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Abstract

This paper is concerned with stochastic Riccati equations (SREs), which are a class of
matrix-valued, nonlinear backward stochastic differential equations (BSDEs). The SREs un-
der consideration are in general indefinite, in the sense that certain parameter matrices are
indefinite. This kind of equations arises from the stochastic linear quadratic (LQ) optimal
control problem with random coefficients and indefinite state and control weighting costs, the
latter having profound implications in both theory and applications. While the solvability of
the SREs is the key to solving the indefinite stochastic LQ control, it remains in general an
extremely difficult, open problem. This paper attempts to solve the problem of existence and

uniqueness of solutions to the indefinite SREs for a number of special, yet important, cases.
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1 Introduction

In this paper, we study the following matrix-valued equation, called a stochastic Riccati equa-

tion (SRE) on a finite time horizon [0,7] (the time variable ¢ is suppressed):
(P = —{PA+AP+YE (A C+ A+ CPC)) +Q

—[PB+ S (CiP+85) D} K [B'P+ 0k, D} (PC; + Ay)] }
9 +35 A dWI, teo, T, (1)

P(T) = H,

K = R+Y! ,D;PD; > 0.

Note that the last (matrix) positive definiteness constraint is part of the equation that must
be satisfied by any solution. Thus, strictly speaking, this is an equation with mixed equal-
ity /inequality constraints. The first two constraints constitute what is known as a nonlinear
backward stochastic differential equation (BSDE). The unknown of the SRE is the matrix-
valued stochastic process (P(t), A1(t),---,Ax(t)) adapted to the filtration F; that is generated
by the underlying Brownian motion W (t) = (W'(t),---,W¥(t)). The coefficients of this equa-
tion, A(t), B(t), C;(t), D;(t), Q(t) and R(t), are matrix-valued F-adapted stochastic processes,
and H is an Fpr-measurable random matrix.

The SRE (1) relates intimately to the following optimal linear—quadratic (LQ) control
problem with random coefficients:

Minimize the quadratic cost functional

J(wo,u()) = B{ /0 ' (=) Q()w(t) + u(t) R(t)u(t) ) dt + o(T) Ha(T) }, 2)
subject to the stochastic linear system dynamics
do(t) = [A)z(t) + B(t)u(t)] dt
+ Yk [Ci () 2(t) + Di(®) u(®)] dWI(t), te [0, T] (3)
2(0) = ao.

In general, if the SRE (1) admits a solution, then the LQ problem (2)—(3) is solvable, and an
optimal control can be represented explicitly in terms of the solution to (1) (see Section 3 for
details). Bismut [5] was the first to study the stochastic LQ problem with random coefficients
and the associated SRE. Using a fixed-point argument, he proved the existence and uniqueness
of solutions to the SRE under the assumptions, (among others), that the random coefficients

are independent of the Brownian motion and that R is uniformly positive definite and @ and



H are positive semidefinite. The definiteness assumption is particularly crucial in proving the
result, though the assumption per se seems rather natural because it had been taken for granted
in the stochastic LQ literature, [3, 4], which was presumably inherited from its deterministic
counterpart [2]. Note, however, the SRE investigated by Bismut is not really a BSDE in the
sense of Pardoux and Peng [17] since the coefficients are independent of, rather than adapted
to, the driving Brownian motion. Later, Peng [18] studied the SRE (1) as a nonlinear BSDE,
but again under the definiteness condition, i.e., R > 0,Q > 0, H > 0, in addition to a strong
assumption that D = 0.

Recently, it was found by Chen, Li and Zhou [6] that a stochastic LQ problem where R is
possibly indefinite may still be solvable as long as the corresponding SRE (1) is solvable. This
finding has triggered an extensive research on the so-called indefinite LQ control problem,
[9, 1, 7, 8, 19]. The problem not only stands out on its own as an interesting theoretical
problem, but also has promising applications in practical areas, especially in finance. In the
mean-variance portfolio selection [21, 15], or hedging [13], problems, for example, the matrix
R is inherently zero, which is a special indefinite case. Moreover, a pollution control model
where R is negative definite is formulated in [6].

The indefinite stochastic LQ problem leads to an indefinite SRE, adding new twists and
greater difficulty to the study of the backward SRE, an already hard problem in terms of
the existence of its solutions. To make it more precise, in the definite case, i.e., R > 0,Q >
0, H > 0, the third inequality constraint normally becomes redundant which can therefore be
eliminated from consideration. In the indefinite case, though, this constraint becomes a hard
one that must be taken care of. In [6], a special case when all the coefficients are deterministic
(so the equation reduces to an ordinary differential equation) and C' = 0 is solved. However,
even that case is non-trivial due to the indefiniteness of R. Most of the subsequent research has
centered around solving the indefinite SRE, analytically or computationally, with deterministic
coefficients [9, 1, 13, 19]. For the case with random coefficients a very special indefinite SRE
was solved in [15] where P is scalar-valued, C; = @ = 0, R is a zero matrix, and H = 1.
This special SRE arises from a mean—variance portfolio selection problem for a market with
random parameters. The existence of a solution to this special SRE is proved in [15] using
an ad hoc approach. On the other hand, local solvability (i.e., existence of solution in a small
neighborhood of the terminal time) of the general SRE (1) is established in [7, 8]. Note,
however, that the local solvability is not very useful in view of the LQ control application
because the time horizon in a control problem is typically given a priori.

The global existence of the general, indefinite SRE (1) on the entire time interval [0, 7]
remains an extremely challenging, if not at all insurmountable, open problem due to the
following reasons. First of all, it is a highly nonlinear BSDE, especially in view of the matrix

inverse term (R + D'PD)~!, for which the normal Lipschitz/linear growth conditions for



solvability [17, 16, 20] are not valid. Secondly, the indefiniteness of R makes possible the
singularity of the term R+ D'PD when one tries to use the typical approximation scheme to
construct a solution. Thirdly, the final constraint in (1) must be satisfied by any solution. This
is a feature not typically dealt with in the BSDE literature. Finally, (1) is a matriz equation.
Hence certain terms do not commute which adds substantial difficulty to the analysis.

This paper represents the first systematic attempt to tackle the indefinite SRE (1), where
@, R, and H are all allowed to be indefinite. While the results of this paper are still far away
from being a complete solution to the solvability of (1) in its greatest generality, we are able
to identify some special cases where a global solution is available.

It should be mentioned that, after finishing this work, we have received the preprints
[11, 12] by Kohlmann and Tang. In these Peng’s result for definite SRE [18] is improved
to the case where R is possibly singular, i.e., R > 0,Q > 0, H > 0, albeit with various other
assumptions. The main approach of [11, 12] is an approximation scheme, which does not apply
to the indefinite case due to the possible singularity mentioned above.

The remainder of this paper is organized as follows: In Section 2, we give preliminaries
including two known results needed in the subsequent study. In Section 3 we recall the origin
of the SRE, namely, the stochastic linear-quadratic optimal control problem, via which we
also address the uniqueness of solutions to SRE. Sections 4 and 5 are devoted to the study of
one-dimensional SREs and higher-dimensional SREs, respectively. Finally, Section 6 concludes

the paper.

2 Preliminaries

We assume throughout that (2, F, {F;}>0, P) is a given complete, filtered probability space
and that W (:) is a k-dimensional standard Brownian motion on this space with W(0) = 0. In
addition, we assume that F; is the augmentation of o{W (s)|0 < s <t} by all the P-null sets
of F.

Throughout this paper, we denote by R™*™ the set of m x m real matrices, and by S™
the set of symmetric n x n real matrices. If M = (m;;) € R™*", we denote its norm by
M| = /22, mfj If M € S™ is positive (positive semi-) definite, we write M > (>) 0.
Suppose n : 2 — R" is an Fp-random variable. We write n € L%_-T(Q; R™) if n is square
integrable (i.e. E|n|?> < o0), and 7 € L% (9; R*) if n is uniformly bounded. Consider now
the case when f : [0, T| x @ — R" is an {F;};>0 adapted process. If f(:) is square integrable
(i.e. EfOT |f(t)|? dt < o) we shall write f(-) € L%(0, T; R"); if f(-) is uniformly bounded (i.e.
ess SupP(;\efo, 77xq | f(£)| < 00) then f(-) € LF(0, T; R*). If f(-) has (P-a.s.) continuous sam-
ple paths and E supyejo 77 |f(#)]? < co we write f(-) € L%(Q; C(0, T; R")). These definitions

generalize in the obvious way to the case when f(-) is R**™- or S™-valued. Finally, we say



that N € L%_-(O, T; S™) is positive (positive semi-) definite, which is sometimes denoted simply
by N > (>) 0, if N(t,w) > (>) 0 for a.e. t € [0, T] and P-a.s. w, and say that N is uniformly
positive definite if N > 61 for a.e. ¢ € [0, T| and P-a.s. w with some given ¢ > 0.

Definition 2.1 A stochastic process (P, A1, ---,Ax) € L%(; C(0, T; S™) x (L%(0, T; S™))*
is called a solution to the SRE (1) if it satisfies the first equation of (1) in the It6 sense as well
as the second (the terminal condition) and third (the positive definiteness) constraints of (1).
A solution (P, Aq,---,Ag) of (1) is called bounded if P € L (0, T'; S™).

Throughout this paper, we impose the following assumptions on the parameters of the SRE

(1):
Assumption:
(A1)
( Aa C] € L_(;-'O(Oa TaRnxn)a j:1a2a"'aka
B’ D] € L?-'O(O’ T;]Rnxm)’ j:132a"'aka
9 Q@ € L¥(0, T;8"),
R e L0, T;S™),
| H e Lz,

In particular, we do not assume that Q > 0, R > 0 or H > 0. In addition, A, B, C}, D;, Q,
R, H are random. Later, we shall impose other specific assumptions for various special cases
considered in this paper.

Next, we collect two known results needed in our subsequent study of indefinite SREs. The
first result, due to Kobylanski [10], concerns the existence of solution and comparison theorem
for one-dimensional backward stochastic differential equations with quadratic growth.

Let v, Bo,b € R, and ¢ : [0, +00) — [0,4+00) be a continuous increasing function. We say
that the coefficient F' satisfies condition (H1) with ay, fy,b,¢, if F' is continuous, and for all
(t,y,z,w) € [0,400) x R x R¥ x Q,

F(ta Y, 2, w) = a'()(ta Y, 2, w)y + FO(t, Y, 2, w)a
where ao(-,y, 2,-) and Fy(-,y, z,-) are {F; };>0 adapted processes for fixed (y, z) € Rx Rk, and
160 < a()(t,y,Z,(—()) <ap, P—asuw,
|Fo(t,y, z,w)| <b+c(lyll2l? P —asw.
Lemma 2.1 Let (F,€) be a set of parameters of the following BSDE:
T T
Y(t) = ¢ +/ F(s,Y (), Z(s))ds —/ Z()AW(s), 0<t<T. @)
t t

Suppose that the coefficient F satisfies (H1) with oy, By, b,c, and & € L?_-OT(Q). Then
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(i) The BSDE (4) has at least one solution (Y,Z) € [L¥(0,T;R) N L%(; C(0, T; R))] x
LZ(0,T; R).
(ii) There exists a mazimal solution (Y*,Z*) of (4) in the following sense: For any set of

parameters (G,n) where G satisfies (H1) with «g, By, b,c, if
F>Gand &>,

then for any solution (Yg,Zg) of the BSDE (}) with the parameters (G,n), one must

have
Y* > Y.

The second result, due to Peng [18, Theorem 5.1], is about the unique solvability of the
SRE (1) in the definite case (i.e., @ > 0, H > 0, R > 0) where D = 0 is additionally assumed.

Lemma 2.2 The following SRE with Q > 0,H > 0,R > 0:

dP = —{PA-I-A’P-I-Z?:l(AjCj-I—CJ’.A]-_;_C]’_pCj)+Q_PBR_1B,P}dt
+Z.’;:1 A] dW]’ t € [Oa T]a
P(T) = H,

admits a unique bounded positive semi-definite solution (P,A).

3 Stochastic LQ control and uniqueness of solutions

to SRE

In this section we recall the connection between the SRE (1) and the stochastic LQ control
problem. A general result of the uniqueness of solutions to SRE will also be addressed via LQ
control.

We first recall the formulation of the stochastic LQ control [6]. Let (2, F, {F;}i>0, P) be a
complete filtered probability space on which a k-dimensional standard Brownian motion W (-)
is defined such that {F;};>¢ is the natural filtration of W (¢) augmented by all the P-null sets
of F. For any given (s,¢) € [0,T) x L%:S(Q; R™), consider the following linear SDE on [s, T

dz(t) = [A(t)x(t) + B(t)u(t)]dt
+ 308, [C (1) z(t) + Dy () u(®)] dWI(t), t€E s, T] (5)
z(s) = ¢,



where A, B, C; and D; are the same parameters as appearing in the SRE (1). The class of
admissible controls is the set Y = L%(0, T; R™). If u(-) € U and z(-) is the associated solution
of (5), then we refer to (z(-), u(-)) as an admissible pair.

Suppose that the cost functional is given by

J(s,Eu(-)) = E{ /0 ' (:c(t)’Q(t)x(t) + u(t)'R(t)u(t)) dt + =(T) Hz(T) ‘]—"} (6)

Again, @, R, and H are the same as given in (1). To summarize, the stochastic L control

problem associated with (5)-(6) is as follows:

{ min J (s, & u(-)),

: . (7)
subject to: (z(-), u(-)) admissible for (5).

The problem (7) is said to be solvable if for any (s,£) € [0,T) x L% (;R") there exists a
control u*(-) € U such that

—oo < J(s,&u*()) < J(s,&u(r), P—a.sw, Yu(-) €U.

In this case, the control w*(-) is referred to as an optimal control.
Suppose (P,A1,---,A) is a solution to (1). We introduce the following (forward) SDE

(the argument ¢ is suppressed):
dv = [A-BK\B'P+X}_, Dy(PC;+A)|x dt
+ Y4 [Cj— DK M BIP+ S DY(PCy+ Ay) |z Wi, tels,T],  (8)

z(s) = &
Lemma 3.1 Assume that (A1) holds. Suppose that the BSDE (1) has a solution (P, A) €
LE(0, T; RV ™) x L2.(0, T; RV™)* where A = (Ay,--+,Ax), and the SDE (8) has a solution
z(-) € L%(Q; C(0, T; R")). Then the stochastic LQ problem (7) is solvable. A (unique)
optimal feedback control is

k

u'() = =K @) [ (BOPE) + 0 D30 (P() C5(0) + Ay 1)) a(0)] (9)

j=1
where K(t) = R(t) + Z?Zl Dj(t) P(t) D;(t), and the associated optimal cost is:

inf J(s,&u() = ¢ P(s)¢, P—a.sw. (10)

u(-)eU
Proof: This result has been proved in [6, Theorem 3.1] along with [6, Remark 3.1]. The
only minor difference is that in [6] the initial state £ is deterministic, but the argument there

works for the case when £ is Fs-measurable, since £ is almost surely deterministic under the

the probability measure P(-|Fy). [



Theorem 3.1 Assume that (A1) holds. If (1) has two solutions (P',A?), i = 1,2, such
that the corresponding SDE (8) has solutions z;(-) € L%(; C(0, T; R")), 4 = 1,2. Then
(P1(s),Al(s)) = (P?(s),A%(s)), P-a.5.w, a.e.s € [0,T).

Proof: By Lemma 3.1, &'Pi(s)é = &'Py(s)€, V(s,€) € [0,T) x L%, (€ R™). Therefore
Pl(s) = P?(s), P-a.s.w, Vs € [0,T]. Now applying It&’s formula to |P!(s) — P?(s)|? and using
their respective equations, we get
0 = d|P'(s)=P%(s)|* = 2(P(s)—P*(s))d(P" (s)— P*(s)) +|A' () A% (s) [*ds = |A*(5)—A%(s) P ds.

Hence Al(s) = A%(s), P-a.s.w, a.e.s € [0,T]. "

Remark 3.1 Theorem 3.1 essentially gives the uniqueness to the SRE (1) among such solu-
tions that (8) admits solutions. As stipulated in [6, Remark 3.1] the solvability of (8) depends

on some moment estimates of its coefficients and may be available in some special cases.

4 Existence: The case when n =1

In this section, we consider the case when n = 1 (therefore the unknown P of the SRE (1)
is a scalar). However, it is still allowed that m > 1,k > 1. Note that this situation is
typically encountered in many financial problems, where the state variable is the wealth which
is scalar-valued; see, e.g., [21, 13, 15].

When n = 1, the equation (1) reduces to

aP = —{@A+5 CHP+2E  CA;+Q
—[(B+ 325 CiD)P + X8 DN | K1 [(B'+ X5, D)) P+ S5, Dy bt
+Yh A AW, telo, 1), (1)

/

P(T) = H,

K = R+PY) DiD;j>0.

\
Let us set:

a=24+ E;::l CJZ’ /B = (ﬁlaﬂ%”'a/@k)l = (201a202a"' a2Ck),1 I'= B+Z§:=1 CJD]’
D= (DiaDIQa"'aD;c)la A= (A17A23"'7Ak)'

Then, the above equation can be rewritten as

( aP = —{aP+AB+Q— (TP +AD)(R+ PD'D)" (TP + AD)' }dt
+AdW, t € [0, 7],
< (12)
P(T) = H,
| R+PD'D > 0.




4.1 Standard Case

The standard case (i.e. H>0,R > 0,Q > 0 ) can be treated as an application of Lemma 2.1.
In fact, we are going to study this case for a generalized version of the equation (12), which
in turn will be useful for the case when R is possibly indefinite (see Section 4.3 below). To
be specific, we add a parameter A, which is an m-dimensional-row-vector-valued, essentially

bounded Fi-adapted process, in (12):

dP = —{aP+Aﬁ+Q
—(FP+AD-I—A)(R-l—PD’D)_l(FP-l—AD-I—A)’}dt
+AdW,t € [0,T],

P(T) = H,

k1%4—PD’D > 0.

Theorem 4.1 Assume that H > 0,R >0, D'D >0, Q—AR™'A’ >0, R~! € L¥(0, T; R™*™)
and (D'D)~! € LE(0, T;R™*™). Then equation (13) admits a bounded nonnegative solution.

In particular, the Riccati equation (12) admits a bounded nonnegative solution if H > 0,R > 0,

D'D>0,Q >0, R e LE(0, T;R™™) and (D'D)~! € LL(0, T;R™*<™),

Proof: Let us consider the following equation:

dP = —F(t P,A)dt+ AdW, te€[0,T),
(14)
P(T) = H,

where
F(t, P,A) = a(t) P+AB(1)+Q(t)—(T(1) P +AD(1)+A () (R+P* D'D)  (T(t)P*+AD(1)+A (1))
In the above, P™ = max(P,0). Noting the following inequalities (by virtue of the assumptions

that R > 0 and D'D > 0):

1(D"D)~ 1|

(& +PTDD)| < [IB7l, IR+ PTD'D)7 < Sy

(for P #0),

we can easily check that the equation (14) satisfies the assumption of Lemma 2.1. Hence it

admits a bounded maximal solution (P, A). Moreover, we have (¢ is suppressed)
F(t,P,A) = aP+AB+Q—2A(R+PTD'D)"(TP* + AD)
+A[R™! -~ (R+ PTD'D)"'|A' — (TPY + AD)(R+ PTD'D)"Y(T'P* + AD)’
+Q — AR'A



On the other hand, the following BSDE

([ ap = —{aP +Af - 2A(R+ P*D'D)" (TP* + AD)’
+A[R ' - (R + P*D'D) YA — (TP* + AD)(R + P*D'D ) {(TP* + AD)’}dt
< +AdW,t € [0, T,
| P(T) = 0

satisfies the assumption of Lemma 2.1 and admits a bounded solution (0,0). Applying Lemma
2.1-(ii) to (14), we deduce that P > 0. Hence, P is also a bounded nonnegative solution of

(13). The assertion regarding the original equation (12) is straightforward. n

4.2 Case When R=0

The case when R = 0 is studied in [15] under the additional assumptions that C' = 0 (i.e.,
B =0) and @ = 0, which arises naturally in a mean-variance portfolio selection problem. Now
we discuss this case without those additional assumptions.

When R = 0, the equation (12) specializes to

aP = —{aP+AB+Q— (TP +AD)(D'D) (TP + AD) }dt + AdW,t € [0, ),
P(T) = H, (15)
P > 0

The key idea is that if (15) has a bounded solution, then, assuming that H > 0,H ! €

L®(Q, Fr, P;R) and D'D > 0,(D'D)~' € L¥(0, T;R™*™), the process (Y, Z) = (%, —55)

should satisfy the following equation (by virtue of the It6 formula):

av = ~{[O(D'D)"'T' ~ o]y + Z[B — 2D(D'D) '] - Qy? — AL DLD=Z gy
+ZdW,t € [0,T], (16)
Y(T) = +.
Theorem 4.2 Suppose that H > 0, H™! € L*®(Q,Fr,P;R), Q@ > 0, m = k, and that

D'D > 0,(D'D)~! € LL(0, T; R™ ™). Then (15) admits a unique bounded, uniformly positive

solution.

Proof: Since m = k and D is invertible, the last term of the drift coefficient of the
equation (16) vanishes. Thus (16) is a type of SRE (1) for which Lemma 2.2 applies. So it has

a unique bounded nonnegative solution. Rewrite this equation as

10



Q
~
I

—{[F(D’D)_II" —a—QYY + Z[6 - 2D(D’D)_1I‘]}dt + ZdW, te[0,T),
(17)

=
=
[

1
i

a=T(D'D)"'I"—a—-QY, f=p—-2DD'D)"', W, =W, — /tﬁ(s)ds.
0

Then from the well-known Girsanov theorem, W is a Brownian motion under a certain prob-

ability measure P. The above equation now becomes:

dY = —aYdt+ Zdw, telo,T],
Y(T) = 4.
Hence,
Y(t) = B(meld @5y > L ldlemn 5 L e g
~ |[Hlloo ~ [ H|loo
Thus we can set 7
1

(PaA) - (?7_W)

Applying Ito’s formula, we deduce easily that (P,A) is a bounded solution of (15) with P

uniformly positive. Finally, the uniqueness follows from that of (17). n

Remark 4.1 Under the assumption that D'D is invertible, it is necessary that m < k (m =
rank(D'D) < rank D < k). When m < k, it means that, in the context of the stochastic
control that leads to the SRE (1), the number of the independent controllable directions is
less than that of the independent random sources. In the special case of a stochastic market,
m < k implies that the number of the stocks available for selection is less than that of the
independent random sources that constitute the market or, in other words, the market is
incomplete. Hence, assuming m = k (and D'D is invertible) really stipulates that we are in
the realm of the complete market in the context of the finance problem. On the other hand,
when m < k, then (16) suggests that one should handle the last term of its drift coefficient (in
particular, the matrix-valued process I — D(D'D)~! D’ which is only nonnegative with possible

zero eigenvalues).

Remark 4.2 In [11], similar results to Theorems 4.1 and 4.2 are derived using approximation
technique which are quite involved. Here we provide completely different yet much simpler
proofs. It should be emphasized, however, that our ultimate objective is to prove the existence
for some indefinite SREs, for which Theorems 4.1 and 4.2 will be utilized. See next subsection

for details.
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4.3 Case when R is indefinite

The case with an indefinite R is more complicated. Unfortunately we are able to only treat

the case when m = k = 1. In this case, the equation (12) further simplifies to

ap = —{aP+05+Q- L  at+ aaw, te0,7)

P(T) = H, (18)
R+D?*P > 0,

where

a=24A+C? =2C, =B+ CD.
In this subsection we give two sets of sufficient conditions that guarantee the solvability of the

Riccati equation (18).

Theorem 4.3 Assume that T = 0,D # 0,Q — %% > 0,25 + H > 0, and (£ + H) ™' €
L>°(Q, Fr, P;R). Moreover, assume that % is constant. Then the Riccati equation (14)

admits a unique bounded solution.

Proof: Let us consider the following BSDE:

av = —{-a¥+pz—(Q— ) }dt+ 2aW, teo,T],
Y(T) = whme

As in the proof of Theorem 4.2, this equation has a unique bounded solution by virtue of
the assumptions. Moreover, we can prove in the same manner that there exists a constant
6 > 0 such that Y > §. Now, we set

1 R Z
PA=(—-—,—)-
(P, A) (Y D?’ Y2)
Applying It6’s formula and noting that % is constant, we deduce easily that (P, A) is a solution

of (14), which is bounded. The uniqueness comes from the inverse procedure. n

Remark 4.3 From the above result we can see that the SRE may admit a solution even when
both @ and R are negative (in the context of the stochastic LQ control, this amounts to saying
that an LQ control may be solvable even when both the running state and control costs are
negative.). To see this, take an example where all the assumptions of Theorem 4.3 are satisfied.
Moreover, let & = 24 + C? > 0. Then we see that the critical condition Q — %}} > 0 may
be satisfied even when both @ and R are negative (but then H must be positive and large

enough).
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In the above result it is assumed that I' = B + CD = 0 which is rather strict. The next

theorem replaces this condition by others.

Theorem 4.4 Assume that there exists a constant € > 0 such that

R R
ID| >0, H+— >¢, Q+ale— =5) — ——=2— >0. (19)

D

Moreover, assume that % is constant, and D~ € L¥(0,T;R). Then there exists a bounded

solution for the Riccati equation (18).

Proof: Consider the following Riccati equation:

'Y +AD+TD(e—-£)]2
@Y = ~{a¥ +82+Q+ale~ L)~ g bt
+ZdW,t € [0,T),
Y(I) = H+2£ -«
R

This equation is of the same type as (13) with A = T'(e ). The assumption of Theorem

T D2
4.1 is satisfied due to (19). Thus by Theorem 4.1 the above equation admits a bounded

nonnegative solution (Y, Z) € L¥(0,T;R) x L%(0,T;R).

We set
R
(PaA) = (Y—I-G— ﬁaz)
It is straightforward to verify that (P, A) is a bounded solution of the Riccati equation (14).
Moreover, since % is a constant, the solution P =Y + ¢ — % is bounded. [

Remark 4.4 Condition (19) gives the overall requirement for the coefficients of the SRE in
order for it to admit a solution. The positiveness/nonnegativeness of individual coefficients is

no longer required.

Example 4.1 Let us take an example to illustrate Theorem 4.4. Take H =1, D =1, and R
being negative with 1 + R > €. In this case, the conditions (19) specialize to

RI?

€

Q+ (e~ R)(a -T2+ =-) >0. (20)

Now if @ = 24 + C? < T? = (B + C)?, then Q has to be positive in order for the above
inequality holds. However, if & > T'?, then @ can also be negative while still satisfying (20).
Indeed, as long as a > %2 one can show that (¢ — R)(a —I'? + RTFZ) > 0. Hence there is some

room for ) to be negative.
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5 Existence: The case when n > 1

In this section, we will investigate the case when the unknown P is a matrix. For technical
reasons, we assume that £k = 1 and m = n. Note that even in the standard case (i.e. @ >0,
H > 0, R > 0), the solvability of the Riccati equation remains generally unsolved. In this

section we shall study two cases where R = 0 and R is indefinite respectively.

5.1 Case when R=0

In this subsection, we treat the case when R = 0. We need to assume in addition that C = 0.
First we have the following technical lemma.
Lemma 5.1 We have the following assertions.
(i) If X is a square matriz, then X + X' + 2||X||I > 0.
(i) If X is a positive definite matriz, then X — || X||71T > 0.
Proof: (i) For any column vector z of appropriate size, we have by the Cauchy-Schwartz
inequality:
—(2' Xz +2'X'z) < |2’ Xz| + |2/ X'z] < 2||z])*||X]],

or equivalently
(X + X'+ 2||X|| )z >0, Vaz.

This proves the claim.

(ii) For any column vector z of appropriate size, again by the Cauchy-Schwartz inequality:
(X~72)' X (X ~72) < ||X|[|| X 7al* = || X]|(a'X <),

or equivalently
(X' —||X||7 Dz >0, V.

This proves the claim. [

Theorem 5.1 Suppose that Q >0, H >0, H™ ' € L%T(Q; S™), D is nonsingular and D' €
LP(0,T;R* ™). Then the Riccati equation (21) admits a unique bounded, uniformly positive

definite solution.

Proof: Let us first assume that D = I. Then the Riccati equation becomes:

dP = _{PA+A’P+ Q— (PB +A)P—1(B'P+A)}dt+ AdW,t € [0,T7,
P(T) = H, (21)
P > 0

14



Consider the following BSDE:
dy = —{—AY—YAL—BZ—ZBh+BYBt—YQY}ﬁ+ZmM t € [0,T],
Y(T) = H™.

This equation admits a unique bounded positive semidefinite solution according to Lemma,

2.2. Rewrite the equation as

y = —@%+AT+@W@+Z@+@Zﬁrummtemﬂ,
(22)
Y(T) = H7!,

where A = —A' — 1QY and C = — B
We need to prove that Y > 0. To this end, introduce

Y = ||H| e 0Mllep 7z =0,

where
|| Al|oo = esssup, ) [|A(t, w)||, ||H||oo = esssup,||H(w)]|.

Then (Y, Z) is a bounded solution of the following BSDE:

IS
~
I

—{ —2||4|Y + ZC + C”Z}dt+ Zdw, te[0,T),
Y(T) = ||H|S!

Now we put

Y=Y-Y,Z=2Z-2Z.

Then (Y, Z) satisfies the following BSDE:

v = _{m YAV 4+ 2C+CZ+CVC

Y (A+ A+ 2|40 ]) }ﬁ+ZﬁVtewzq

=
=3
[

=G T

By Lemma 5.1, we have
A(t,w) + A'(t,w) + 2||Al|oI >0, Y(t,w),

and
H(w) ™" —|[H|l I >0, V.
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It follows then from Lemma 2.2 that

namely,

Now set
(P,A) =Y 1, -y lzy 1.

It is easy to check, via the Ité6 formula, that (P, A) is a bounded, uniformly positive definite
solution of (21). Again, the uniqueness follows from the inverse procedure.

Now, for a general nonsingular D, the Riccati equation can be rewritten as:

aP = —{PA+AP+Q—(PBD™' + NP (D 'YB'P +A) bdt + AdW,t € [0,T),
P(T) = H,
P > 0
This is in the same form of (21). The proof is completed. [

5.2 Case when B=0,C=0

In this subsection we study another special case when B = 0, C' = 0. We also need to assume

that R is a constant matrix. However, R is allowed to be indefinite.

Theorem 5.2 Assume that Q — RA— A'R>0, R+ H >0, (R+ H)~! € L*(Q, Fr, P;S"),
D is nonsingular and D~' € LL(0,T;R"*™). Then the Riccati equation (23) admits a unique

bounded solution.

Proof: First let us take D = I. Then the Riccati equation under consideration is:

P = —{PA+AP+Q-A(R+P)"Abdt+ AdW, t€[0,T)
P(r) = H, (23)
R+P > 0.

Consider the following BSDE:
dy = —{ —AY ~YA - Y(Q-RA— A’R)Y}dt + ZdW, te0,T),

(24)
Y(T) = (R+H)™.
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By Lemma 2.2, this equation admits a unique bounded solution (Y, Z) € L¥(0,T;S") x
L%_-(O,T; S™). As in the proof of the preceding theorem, there exists a constant ¢ > 0, such
that Y > cI. Hence we may set (P,A) = (Y ! —R,-Y 1ZY 1. Tt is easy to verify via the Itd
formula that (P,A) is a bounded solution of (23). On the other hand, the uniqueness comes
from the inverse procedure.

Now for a general nonsingular D, the Riccati equation can be rewritten as
P = —{PA L AP+ Q- A(DYYRD + P)—lA}dt + AdW, t€[0,T],
P(T)=H,
(D~YYRD™' + P >0.
This is in the same form of (23), which completes the proof. m

Remark 5.1 In [12] the unique solvability of a definite SRE is proved under the assumptions
(among others) that B = C = 0 and R is uniformly positive definite.

6 Concluding remarks

In this paper we have investigated the stochastic Riccati equation (1) with random coefficients
where the matrix-valued stochastic processes (), R and H are possibly indefinite. The exis-
tence of its solution is a prerequisite for solving the corresponding indefinite stochastic linear
quadratic control problem, which in turn has important applications in many applied areas es-
pecially in finance. Here we have identified several special cases where the existence is proved.

The general global existence remains an extremely challenging open problem.

Acknowledgment. We thank the two anonymous referees for their careful reading of an

earlier version of the paper, and for their helpful comments.
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