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We develop an approach to solve Barberis (2012)’s casino gambling model in which a gambler whose pref-

erences are specified by the cumulative prospect theory (CPT) must decide when to stop gambling by a

prescribed deadline. We assume that the gambler can assist their decision using an independent randomiza-

tion. The problem is inherently time-inconsistent due to the probability weighting in CPT, and we study

both precommitted and näıve stopping strategies. We turn the original problem into a computationally

tractable mathematical program, based on which we devise an algorithm to compute optimal precommitted

rules which are randomized and Markovian. The analytical treatment enables us to confirm the economic

insights of Barberis (2012) for much longer time horizons, and to make additional predictions regarding a

gambler’s behavior, including that with randomization they may enter the casino even when allowed to play

only once and that it is prevalent that a näıf never stops loss.

Key words : casino gambling; cumulative prospect theory; optimal stopping; probability weighting; time
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1. Introduction

Tversky and Kahneman (1992)’s cumulative prospect theory (CPT) is the leading descriptive

theory of how people make decisions under risk. Its predictions are thus of paramount interest.

Barberis (2012) introduces a simple multi-period setting for studying the dynamic implications of

CPT. Specifically, the author proposes a casino gambling model to study the optimal timing to quit

gambling and leave the casino, and derives two key economic insights: (1) a CPT gambler may be

willing to enter the casino even though its bets offer neither positive expected values nor skewness

1
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because, by implementing an appropriate stopping strategy, he would be able to build a positively

skewed final winning amount that would be favored by the underlying probability weighting in

CPT; (2) there is an inherent time-inconsistency due to the dynamically changing strength of

probability weighting on a same event: the gambler may deviate completely from his initial stopping

strategy as he gambles along, and his eventual stopping behavior depends on whether he is aware

of this time-inconsistency and whether he is able to commit to his original plan.1

Barberis (2012) considers a finite horizon model, assuming the gambler can take a sequence of

up to T gambles. The model is solved using exhaustive search across Markovian stopping strate-

gies. Barberis (2012) focuses on the case of T = 5 with which the paper discusses the economic

implications of CPT in detail. However, it is not clear whether these implications continue to hold

for higher values of T . The exhaustive search method can not2 yield the answer as the number of

admissible strategies is exponential in T 2.3 In general, in order to better understand the implica-

tions of a model, it is important to have a systematic approach to solve it, not necessarily in an

analytically closed form, but in a computationally efficient way.4 Not only can we then obtain opti-

mal solutions for arbitrary values of parameters, but we may gain (likely more profound) economic

insights from the model by post-optimality analyses.

The current paper achieves this aim and develops an analytical treatment of the Barberis (2012)

casino gambling model. Our main contribution is to derive a new algorithm for solving the problem

and determining the CPT individual’s behavior. Our algorithm works in a relaxed setting where

the gambler is allowed to use an independent randomization when deciding whether to stop or

to continue. The algorithm can be implemented for significantly higher values of T than those

attainable with Barberis’ exhaustive search method. We show that the behavior documented in

Barberis (2012) for T = 5 continues to hold for higher values of T . Further, we undertake compar-

ative statics analysis for the parameters in the classical CPT preferences specification, and explore

the importance of randomization for entering the casino and for playing on.

1 Barberis (2012) discusses three types of gamblers, following the original classification of Strotz (1955): a näıve
gambler who is unaware of the time-inconsistency and changes his strategy all the time; a precommitted gambler
who is aware of time-inconsistency and can commit to his initial plan; and a sophisticated gambler who is aware of
time-inconsistency yet unable to commit, and at each time takes the future selves’ disobedience into account when
devising an optimal strategy.

2 We ran exhaustive search on a desktop with Intel Core i5-4590/CPU 3.30GHz/RAM 8.00GB for different T ’s while
keeping the other parameters same as Barberis (2012)’s. The running times for T = 5,6,7 were 39 seconds, 771 seconds
and 27 hours, respectively. We were unable to obtain the solution for T = 8 due to lack of memory, with the running
time estimated to be 300 days.

3 The number of nodes is T (T+1)
2

in a binomial tree of horizon T , and at each node there is a binary choice of {stop,

continue}. Hence the total number of strategies is 2
T (T+1)

2 .

4 Consider, e.g., the simplex method for linear programs or the dynamic programming formulation for optimal control
problems.
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The main technical hurdle to solve the casino model is probability weighting. Barberis (2012)

acknowledges that the nonlinear probability weighting involved in CPT makes it “very difficult” to

solve the problem analytically, and “the problem has no known analytical solution for general T”

(p. 42). The two main approaches in the classical optimal stopping theory – dynamic programming

(variational inequalities) and martingale method – both fail under probability weighting: the former

does because of the time-inconsistency, and the latter does because of the absence of a “tower

property” with respect to the weighted probability.

He et al. (2017, 2019a,b) are probably the first series of papers that aim at an analytical treat-

ment of the casino model, albeit in the infinite time horizon.5 The main idea of these papers

consists of two deeply intertwined steps: (1) search the optimal probability distribution of the final

winning/losing amount upon leaving the casino instead of the optimal time to leave; (2) once the

optimal distribution is found, recover the optimal time that generates it.6 Both steps call for a

complete characterization of the set of all the admissible distributions, and the second step is the

discrete-time version of the eminent Skorokhod embedding theorem which in the casino setting is

solved in He et al. (2019b). The main thrust to make this idea work is to permit randomization,

namely the gambler can flip an independent, possibly biased, coin to assist his decision each step

of the way. The probabilities of the head of the coin are endogenous and dynamically changing;

thus they are part of the final solution. Mathematically, randomization convexifies the aforemen-

tioned set of admissible distributions, which in turn makes the Skorokhod embedding work. The

randomization of decisions is a key feature when studying agents with CPT preferences, as dis-

cussed independently by Henderson et al. (2017). He et al. (2017, 2019a) also allow path-dependent

strategies, that is, the stopping decision is made based on the whole betting history instead of just

the current winning/losing amount. They further show that allowing path-dependent strategies

or randomized ones strictly improve the optimal CPT values. Based on these analyses, He et al.

(2019a) turn the casino model into an infinite dimensional mathematical program that can be

solved fairly efficiently. Most of the gambler’s behaviors – those of a precommitter and of a näıf

– implied from the solutions reconcile qualitatively with Barberis (2012)’s results; but there are

also new findings. For example, it is revealed that, for most empirically relevant CPT parameter

estimates, a precommitted gambler lets gain run while stops loss, but a näıve one almost surely

does not stop at any loss level.

As noted, He et al. (2017, 2019a) deal with the infinite horizon gambling model. There are

important reasons to study the finite horizon model under CPT preferences, despite the existing

5 Here by “analytical treatment” we mean an optimization analysis not based on heuristics or on brute force such as
an exhaustive search.

6 This idea was first put forth by Xu and Zhou (2012) for a continuous-time optimal stopping model featuring
probability weighting. There is considerable difficulty to adapt this idea to the discrete-time setting.
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results for the infinite horizon counterpart. Conceptually, the finite horizon problem approximates

the reality much better, as a gambler clearly will not be able to play arbitrarily and indefinitely

long. Also, the original work of Barberis (2012) considers T = 5 and hence we need to solve the

finite horizon model in order to be able to make a direct comparison. It is worth noting that

solutions to the finite horizon case can not be recovered from those of the infinite horizon case by

a simple truncation: if τ is optimal for the latter, then, typically, τ ∧T will not be optimal for the

former.

Methodologically, the finite horizon case is significantly more complex. It is well acknowledged

that optimal stopping in a finite horizon is fundamentally more difficult than its infinite horizon

counterpart, mainly because value function of the former has both time and spatial variables while

the latter has only spatial variables. In the infinite time horizon setting in which the accumulated

winning/losing amount is modelled by a symmetric random walk S, He et al. (2019b) show that for

any centered probability measure µ on the set of integers Z, there exists a randomized stopping time

τ such that Sτ ’s distribution is µ.7 As discussed previously, this is the key theoretical underpinning

for the new approach. Unfortunately, this result is no longer true if the stopping time is constrained

by a pre-specified deadline. Indeed, additional conditions are required for measures that can be

embedded by uniformly bounded stopping times. One of the technical contributions of this paper

is to identify explicitly these conditions, which in turn enables us to reformulate the original casino

model into a mathematical program whose number of constraints is of the order of T and, hence,

can be efficiently solved.

Once we have an algorithm to solve the gambling model for any parameter values, we are then

able to compare our results with those of Barberis (2012)’s. In particular, we consider the case that

is solved and discussed in Barberis (2012) with T = 5 and find that the respective stopping strategies

for a precommitter are identical except in two time–state instances in which our decisions are to

stop with very small probabilities (0.00864 and 0.0368 respectively) whereas Barberis’ are just to

continue. Qualitatively, both strategies are of the so-called loss-exit type, namely, they continue

in gains but stop after having accumulated sufficient amounts of losses. With randomization, our

optimal CPT value improves, if slightly, over Barberis’. Likewise, the respective näıve strategies

are the same save for one time–state instance in which ours is to stop with a probability of 0.179

while Barberis’ is to continue. Our solution, however, enables us to look beyond the relatively

short horizon of T = 5. Indeed, we carry out numerical experiments for different values of T up to

T = 20, and confirm that the earlier insights of Barberis (2012) hold more generally, including that

the interplay between the utility function, probability weighting and loss aversion dictates various

gambling behaviors.

7 In the terminology of Skorokhod embedding theorem, we say τ embeds µ in S.
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Note that our analytical treatment relies on the introduction of randomization in our model,

as randomization convexifies the optimization problem. Barberis (2012) does not allow random-

ization, for which our approach would fail. However, our solution would provide a well-founded

relaxation heuristic for solving a casino model without randomization: we first relax the problem

by introducing randomization, and then, for each time-state pair, round up or round down the

probability of stopping to 1 (which means stop) or to 0 (which means continue).

Our approach makes it possible to analyze and understand the impacts of some key attributes

of the model in general terms. For example, Barberis (2012) argues that a gambler may be willing

to enter a casino because, by implementing a loss-exit strategy, he may be able to generate a

positively skewed probability distribution of the final accumulated gain/loss which has a positive

CPT preference value. However, he will need to spend time building such a skewed distribution,

which requires a sufficiently large T . We show, however, that the same gambler who would have

demanded a long horizon for agreeing to enter the casino, will enter even if he is allowed to play

only once (i.e., T = 1), provided that he can flip a coin to decide if he plays or not. The reason

for this is that, with randomization, the gambler can design a coin right away with a very small

probability for both a gain and a loss. If the overweighing on gains sufficiently outweighs that on

losses then the gambler will enter.

We also study the behaviors of a näıve gambler with various parameter specifications and a longer

time horizon (T = 10). We find that, unless he does not enter the casino, his behavior is consistently

of gain-exit type, i.e., he stops gain but lets loss run, reminiscent of the disposition effect in security

trading (Odean 1998). In particular, he never stops loss and gambles “until the bitter end”. This

gamble-until-the-bitter-end behavior is derived by Ebert and Strack (2015) in a model in which a

näıve gambler can construct arbitrarily small random payoffs. Because he prefers “skewness in the

small”, he never stops gambling. Henderson et al. (2017), employing the approach developed in Xu

and Zhou (2012), investigate a stylized continuous-time model and show that a näıve gambler may

stop with a positive probability if she is allowed to randomize, which complements and counters

the findings in Ebert and Strack (2015). Both Ebert and Strack (2015) and Henderson et al. (2017)

rely on the crucial feature of their models that allows the gambler to construct arbitrarily small

random payoffs. This feature is absent in our discrete-time model, in which the gambler cannot

construct strategies with arbitrarily small random payoffs due to the minimal stake size fixed to

be $1. Hence, their results are not applicable to our setting. Our finding therefore suggests that

the gamble-until-the-bitter-end phenomenon is probably more prevalent of a näıf’s behavior.

The paper proceeds as follows. In Section 2, we formulate a casino gambling model under CPT

as an optimal stopping problem and discuss why we allow randomization in our model. In Section

3, we develop the key step in our approach to solve the gambling model: characterizing the set
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of probability distributions of all possible accumulated winning/losing amounts upon leaving the

casino. In Section 4, we present a mathematical program that is equivalent to the casino model,

and then report the results of a numerical example which is studied in Barberis (2012). We discuss

various implications and predictions of our model in Section 5. Finally, we conclude the paper by

Section 6. Proofs are placed in Appendices.

2. The Model

In this section we first highlight the key ingredients of Tversky and Kahneman (1992)’s CPT, then

formulate the casino gambling model in a finite time horizon as an optimal stopping problem, and

finally discuss the reasons why we make randomization available in our model.

2.1. Cumulative prospect theory

There are four key features of CPT that differentiate it from the classical expected utility theory:

1) individuals derive utility from gains and losses with respect to a reference point in wealth, rather

than from the absolute amount of wealth itself; 2) individuals are loss-averse, namely they are more

sensitive to losses than to gains; 3) individuals are risk-averse in gains and risk-loving in losses;

and 4) individuals exaggerate extremely small probabilities of extremely large gains and losses.

Accordingly, in CPT the utility function is

u(x) =

{
u+(x− k), x≥ k,
−λu−(k−x), x < k,

where k is the reference point, u+(·) and u−(·) are both concave functions and λ> 1. This renders

an overall S-shaped utility function u(·) that is concave (risk-averse) in the gain region x≥ k and

convex (risk-loving) in the loss region x< k. Moreover, λ> 1 yields that, for the same magnitude

of a gain and a loss, the agent is more sensitive to the latter, reflecting loss aversion. Tversky and

Kahneman (1992) propose the following parametric form of u(·):

u(x) =

{
(x− k)α+ , x≥ k,
−λ(k−x)α− , x < k,

(1)

where 0<α± ≤ 1 and λ> 1; see the left panel of Figure 1 for an illustration of this type of function.

CPT uses probability weighting (or distortion) functions to capture the exaggeration of the tail

distributions. An inverse S-shaped weighting function is first concave and then convex in the domain

of probabilities. Such a weighting function overweights both tails of a probability distribution,

reflecting the exaggeration of extremely small probabilities of extremely large gains and losses.

Tversky and Kahneman (1992) suggest a parametric form of a weighting function w(·):

w(p) =
pδ

(pδ + (1− p)δ) 1
δ

, (2)

where 0< δ ≤ 1; see the right panel of Figure 1 for an illustration. Note that δ = 1 means that no

weighting is applied.
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Figure 1 The left panel graphs two S-shaped utility functions (1) with α+ = α− = 0.5, λ= 1.5 and

α+ = α− = 0.88, λ= 2.25, respectively. The right panel depicts three inverse S-shaped probability weighting

functions (2) with δ= 0.4, δ= 0.61, and δ= 0.69, respectively.

2.2. Formulation of a casino gambling model

We now reformulate Barberis (2012)’s model of casino gambling in a finite time horizon [0, T ],

where T ∈ Z+ := {1,2,3, ...} is given. The gambling process proceeds as follows. At time 0, the

gambler is offered a fair bet, e.g., one with a roulette wheel: win or lose $1 with equal probability.8

If the gambler decides not to play the bet, then he will not even enter the casino. If the gambler

enters and takes the bet, then the bet outcome is played out at time 1, leading to either a win or a

loss of $1 at time 1. At that time the gambler is offered the same bet again and he decides whether

to play. If he declines the bet, then the game is over and the gambler leaves the casino with $1 gain

or loss. This process continues in the same fashion until time T : the bet is offered and played out

repeatedly until either the first time the gambler declines the bet, or at time T when the gambler

must quit gambling and leave. The accumulated gain/loss process can be represented as a binomial

tree; see Figure 2. Therein, each node is marked by a pair (t, x), where t∈N := {0,1,2, . . .} stands

for the time and x ∈ Z := {0,±1,±2, . . .} the amount of cumulative gains or losses. For example,

the node (2,−2) signifies a cumulative loss of $2 at time 2. The process has a terminal time T but

the gambler may quit at some earlier time τ ≤ T .

The gain/loss binomial tree S = (St : t∈N) is a standard symmetric random walk (SSRW) defined

on a filtered probability space (Ω,F ,P; (Ft)t∈N). We assume the probability space is rich enough to

support an F0-measurable random variable Z that is uniformly distributed on [0,1] and independent

of S.

8 As in Barberis (2012), we assume in this paper that the gamble is fair. It will not affect the main economic findings
and implications of our results. A model of unfair games is more technical, and is left for a future study.
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Figure 2 The gain/loss binomial tree with T = 5. The gambler must leave the casino by time 5,

which is represented by the black nodes.

Suppose the gambler quits gambling at a random time τ ∈ [0, T ]. Then, with the reference point

being his initial wealth before he enters the casino, the CPT value of his wealth upon leaving is

V (Sτ ) :=
T∑
n=1

u+(n) [w+ (P(Sτ ≥ n))−w+ (P(Sτ ≥ n+ 1))]

−λ
T∑
n=1

u−(n) [w− (P(Sτ ≤−n))−w− (P(Sτ ≤−n− 1))] .

(3)

This value reduces to the expected utility of accumulated gains/losses when w+(x) =w−(x) = x and

λ= 1. So the formula is a generalization of the expected utility when the decumulative probabilities

are weighted and loss aversion is incorporated.

Throughout this paper we assume that both u+(·) and u−(·) are concave and both w+(·) and

w−(·) are inverse S-shaped. The gambler needs to determine the optimal time to quit and leave the

casino: such a stopping (exit) strategy τ is made at t= 0 to maximize V (Sτ ) among all admissible

strategies. Note that, due to probability weighting, the problem is inherently time-inconsistent; so

τ is optimal only at t= 0 in the sense of a precommitted strategy; it may no longer be optimal from

the vantage point of any later time t > 0.

We now define precisely the set of admissible stopping strategies

TT := {τ ∈ [0, T ] : τ is an (Ft)t∈N-stopping time} .

So a decision whether or not to quit at time t ∈ [0, T ] depends on all the information up to t. In

particular, path-dependent strategies are admissible. Moreover, F0 – and hence all Ft – contains the

information about Z ∼U(0,1), a uniform random variable on (0,1) independent of S. Using Z, we
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can generate countably many Bernoulli (binary) random variables which are mutually independent

and also independent of S.9 In consequence, an admissible strategy may involve randomization

by tossing a (generally biased) coin. In the next subsection we will outline the rationale behind

allowing randomized strategies.

The gambler’s problem is

max
τ∈TT

V (Sτ ) . (4)

2.3. Randomization

In our model (4), the filtration (Ft)t∈N includes the information based on a uniform random variable

that is independent of the underlying random walk. This means that we allow the gambler to assist

his decision by flipping an independent, most likely biased, coin at each node. We now provide

some discussions about the assumption of making this randomization available in our model.

First and foremost, randomization is introduced for a technical reason – it is a relaxation (con-

vexification) of the original Barberis (2012) model that enables our analytical treatment. Moreover,

one naturally has a well-founded heuristic strategy for the non-randomized model based on the

optimal strategy for the randomized counterpart by rounding up or down the probabilities to 1 or

0. Specifically, suppose r is the probability of stopping at a node produced by an optimal strategy

for the randomized model. Then, the following is the “rounded” strategy for the non-randomized

model: we stop at the node if r≥ 0.5 and continue otherwise. For long time horizons, such rounded

strategies are nearly optimal for the non-randomized model; see Subsection 5.3 for details.

Second, randomization is related to the accommodation of path-dependence. It is practically

more reasonable, and indeed necessary, to consider path-dependent strategies than mere Markovian

ones. At least two path-dependent gambling behaviors or strategies – the gambler’s fallacy and the

hot hand – have been observed both in a laboratory setting and in actual casinos; see Croson and

Sundali (2005) and the rich literature reviewed therein. In both strategies, the gamblers act as if

the sequence of i.i.d. events were actually autocorrelated, e.g., seeing a sequence of five red wins in

roulette might trigger a specific bet. More broadly, it makes intuitive sense that how the gambler

has arrived at his current wealth – whether he has won big first and then lost most of it, or he has

gradually accumulated this amount by many small wins – may well affect his decisions. As a matter

of fact, almost all our decisions in life are made based on all the information, past and present,

rather than just on the current state of affairs. Accordingly, path-dependence is the standard

formulation in optimal stopping theory (see, e.g., Shiryaev 1978) and indeed in general stochastic

9 A Bernoulli random variable ξ1 with P(ξ1 = 0) = r1 = 1 − P(ξ1 = 1) is obtained setting ξ1 = 1Z>r1 , i.e., ξ1 = 0
if Z ≤ r1 and ξ1 = 1 if Z > r1. An analogous, and independent, Bernoulli variable ξ2 can then be defined as ξ2 =
1r1r2<Z≤r1 +1Z>r1+(1−r1)r2 . Likewise, subsequent independent Bernoulli random variables ξ3, ξ4, . . . are obtained via
further nested definitions.
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control theory (see, e.g., Yong and Zhou 1999). Being Markovian is just a mathematical assumption

and convenience that aims to dramatically reduce the dimension of the underlying problem or, in

a continuous-time setting, turns an infinite dimensional problem into a finite dimensional one.

He et al. (2017) shows that any non-randomized, path-dependent stopping time can be replaced

by a randomized, Markovian stopping time in the sense that the latter achieves the same CPT

value as the former.10 As a result, we can consider randomization in lieu of considering the past

information and path-dependent strategies. One specific example is given in Section 5.1 below. To

understand this relationship, suppose that the casino had been going on forever and the gambler has

access to the results of all the past spins of the roulette wheel: Xt ∈ {0,1}, t=−1,−2, . . .. This his-

torical information could be perfectly summarized with a uniform random variable Z =
∑

t≤−1Xt2
t

which would be independent of all the future spins. The setting would thus be fully equivalent

to our randomized setting. However, in a binomial model as well as in practice, the gambler has

access to only a finite history of N spins at any given time. He can use it to construct Bernoulli

random variables ξ but only with P(ξ = 1) being a multiple of 2−N and can only construct finitely

many such independent variables. For this reason randomization may allow for richer strategies

than path-dependence. This is precisely the reason why randomized Markovian strategy may not

be replicated by a non-randomized, path-dependent strategy, and the optimal CPT value among

the former type may be strictly greater than that among the latter type, as He et al. (2017) show.

The authors of that paper attribute this mathematically to the lack of quasi-convexity of CPT

preference (in contrast to the classical expected utility theory preference). This property was also

exploited by Henderson et al. (2017) to complement and counter the findings in Ebert and Strack

(2015).

While there are instances of randomization in real life, this behavior is not commonly observed.11

It is interesting to reflect why this is, given that our model says we should observe it. Some possible

answers are: (i) while CPT is a descriptive theory, randomization appears as a normative ingredient:

its use is advised to strictly improve the optimal CPT value. However, people may not want to

leave their decisions to chance; (ii) in many cases especially for longer time periods, randomization

does not raise CPT value very much (see Subsection 5.3); (iii) it may be difficult for people to

10 While this result has been obtained for the infinite horizon model in He et al. (2017), the underlying mathematical
argument would be exactly the same for the finite horizon case. The intuition is that, due to the independent
increments of a random walk, considering all the past information can be achieved by randomizing at the current
state.

11 These instances include last-minute deals by flight booking apps, “sushi omakase” (you entrust yourself to a sushi
chef to choose the ingredients and presentations of your sushi plate), and “fukubukuro” (grab bags filled with unknown
and random contents). There is research in experimental psychology and economics that documents experiments
involving individuals deliberately randomizing when making decisions; see, e.g., Agranov and Ortoleva (2017), Dwenger
et al. (2013).
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figure out the specific probabilities needed to implement randomization; and (iv) non-randomized

strategy may be the best easily available approximation: in our numerical examples, randomization

happens rarely and often with very uneven odds.

3. Characterization of Stopped State Distributions

As explained earlier, the main thrust of our approach to solving Problem (4) is to change its

decision variable from the stopping time τ to the distribution of the stopped state Sτ . A key step

is therefore to characterize the admissible set of these distributions. Moreover, once an optimal

distribution is obtained there needs to be a way to recover the stopping time that generates this

distribution. These two questions are intertwined and will actually be solved together. This section

addresses them.

Denote by P(R) the set of probability measures µ on R and by P0(R) the subset of P(R) whose

elements have finite first moments and are centered:
∫
|x|µ(dx)<∞ and

∫
xµ(dx) = 0. Denote by

P0(Z) = {µ∈P0(R) : µ(Z) = 1} the subset of P0(R) supported on integers.

For µ∈P0(R), define a function

Uµ(x) :=

∫
R
|x− y|µ(dy), x∈R,

which is called the potential of µ.12 For µ ∈ P0(Z), Uµ is a linear interpolation of the points

{Uµ(k) : k ∈Z}. The following are evident:

µ({x}) =
Uµ(x+ 1) +Uµ(x− 1)

2
−Uµ(x), Uµ(x) =−2xµ([x,∞)) +x+ 2

∑
y≥x

yµ({y}). (5)

Potential function uniquely determines probability measure, namely, two measures are identical if

and only if their potential functions are identical; see Ob lój (2004). Finally, for any stopping time

τ , with a slight abuse of notation we simply write USτ for the potential of the distribution of Sτ ,

when well defined.

We can use a sequence of piecewise linear functions, called evolutional functions, to approach a

potential function. Indeed, given µ ∈ P0(Z), we define recursively the following sequence of func-

tions:

Uµ
0 (x) := |x|,

Uµ
t (x) :=

Uµ
t−1(x− 1) +Uµ

t−1(x+ 1)

2
∧Uµ(x), t= 1,2, ..., x∈Z.

(6)

We then extend each Uµ
t to non-integers x ∈ R by linear interpolation. When µ is fixed, we may

drop the superscript µ and just write Ut for simplicity.

12 Note that our definition here is the negative of the usual definition of potential.
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The optimal stopping time we will derive belongs to a special class of randomized, Markovian

stopping times called the Root stopping times. The original version of the Root stopping times

was developed in Root (1969) to solve the classical Skorokhod embedding problem for a Brownian

motion B on an infinite time horizon.13 We now develop the analogous ideas in discrete time for

the SSRW. Intuitively speaking, our stopping times will be defined using a barrier which splits

the space-time into two regions: “before” and “after”. The SSRW is allowed to evolve freely in the

“before” (continuation), region but is stopped upon the entry to the “after” (stopping) region. The

decision whether it is stopped at the barrier between the two regions will be randomized.

Consider an integer-valued vector b := (..., b(−1), b(0), b(1), ...) where, for any x ∈ Z, b(x)≥ |x|

and b(x)− x is even, and another vector r := (..., r(−1), r(0), r(1), ...), where r(x) ∈ [0,1]. Given b

and r, define the probability distributions of a family of independent Bernoulli random variables

{ξt,x : t∈N, x∈Z} as follows:
P(ξt,x = 0) = 1−P(ξt,x = 1) = 0, t < b(x),

P(ξt,x = 0) = 1−P(ξt,x = 1) = r(x), t= b(x),

P(ξt,x = 0) = 1−P(ξt,x = 1) = 1, t > b(x).

Graphically, b is a barrier that defines a time-space stopping region

Rb :=
{

(t, x) : t∈N, x∈Z, t≥ b(x)
}
,

and the components of r are the probabilities to stop exactly on the boundary of this stopping

region. The randomized Root stopping time is defined as

τR(b,r) := inf {t∈N : (t,St)∈Rb and ξt,St = 0} . (7)

This stopping time is Markovian, because it depends only on the current state of the random walk

S. It is randomized because it depends on the outcome of the Bernoulli random variables ξt,x’s.

Figure 3 illustrates such a stopping time. The grey boundary divides the area into two subareas:

the one on the left hand side has white nodes representing “continue”, and that on the right hand

side consists of black nodes indicating “stop”. Stopping at a grey node (t, x) is randomized with

r(x) being the probability of stopping.

The following theorem is one of the main results of the paper. It provides a theoretical foundation

for the numerical algorithm we are going to present to solve our casino gambling model. It char-

acterizes the admissible set of stopped distributions under stopping times in TT , and reveals that

13 The (original) Root stopping time τ is the first entry time of B to a region R in the time-space R+×R, which has
the property that if (t, x)∈R than also (s,x)∈R for all s≥ t. For any centred µ on R with a finite second moment
v, a region R exists such that the time τ embeds µ in B, i.e., Bτ ∼ µ and E[τ ] = v; see Root (1969), Rost (1976) and
Ob lój (2004).
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Figure 3 An example of the Root stopping time with T = 5. Black nodes mean “stop”, white nodes

mean “continue”, and grey nodes mean “randomize”. The boundary b is given as follows: b(4) = 4,

b(3) = 3, b(2) = 4, b(1) = 3, b(0) = 2, b(−1) = 3, b(−2) = 2, b(−3) = 3, b(−4) = 4.

the set is the same as that of stopped distributions using only randomized Root stopping times.

As a consequence, any admissible stopping strategy may be replaced with a suitable randomized

Root stopping time without decreasing the value function.

Theorem 3.1. Let T ≥ 1, µ∈P0(Z) such that µ([−T,T ]) = 1. Then there exists a stopping time

τ ∈ TT such that Sτ ∼ µ if and only if

Uµ(x)≤
Uµ
T−1(x+ 1) +Uµ

T−1(x− 1)

2
, x=−(T − 2),−(T − 4), ..., T − 4, T − 2. (8)

Moreover, in this case there exists a randomized Root stopping time τR(b,r) ∈ TT such that

SτR(b,r) ∼ µ.

4. A Mathematical Program

Theorem 3.1 hints that we can, instead of endeavoring to find the stopping time τ in Problem (4),

try to find the probability distribution µ of the stopped state Sτ . Namely we change decision variable

from τ to µ for Problem (4). The resulting problem is a (nonlinear) mathematical program (i.e., a

constrained optimization problem) with the condition (8) translating into certain constraints.

Moreover, once we solve this problem and find the optimal distribution µ, then it follows from

Theorem 3.1 that there exists a randomized Root stopping time τR(b,r) that achieves the same

stopped distribution and, hence, solves (4). Furthermore, based on the proof of Theorem 3.1 (see

Appendix A), we can devise an algorithm to find (b,r) and, consequently, τR(b,r). We now for-

mulate the mathematical program and provide its solution algorithm.
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4.1. The mathematical program formulation and solution

Given τ ∈ TT , let µ∼ Sτ . Define two T -dimensional vector variables, x := (x1, x2, ..., xT ) and y :=

(y1, y2, ..., yT ), where xn = µ([n,T ]), yn = µ([−T,−n]), n= 1,2, ..., T . Clearly, x and y are gambler’s

decumulative gain distribution and cumulative loss distribution, respectively. Then the original

objective function (3) is equivalent to, as a function of (x,y),

U(x,y) :=
T∑
n=1

[u+(n)−u+(n− 1)]w+(xn)−λ
T∑
n=1

[u−(n)−u−(n− 1)]w−(yn). (9)

Naturally, we must have 1≥ x1 ≥ x2 ≥ ...≥ xT ≥ 0, 1≥ y1 ≥ y2 ≥ ...≥ yT ≥ 0, x1 + y1 ≤ 1. On the

other hand, µ has zero expectation due to optional sampling theorem; so

0 =
T∑

n=−T

nµ({n}) =
T∑
n=1

nµ({n})−
T∑
n=1

nµ({−n}) =
T∑
n=1

µ([n,T ])−
T∑
n=1

µ([−T,−n])

=
T∑
n=1

xn−
T∑
n=1

yn.

In summary, for τ ∈ TT , µ∼ Sτ necessarily satisfies the following constraints:
1≥ x1 ≥ x2 ≥ ...≥ xT ≥ 0,

1≥ y1 ≥ y2 ≥ ...≥ yT ≥ 0,

x1 + y1 ≤ 1,∑T

n=1 xn =
∑T

n=1 yn.

(10)

Moreover, Theorem 3.1 necessitates condition (8), which constitutes a family of inequalities on

µ’s potential function and the corresponding evolutional functions, which will later be translated

into constraints on Sτ ’s distribution functions. Here, let us illustrate (8) for some values of T ’s.

To ease notation, we will suppress the superscript µ on the evolutional functions. For T = 1, the

condition is satisfied automatically for any µ∈P0(Z) with µ([−T,T ]) = 1. For T = 2, (8) amounts

to Uµ(0)≤ U1(1)+U1(−1)
2

= 1. For T = 4, (8) is equivalent to
Uµ(2)≤ 3+U3(1)

2
, U3(1) = min

{
Uµ(1),

2+min(Uµ(0),1)

2

}
,

Uµ(0)≤ U3(1)+U3(−1)
2

, U3(−1) = min
{
Uµ(−1),

2+min(Uµ(0),1)

2

}
,

Uµ(−2)≤ 3+U3(−1)
2

.

The following lemma, which follows a direct, if somewhat lengthy, computation, expresses Uµ(n)

and, consequently, the constraints (8), in terms of x and y.

Lemma 4.1. For n∈Z∩ [−T,T ],

Uµ(n) =

{
2
∑T

j=n+1 xj +n, n≥ 0,

2
∑T

j=|n|+1 yj + |n|, n < 0.
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To illustrate, take T = 5. Then

Uµ(3) = 2
∑5

n=4 xn + 3 , Uµ(−3) = 2
∑5

n=4 yn + 3 ,

Uµ(1) = 2
∑5

n=2 xn + 1 , Uµ(−1) = 2
∑5

n=2 yn + 1 .

We are now ready to formulate the mathematical program that is equivalent to the original

stopping problem (4). Define

A =



1 0 . . . 0

−1 1
. . .

...

0 −1
. . . 0

...
. . .

. . . 1

0 . . . 0 −1


(T+1)×T

, c =


1

0

0
...

0


(T+1)×1

, 1 =


1

1
...

1


T×1

, ej =


...

1

0
...


T×1

,

along with a set of functions fmn : RT ×RT →R, m= 1, ...T , n= 1, ...2T + 1, in the following way.

For x,y ∈RT , let

fm1 (x,y) = fm2T+1(x,y)≡ T, m= 1, ...T,

f1
n(x,y)≡ |n− (T + 1)|, n= 2, ...2T,

and for m= 2,3, ...T :

fmn (x,y) =


min

(
fm−1
n−1 (x,y)+fm−1

n+1 (x,y)

2
,2
∑T

j=T+2−n ej
′y + (T + 1)−n

)
, n= 2,3, ...T,

min

(
fm−1
n−1 (x,y)+fm−1

n+1 (x,y)

2
,2
∑T

j=n−T ej
′x +n− (T + 1)

)
, n= T + 1, ...2T − 1,2T.

Then, the mathematical program is

max
x,y

U(x,y) ,

subject to Ax≤ c, Ay≤ c, e1
′x + e1

′y≤ 1, 1′x−1′y = 0,
fTn−1(x,y)+f

T
n+1(x,y)

2
≥ 2

∑T

j=T+2−n ej
′y + (T + 1)−n

for n= 2k+ 1, k= 1,2, ..., n≤ T,
fTn−1(x,y)+f

T
n+1(x,y)

2
≥ 2

∑T

j=n−T ej
′x +n− (T + 1)

for n= 2T − 2k+ 1, k= 1,2, ..., n≥ T + 1.

(11)

The number of decision variables (x and y) and the number of constraints in (11) are both linear

in T ; hence the complexity of the problem is manageable. Moreover, there are standard solvers to

solve this type of mathematical program.14

14 In the following numerical experiments, we employ nonlinear optimization solver ‘fmincon’ from MATLAB Opti-
mization Toolbox, on a desktop with Intel Core i5-4590/CPU 3.30GHz/RAM 8.00GB. For the Barberis (2012)’s
parameters α+ = α− = 0.95, δ+ = δ− = 0.5, λ= 1.5 with T = 5,6,7,8, MATLAB uses 205 seconds, 220 seconds, 280
seconds, 350 seconds respectively. (Compare with those of the brute force reported in Footnote 3.) The running times
for T = 10,20,30,40,50 are 9.35 minutes, 29 minutes, 89 minutes, 3.5 hours, 7.17 hours, respectively. The codes are
available at https://github.com/hucuhksz/optimalgambling.
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Once we solve this problem to get optimal (x∗,y∗), we then run the following algorithm to find

the optimal randomized Root stopping time:

Step 1 Given µ∗ ≡ (x∗,y∗), compute the corresponding potential function: Uµ∗(n) = 2
∑T

j=n+1 x
∗
j +

n for n≥ 0, and Uµ∗(n) = 2
∑T

j=|n|+1 y
∗
j + |n| for n< 0. Then, compute its evolutional functions Uµ∗

t

by (6), t= 0,1, ...T .

Step 2 Compute the boundary b that separates the “continue” region from the “stop” region:

b(n) = inf{t ≥ |n|, t ∈ Z : Uµ∗

t+1(n) = Uµ∗(n)}, n ∈ [−T,T ] ∩ Z. Note that the constraints in (11)

guarantee that the set involved is non-empty and b(n)≤ T ∀n∈ [−T,T ]∩Z.

Step 3 Compute the probability r to stop at the boundary:

r(n) =
Uµ∗

b(n)(n− 1) +Uµ∗

b(n)(n+ 1)− 2Uµ∗(n)

Uµ∗

b(n)(n− 1) +Uµ∗

b(n)(n+ 1)− 2Uµ∗

b(n)(n)
, n∈ [−T,T ]∩Z.

Step 4 Construct τR(b,r) according to (7).

4.2. A numerical example

We present an example to illustrate the solution procedure, using the same parameters as in

Barberis (2012) with T = 5, α+ = α− = 0.95, δ+ = δ− = 0.5, λ = 1.5.15 Solving the corresponding

mathematical program for the optimal distribution µ∗ yields

x∗1 = 0.1875, x∗2 = 0.1273, x∗3 = 0.1227, x∗4 = 0.03152, x∗5 = 0.03098,

y∗1 = 0.5, y∗2 = 0, y∗3 = 0, y∗4 = 0, y∗5 = 0.

The corresponding potential function Uµ∗ is

Uµ∗(0) = 1, Uµ∗(1) = 1.625, Uµ∗(2) = 2.3704, Uµ∗(3) = 3.125, Uµ∗(4) = 4.06196,

Uµ∗(n) = |n| for n≥ 5 and n≤−1.

We then apply the algorithm previously presented to recover the optimal randomized Root

stopping time τ ∗ from the optimal distribution µ∗, with Sτ∗ ∼ µ∗. The strategy, which is optimal

at t = 0 (only) and implemented by the precommitted gambler, is drawn in the left panel of

Figure 4. Note that black nodes mean “stop”, white ones mean “continue”, and grey ones mean

“randomization”. The number above a grey node is the probability to stop.

The main feature of this precommitted optimal strategy is to continue in the gain domain and to

stop in the loss domain until T = 5, except at time 4 where there are positive probabilities to stop

in gains. In particular, randomization takes place at nodes (4,4) and (4,2), with the (very small)

probabilities to stop equal to 0.00864 and 0.0368, respectively. The CPT value of this randomized

15 More examples with much longer time horizons will be presented in the next section.
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Figure 4 The left panel shows the precommitter’s strategy and the right panel shows the näıf’s

strategy, for T = 5, α+ = α− = 0.95, δ+ = δ− = 0.5, λ= 1.5. Black nodes mean “stop”, white nodes mean

“continue”, and grey nodes mean “randomize”. The numbers above the grey node stand for the

probability to stop. While the precommitter’s strategy is mainly to continue in gains and stop in

losses, the näıf’s behavior is almost completely reversed.

strategy is 0.3369592. Compared with Barberis (2012) where the CPT value is 0.3369398, the opti-

mal non-randomized, Markovian strategy has white nodes at (4,4) and (4,2), instead of grey nodes

that involve randomization.16 In summary, allowing path-dependent and randomized strategies

does indeed improve optimal CPT values (albeit only slightly) over non-randomized, Markovian

ones.17 Moreover, one can achieve this improved optimal value by implementing a Markovian ran-

domization, with the overall strategy very similar qualitatively to Barberis (2012)’s – both are of

the loss-exit type.18

While the precommitted gambler follows through the optimal strategy originally determined at

time 0, a näıve gambler thought he would do the same but in actuality constantly deviates from

previously planned strategies. More precisely, at any time t > 0, a näıf re-considers the optimal

stopping problem starting from t, devises a precommitted strategy but carries it out for only one

period (because he will re-optimize again at the next time instant). Here, we assume this gambler

16 These are the only two nodes that are different between Barberis (2012) and the present paper. Note they occur
at T − 1 and when there are sufficient gains. The intuition why the gambler randomizes at these two nodes will be
explained in Subsection 5.4 after we have presented more examples and established more general results.

17 This improvement can be significant with other parameter specifications. For example, with T = 2 and (α±, δ±, λ) =
(0.9,0.5,1.25), the optimal CPT value among non-randomized, path-independent strategies is 0.058069135, and that
among randomized ones is 0.065696808, representing a 13% increase. When T = 2 and (α±, δ±, λ) = (0.5,0.5,1), the
corresponding values are 0.0253839 and 0.0492624, representing a 94% increase.

18 We have also revisited the T = 6 example considered also in He et al. (2017). In that paper, a randomized strategy,
found by trial and error, leads to the value function V = 0.250702 compared with V = 0.250440 for the best non-
randomized strategy. Using our algorithm, we see that the best randomized strategy actually gives V = 0.257483. It is
still a loss-exit type and it stops at node (0,0) with probability 0.201, node (5,1) with 0.436, node (5,3) with 0.0292
and node (5,5) with 0.0113.
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keeps his initial wealth at time 0 as the reference point.19 The näıve gambler’s strategy can be

computed by deriving all the time-t precommitted strategies, t= 0,1, ..., T , implementing each of

them for just one period, and then “pasting” them together. As a result, his actual quitting strategy

could be drastically different from the precommitted one, the one he originally planned before he

enters the casino; see the right panel of Figure 4. There, the only node calling for randomization is

now (2,0), with a probability of 0.179 to quit.20 Comparing the two strategies depicted in Figure

4, we find that the näıve strategy is not only significantly different from the precommitted one,

but indeed almost completely opposite in character: the latter is mainly to continue in the gain

domain and to stop in the loss domain, while the former is reversed. This sharp contrast between

the planned and actual behaviors along with experimental evidences was first noted and discussed

in Barberis (2012, Section 4.3) for the non-randomized model. Heimer et al. (2020) presents strong

evidence from lab and field that supports the dynamic inconsistency that emerges in the framework

of Barberis (2012). In the context of stock trading, such a näıve behavior – the tendency of selling

winners too soon and keeping losers too long – is widely observed especially for retail investors,

and is termed the disposition effect by Odean (1998).

5. Discussion

5.1. To enter or not to enter: the power of randomization

One of the main takeaways of Barberis (2012) is that CPT offers an explanation why a gambler

would be willing to enter a casino even if the bets there have neither skewness nor positive expected

values. By implementing a loss-exit strategy, namely keep gambling when winning but stop gam-

bling when accumulating a sufficient loss, he envisions a positively skewed probability distribution

of the accumulated gain/loss at the exit time which is favored by the CPT preference. However, he

would need a sufficiently long time period to build such a skewed distribution in order to have a

positive CPT value to justify the entry (recall that the CPT value of not playing at all is zero). For

the case of a piece-wise power utility function (1) and an inverse S-shaped weighting function (2),

Barberis (2012, Proposition 1) provides a sufficient condition for this to happen.21 Moreover, for

the parameter values α+ = α− = 0.88, δ+ = δ− = 0.65, λ= 2.25, this sufficient condition translates

into T ≥ 26; see Barberis (2012, Corollary 1).22

19 This is also the assumption made in Barberis (2012) when analyzing a näıve gambler’s behavior. It is both natural
and plausible that a gambler remembers the initial amount of cash he brought into the casino and always compares
wins and losses against that amount.

20 This is also the only node that makes our näıve strategy different from Barberis (2012)’s in which the node (2,0)
is white meaning “continue”; see the right panel of Figure 4 therein.

21 Barberis (2012, Proposition 1) is stated for a näıve gambler. However, the result holds for a precommitter as well
because both gamblers face the same problem at t= 0.

22 These parameter values are close to those given by Tversky and Kahneman (1992), i.e., α+ = α− = 0.88, δ+ = 0.61,
δ− = 0.69, λ = 2.25. If we apply the exact Tversky and Kahneman (1992) parameter values to Barberis (2012,
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However, with randomization allowed, the gambler may be willing to enter the casino even if he

is allowed to play only once (i.e., T = 1).

Proposition 5.1. Suppose T = 1. If limp→0[w
′
+(p)/w′−(p)]> λ[u−(1)/u+(1)], then the optimal

CPT value is strictly positive.

Recall that in our model, randomization is available; so the optimal CPT value being strictly

positive means that the gambler will enter the casino, possibly tossing a coin to decide whether

to actually play (the only) one round of bet. It is straightforward to show that for the weighting

function (2), when δ+ < δ− (which is the case with Tversky and Kahneman (1992)’s estimates), we

have limp→0[w
′
+(p)/w′−(p)] = +∞. Hence, Proposition 5.1 yields that, as long as the loss-aversion

degree λ is finite, a randomized gambling strategy is always preferred to non-gamble, even when

T = 1. As an example, consider a piece-wise power utility function (1) with α± ∈ (0,1), λ= 1.5 and

an inverse S-shaped weighting function (2) with δ+ = 0.5, δ− = 0.95. The optimal CPT value with

T = 1 is 0.07596, and the gambler will enter the casino with a (small) probability 0.057. Without

randomization, however, the gambler will not enter the casino under this group of parameters.23

In line with our discussion of the relation between path-dependence and randomization in Section

2.3, we recall that this randomization may be achieved endogenously by replacing it with path-

dependence. The gambler who enters the casino will typically see a strip which displays the results

of the past N roulette spins. Even looking at only the last 4 results, the gambler in this particular

example can very closely replicate the randomized strategy: if he decides to bet on red only if the

last 4 spins were red, and does not bet otherwise, he will bet with probability 0.0625.

What if T ≥ 2? Naturally, as T increases, the optimal CPT values increase. Figure 5 graphs

the optimal CPT values for T = 1,2, ...,20 with the Tversky and Kahneman (1992) estimates.

Therefore, if the gambler will enter the casino for T = 1 with a given set of parameters, so will he

for T ≥ 2 with the same parameters. As a consequence, Proposition 5.1 holds for T ≥ 2 as well.

The intuition of Proposition 5.1 is as follows. Let r be the probability of not entering the casino

based on the coin flip at t= 0. Then the gambler’s gamble becomes a gain of $0 with probability r,

a gain of $1 with probability (1− r)/2, and a loss of $1 with probability (1− r)/2. For sufficiently

high r, the decision to enter is driven by the relative overweighting of low probabilities for the gain

vs. the loss; and if the overweighting for the gain is high enough, the optimal CPT value is positive

and hence the gambler will enter with a positive probability. Note that even though randomization

Proposition 1), then the corresponding T ≥ 20. Such a shorter period is expected because the probability weighting
in gains is stronger than that in losses with Tversky and Kahneman (1992)’s parameters; thus it takes less time to
build the desired positively skewed distribution with a positive CPT value.

23 Such a result also holds under the Tversky and Kahneman (1992) estimates; that is, the gambler will enter the
casino with T = 1 if randomization is allowed, but will not without randomization.
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Figure 5 Optimal CPT values for T = 1,2, ...20 under the parameter values of Tversky and Kahneman

(1992), i.e., α+ = α− = 0.88, δ+ = 0.61, δ− = 0.69, λ= 2.25.

still gives rise to a symmetric distribution of gains and losses and hence the loss aversion seemingly

would prevent the gambler from entering, the condition limp→0[w
′
+(p)/w′−(p)] > λ[u−(1)/u+(1)]

means that exaggeration of the gain outweighs exaggeration of the loss and the loss aversion

combined, yielding the contrary.24

On the other hand, the effectiveness of randomization crucially depends on the chosen parame-

ters. If the degree of probability weighting in gains is equal to or less than that in losses, and the

level of loss-aversion is sufficiently large so that λ[u−(1)/u+(1)] > 1, then the above proposition

does not apply because limp→0[w
′
+(p)/w′−(p)]≤ 1< λ[u−(1)/u+(1)]. For example, for utility func-

tion (1) and probability weighting function (2), let α+ = α− = 0.88, δ+ = δ− = 0.65, λ= 2.25, the

values used in Barberis (2012, Corollary 1). In this case, we find a positive CPT value of random-

ized strategies only when the time horizon is at least T = 25, slightly shorter than that (T = 26)

presented in Barberis (2012, Corollary 1) using a special non-randomized loss-exit strategy. The

corresponding optimal precommitted strategy is also of a loss-exit type: stop once losing $1, and

continue with possible randomization when wining. If we further let the probability weighting in

gains be weaker than that in losses, e.g., δ+ = 0.69 and δ− = 0.61, then a positive preference value

is found only at T ≥ 39.

24 Here we must put in a caveat that, as discussed in Subsection 2.3, it is not widely observed that people toss coins
to decide whether to enter a casino. So, the discussion here is more hypothetical – whether a CPT gambler would
enter a casino if he knew randomization might increase his preference value.
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5.2. Prospect theory parameter values

There are three components in the risk/loss preferences under CPT: the utility function, the

probability weighting and the loss aversion. They are intertwined and compete with each other in

determining the overall preference and dictating the final behavior. In this subsection, we study

the roles they play in the case when the utility function is (1) and the weighting function is (2),

with parameters α±, δ± and λ. Note that Barberis (2012, Section 3.1) also discusses them broadly

(see especially Figure 3 in that paper), albeit for T = 5. We are able to consider larger values of T

thanks to the algorithm derived in the current paper.

Other parameters being kept unchanged, the effect of each of these parameters is as follows: a

smaller α+ implies a higher degree of risk-aversion in gains and a smaller α− implies a higher degree

of risk-seeking in losses, a smaller δ± yields a higher level of probability weighting in gains/losses,

and a smaller λ indicates a smaller extent of loss aversion. To understand the overall impact of

these parameters on exit decisions, we first fix λ and consider four sets of scenarios: large α± and

small δ±; small α± and large δ±; small α± and small δ±; and large α± and large δ±. Then we

examine the effect of λ. In the following discussions we fix T = 10.

The left panel of Figure 6 draws the optimal precommitted strategy when α± = 0.95, δ± = 0.5

and λ= 1.5. These are the same parameters as in the numerical example presented in Subsection

4.2, except now we have a much longer horizon. Again, black nodes mean “stop”, white nodes

“continue”, grey nodes “randomize”, and the number above the grey node is the probability to stop.

This strategy is mainly to continue or toss a coin in gains until the final time and to stop in losses,

which is thus a loss-exit one. The intuition is as follows. This is the case where α± are relatively

large (lower risk-aversion/-seeking) and δ± relatively small (heavier probability weighting). In the

gain region, the stronger exaggeration of the small probability of winning a large amount outweighs

the weaker risk aversion; hence the gambler is willing to take more risk and stay longer. In the loss

region, the stronger exaggeration of the small probability of losing a large amount, together with

the loss aversion, outweighs the weaker risk-seeking appetite and prompts the gambler to play safe

and quit earlier.

The above argument is reversed, leading to a gain-exit type of strategy, when α± are relatively

small and δ± relatively large, such as the one depicted in the left panel of Figure 7 where α± = 0.5,

δ± = 0.95, λ= 1.5. An interesting small variation of this case is when probability weighting is absent,

i.e., α± = 0.5, δ± = 1, λ= 1.5, in which the optimal CPT value is positive and the precommitted

strategy is still a gain-exit one. Indeed, a positive preference value is found at a much shorter

horizon T = 4 under this group of parameters, and the optimal distribution of Sτ is left-skewed

(which is favored by a strong risk-seeking preference in losses represented by α−).
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Figure 6 The precommitted (left panel) and näıve (right panel) strategies for T = 10, α± = 0.95,

δ± = 0.5, λ= 1.5. Black nodes are “stop”, white nodes are “continue”, and grey nodes are

“randomize”. The numbers above the grey nodes are the probabilities to stop.

The left panel of Figure 8 shows the precommitted strategy for the parameter values α± = δ± =

0.5 and λ= 1.5, which is the case of small α± and small δ±. This is still a loss-exit strategy, but

the main differences from that visualized by the left panel of Figure 6 are that, in the gain region,

there are now more black nodes and the numbers above the grey nodes are larger, implying a

higher likelihood of stop even when the gambler has accumulated a gain. The reason is that with

a smaller α+, the exaggeration of the small probability of winning a large amount still outweighs

the risk aversion in gains, but with a lesser degree than the previous case.

The last set of parameters are α± = δ± = 0.95, λ= 1.5, with which the optimal CPT value is zero

and the gambler will simply not enter the casino. This is because these parameter values render

a risk preference close to both risk-neutral and probability–weighting–free, while a zero-mean bet

and a loss-aversion degree λ> 1 prevent the gambler from playing the game at all.
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Figure 7 The precommitted (left panel) and näıve (right panel) strategies for T = 10, α± = 0.5,

δ± = 0.95, λ= 1.5. Black nodes are “stop” and white nodes are “continue”. There is no grey node.

The impact of λ is more straightforward, which we now examine. For each group of α± and δ±

considered above, we obtain the optimal CPT value by varying λ from 1 to 3; see Figure 9, the

left panel. Quite naturally, each of the optimal CPT values decreases as λ increases, and three of

them hit zero before λ reaches 3. As a result, the gambler will be increasingly reluctant to stay in

or even enter the casino as his level of loss aversion increases.

The analysis in this subsection shows that the CPT casino modeling with various constellations

of parameter specifications can predict and explain a rich array of gambler behaviors. In partic-

ular, whether the strategy is loss-exit or otherwise depends on the interplay between the three

intertwining and competing forces represented by α±, δ±, and λ.
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Figure 8 The precommitted (left panel) and näıve (right panel) strategy for T = 10, α± = δ± = 0.5,

λ= 1.5. Black nodes are “stop”, white nodes are “continue”, and grey nodes are “randomize”. The

numbers above the grey nodes are the probabilities to stop.

5.3. Non-randomized strategy

As discussed earlier randomization is a relaxation approach that turns an analytically intractable

problem into a tractable one. Moreover, it gives rise to a natural, rounded strategy for the non-

randomized model.

The “luckiest” situation with this relaxation approach is when an optimal strategy happens to

be non-randomized, as exemplified by the case when T = 10, α± = 0.5, δ± = 0.95, λ= 1.5. Figure

7 left panel shows the precommitted strategy in this case turns out to be a non-randomized one.

A less trivial example is seen in Figure 4 left panel, which shows the precommitted strategy with

randomization for T = 5, α± = 0.95, δ± = 0.5, λ = 1.5. If we apply the rounding method to the

probabilities associated with the grey nodes, then we obtain a non-randomized strategy which is

exactly the optimal one given by Barberis (2012).
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Figure 9 Optimal CPT values for λ from 1 to 3, while T = 10, are shown in the left panel. Optimal

CPT values for T = 1, ...20, while λ= 1.5, are shown in the right panel. In both panels,

(α±, δ±)∈ {(0.95,0.5), (0.5,0.95), (0.5,0.5), (0.95,0.95)}.

These two examples are, naturally, more the exception than the rule; but in general we may

still be able to obtain some error bound of a rounded sub-optimal strategy for the non-randomized

model. For example, with T = 10, α± = 0.95, δ± = 0.5, λ = 1.5, Figure 6 left panel shows the

precommitted randomized strategy, with the corresponding optimal CPT value being 0.64886. A

straightforward calculation yields that the non-randomized strategy using round-up/down delivers

a CPT value of 0.64853. Since the optimal CPT value of the non-randomized model must lie

between these two values, we conclude that the rounded strategy is sub-optimal for the non-

randomized model with a relative error less than 0.05%. However, we recall from Footnote 18,

which dealt with T = 2, that this error may become larger for shorter horizons. The reason for

that, as discussed in Section 5.1, is that without randomization a distribution perceived (after

probabilities are distorted) to be positively skewed cannot be constructed in a relatively short

time. Randomization greatly enlarges the set of achievable distributions for short horizons. As a

result, the effect of randomization in terms of improving the optimal CPT value dissipates in time.

This nonetheless is a good news in terms of solving the original Barberis (2012)’s model without

randomization: when the horizon is short we use the brute force, and when it is long we use the

rounding method.

5.4. Grey nodes at time T − 1

When examining the t= T − 1 nodes (i.e., those just before the terminal date) in the examples of

loss-exit precommitted strategies shown in Figure 4 with T = 5 and in Figures 6 and 8 with T = 10,

we observe that the upper nodes are grey (where randomization takes place) and the lower ones

are black (where the gamble is stopped). These colors are actually prevalent and not coincidences.
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Take the node (T − 1, T − 1) for example, which is in the gain region. Let τ ∗ ∈ TT be the optimal

precommitted strategy, and pT−1 be the probability (which is assumed to be positive) that the

node (T − 1, T − 1) will be reached under τ ∗. Now, given the gambler is at (T − 1, T − 1), denote

by rT−1 ∈ [0,1] the probability to stop, and qT−1 =
1−rT−1

2
∈ [0, 1

2
]. Because the value of qT−1 only

affects the decumulative probabilities of P(S∗τ ≥ T − 1) and P(S∗τ ≥ T ), the optimal value of qT−1

(corresponding to τ ∗), denoted by q∗T−1, must maximize the following function in qT−1:

w+(qT−1pT−1)[u+(T )−u+(T − 1)] +w+

(
(1− qT−1)pT−1

)
[u+(T − 1)−u+(T − 2)].

For T large enough, both qT−1pT−1 and (1− qT−1)pT−1 are small enough to fall into the concave

region of the probability weighting function w+(·). Hence the above is a concave maximization and

the following first-order condition is necessary and sufficient for a maximum q∗T−1:

0 =
{
w′+(q∗T−1pT−1)[u+(T )−u+(T − 1)]−w′+

(
(1− q∗T−1)pT−1

)
[u+(T − 1)−u+(T − 2)]

}
pT−1,

or equivalently,
w′+(q∗T−1pT−1)

w′+
(
(1− q∗T−1)pT−1

) =
u+(T − 1)−u+(T − 2)

u+(T )−u+(T − 1)
. (12)

Assuming u+(·) is strictly concave (e.g., that given by (1)), the right hand side of (12) is strictly

greater than one. Hence, the equation is satisfied by some q∗T−1 ∈ (0, 1
2
), but not q∗T−1 = 0 (noting

w′+(0) = +∞) or q∗T−1 = 1
2
. Recall that q∗T−1 = 0 and q∗T−1 = 1

2
correspond to r∗T−1 = 1 and r∗T−1 = 0

respectively. So, at node (T − 1, T − 1), he will not have a black-and-white decision of either

“continue” or “stop”; rather he will always engage in randomization at that node under the optimal

strategy τ ∗.

What is the intuition behind this result? Due to the overweighting on gains, stopping completely

at the gain nodes at t= T − 1 is not optimal when randomization is disallowed, and hence more

so when randomization is allowed. On the other hand, playing the last bet without tossing a coin

(i.e., definitely continuing) is not optimal because of the strict risk aversion – randomization with

a small probability of stopping triggers probability weighting in gains which in turn offsets the risk

aversion level.

In contrast, the time T −1 nodes in the loss region of the left panels in Figures 4, 6 and 8 are all

black. This is because they are all “blocked” by other black nodes before them, and hence simply

not reachable by the optimal strategy τ ∗. However, in general (under certain mild conditions) these

nodes will still be black even if they are reachable. Take the node (T − 1,−(T − 1)) for example.

Suppose p−(T−1) > 0 is the probability of reaching (T −1,−(T −1)) under τ ∗, and r−(T−1) ∈ [0,1] is

the probability to stop at (T −1,−(T −1)) and q−(T−1) =
1−r−(T−1)

2
∈ [0, 1

2
]. Then a similar analysis

to the gain case shows that the optimal q∗−(T−1) minimizes the following function in q−(T−1):

w−(q−(T−1)p−(T−1))[u−(T )−u−(T − 1)] +w−
(
(1− q−(T−1))p−(T−1)

)
[u−(T − 1)−u−(T − 2)]. (13)
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Different from the gain region, in the loss region the optimality is achieved by minimizing a

concave function when p−(T−1) is sufficiently small. Hence, the optimal q∗−(T−1) must be either 0 or

1
2
, corresponding to “stop” or “continue” respectively. This means that the gambler will not flip

a coin this time. To investigate which is better between “stop” and “continue”, we calculate the

difference between the objective values (13) at q∗−(T−1) = 0 and at q∗−(T−1) = 1
2
:

w−(p−(T−1))[u−(T − 1)−u−(T − 2)]−w−(p−(T−1)/2)[u−(T )−u−(T − 2)]

= [u−(T − 1)−u−(T − 2)]w−(p−(T−1)/2)

[
w−(p−(T−1))

w−(p−(T−1)/2)
− u−(T )−u−(T − 2)

u−(T − 1)−u−(T − 2)

]
.

As T →∞, we have p−(T−1)→ 0 and, hence,

w−(p−(T−1))

w−(p−(T−1)/2)
→ 2δ− ,

u−(T )−u−(T − 2)

u−(T − 1)−u−(T − 2)
= 1 +

u−(T )−u−(T − 1)

u−(T − 1)−u−(T − 2)
→ 2,

assuming w−(·) is given by (2) with 0 < δ− < 1 and u−(·) has diminishing marginal (dis)utility,

namely, u′−(x)→ 0 as x→∞ (which holds for (1)). This implies that the value (13) at q∗−(T−1) = 0

is smaller than that at q∗−(T−1) = 1
2
, when T is sufficiently large. Consequently, the gambler will

optimally choose to stop at node (T − 1,−(T − 1)).

For general utility and weighting functions, the above analysis requires sufficiently large T ; but

for the utility function (1) and probability weighting function (2) with Tversky and Kahneman

(1992)’s estimates, T does not need to be excessively large. For example, it follows from the analysis

that all we need is to ensure pT−1 falls into the concave domain of w+(·). For δ+ = 0.61, this

requires pT−1 < 0.3 (refer to the right panel of Figure 1) which is satisfied when T = 3. Similarly,

for α− = 0.88 and δ− = 0.69, a straightforward calculation yields that when T = 3, p−(T−1) falls into

the concave domain of w−(·) and consequently r−(T−1) = 1 dominates the other choices.

5.5. Näıve gamblers

While a precommitted gambler follows the optimal strategy determined at time 0, a näıve gambler

constantly deviates from it. We have shown in Subsection 4.2 that, under the parameter specifi-

cation therein, the näıf’s actual behavior changes from the originally planned loss-exit strategy to

an eventual gain-exit one.

Numerically, the näıf’s strategy can be obtained by computing each time-t precommitted strat-

egy, carrying it out for just one period, and then pasting them together; see Subsection 4.2 for

details. We apply this scheme to the first three groups of parameters studied in Subsection 5.2,

and draw the näıve strategies in the right panels of Figure 6 – 8.

The problem in Figure 6 has the same parameter values as that in Figure 4 but a longer horizon.

The changes from the left panels to the right ones in the two figures are qualitatively the same,

namely the näıf turns a loss-exit strategy to a gain-exit one eventually. The same happens in Figure
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8.25 In Figure 7, the two panels are almost identical – both are gain-exit – except the two lowest

nodes at t = 8,9. This is because the difference in behaviors of the precommitter and the näıf

emanates from time-inconsistency, which in turn stems from probability weighting. In this case,

the strength of probability weighting is very low with δ± = 0.95, leading to a low level of time-

inconsistency than the other two cases and hence the high similarity between the precommitted

and näıve strategies.

It is very interesting to note that, in all the cases, the näıve gambler’s behavior is consistent,

irrespective of the underlying parameter specifications: once he enters the casino he always takes

gain-exit strategies, reminiscent of the disposition effect in security trading. In particular, he never

stops losses and gambles “until the bitter end” (Ebert and Strack 2015).26

We now give a CPT-based explanation for this phenomenon. Suppose a näıve gambler has

accumulated a gain equal to x > 0 at time T − 1, the date just before the terminal one. Then his

decision problem regarding whether he should quit at T − 1 can be formulated as

max
q∈[0,1/2]

g(q), where g(q) :=
(
u+(x+ 1)−u+(x)

)
w+(q)−

(
u+(x)−u+(x− 1)

)
(1−w+(1− q)),

and, as before, q = 1−r
2

and r ∈ [0,1] is the probability to stop. Suppose w+ satisfies the so-called

subcertainty, i.e., 1−w+(1− p)≥w+(p) for p∈ [0,1/2], a property that is proposed by Kahneman

and Tversky (1979) and shared by many probability weighting functions including (2). Then

g(q)≤
((
u+(x+ 1)−u+(x)

)
−
(
u+(x)−u+(x− 1)

))
w+(q)≤ 0,

where the second inequality follows from the concavity of u+, while the equality is achieved when

q= 0, corresponding to the decision of “stop”. We have established the following result.

Proposition 5.2. Assume that w+ satisfies subcertainty. Then it is optimal for a näıve gambler

to stop in gain at T − 1.

Next, suppose the näıf has accumulated a loss −x< 0 at T −1. His decision problem to continue

or stop at T − 1 is

min
q∈[0,1/2]

l(q), where l(q) :=
(
u−(x+ 1)−u−(x)

)
w−(q)−

(
u−(x)−u−(x− 1)

)
(1−w−(1− q)).

25 In the right panel of Figure 8, all the nodes with state x= 1 are black, which “block” the gambler from accessing
the nodes beyond state 1. This is why the nodes above state 1 are also all black.

26 We reiterate that the result of Ebert and Strack (2015) depends critically on the assumption that the gambler can
construct arbitrarily small random payoffs, which is possibly valid only in a continuous-time model. The finding that
“gamble-until-bitter-end” is also present in the discrete-time casino model suggests that the behavior is probably
more prevalent characterizing broadly a näıf (be it a gambler or an investor).
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Suppose probability weighting function w− is differentiable and w′−(1−p)/w′−(p)≥ 1 for p∈ [0,1/2],

with the left hand side in the sense of limit for p= 0. A straightforward calculation verifies that

this condition is satisfied by the Tversky–Kahneman weighting function (2). Then

l′(q) =
(
u−(x+ 1)−u−(x)

)
w′−(q)−

(
u−(x)−u−(x− 1)

)
w′−(1− q)

=
(
u−(x)−u−(x− 1)

)
w′−(q)

(
u−(x+ 1)−u−(x)

u−(x)−u−(x− 1)
−
w′−(1− q)
w′−(q)

)
≤
(
u−(x)−u−(x− 1)

)
w′−(q)

(
u−(x+ 1)−u−(x)

u−(x)−u−(x− 1)
− 1

)
≤ 0,

where the last inequality comes from the concavity of u−. As a result, l(q) is non-increasing in

q ∈ [0,1/2] and the minimum is achieved when q= 1/2, corresponding to the “continue” decision.

Proposition 5.3. Assume that w− is differentiable and w′−(1− p)/w′−(p) ≥ 1 for p ∈ [0,1/2].

Then it is optimal for a näıve gambler to continue in loss at T − 1.

A corollary of Proposition 5.3 is that the näıf will definitely continue even if there is only

one round of play left as long as he is in loss, let alone when a longer horizon is allowed. As a

consequence, he will not stop loss in any case, until the bitter end.

Note that the above analysis is based on the assumption that the reference point at any time t > 0

is the same as the one at time 0, which is also assumed in Barberis (2012). One may wonder what

if the reference point dynamically changes. The general problem of reference point updating and

the resulting stopping behaviors for näıfs calls for a separate study and is beyond the scope of this

paper. Here, let us consider as an example a simple yet natural rule of updating the reference point:

At each node a näıve gambler uses the current wealth as the reference point. It follows that the

problem he faces at node (t,St) is exactly the entry problem a precommitter faces in the shortened

horizon T − t. As a result, the näıve gambler’s strategy is state independent, and dependent of only

the number of the remaining periods. In particular, the decision no longer depends on whether in

the gain or loss regions.

We use the previous three groups of parameters to illustrate the resulting strategies. Let T = 10.

For α± = 0.95, δ± = 0.5, λ= 1.5, the näıve gambler continues (perhaps with randomization) up to

time 8 and stops completely at time 9, whether in the gain region or the loss one; see Figure 10 left

panel. For α± = 0.5, δ± = 0.95, λ= 1.5, the näıve gambler continues until up to time 6; see Figure

10 middle panel. For α± = 0.5, δ± = 0.5, λ= 1.5, the näıve gambler continues with randomization

at t= 1 and stops for sure at t= 2; see Figure 10 right panel.

As predicted, all these strategies differ fundamentally from their counterparts for the case when

the reference point does not change. In particular, they are neither gain-exit nor loss-exit, and the

stopping decisions are identical across different states at the same time.
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Figure 10 Näıve strategies with reference point updated to be the current wealth, for T = 10,

α± = 0.95, δ± = 0.5, λ= 1.5 (left panel), α± = 0.5, δ± = 0.95, λ= 1.5 (middle panel), and α± = 0.5,

δ± = 0.5, λ= 1.5 (right panel).

5.6. Sophisticated gamblers

A sophisticated gambler is unable to precommit and realizes that her future selves will deviate from

whatever plans she makes now. Her resolution is to compromise and choose consistent planning in

the sense that she optimizes taking the future disobedience as a constraint. Consequently, strategies

of sophisticated gamblers can be obtained using backward induction as in dynamic programming.

Same as before, randomization is allowed.

To start, we note that at T −1, a sophisticated gambler and a näıve one face the same problem;

hence we have the following immediate result.

Proposition 5.4. Propositions 5.2 and 5.3 hold true for a sophisticated gambler.

Next, we derive a sophisticated gambler’s stopping strategies for the four cases studied in Sub-

section 5.2, where T = 10. It turns out that, of the four cases, she will enter the casino only in

the case when (α±, δ±, λ) = (0.5,0.95,1.5), corresponding to Figure 7.27 Moreover, her strategy is

identical to the one depicted in the right panel of Figure 7, which is the actual strategy of the näıve

gambler and close to the precommitted strategy. This is because when δ± is close to 1, the level of

27 The result about when the sophisticated gambler enters is consistent with Barberis (2012)’s results regarding the
parameter range for which the sophisticate enters.
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probability weighting is low, hence so is that of time-inconsistency, leading to similar strategies of

all the three types of gamblers.

Note that in the case above, the sophisticated gambler takes the gain-exit type of strategy.

Indeed, so long as she enters the casino, she essentially stops in gain under some mild conditions.

This follows from the following argument: by Proposition 5.4, the sophisticated gambler will stop

in gain at T − 1. Knowing this, she will also stop in gain at T − 2 by virtue of exactly the same

reason. Inductively, this leads to an overall gain-exit type of strategy.

On the other hand, the sophisticated gambler always stops no later than her näıve counterpart

does. This is because while the latter solves an optimal stopping problem at every node, the former

solves the same problem but with constraints from her future selves’ decisions. Hence, if the latter

finds that stopping immediately is optimal at a current node, so will the former because the strategy

of an immediate stop automatically satisfies the aforementioned constraints.

Proposition 5.5. Under any specification of parameters, a sophisticated gambler stops no later

than a näıve gambler does.

An implication of this result is that the näıf is at least as risk-taking as the sophisticated, if not

more.

5.7. Finite horizon versus infinite horizon

This section explores connection between the finite horizon and infinite horizon casino models.

Define

T∞ := {τ ∈ [0,∞) : τ is an (Ft)t∈N-stopping time} ,

which is the set of admissible stopping strategies (allowing randomization) in the infinite time

horizon. Suppose τ ∈ T∞ is optimal for the infinite horizon model and achieves a finite CPT value.

Then we have

V (Sτ∧T )≤ sup
σ∈TT

V (Sσ)≤ V (Sτ ).

We see immediately that the value of the finite horizon model converges to that of the infinite

horizon one as the horizon approaches infinity. The following makes this formal.

Theorem 5.1. Assume τ ∗ achieves the optimal value of the gambling model in the infinite time

horizon with τ ∗ <∞ a.s., V (Sτ∗) = v∗ <∞, and Sτ∗ is lower-bounded a.s. Then

lim
T→∞

sup
τ∈TT

V (Sτ ) = lim
T→∞

V (Sτ∗∧T ) = v∗.
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We stress that this result only reveals the relationship between the two models in terms of the

optimal values. It does not offer a solution to the finite horizon problem (which is harder) from a

solution to the infinite one (which is comparatively easier), nor does it tell the error in the optimal

values when T is given and fixed. That said, the result suggests that the optimal value of the

infinite horizon model is an upper bound of that of the finite horizon one, and it is a tight upper

bound if T is sufficiently large. Moreover, while the truncation method mentioned earlier does not

provide an exact optimal solution to the finite horizon model, it does nevertheless offer a good

solution when T is large enough.

6. Conclusion

In this paper we develop a systematic approach to studying the stopping behaviors of CPT gamblers

in a finite time horizon. We hope that this work opens an avenue of thoroughly understanding

Barberis (2012)’s model and beyond. Indeed, as Barberis (2012) points out, casino gambling is not

an isolated behavior requiring a unique treatment; rather, it is one of many phenomena, including

ones in financial markets, that share a common driver of probability weighting.
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He XD, Hu S, Ob lój J, Zhou XY (2017) Path-dependent and randomized strategies in barberis’ casino

gambling model. Operations Research 65(1):97–103.
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Appendix
Appendix A: Proof of Theorem 3.1

We prove this theorem through a series of results. We start by recalling some properties of the potential and

its link to the first exit times.

Proposition A.1. Let τ be an (Ft)t∈N-stopping time such that {Sτ∧t : t ∈ N} is uniformly integrable.

Then

(i) For any t ∈ N, USτ∧t is a convex function, USτ (x)≥ USτ∧t(x)≥ |x| ∀x ∈ R, with USτ∧t(x) = |x| ∀x /∈
(−t, t).

(ii) For any two integers a < b and ρ := inf{u≥ τ : Su /∈ (a, b)}, USρ(x) = USτ (x) ∀x /∈ (a, b), and USρ is

linear on [a, b].

(iii) Fix t≥ 1 and let K := {k ∈Z|k= t− 1 + 2j, j ∈Z}. Then

USτ∧t(x) =USτ∧(t−1)
(x) +P(St−1 = x, τ ≥ t)1x∈K ∀x∈Z. (14)

In particular, if t is odd, then USτ∧t(x) = USτ∧(t−1)
(x) for any odd x; and if t is even, then USτ∧t(x) =

USτ∧(t−1)
(x) for any even x.
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Proof The first two properties are standard; see Ob lój (2004, Section 2). So we only establish (iii). Note

that St−1 is supported on K. We have |Sτ∧t − Sτ∧(t−1)| ≤ 1 so that {Sτ∧t ≥ x} = {Sτ∧(t−1) ≥ x} ∀x /∈ K.

In particular, since S is a martingale, we have USτ∧t(x) = USτ∧(t−1)
(x) ∀x /∈ K. Now take x ∈ K. Since

x+ 1, x− 1 /∈K, using (5), we have

P(Sτ∧t = x) =
USτ∧t(x+ 1) +USτ∧t(x− 1)

2
−USτ∧t(x)

=
USτ∧(t−1)

(x+ 1) +USτ∧(t−1)
(x− 1)

2
−USτ∧t(x)

= P(Sτ∧(t−1) = x) +USτ∧(t−1)
(x)−USτ∧t(x).

(15)

Rearranging and observing that P(St = x, τ ≥ t) = 0 the thesis follows. �

The following proposition provides some useful properties of Ut.

Proposition A.2. Let µ∈P0(Z) and Ut =Uµ
t be defined in (6). Then

(i) U0(x)≤Ut(x)≤Uµ(x)∧USt(x) ∀x∈Z, t∈N.

(ii) Ut(x) =Ut+1(x) when t is odd and x is even, or when t is even and x is odd.

(iii) Ut(x) is convex in x∈R and non-decreasing in t∈N.

Proof (i) By the construction of Ut we have U0(x) ≤ Ut(x) ≤ Uµ(x). On other hand, by (5) and the

structure of SSRW that P(St = x) =
(
P(St−1 = x−1)+P(St−1 = x+1)

)
/2, one can show easily that USt(x) =(

USt−1
(x− 1) +USt+1

(x+ 1)
)
/2, x∈Z. Then by induction, we have Ut(x)≤USt(x).

(ii) Again, by construction we have U0(x) = U1(x) for all odd x and U1(x) = U2(x) for all even x. The

conclusions follow immediately from induction.

(iii) Clearly U0 is convex. Suppose Ut is convex and fix m ∈ Z. If we put Ũ(x) = Ut(x) for x ∈ Z \ {m},

pick any

Ũ(m)∈
[
Ut(m),

1

2
(Ut(m− 1) +Ut(m+ 1))

]
,

and finally define Ũ by a linear interpolation for x ∈ R, then Ũ is convex. Observe that Ut+1 is obtained

exactly by repeating this procedure for all m∈Z and, hence, is also convex. Moreover, it now follows, by its

definition, that Ut(x) is non-decreasing in t. �

Proposition A.3. Let T ≥ 1, µ ∈ P0(Z) such that µ([−T,T ]) = 1 and Ut = Uµ
t be defined in (6). Then,

the following are equivalent:

(i) UT (x) =Uµ(x) ∀x∈Z.

(ii) There exists a randomized Root stopping time τR(b,r) such that τR(b,r) ≤ T and USτR(b,r)∧t = Ut

∀t≤ T ; in particular SτR(b,r) ∼ µ.

(iii) There exists τ ∈ TT such that Sτ ∼ µ.

Furthermore, for any τ ∈ TT such that Sτ ∼ µ we have USτ∧t(x)≤Ut(x) ∀x∈R, t≤ T .

Proof Proof of (i) ⇒ (ii). To show the existence of a randomized Root stopping time embedding µ we

first construct its stopping barrier b. For x∈Z, define

b(x) := inf{t≥ |x| :Ut+1(x) =Uµ(x)}. (16)
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It follows from Proposition A.2 that b(x) = x+ 2k for some k ∈Z. Next define the probabilities of the binary

random variables {ξt,x}, P(ξt,x = 0) = 1−P(ξt,x = 1). For each x∈Z,
P(ξt,x = 0) = 0 for t < b(x) ,

P(ξt,x = 0) = r(x) :=
Ut(x−1)+Ut(x+1)−2Uµ(x)
Ut(x−1)+Ut(x+1)−2Ut(x)

for t= b(x) ,

P(ξt,x = 0) = 1 for t > b(x) .

(17)

Note that r(x) = 1 is only possible if Uµ(x) = |x| which happens for x outside of the support of µ. For other

x we have Uµ(x)> |x| and a randomization, i.e., 0< r(x)< 1, happens at a node (t, x) when t= b(x) and

Ut(x− 1) +Ut(x+ 1)

2
>Uµ(x)>Ut(x) .

Let τ = τR(b,r) be the randomized Root stopping time in (7). By (i), UT ≥ Uµ and hence b(x) ≤ T − 1

∀x∈Z∩ (−T,T ). It follows that τ ≤ T as required.

To show Sτ ∼ µ, we need only to establish USτ (x) = Uµ(x) ∀x ∈ Z. Note US0
(x) = USτ∧0(x) = U0(x).

Suppose we have USτ∧t(x) =Ut(x) for t≤ n− 1. It follows from (5) that

P(Sτ∧t = x) =
Ut(x+ 1) +Ut(x− 1)

2
−Ut(x), t≤ n− 1.

On the other hand, by Proposition A.1, we have

USτ∧n(x) =USτ∧(n−1)
(x) +P(Sn−1 = x, τ ≥ n)1x∈K ∀x∈Z,

where K= {k ∈Z|k= n− 1 + 2j, j ∈Z}.

If Un−1(x) =Uµ(x) =Un(x), then b(x)<n− 1 and P(Sn−1 = x, τ ≥ n) = 0; hence

USτ∧n(x) =USτ∧(n−1)
(x) =Un−1(x) =Uµ(x) =Un(x) .

If Un−1(x)<Uµ(x) =Un(x), then b(x) = n− 1 and necessarily x∈K. We have, by definition,

P(Sn−1 = x, τ ≥ n) = P(Sτ∧(n−1) = x)P(ξn−1,x = 1)

=

(
Un−1(x+ 1) +Un−1(x− 1)

2
−Un−1(x)

)
P(ξn−1,x = 1).

It then follows that

USτ∧n(x) =USτ∧(n−1)
(x) +P(Sn−1 = x, τ ≥ n)1x∈K

=Un−1(x)P(ξn−1,x = 0) +
Un−1(x+ 1) +Un−1(x− 1)

2
P(ξn−1,x = 1)

=Un−1(x)
Un−1(x− 1) +Un−1(x+ 1)− 2Uµ(x)

Un−1(x− 1) +Un−1(x+ 1)− 2Un−1(x)

+
Un−1(x+ 1) +Un−1(x− 1)

2

2Uµ(x)− 2Un−1(x)

Un−1(x− 1) +Un−1(x+ 1)− 2Un−1(x)

=Uµ(x) =Un(x) .

Finally, if Un(x)<Uµ(x), then b(x)>n− 1. By definition, we have Un(x) =
Un−1(x+1)+Un−1(x−1)

2
and P(Sτ =

x) = P(Sτ = x, τ ≥ n). Consequently,

P(Sn−1 = x, τ ≥ n) = P(Sτ∧(n−1) = x) =
Un−1(x+ 1) +Un−1(x− 1)

2
−Un−1(x) .
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Thus, if x∈K, then

USτ∧n(x) =USτ∧(n−1)
(x) +P(Sn−1 = x, τ ≥ n)1x∈K

=Un−1(x) +
Un−1(x+ 1) +Un−1(x− 1)

2
−Un−1(x)

=
Un−1(x+ 1) +Un−1(x− 1)

2
=Un(x).

If x /∈ K, then, noting that P(Sτ = x, τ < n) = 0, we have P(Sτ∧(n−1) = x) = 0. As a result,

Un−1(x+1)+Un−1(x−1)
2

=Un−1(x) and

USτ∧n(x) =USτ∧(n−1)
(x) +P(Sn−1 = x, τ ≥ n)1x∈K

=Un−1(x) =
Un−1(x+ 1) +Un−1(x− 1)

2
=Un(x) .

In summary, USτ∧n(x) =Un(x) ∀n∈Z+. As a result, USτ (x) =USτ∧T (x) =UT (x) =Uµ(x) ∀x∈Z, namely,

Sτ ∼ µ.

Proof of (ii) ⇒ (iii). This is trivial.

Proofs of (iii) ⇒ (i) and the last assertion of the theorem. We start with the latter assuming (iii) holds.

Let τ ∈ TT such that Sτ ∼ µ. Note that USτ∧0 ≡U0. Suppose USτ∧t−1
(x)≤Ut−1(x) ∀x, for some 1≤ t≤ T .

Let S̃t = |Sτ∧t − x|, then (S̃t : t ≥ 0) is a submartingale. Hence, USτ∧0(x) ≤ ... ≤ USτ∧(t−1)
(x) ≤ USτ∧t(x) ≤

...≤ USτ∧T (x) = Uµ(x) ∀x. By (14), if x /∈ K, then USτ∧t(x) = USτ∧(t−1)
(x)≤ Ut−1(x)≤ Ut(x); if x ∈ K and

Ut(x) =Uµ(x), then USτ∧t(x)≤Uµ(x) =Ut(x); and if x∈K and Ut(x)<Uµ(x), then

USτ∧t(x)≤ USτ∧t(x− 1) +USτ∧t(x+ 1)

2

=
USτ∧(t−1)

(x− 1) +USτ∧(t−1)
(x+ 1)

2
≤ Ut−1(x− 1) +Ut−1(x+ 1)

2
=Ut(x) ,

where the first inequality is due to the convexity of USτ∧t(·), and the second equality is due to x−1, x+1 /∈K.

This proves the last assertion of the theorem via an inductive argument in t. Next, taking t= T and noting

that τ ≤ T we have Uµ =USτ∧T ≤UT which shows (iii) ⇒ (i). �

We are now ready to prove Theorem 3.1. The “only if” part follows immediately from Proposition A.3-(i)

and the construction of UT (x). To prove the “if” part, supposed (8) holds. First, we have UT (x) =Uµ(x) = |x|

for |x| ≥ T . For x=−(T −2),−(T −4), ..., T −4, T −2, it follows from (8) that UT (x) =
UT−1(x+1)+UT−1(x−1)

2
∧

Uµ(x) = Uµ(x). Next, by Proposition A.2, UT (x) = UT−1(x) for all x with x= T + 2j for some j ∈ Z. As a

result, for x = −(T − 1),−(T − 3), ..., T − 3, T − 1, we have Uµ(x+ 1) = UT (x+ 1) = UT−1(x+ 1), Uµ(x−

1) = UT (x− 1) = UT−1(x− 1), and, hence, Uµ(x) ≤ Uµ(x+1)+Uµ(x−1)
2

=
UT−1(x+1)+UT−1(x−1)

2
, where the first

inequality is due to the convexity of Uµ, and it follows that there exists the randomized Root stopping time

that embeds µ in the random walk with finite time T . We conclude that UT (x)≥Uµ(x) ∀x ∈ Z and, hence,

Proposition A.3 yields the desired result.
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Appendix B: Proof of Proposition 5.1

Suppose at time 0, the gambler takes a randomized strategy with probability r of “stop” and probability

1− r of “continue”, where r ∈ [0,1]. Let q = (1− r)/2 ∈ [0,1/2]. With utility function u(x) = u+(x)1x≥0 −
λu−(−x)1x<0, the CPT value of this strategy is given by u+(1)w+(q)−λu−(1)w−(q), whose derivative in q

is u+(1)w′+(q)− λu−(1)w′−(q). If follows from the assumption limp→0[w′+(p)/w′−(p)]> λ[u−(1)/u+(1)] that

u+(1)w+(q)− λu−(1)w−(q) is strictly increasing in q ∈ [0, q̃] for some q̃ ∈ (0,1/2]. Hence, there exists q̄ > 0

such that u+(1)w+(q̄)−λu−(1)w−(q̄)> 0.

Appendix C: Proof of Theorem 5.1

For any T , we have

V (Sτ∗∧T )≤ sup
τ∈TT

V (Sτ )≤ V (Sτ∗) = v∗.

Since Sτ∗ is lower-bounded a.s., there exists N > 0 such that Sτ∗ >−N a.s. For any ε > 0, we can choose M

large enough such that

M∑
n=1

u+(n) (w+ (P(Sτ∗ ≥ n))−w+ (P(Sτ∗ ≥ n+ 1)))

−λ
N∑
n=1

u−(n) (w− (P(Sτ∗ ≤−n))−w− (P(Sτ∗ ≤−n− 1))) =: ṽ > v∗− ε/2.

On the other hand, since τ∗ is finite a.s., the distribution of Sτ∗∧T converges to that of Sτ∗ . Then there is

sufficiently large T such that

V (Sτ∗∧T )≥
M∑
n=1

u+(n) (w+ (P(Sτ∗∧T ≥ n))−w+ (P(Sτ∗∧T ≥ n+ 1)))

−λ
N∑
n=1

u−(n) (w− (P(Sτ∗∧T ≤−n))−w− (P(Sτ∗∧T ≤−n− 1)))

> ṽ− ε/2> v∗− ε.

This establishes the desired result.
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