). So Problem (2.6) is well-posed.
Next we show that there exists an optimal portfolio for any level of greed. To this end, we have

for any fixed x̃0 < 0:

lim sup
c→+∞

v(c, x(c)) ≤ lim sup
c→+∞

{
φ(+∞)1−αx(c)α − h(c)(x(c)− x̃0)

β
}

≤ lim sup
c→+∞

{
φ(+∞)1−α[(x(c)− x̃0)

β + 1]− h(c)(x(c)− x̃0)
β
}

≤ φ(+∞)1−α − lim inf
c→+∞

{(h(c)− φ(+∞)1−α)[(x(c)− x̃0)
β}

≤ φ(+∞)1−α − lim inf
c→+∞

{(h(c)− φ(+∞)1−α)(−x̃0)
β}

= −∞,

yielding that v(c, x(c)) is a coercive function in c. Thus it must attain a minimum at some c∗ ∈
[c1,+∞), proving the desired result. 2

Now we set out to derive the asymptotic properties of the optimal solutions for Problem (4.1)
when G → +∞. For a fixed x̃0, define

c∗(x̃0) = sup{c ∈ [c1,+∞) : (c, x(c)) solves Problem (4.1)};

namely (c∗(x̃0), x(c
∗(x̃0))) is a maximal solution of Problem (4.1).

Proposition 6. Under the conditions of Theorem 5-(i) or Theorem 6, we have lim−x̃0→+∞ c∗(x̃0) =

c1, lim−x̃0→+∞ x(c∗(x̃0)) = +∞, and lim−x̃0→+∞
x(c∗(x̃0))

−x̃0
= 0.

Proof: Recall that c∗(x̃0), when it exists, must be greater or equal to c1. Hence to prove the first
limit, it suffices to show that for any δ > 0, supc∈[c1+δ,+∞) v(c, x(c)) < v(c1, x(c1)) when −x̃0 is
large enough.

Define h2 = infc∈[c1+δ,+∞) h(c). By the assumption that lim infc→+∞ h(c) > infc≥0 h(c),
we know there exists cM > c1 + δ such that h(c) > h(c1 + δ) + 1 ∀c ≥ cM . Hence h2 =

infc∈[c1+δ,cM ] h(c) > h(c1). Then

sup
c∈[c1+δ,+∞)

v(c, x(c)) ≤ sup
x∈[0,+∞)

[
φ(+∞)1−αxα − h2(x− x̃0)

β
]
.

An argument completely parallel to that in proving Proposition 5 reveals that

sup
c∈[c1+δ,+∞)

v(c, x(c)) < v(c1, x(c1))
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when −x̃0 is sufficiently large.
Next, by Lemma 1, we have

k(c∗(x̃0)) =
α

β

x(c∗(x̃0))
α−1

(x(c∗(x̃0))− x̃0)β−1
=

α

β

(
x(c∗(x̃0))

x(c∗(x̃0))− x̃0

)α−1

(x(c∗(x̃0))− x̃0)
α−β.

However, lim−x̃0→+∞ k(c∗(x̃0)) = k(c1) > 0; hence k(c∗(x̃0)) ∈ [k(c1)/2, 2k(c1)] when −x̃0 is
large enough. As a result, lim−x̃0→+∞

x(c∗(x̃0))
x(c∗(x̃0))−x̃0

= 0 or lim−x̃0→+∞
x(c∗(x̃0))

−x̃0
= 0.

Finally, we can rewrite

k(c∗(x̃0)) =
α

β

(
x(c∗(x̃0))

x(c∗(x̃0))− x̃0

)β−1

x(c∗(x̃0))
α−β.

By the proved fact that lim−x̃0→+∞
x(c∗(x̃0))

x(c∗(x̃0))−x̃0
= 0 and that α < β, we conclude that

lim−x̃0→+∞ x(c∗(x̃0)) = +∞. 2

Corollary 1. We have

lim
G→+∞

c∗(G) = c1, lim
G→+∞

x∗
+(G) = +∞, lim

G→+∞

x∗
+(G)

G
= 0.

Proof: This is evident given that −x̃0 → +∞ is equivalent to G → +∞. 2

Theorem 7. Under the assumptions of Theorem 5-(i) or Theorem 6, we have the following conclu-
sions:

(i) The leverage L → +∞ as the greed G → +∞.

(ii) The asymptotic probability of ending with gains is P (ρ < c1) > 0 as G → +∞.

(iii) The potential loss rate l → +∞ as the greed G → +∞.

Proof: First of all, (ii) is evident as limG→+∞ c∗(G) = c1.
Recall

X∗
l (G) =

(
x∗
+(G)− (x0 − E[ρB])

E[ρ1ρ>c∗(G)]
−B

)
1ρ>c∗(G).

Hence, the leverage L as a function of the greed G is

L(G) =
E(ρX∗

l (G))

x0

=
x∗
+(G) + E(ρB)

x0

− 1

x0

E[ρB1ρ>c∗(G)]

=
x∗
+(G)

x0

+
1

x0

E[ρB1ρ≤c∗(G)]

→ +∞ as G → +∞.
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On the other hand, the potential loss l is

l(G) = E

(
ρX∗

l (G)

x0

∣∣∣X∗(G) < B

)
= E

(
ρX∗

l (G)

x0

∣∣∣ρ > c∗(G)

)
=

E(
ρX∗

l (G)

x0
)

P (ρ > c∗(G))

→ +∞ as G → +∞.

2

One of the most interesting implications of the preceding result is that, although for each fixed
level of greed G, the probability of ending with good states does indeed depend on G (which is
unlike the case when α = β), the asymptotic probability when G gets infinitely large is fixed
and strictly positive. Hence, as with the α = β case, the agent gambles on winning states with a
positive probability of occurrence, even if she has an exceedingly strong greed. However, to do so
she needs to take an incredibly high level of leverage and to risk catastrophic potential losses.

5 Models with Losses and/or Leverage Control

We have established that both leverage and potential losses will grow unbounded if human greed
is allowed to grow unbounded. This suggests that, from either a loss-control viewpoint of an
individual investor or from a regulatory perspective, one could contain the greed – if indirectly –
by imposing a priori bounds on losses and/or on the level of leverage.

A CPT model with loss control can be formulated as follows:

(5.1)

Maximize V (X −B)

subject to


E[ρX] = x0, X ≥ B − a

X is FT − measurable and lower bounded,

where a is a constant representing an exogenous cap on the losses allowed. This model is inves-
tigated in full in a companion paper Jin, Zhang and Zhou (2009). It is shown that the optimal
wealth profile, in its greatest generality, depends on three – instead of two – classes of states of the
world, with an intermediate class of states between the good and the bad. A moderate loss will be
incurred in the intermediate states whereas the maximum allowable loss on the bad states. So the
agent will still take leverage if her reference point is high, but she will be more cautious in doing
so – by differentiating the loss states and controlling (indirectly) the leverage level.

Another possible model is to directly control the leverage instead of the loss, formulated as
follows:
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(5.2)

Maximize V (X −B)

subject to


E[ρX] = x0, L ≤ b

X is FT − measurable and lower bounded,

where L is the leverage and b is a pre-specified level. Notice that this model is not entirely the
same as (5.1), because the correspondence between the loss and the leverage level depends on the
specific form of a wealth profile. On the other hand, different agents may have different priorities
in choosing their model specifications. For example, a regulator may be more concerned with
the leverage level whereas an individual firm may stress on loss control. One could also impose
explicit bounds on both the losses and the leverage.

One might argue that it would be simpler and more reasonable to introduce a bound directly
on the level of greed (i.e. on the reference point according to our definition of greed), if the whole
purpose is to contain the human greed within a reasonable range. The problem is that the reference
point is an exogenous parameter which cannot be constrained in an optimization problem. More
importantly, in reality an agent may not be aware of how high her reference point is – it is only
implied by her risk attitude. Furthermore, a reference point does not stand still; it is a random
variable depending on the states of the world. Indeed, it may be even dynamically changing (which
is not modelled in this paper). Therefore, it does not seem to be sensible or feasible to directly pose
an exogenous bound on reference point/greed.

6 Concluding Remarks

When one applies the neoclassical theory (e.g. utility maximization) to portfolio choice the results
are to advise what people ought to do; namely they provide investment advices on the best invest-
ment strategies assuming that the investor is rational. In contrast, portfolio selection models based
on behavioral theory (e.g. CPT) predict what people actually do; this is because irrationality is
inherent in human behaviors. Therefore, the gambling behavior stipulated in an optimal strategy
(see Theorems 1 and 5) tells a typical CPT agent’s trading pattern, rather than an investment guide.
In the same spirit, the main results of the paper, Theorems 4 and 7, describes what would happen
should greed be allowed to expand infinitely. Neoclassical and behavioral theories hence fulfil
separate but complementary needs in decision-making.

In this paper we have defined greed via the reference point under CPT. The underlying portfo-
lio choice model is general enough to support the generality of the conclusions drawn. That said,
the reference point (and CPT for that matter) is certainly by no means the only determinant of the
notion of greed. As Shefrin (Shefrin and Zhou 2009) points out, the factors14 contributing to greed

14See also Shefrin (2002, 2008) for detailed discussions on these factors in pieces.
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include “excessive (or unrealistic) optimism; overconfidence in the sense of underestimating risk;
high aspiration levels (high A in SP/A theory15) or high rho (the reference point) in prospect theory;
strong hope/weak fear as emotions (as expressed in SP/A theory through the weighting function,
which corresponds to significant curvature in the weighting functions for cumulative prospect the-
ory)”. These factors (not necessarily all related to CPT) also warrant investigations in order to fully
understand and deal with greed. In particular, the curvature of probability distortion (weighting)
functions in CPT could be another dimension in analyzing greed, since greed is typically char-
acterized by delusive and deceiving hope and fear, modelled through the exaggerations of small
chances of huge gains/losses, namely the probability distortions. Some of the results in Section 4,
albeit rather preliminary, shows the promise of this direction.

Having said all these, it is important to study how these factors contribute to the conceptual-
ization and understanding of greed one at a time, and then in combination. It is our hope that a
detailed analysis through reference point/CPT in this paper will motivate more quantitative behav-
ioral research on human greed.

15Lopes (1987).
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