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Abstract

This paper is devoted to the study of a stochastic linear—quadratic (LQ) optimal control
problem where the control variable is constrained in a cone, and all the coefficients of the
problem are random processes. Employing Tanaka’s formula, optimal control and optimal
cost are explicitly obtained via solutions to two extended stochastic Riccati equations (ES-
REs). The ESREs, introduced for the first time in this paper, are highly nonlinear backward
stochastic differential equations (BSDEs), whose solvability is proved based on a truncation
function technique and Kobylanski’s results. The general results obtained are then applied to a
mean—variance portfolio selection problem for a financial market with random appreciation and
volatility rates, and with short-selling prohibited. Feasibility of the problem is characterized,
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1 Introduction

Linear—quadratic (LQ) optimal control is a problem where the system dynamics are linear
in state and control variables and the cost functional is quadratic in the two variables. It is
a classical yet fundamental problem in control theory, pioneered by Kalman [11] (for deter-
ministic control). Extension to stochastic LQ control was first carried out by Wonham [25].
Bismut [3] performed a detailed analysis for stochastic LQ control with random coefficients.
With the joint effort of many researchers in the last 40 years, there has been an enormously
rich theory on LQ control, deterministic and stochastic alike. Recently, starting with Chen,
Li and Zhou [6], there has been emerging interest in the so-called indefinite stochastic LQ
control, where, quite contrary to the conventional belief, the cost weighting matrices are al-
lowed to be indefinite; see [7, 8, 1, 26]. This new theory turns out to be useful in solving
the continuous-time version of Markowitz’s Nobel-winning mean—variance portfolio selection
model; see [28, 14, 16, 18, 13, 17]. For systematic accounts of the deterministic and stochastic
LQ theory, refer to [2] and [27] respectively.

One of the elegant features of the LQ theory is that it is able to give in explicit forms
the optimal state feedback control and the optimal cost value through the celebrated Riccati
equation; hence the LQ control problem is completely solved. What essentially enables this
closed-form solution, besides the special linear—quadratic structure, is that the control is not
constrained. Specifically, since the control is unconstrained, the feedback control constructed
via the Riccati equation is automatically admissible. If, on the other hand, there are pointwise
control constraints, then the whole LQ approach would collapse.

One should acknowledge that LQ control with control constraints is a well-posed problem
which is important in both theory and applications. For example, in many real applications
the control variable is required to take only non-negative values. The mean—variance portfolio
selection problem with no-shorting constraint, which is to be tackled in this paper, is exactly
one of such problems. There were some attempts in attacking the deterministic LQ problems
with positive controls; see for example [23, 5, 9]. In these works, however, only some implicit
necessary and sufficient conditions for optimality were derived and some numerical schemes
suggested, and the special LQ structure was not fully taken advantage of and no explicit result
was obtained. On the other hand, to our best knowledge research on pointwisely constrained
stochastic LQ control has been completely absent in the literature.

The main purpose of this paper is to tackle a stochastic LQ control problem where the
control variable is constrained in a cone (which, certainly, includes the non-negative orthant in
a Euclidean space as a special case), and all the coefficient matrices of the model are random.
Moreover, the problem is allowed to be “singular” in the sense that the control weighting

matrix in the cost functional is possibly singular. However, we are able to treat only the case



when the state variable is scalar-valued, although it is sufficient to cover many meaningful
practical applications, in particular in financial area where the one-dimensional wealth process
is typically taken as the state. We aim to obtain ezplicit solutions comparable to the classical
unconstrained-control counterpart. To this end, we introduce two equations termed extended
stochastic Riccati equations (ESREs). These two equations are highly nonlinear backward
stochastic differential equations (BSDEs), the solvability of which is interesting in its own
right. Based on a truncation function technique and a delicate result of Kobylanski [12], we
are able to prove the existence of solutions to the introduced ESREs. Then, applying Tanaka’s
formula and going through some detailed analysis, we obtain explicit optimal feedback control
as well as the optimal cost value in terms of the solutions to the two ESREs.

The other purpose of the paper is to solve the continuous-time mean—variance portfolio
selection model with short selling prohibition and random market parameters. Indeed, this
is the very problem that motivated us to tackle the general constrained stochastic LQ prob-
lem. Notice that a mean—portfolio selection model with no-shorting was solved in [16] using
Hamilton—Jacobi-Bellman equation and viscosity solution theory; however among other ad-
ditional assumptions all the market parameters are assumed to be deterministic in [16]. The
partial differential equation approach there does not extend to the current case with random
parameters. To overcome this difficulty, we reformulate the problem so that it falls exactly
into the general constrained L(Q problem that has been solved. Hence, by applying the general
results obtained we are able to solve the portfolio selection problem, once again, explicitly and
completely.

There are large number of papers devoted to applying stochastic control theory for mean—
variance efficient /hedging portfolio selection models; see, to name a few recent ones, [14, 21,
13, 18, 17, 22, 4]. While some of these works are on more general asset price models (such
as semimartingale ones) and/or markets (including incomplete markets), none of them deals
with directly constrained portfolios. As a result, the value functions there remain quadratic,
which is no longer the case, as will be demonstrated in this paper, with the conic constrained
portfolios.

The rest of the paper is organized as follows. In Section 2 we formulate the constrained
stochastic LQ model, and in Section 3 we present some mathematical preliminaries including
Tanaka’s formula and introduction of the two ESREs. Section 4 is devoted to the solvability of
the ESREs in two common cases. Section 5 gives the solution to the LQ problem. Application
of the general results to a mean—variance portfolio selection problem is presented in Section 6.

Finally, Section 7 concludes the paper by some remarks.



2 Problem Formulation

We assume throughout that (Q, F, {F;}+>0, P) is a given complete, filtered probability space
and that W (:) is a k-dimensional standard Brownian motion on this space with W(0) = 0. In
addition, we assume that F; is the augmentation of o{W(s)|0 < s < ¢} by all the P-null sets
of F. When no confusion would occur, we omit to write P-a.s. for a statement that holds
almost surely with respect to P.

Throughout this paper, we denote by R™ the set of m-dimensional column vectors, by R
the set of m-dimensional column vectors whose components are nonnegative, by R™*™ the
set of m x n real matrices, and by S™ the set of symmetric n X n real matrices. Therefore,
R™ = R™ If M = (my;) € R™" we denote its transpose by M’, and its norm by
(M| = />, m2. If M € S™ is positive (positive semi-) definite, we write M > (>) 0.
Suppose 5 : Q@ — R" is a G-measurable random variable. We write 1 € Lé(Q; R™) if n is
square integrable (i.e. Eln|*> < o), and n € L (Q; R") if 7 is uniformly bounded. Consider
now the case when f : [0, 7] x @ — R" is an {F;};>¢-adapted process. If f(-) is square
integrable (i.e. E’fOT |f()|? dt < co) we shall write f(-) € L%(0, T; R"); if f(-) is uniformly
bounded (i.e. ess sup e, 1x0 [f(t)] < 00) then f(-) € LE(0, T; R*). If f(-) has (P-as.)
continuous sample paths and E supycjo 7 If@®)? < oo we write f(-) € L%(; C(0, T; RY)).
These definitions generalize in the obvious way to the case when f(-) is R**™- or S"-valued. In
addition, we say that N € L%E(O, T'; S™) is positive (positive semi-) definite, which is sometimes
denoted simply by N > (>) 0, if N(t,w) > (>) 0 for a.e. ¢ € [0, T] and P-a.s., and say that
N is uniformly positive definite if N > cI, for a.e. ¢t € [0, T] and P-a.s. with some given
deterministic constant ¢ > 0, where I, is the n-dimensional identity matrix.

Finally, for any real number we define 2% := max{z,0} and z~ := max{—z,0}.

Consider the following linear SDE:

dz(t) = [A(t)z(t) + B(t)u(t)]dt + [z(t)C(t) +u(t)D(t)']1dW (t), te€ [0, T],
(1)
z(0) = o,
where A, B, C and D are {F;};>¢-adapted processes (possibly matrix-valued), and zo € R is
a non-random scalar. Precise assumptions on this data will be specified below. Let I' C R™
be a given closed cone; i.e., I' is closed, and if u € I" then au € I' Ya > 0. Typical examples
of such a coneareI' = R?, I' = {u € R" | Mu <0} and ' = {u € R™ | Mu = 0} where

M e R™™ ™. The class of admissible controls is the set
U:= {u() € L0, T; R™)| wu(t) €T, P—as., ae. t €[0,T], and (1) has a unique
solution under u()}

If u(-) € U and z(+) is the associated solution of (1), then we refer to (z(-), u(-)) as an admissible

pair.



Suppose that the cost functional is given by

T
J(zo,u(-)) == E{ / [Q(t)m(t)2 +u(t) R(t)u(t)| dt + Gx(T)2}. 2)
0
Throughout this paper, we shall assume the following:

Assumption (A1l):

A, Q € L¥(0, T;R),
B € L%(0, T;R™>™),
< C € L0, T;RF),
D € L$(0, T;RF*m),
R e L¥(0, T;S™),
{ G € LE (4 R).

Note that all the parameters involved may be random. Also, by standard SDE theory, equation
(1) admits a unique solution z(-) € L%(Q; C(0, T; R)) for any u(-) € L%(0, T; R™) under
Assumption (A1l). The stochastic LQ) problem associated with (1)—(2) is as follows:

{ Minimize J(zq,u(-)), (3)

subject to (z(-), u(-)) admissible for (1).

The problem (3) is said to be finite (w.r.t. zp) if there exists some finite constant K € R such
that

J(:E(),’U,()) > K, V’U,() e,
and solvable (w.r.t. zg) if there exists a control u*(-) € U such that
J(zo,u*(+)) < J(zo,u(-), Vu(-) €Y.

In this case, the control u*(-) is referred to as the optimal control (w.r.t. xy). We say that (3)
is uniquely solvable if it is solvable and the optimal control is unique. Note that a finite LQ

problem is not necessarily solvable.

3 Preliminaries

In this section we present some mathematical preliminaries required in the sequel, including

in particular Tanaka’s formula which plays a critical technical role in the subsequent analysis.

Lemma 3.1 (Tanaka’s formula) Let X (t) be a continuous semimartingale. Then

dX (1) = 1(x()>0)dX (t) + 3dL(2),
dX~(t) = —1(x(1<0)dX (t) + 5dL(t),
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where L(-) is an increasing continuous process, called the local time of X (-) at 0, satisfying

t
/O IX(s)|dL(s) =0, P —a.s. (5)

Proof: See, for example, [24, Chapter VI, Theorem 1.2 and Proposition 1.3]. n

Next, define the following mappings:

Hi(t,w,v,P,A):= vV'[R(t,w)+ PD(t,w)' D(t,w)v
+2v'[B(t,w)'P + D(t,w)'PC(t,w) + D(t,w)'A],
H_(t,w,v,P,A):= v'[R(t,w)+ PD(t,w) D(t,w)v (6)
—2v'[B(t,w)'P + D(t,w)' PC(t,w) + D(t,w)'A],
(t,w,v, P,A) € [0,T] x 2 x R™ x R x RF,

and

HY (t,w,P,A) := inf,cr Hy (t,w,v, P, A),

7
H* (t,w, P,A) := infyer H_(t,w,v, P,A), (t,w,P,A) €[0,T] x Q x R x RE. ™)

Remark 3.1 H}(t,w,P,A) and H* (t,w, P, A) have finite values if R(¢,w) + PD(t,w)' D(t,w)
> 0. Indeed, in this case, there exists C;(t,w, P,A) > 0, Co(t,w, P,A) > 0 such that

&)

H, (t,w,v, P,A) > C1|v]” = Calv| = C1v|(Jv| — c,)

If |v| > g—f, then Hy > 0. Recall that 0 € T', hence infyer H (t,w,v, P,A) < 0. These facts
imply

HY(t,w,P,A) = inf H,(t,w,v,P,A)> min H,({,w,v,P,A) > —oc.

UEF,|U|S% |U|Sg—f

Hence, infyer H (t,w, v, P, A) is finite. The same is true for H_.

Now we introduce the following two nonlinear backward stochastic differential equations —

BSDEs (the arguments ¢ and w are suppressed):

(4P, = —{(2A +C'C)Py +2C"A, + Q + HX (P, A+)}dt +ALdW, telo, T),
{ P.(T) =G, (8)
| R+P,D'D>0,

/

dP_ = _{(2A +C'C)P_ +20"A_ + Q + H*(P_, A_)}dt +AdW, telo, T,
{ P_(T) =G, (9)
| R+P_D'D>0.

The equations (8) and (9) are referred to as the extended stochastic Riccati equations (ESREs).

The following gives a precise definition of their solutions.



Definition 3.1 A stochastic process (Py,Ay) € L%(Q; C(0, T; R)) x L%(0, T; R*) is called
a solution to the ESRE (8) if it satisfies the first equation of (8) in the It sense as well as
the second (the terminal condition) and third (the positive definiteness) constraints of (8). A
solution (Py,Ay) of (8) is called bounded if P, € L¥(0, T; R), called positive (respectively
nonnegative) is P, (t) > 0 (respectively P, (t) > 0) for all ¢ € [0, T] and P-a.s., and called
uniformly positive if P, (t) > ¢ for all ¢t € [0, T| and P-a.s. with some deterministic constant
¢ > 0. Similar terms can be defined for the other ESRE (9).

4 Existence of solution to the ESREs

As the existence of solution to the ESREs (8) and (9) is essential to solving the underlying
stochastic LQ problem, we devote this section to this issue. Note that the existence problem
is interesting in its own right from BSDE point of view, for both (8) and (9) are nonlinear
BSDEs that do not satisfy the standard assumptions for existence.

We will deal with the following two cases.

Standard case. Q@ >0, R >0 with R™! € LZ(0,T;R™ ™), and G > 0.

Singular case. Q@ > 0,R > 0,G > 0 with G~! € L¥(0,T;R), and D'D > 0 with (D'D)~! €
LE(0,T;R™>™).

4.1 Standard Case

In this subsection we solve the standard case.

Theorem 4.1 For the standard case, there exists a bounded, nonnegative solution (Py,Ay)
(respectively (P—,A_) ) to the ESRE (8) (respectively (9)).

Proof: Let us first consider the following BSDE:

ip, = —{(2A +C'C)Py +20"A1 + Q}dt + AW, telo, T), w0
PUT) = G.

This is a linear BSDE with bounded coefficients (by virtue of Assumption (A1l)), and with
@ > 0 and G > 0. Hence there exists a unique nonnegative, bounded solution (P;,A;). Denote

by ¢1 > 0 an upper bound of P;. Now, consider the following BSDE:

{ dP = —Fy(t, P, A)dt + NaW, t€ 0, T], (11)

P(T) =G,
where the function F; is defined by
Fi(tw, P,A) = [24(tw) + O(t,w0)C(t,w)|P +20( w)'A + Q(t,w) + Hi (t,w, P*, A)gi (P*),
(t,w,P,A) € [0,T] x Q x R x R
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(recall that P denotes the positive part of P), whereas g; : R" — [0, 1] is a smooth truncation
function satisfying g1 (z) = 1 for z € [0,¢1], and g1 (z) =0 for z € [2¢1, +00).

The function F; is continuous in (P, A). To see this, for a given n € N (the set of positive
integers), if |P| < n,|A| < n, then by the assumption on R there exist two constants C; > 0
and C2(n) > 0, such that

H+(t,’l),P+,A) > Cl|v|2 - CQ(n)|U|
Thus, for |P| < n,|A| <n, the argument in Remark 3.1 results in

Hi(t,PT,A) = min  H(t,v, P*,A).
’UEF,‘U|SC207(R)
1
This implies that F; is continuous in (P, A).
On the other hand, there exists a Co > 0 such that

H+(t,IUaP+7A) Z C11|IU|2 - 02(P+ + |A|)|U|’

which yields
_G3(PT £ |AD?
4Cy '
Hence, F satisfies the hypothesis (H1) of Kobylanski [12] noting the role of the truncation

0> Hi(t,PT,A) >

function g;. According to [12, Theorem 2.3], there is a bounded, maximal solution (see [12,
p. 565] for its definition) (P, A ) to the BSDE (11). Now, as H (¢, P,A) <0 and (P;,Aq) is
the only, hence maximal, bounded solution to (10), we get P, < P; < ¢;. Furthermore, that
G>0,Q >0and Hi(t,PT,A) > —%W implies Py > 0, using the facts that (P, A)
is the bounded, maximal solution to (11) and that (0,0) is an obvious solution to (11) with
G=0,Q =0, and H;(t,PT,A)g1(P") replaced by —%ng (PT). This proves that
(P4,AL) is a bounded nonnegative solution of the ESRE (8). The same argument concludes
also the existence of solution to the ESRE (9).

4.2 Singular Case

The singular case is the one that will be used in the financial application in the second half of

the paper.

Theorem 4.2 For the singular case, there exists a bounded, uniformly positive solution (Py,Ay)
(respectively (P—,A_)) to the ESRE (8) (respectively (9)).



Proof Let us first consider the following BSDE (the argument ¢ is suppressed)

dPy = —[(2A + C’C)P2 + ZCIAQ + H* (PQ, Az)]dt + AIQdW, te [O, T],
Py(T) =G, (12)
P, >0,

where
H*(t,P,A) := —[PB+(C'P+A)D|P~Y(D'D)"'[B'P+ D'(PC + A)).

This is a BSDE studied independently in [13] and [10], using different approaches. The exis-

tence of its solution was proved in [13] with a rather involved proof, and was proved in [10] with

a short proof, nonetheless for the case K = m. For completeness, we will prove the existence

of solution to this BSDE using a simpler method in the lemma following the end of the proof

of this theorem. By this lemma, there exists a unique bounded, uniformly positive solution

(Py, Ag). In particular, there exists a constant co > 0 such that P»(t) > co, Vit € [0,T], P-a.s..
Now, let us consider the following BSDE:

{ dP = —Fy(t, P,A)dt + N'dW, te€ |0, T), (13)

P(T) =G,
where

Fy(t,w,P,A) := [2A(t,w) + C(t,w)C(t,w)]P + 2C(t,w)'A + Q(t,w) + H% (t,w, P, A)ga(PF),
(t,w, P,A) € [0,T] x 2 x R x Rk

with go : RT — [0,1] being another smooth truncation function satisfying go(x) = 0, for
z € [0, 3¢c2], and go(z) = 1 for z € [cp, +00). As with the proof for the standard case we can
show that the function F» is continuous in (P, A) and satisfies the assumption of [12]. Thus,
there exists a bounded, maximal solution of the BSDE (13), denoted as (Py, A4 ).

Notice the following inequality

H%(t,P,A) > infyepm Hy(t,v, P,A)
inf,cgm {v'PD(t)' D(t)v + 20'[B(t)'P + D(t) PC(t) + D(t)'A]}

H*(t, P, A).

>
>

Hence, noting @) > 0, the maximal solution argument gives
P+(t) > Pz(t) >, Vte [O,T]

This implies that (P}, A4) is actually a bounded, uniformly positive solution of the ESRE (8).

The same argument also leads to the existence of solution to the ESRE (9).



Lemma 4.1 Equation (12) has a bounded, uniformly positive solution (Py,As).
Proof: Set
a:=2A+C'C—-(B+C'D)(D'D)"Y(B'"+D'C), g:=2C —2D(D'D)"(B' + D'C).
Then, equation (12) can be rewritten as
dPy = —[aPy + 3'Ag — P%A’ZD(D’D)*lD'AQ]dt + Aydw, telo, T),
P2(T) = Ga (14)
Py, > 0.
Let c¢3 > 0 and ¢4 > 0 be two constants satisfying G > c¢3 and |a| < ¢4, and set

o = cge T,

Now, consider the following BSDE:
dP = —[aPT + f'A — 5A'D(D'D)~'D'Agy(P)]dt + A'dW, t € [0, T, (15)
P(T) =aG,
where g9 is the truncation function defined in the proof of Theorem 4.2 corresponding to the
constant cy. According again to [12, Theorem 2.3], there exists a bounded, maximal solution

to this BSDE denoted as (P, As).
Finally, the following BSDE:
dP = —[—c,P* + /A — $A'D(D'D) D' Ago(P)]dt + A'dW, t € [0, T, (16)
P(T) = C3,
has an obvious solution (cze=“(T—*) 0). As (P, A3) is a maximal solution to (15), we deduce
that Pa(t) > cge=4T'=t) > cae=ea? — ¢, This implies that (P2, A9) is also a bounded,

uniformly positive solution to (14), hence to (12). n

Remark 4.1 When there is no control constraint, i.e., when I' = R™, then
H(t,P,A) = H*(t,P,A) = —[PB + (C'P + N')D](R + PD'D)'[B'P + D'(PC + A)],

provided R+ PD'D > 0. Hence both the ESREs (8) and (9) reduce to the normal stochastic

Riccati equation

aP = —{(24+ C'C)P +2C'A + Q
—[PB+ (C'P + N')D)(R+ PD'D)"\[B'P + D'(PC + A)]}dt + AdW, teo,T),
P(T) =@,
R+ PD'D > 0.
(17)
The above equation has been studied in great details in [13, 10]. Moreover, in [10] the case

when R is possibly indefinite was investigated.
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Remark 4.2 The uniqueness of solutions to (8) and (9) will be proved in the next section,
interestingly, as a direct consequence of the solution to the LQ problem. It should be noted
that in [12], the uniqueness of solutions is proved under the additional assumption that the

generator (i.e., the drift coefficient) is differentiable which is not satisfied here.

5 Solution to the LQ problem

In this section we give explicit solution to the LQ problem (1)—(2) in terms of the solutions to
the two ESRESs, for both the standard and singular cases defined in the previous section.
First, when R+ PD'D > 0, define

€+ (t,w, P,A) := argmin, . H, (t,w,v, P,A),

18
¢_(t,w, P,A) := argmingr H_(t,w,v, P,A), (t,w,P,A) €[0,T] x 2 x R x Rk, (18)

Note that the minimizers above are achievable due to a similar argument in Remark 3.1 and

the assumption that T' is closed.

Theorem 5.1 In both the standard and singular cases, let (Py, A1) € L%(Q; C(0, T;R)) x
LZ(0, T;RF) and (P_, A_) € L%(Q; C(0, T;R)) x LL(0, T;RF) be bounded, nonnegative (in
the standard case) or bounded, uniformly positive (in the singular case) solutions to the ESREs

(8) and (9), respectively. Then the following state feedback control

w*(t) = &4 (8, Py (t), Ay (8) 2™ () + € (¢, P- (1), A (2))z™ (2) (19)
is optimal for the problem (1)-(2). Moreover, in this case the optimal cost is:

T*(@0) := inf J(zo,u()) = Py (0)(zg)? + P (0)(z, ). (20)

Proof: First note that Theorems 4.1 and 4.2 ensure that (8) and (9) admit bounded,
nonnegative (in the standard case) or bounded, uniformly positive (in the singular case) so-
lutions (P4, Ay) € LE(Q; C(0, T;R)) x L%(0, T;RF) and (P—, A_) € L%(Q; C(0, T;R)) x
LZ(0, T; R*) respectively. Let z(-) be the solution of (1) under an arbitrary given admissible

control u(-). By Tanaka’s formula (Lemma 3.1), we obtain:
1
dz () = La(y>0) [A(1)z(t)+ B)u()]di+1(a)>0) [2()C(@)' +u(t) D () ]dW (t)+ 5dL(1), (21)

where L(-) is the local time of z(-) at 0 as specified in Lemma 3.1. Applying Ito’s formula to

11



the above, we get

dzt(t)?

- 2w+<t>{1<z(t)>0) [A()2(t) + Bt + a0 [2()C() +u(ty DE)1AW (1)
+3dL(t } + 1 ac(t)>0 ) [2(O)C() +u®) DE)C(H)2(t) + D(t)u(t)]dt

{2A 24 2u(t)B(t)zt(t) + Liz)>0) [2(1)C (1) +u(t) D(t)][C(t)x(t) + D(t)u(t)]}dt
+2z7(t )[ ( )C@) +U( )'D(t)']dW (¢),

(22)
where we have used the fact that z(¢)dL(t) = 0 by virtue of (5). Using Ito’s formula again
to (8) and (22), and writing

0.(t) == — {[24(t) + C(OYCO)P+ (1) + 2C() A+ (t) + Q(t) + HL(t, Py (t), A1 (1)},  (23)
we have (after some reorganization)

dIP; (t)a* (1)?]
= {ultY (150 P+ ODE DE)]u(t) + 2u(®) [P B(2) + P+ ()DE'C() + D) Ay ()] (1)
+[0+(t) + (2A4(t) + CRYCH) Py (1) +20(t) Ay (D)o (1) }
+{2P ()2 OO +u(t) DY)+ 2+ (1)2A 4 (8) }aW (2).
(24)
Similarly, we can derive
diP-(t)a~ (t)?]
= {ultY (1 ao<o)P-ODEDW)]u(t) - 2u(t) [P-()B(t) + P-(1)D()'C(t) + DY A-(t)]a~ (1)
[0 (1) + (24(t) + CRYCE)P- (2) +20(t) A (H)]a (1) }
+{ = 2P (= WOCE) + u(t) DO+ 2~ (A (@) W (1),

where
O_(t) := — {[24(t) + C(t)'C(¥)|P_(t) + 2C(¢)'A_(t) + Q(t) + HE(¢, P_(t),A_(¢))}. (26)
Next, we define, for n > 1, the following stopping time 7,:

roi= inf{t > 0| [{{12Py ()5 (5)[2(5)C(s) + u(s) D(s)] + 5 (s)? A (s)'|*}ds
+ Ji Al = 2P ()27 (9)[a(5)C(5)' +u(s) D(sY] + 7~ (s)?A_(s)P}ds > n} AT,
(27)
where inf () := T'. Obviously, 7,, n > 1, is an increasing sequence of stopping times converging
to T almost surely.
Summing (24) and (25), taking integration from 0 to 7, and then taking expectation, we

have (¢ is suppressed)
B{Py(ma)a* (1) + P-(ra)a™ (1)} + B /0 " [QMa(®? + u(tY ROu(®)dt)
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= Py(0)(zg)” + P-(0)(z5)”
+E/ w' (R + 15150y P+ D' D + 1(3(3)<0) P- D' D)u
+2u/(P,B'+ P,D'C + D'A})z" —2u'(P_B'+ P.D'C + D'A )z~
+[04 + (244 C'C)P 4+ 2C"A 4 + Q](z™)?
+[@_ +(24+ C'O)P- +20'A_ + Q)= )? }dt
= Py(0)(z5)” + P-(0)(z5)”
+E/ w' (R + 1(z(1y>0) P+ D'D + 1(z1y<0y P-D'D)u
+2u'(PyB'+ P,D'C+D'A )z — 2u/(P_B'+ P_.D'C + D'A_)z~
—HY(Py Ay ()2 — Hi(P,,A,)(x—)Q}dt. (28)

Let us now send n — oo. Then by noting that z(-) € L%(€; C(0, T; R)) we get, from the

dominated convergence theorem, that,

J (w0, u(")) = P4(0)(z7)” + P(0)(zq )* + E/O o(x(t), u(t))dt, (29)

where ¢(z(t), u(t)) denotes the integrand on the right hand side of (28).
Now, we are to show that ¢(z(t),u(t)) > 0 for any ¢t € [0,T]. Indeed, if z(t) > 0 for some
t, then set u(t) = z(t)v(t). Notice u(t) € I' if and only if v(¢t) € T since I' is a cone. Then

(again ¢ is suppressed)

p(z,u) = v (R+ PyD'D)u+2u/(PyB'+ P D'C+ D'Ay)z — H (P, Ay)z?
= [’UI(R + P+DID)’U + 2UI(P+BI + P+DIC + DIA+)].’L'2 — H‘T‘(P'f" A+).’L'2 (30)
> Hi(Py,Ay)z? — HY (Py,Ay)2? = 0.

Moreover, the inequality becomes equality when u*(t) = z(t)v*(t) = 27 ()& (¢, Py (t), A4 (2)) €
I. Next, if z(t) < 0 for some ¢, then put u(t) = —z(¢)v(t). In this case,

o(z,u) = u'(R+P_D'D)u+2u'(P_.B'+P D'C+D'A )z — H*(P_,A )z?
= [ (R+ P D'D)v —2v'(P_B' + P_D'C + D'A_)]z? — H* (P_,A_)x? (31)
> H*(P_,A_)z? — H*(P_,A_)2z? =0,

where the equality holds at u*(t) = —z(t)v*(t) = =z~ (t)¢- (¢, P—(t), A_(t)) € I". Finally, when
z(t) =0, then p(z,u) = v (R + P_D'D)u > 0 with the equality holds at u*(¢) = 0.
The above analysis together with (29) shows that

J(@o,u(-)) > Py(0)(z)” + P-(0)(zg)?, Vu(-) €U, (32)

whereas the equality is achieved when u*(-) is defined by (19).
If we can prove that the control u*(-) defined by (19) is in L%(0,T;R™), then the proof

of the theorem will be finished. To this end, first note that as shown before there exist two

13



constants C7 > 0 and C5 > 0, such that
C.
H(t,v, P,A) > Ci|v[> = Co(|P| + |A|)v > Cilo|[|v] — é(IPI + [A[)]. (33)

Hence H(t,v, P,A) > 0 if [v| > E(|P|+ |A]). From the definition of £, (t, P, A), it follows
that c
2

€4+(t, P A)| < a(IPI + [A]). (34)

The same is true for &_.

Now, under the feedback control (19), the system dynamics (1) read

dz(t) = [A()z(t) + B(t)61 (¢, Py (1), A (8)z 7 (t) + B(£)E-(t, P-(t), A (t))z~ (t)]dt
Hz@)C @) +2F (D)€ (¢, P (), AL (1)) D(2)'
+z (1) (¢, P-(t), A—())'D(t)']dW (t), € [0, T},
z(0) = xo.
(35)
This equation has a unique continuous {F;};>o-adapted solution; see the lemma following
the end of the proof of this theorem. We denote this solution by z*(:), and hence u*(¢t) =
E4(t, Pr(t), Ay (8))z* T (t) + - (¢, P—(t), A_(t))z* (t). The continuity of z*(-) along with (34)
leads to
T
/0 (2" O + [u* () P)dt < 400, P — a.s. (36)

Denote by 7, n > 1, the sequence of stopping times defined by (27) where the state-control
pair is taken as (z*(-),u*(-)). It follows from (36) that 7 — T as n — 400, P-a.s.. On the
other hand, (28) yields

*

B{ Py(r)a* (r)? + P-(13)a" (13)? } + B /0 "[Q)e* (1) + u* (Y R(u” ()]t
= Pi(0)(zg)* + P-(0)(z5)*. (37)
We are now in the position to prove u*(-) € L%(0,T;R™). To do so, we will treat the

standard case and the singular case separately.
For the standard case, denote by ¢ > 0 such that R > c¢I;,. Then it follows from (37) that

*

w / ju (8)Pdt < Py (0)(f)? + P-(0) (). (38)

This implies that u*(-) € L%(0,T; R™).

For the singular case, construct a sequence of stopping times as follows

¢
Op, := inf{t > O‘ /0 (Jz*(s)|*> + |C(s)x*(s) + D(s)u*(s)|*)ds > n} A T.

14



Again 6, increasingly converge to T almost surely due to (36). Rewrite equation (1) under

u*(-) as a kind of BSDE with a random terminal time:

dz*(t) = [(A — B(D'D)~'D'C)x*(t) + B(D'D)~'1D'z(t)]|dt + z(t)'dW (t), t € [0, 7} Aby],
{ (1 ANOy) = z*(1) N Oy),

(39)
where z(t) := C(t)z*(t) + D(t)u*(t). Theorem 4.2 provides that there is a constant ¢ > 0 such
that for any ¢t € [0,T], P+(t) > ¢ and P_(t) > ¢. Thus, equation (37) with 7,5 replaced by
T A\ Oy, leads to

Bl (75 A 6)?] < Py (0)(a)? + P-(0) (s

On the other hand, the standard estimate for the BSDE (39) gives that, for a constant é > 0,

g Y P + P < aBle (A 6L
0 ~
< CIPHO0)(ef) + P (0)(ap)?)

Appealing to Fatou’s lemma, we conclude that z*(-) € L2(0,T;R) and z(-) € L%(0,T;R").
This in turn implies u*(-) € L%(0,T;R™) as u*(t) = [D(¢)'D(¢)] ' D(t)'[2(t) — C(t)z*(t)]. m

Lemma 5.1 Equation (35) has a unique continuous {F;}i>o-adapted solution.

Proof: Setting

Sy
+
=

Il

S~
=
A%
+
=
e
>

=
+
=

>
=

Il

S~
=
T
=
N
=
-

~(®));

dz(t) = [A(t)z(t) + By @)zt (t) + B_ ()~ (t)]dt
Hz(6)C@) + 2 () D (t) + 2~ () D_()dW (t), t€ [0, T), (40)

Consider the following two linear SDEs:

{ dzi(t) = [A(t) + B+ ()] (t)dt + 4 (D)[C(t) + Dy (8)]'dW (2), t €0, T], (41)
2(0) = =,
and
{ dz_(t) = [A(t) — B-()]z—(t)dt + z_()[C(t) — D_(8)]"dW (¢), t€ [0, T], (42)
z(0) = z;.
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It is well known that both equations (41) and (42) have unique continuous {F;};>o-adapted

solutions which can be represented explicitly as

4 t t
oi) =g exp{ [ 146) 4 Bu(olds + [ 100+ Deaw(e) - 5 [ 106) + Doto)Pds)

and
5 (t) = 75 exp { /0 [A(s) — B_(s)]ds + /0 O(s) — D_()/dW (s) — /0 C(s) — D_(s)|2ds} .
Define

z(t) == x4 (t) — z_(1).

Since z(t) >0, x_(t) > 0, and z(t)z_(t) = 0, we conclude
"E+(t) = "E+(t)a xi(t) = x*(t)a vt e [OaT]

Subtracting (42) from (41) we get that z(-) is a continuous adapted solution of (40).

Let us turn to the uniqueness of solution. Suppose that z1(-) and z3(-) are two continuous
adapted solutions of equation (40). Put Z() := z1(-)—z2(-). We apply a linearization procedure
as follows. Set

+ + - =
_ 37 (t) x5 (t) _ 3 (t) —xy (1)
o (t) = 21 () — 220 Lz () as(t))s a—(1) = 21(t) = 2o () Loy (2>}

Then Z(+) is a continuous adapted solution of the following linear SDE:

di(t) = [A(t) + By (t)ar(t) + B_(t)a_ (£)]2(t)dt
FE()[C() + Do (t)as (t) + D_(Ha_@dW (t), e [o, T), (43)

>
—~
(=)
N’
Il
)

Hence #(t) = 0 via a similar representation as (41) or (42), and the uniqueness of solution is
proved. [

Let us conclude this section by noting that a by-product of Theorem 5.1 is the uniqueness
of solution to the ESREs (8) and (9). Indeed, consider an LQ control problem in an interval

[s,T], with s € [0,T), where the system dynamics is (1) with initial time s and initial state

7).
Let (P, Ay) € L%(Q; C(0, T;R)) x L%(0, T;R*) and (P_, A_) € L%(Q; C(0, T;R)) x

L%:(O, T;R¥) be any bounded, nonnegative (in the standard case) or bounded, uniformly posi-

z(s) =z, € L%, (2 R), and the cost functional is

T
Js(zs,u(-)) = E {/ [Q()x(t)? + u(t) R(t)u(t)]dt + Gz(T)?

tive (in the singular case) solutions to (8) and (9), respectively. Then, going through the same

analysis as in the proof of Theorem 5.1 we deduce that the optimal cost is

zy) 1= in zs,u(-)) = s)(zh)?  (s)(z, )2,
J5 (@s) " admfissibleJS( s;u(*)) = Pi(s)(zy)” + P-(s)(z,) (44)

This proves the following uniqueness result.
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Theorem 5.2 FEach of the ESREs (8) and (9) admits at most one bounded, nonnegative (in

the standard case) or bounded, uniformly positive (in the singular case) solution.

6 Application to a mean—variance portfolio selection
problem

Consider a financial market with m + 1 securities, consisting of a bank account and m stocks.
The value of the bank account, Sy(t), satisfies an ordinary differential equation:
dSo(t) = r(t) So(t)dt, t €0, T],
(45)
So (0) =59 > 0,
where the interest rate r(t) > 0 is a deterministic, uniformly bounded, scalar-valued function.
The price of each of the stocks, Si(t),---,Sn(t), satisfies the stochastic differential equation
(SDE):
asi(t) = SiO{mi(t) dt + X7 o1 aWI (1)}, ¢ € [0, T),
(46)
Sz' (O) =s5; > Oa
where p;(t) > 0 and o4(t) = [041, -, oim(t)] are the appreciation rate and dispersion (or
volatility) rate of the " stock. Here, p;(t) and oy;(t) are scalar-valued, {F;}i>o-adapted,

uniformly bounded stochastic processes. Denoting

01 (t)
oft):==| i | €R™™, (47)

om(t)

we assume throughout that o(t) is uniformly non-degenerate: that is, there exists a determin-
istic § > 0 such that

ot)ot) >01,, Ytel0,T], P—a.s. (48)

In particular, o(¢) must be non-singular a.e. t € [0, T'], P-a.s..
Suppose that the total wealth of an agent at time ¢ > 0 is denoted by z(t). If transaction
costs and consumption are ignored, and share trading takes place in continuous time, then we

have
do(t) = {r()a(t) + S lut) — ()] wi(t) | dt
Y S o (t) wi() AW (2), ¢ € [0, T), (49)
z(0) = =z >0,
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where u;(t) is the total market value of the agent’s wealth in the i*" asset. We refer to

u(+) := (u1(-),- -+, um(-))" as the portfolio of the agent. In our model, short-selling of the stocks
is not allowed; hence we have the following constraints on a portfolio u(+) = (u1(:), -+, um(:))":
wi(t) >0, VE€[0,T], i=1,---,m. (50)

Note that ug(-) has been excluded from a portfolio since it is completely determined by the
allocation of stocks and the total wealth z(-). Moreover, we do allow uy(t) < 0, meaning that

the agent is borrowing the amount |ug(t)| from the bank at rate r().

Definition 6.1 A portfolio u(-) is said to be admissible if it is R™-valued, square-integrable
(i.e., EfOT lu(t)|?dt < +o0), {Fi}i>0-adapted, and satisfies (50). In this case, we refer to
(z(), u(-)) as an admissible (wealth—portfolio) pair.

In a mean—variance portfolio selection problem, an agent’s objective is to find an admissible
portfolio u(-) such that the expected terminal wealth satisfies Ex(T) = z, for some z >
r(s)ds

moefoT , while the risk measured by the variance of the terminal wealth

Var z(T) := E[z(T) — Ez(T))? = E[z(T)]*> — 2* (51)

r(s)ds

T
is minimized. The restriction of the targeted payoff z > zoedo is natural as the latter can

always be achieved by putting all the money in the bank. Mathematically, it can be formulated

as the following problem parameterized by z > xoefoT r(s)ds,

Minimize  Juv (zo,u(+)) := E[z(T)]? — 22,
Ex(T) = z, (52)

subject to:
(z(-),u(-)) is admissible for (49).

The above problem is called feasible if there is at least one portfolio satisfying the constraints
of (52). Finally, an optimal portfolio to (52) is called an efficient portfolio corresponding to z,
the corresponding (Var z(T), z) is called an efficient point, whereas the set of all the efficient

s)ds

T
points, with z > xoefo ( , is called an efficient frontier.

Equation (49) can be rewritten as

{dﬂﬂzh@ﬂﬂ+BmMMﬁ+u@bwﬁWﬂ, -
z(0) = o,
where
B(t) :== (p(t) = r(t), ..., um(t) — r(t)). (54)
Since the problem (52) involves a terminal constraint Ez(T) = », we first investigate

conditions under which the problem is feasible for any z € [:L‘oefOT n(s)ds, +00).
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Theorem 6.1 The mean-variance problem (52) is feasible for every z € [woefoT ()45 4 o0) if

and only if
m T
S B / us(t) — (O] Fdt > 0. (55)
i=1 70
Proof: We first prove the “if” part. Define
M; = {(t,w) : pi(t,w) >r(t)}, i=1,2,---,m.

Condition (55) implies that at least one of the sets M; has non-zero measure (in terms of the
product of the Lebesgue measure and P). Suppose M;, has non-zero measure. Construct a
family of admissible portfolios u?(-) :== Bu(-), where # > 0 and the components of u(-) are all

zero except its 7g-th component which is defined to be

Us (t w) — { Nio(t,w) - T(t), if (t,w) c MZ.O,

(56)
0, if (t, w) ¢ Mio

Let z?(-) be the wealth process corresponding to u?(-). By linearity of the wealth equation,
we have z(t) = z0(t) + Bz'(t), where 20(t) := :coeftf ()45 and z!(-) is the solution to the

following equation

{ dzt(t) = [r(t)z(t) + B(t)u(t)]dt + u(t) o (t)dW (t),

z1(0) = 0. 57)

Therefore, problem (52) is feasible for every z € [moefoT ()45 4 o0) if there exists 8 > 0
such that z = Ez?(T) = 2%(T) + BEz'(T). Equivalently, (52) is feasible for every z €
[xoefoT "()ds 4 0) if Ex'(T) > 0. However, applying It6’s formula we get

dleli Tzl (1)) = f T B u(t)dE + {-- YW (2).
Integrating from 0 to 7" and taking expectation we obtain
T
Ez'(T)=E / el TV B (t)dt > 0, (58)
0

due to the way u(-) was constructed. Consequently, (52) is feasible if (55) holds.

Conversely, suppose that problem (52) is feasible for every z € [a:oefoT 7(5)ds 4 50). Then
for each z, there is an admissible portfolio u(-) so that Ex(T) = z. However, we can always
decompose z(t) = 2°(t) + z'(t) where z!() satisfies (57). This leads to Ex’(T) + Ez'(T) =
z. Now, Ez%(T) = z is independent of u(-); thus it is necessary that there is a u(-) with
Ez(T) > 0. It follows then from (58) that (55) must be valid. n

Now we are going to solve the optimization problem (52) under the feasibility assumption

(55). To handle the constraint Ex(T) = z we apply the Lagrange multiplier technique. Define

J(zo,u(-),N) == E{x(T)? - 2% — 2\[z(T) — 2]}

= E[|z(T) = M- (A—2)?, AeR (59)
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Since Jyrv (2o, u(+)) is strictly convex in u(-) and the constraint function Ez(T') — z is affine
in u(+), we can apply the well-known duality theorem (see, e.g., [19]). Based on this theorem, we
may first solve the following unconstrained problem parameterized by the Lagrange multiplier
AeR

{ Minimize  J(zo,u(-),A) = Ell2(T) = A"} = (A = 2)%, (60)

subject to:  (z(-),u(-)) is admissible for (53).
This problem is exactly a singular case of the general LQ model solved in Section 5, with

Q(t) = R(t) = 0 and I' = R?". Thus we will apply the general result to the problem. Let us
first write down the specialization of the ESREs (8) and (9) as

(AP, (t) = —[2r(t) Py () + HL(t Py (), A (0)]dt + A (0)dW (1), t€ [0, T),
{ P(T)=1, (61)
| P+(t) >0,
(aP_ (t) = —[2r(t)P—(t) + H*(t,P_(t), A_(¢))]dt + A_(t)'dW (t), te€ [0, T],
¢ P(T)=1, (62)
| P-(t) >0,
where
H(t, P, A) == minyery {v'Po(t)o(t)'v+ 20'[B(¢)'P + o(t)A]}, (63)
H*(t, P, A) := minyery {v'Po(t)o(t)'v — 20'[B(t)'P + o(t)A]}.
Also, define
Er(t, Py A) = argmlnveRT]L_(t,v,P, A), (64)

- (t,P,A) == argminycgn H_(t,v, P,A), (t,P,A) €[0,T] xR x RE.

Clearly, Theorems 4.2 and 5.2 apply to (61) and (62) ensuring that they admit unique

bounded, uniformly positive solutions.

Lemma 6.1 Assume that (55) holds, and let (P}, Ay) € LZ(Q; C(0, T;R)) x L%(0, T;R™)
and (P_, A_) € LZ(; C(0, T;R)) x L%(0, T;R™) be the unique bounded, uniformly positive
solutions to the ESREs (61) and (62) respectively. Then it must hold that

PL0)e 2o TV _1 <0, and P_(0)e 2Jo T 1 <o, (65)
Proof: Define g(t) := P_(t)e 2/ 7). Then it is straightforward that
dg(t) = —e 20 TSI (1 P (1), A_(1))dt + e 2 T A (1Y aw (1),
Integrating from 0 to 7" and taking expectation we have

T T
1~ g(0) = —E / e 27T Fre (1 p (1) A (1))dE > 0, (66)
0
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since H* (t,P_(t),A_(t)) < 0 by its very definition. Hence P_(O)e_zfoTT(s)ds = ¢g(0) < 1.
Similarly, we can prove that P, (0)e 2 Jo r(s)ds 1 <0.

It remains to prove the strict inequality P_(0)e =2 Jo T5)ds 1 < . In fact, if P_(0)e~2 Jo (s)ds
1 = 0, then it follows from (66) that H* (¢, P_(t),A_(t)) = 0, a.e.t € [0,T], P-a.s.. Thus we
deduce, from the uniqueness of solution to the BSDE (62), that P_(t) = letT’(s)ds, and
A_(t) = 0. Consequently, H* (¢, P_(t),0) = 0.

On the other hand,

H*(t,P_(t),0) = min P_(t)[v'o(t)o(t)v — 2v'B(t)']

vGRT

< min K3[K4[v|*> — 2B(t)v)],
vERq’_‘

for some constants K3 > 0 and K4 > 0. Notice that the minimum value on the right hand side
of the above is strictly negative whenever B(t,w)" := (Bi(t,w)", -+, Bn(t,w)") # 0. In view
of the assumption (55), the set of (£,w) on which B(t,w)* is non-zero has a non-zero measure.
Thus we get a contradiction.

Remark 6.1 One does not have the strict inequality P, (0)e 2 Jo T8)s — 1 < 0 since no
information about B(t,w)” := (Bi(t,w) , -+, Bm(t,w) ) is available. On the other hand, the
inequality P_(0)e 2 Jo s _ 1 <0 is exactly what is required in the sequel.

Theorem 6.2 Let (Py, Ay) € L%(Q; C(0, T;R))x L% (0, T;R™) and (P—, A_) € L%(; C(0, T;R))x
LZ(0, T;R™) be the unique bounded, uniformly positive solutions to the ESREs (61) and (62)
respectively. Then the following state feedback control

w*(t) = &4 (t, Py (t), Ay (1)) (w(t) —Xe” ft”“)“f +E(t, P_(1),A_(2)) (a:(t) —Xe” ffﬂs)ds) B
(67)

is optimal for the problem (60). Moreover, in this case the optimal cost is

J*(:[,‘(), )\) = inf’u(')EL%—(O,T;RT) J(IEO,U('), )\)
[Py (0)e? Jo r(9)ds _ 1JA\2 — 2[zo Py (0)e™ Jo r(s)ds _ 2\ + Py (0)a2 — 22,
if To > e Jo r(s)ds (68)
[P_ (0)672 foT r(s)ds _ 1])2 o 2[3:0]:)_ (0)67 fOT r(s)ds _ z])\ + P_(O).Z'% . 22,
if 7o < Ae~Jo T()ds,
Proof: Set
y(t) = a(t) - Ae” J T, (69)
It turns out the wealth equation (53) in terms of y(-) has exactly the same form except the

initial condition:

{ dy(t) = [r(t)y(t) + B(t)u(t)]dt + u(t)'o(t)dW (t), (70)

y(O) =T — e f(;F T(S)ds,
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whereas the cost function (59) can be written as
I(yo, u(*),A) = By(T)? — (A — 2). (71)

The above problem (70)-(71) is exactly a special case of the general problem we have solved in
Section 5 (ignoring the constant term —(\ — 2)? in (71)). Hence the optimal feedback control

(67) follows from (19). Finally, the optimal cost is
T* (20, A) = Py (0)[(m0 — e~ Jo ") 12 4 P (0)[(mg — AeJo T(d5) 12 () — 52

which equals the right hand side of (68) after some simple manipulations. =

Theorem 6.3 (Efficient portfolios and efficient frontier) Assume that (55) holds. Then

r(s)ds’

T
the efficient portfolio corresponding to z > zoelo as a feedback of the wealth process, is

u(t) = &4+ (2, Py (1), Av (1)) (:c*(t) — e~ ftT"<8>d8)++g_(t, P_(t),A_(t)) (x*(t) — e~ ffr@)ds) )
(72)

where -
_z—zoP (0)e” Jo r(s)ds

PN )
1_P_ (0)6_2 fOT r(s)ds

(73)
Moreover, the efficient frontier is

-2 fT r(s)ds 2
Var z*(T) = P-(Q)e™ = [Ew*(T) — moefoT T(s)ds] , Ex*(T) > xoeIOT r(s)ds (74)
1—P_ (0)672 Jo r(s)ds

Proof:  First note that A\* in (73) is well defined thanks to Lemma 6.1. Now, if z =
xoefoT r(s)ds then it is straightforward that the corresponding efficient portfolio is u* (t) =0,
meaning that all the wealth is to be put in the bank account. The resulting wealth process is
z*(t) = woelo T4} On the other hand, in this case the associated \* = xoefoTr(s)d"”. Thus the
portfolio given by (72) reduces to u*(t) = 0 with z*(t) = acoefot 7(5)ds_ This implies that (72) is
indeed the efficient portfolio when z = a:oefoTT(s)ds.

So now we need only to prove the theorem for any fixed z > a:oefoT’"(s)ds . Applying the

duality theorem (see, e.g., [19, p.224, Theorem 1]') we have

Jarv(zo) == inf Jvv(zo,u(-)) = sup inf J(zo,u(-),A) > —o0, (75)
u(-)ELEL(0,T;RT) AR u(-)EL%(0,T;RT)

!To be precise, one should apply [19, p. 236, Problem 7] together with the proof of [19, p.224, Theorem
1] in our case, as there is an equality constraint in (52). To be able to use the result there, one needs to
check a condition posed in [19, p. 236, Problem 7], namely, 0 is an interior point of the set 7 := {Ez(T) —
z|z(-) is the wealth process of an admissible portfolio u(-) with £(0) = z¢}. In view of Theorem 6.1 and the as-

r(s)ds

sumption (55), we have [xoefoT — 2z,+00) C 7. Hence 0 is an interior point of 7 because zoedo T(®)ds _ 5 < 0.
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and the optimal feedback control for (52) is (72), due to Theorem 6.2, with A replaced by A*
which maximizes J*(zg, A) (= inf, ez o,rmm) J(zo,u(-),A)) over A € R.

If A € (—o0, xoefoT 7(s)d5) then the expression (68) gives, taking into consideration (65) and
the fact that z > moefoT T(s)ds,

a—a)\J*(.’BO, )\) — 2[P+(0)672 fOT r(s)ds _ 1])\ _ 2[$0P+(0)6_ f(;‘r r(s)ds _ z]

> 2[P+ (0)6_2 fOT r(s)ds _ 1].1‘06f0T r(s)ds _ 2[$0P+ (0)6_ fOT r(s)ds _ :EoefoT r(s)dS]
= 0.

Hence,

sup J*(zo, A) = sup J* (2o, A)-
AER )\E[J)OEIOT r(s)ds,+oo)

But for A € [xoefOT n(s)ds 4 0), it follows from (68) that J*(xo,\) is a quadratic function in

whose maximizer is given by (73) (noticing Lemma 6.1), whereas
Sy (z0) = suprer infy()erz orgm) J* (€0, A)
= supreg {[P(0)e 2H )% — 1132 — 2[zo P_(0)e o T — 25+ P_(0)aF - 22}

_o (T 2
P_(0)e™2 )¢ T z— xoefoT r(s)ds z > xoefoT r(s)ds
1—-P_ (0)872 fOT 7(s)ds ! -

(76)
This proves (74), noting that Ex*(T) = z. n

Corollary 6.1 Assume that (55) holds. Then the efficient portfolio (72) can be rewritten as
W) =€ (6P (), A (1) (Ne B OB — gt n)). (77)

Proof: It suffices to prove that under the feedback policy (72) the corresponding wealth
trajectory x*(-) satisfies
z*(t) — Ne” S r(s)ds <0. (78)
To this end, write y(t) := z*(t) — e~ S/ () Then it is immediate from (53) that y(-)
follows
{ dy(t) = [r(t)y(t) + By (t)y™ (¢) + B-(t)y~ (t)]dt + [D1(t)y™ (¢) + D-(t)y~ (1)]'dW (t),
y(0) = mo — Xre~ Jo T,
(79)
where
B (1) i= BO)E: (t, Py (1), A+ (1)), B_(t) = BOE (P (1), A_ (1),
D (t) := o ()& (t, Py(t), A (1)), D-(t) := o(t)'¢-(t, P- (1), A-(1)).
Note that y(0) = zo — \*e” Jg r(s)ds < 0 by virtue of (73) and the fact that z > xoefoTT(s)ds.
Hence the proof of Lemma 5.1 yields that y*(¢) = y(0)" exp{---} = 0, which proves that
y(t) <0. [
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It is interesting to note that, as indicated by the preceding theorem and corollary, after all
only one of the two Riccati equations, (62), is necessary in the final solution to the portfolio
selection problem. This is essentially due to the fact that one is only interested in the “non-
satiation portion” (i.e., that corresponds to z > xoefoT r(s)ds ) of the entire variance-minimizing
boundary. Because of this, the form of the efficient portfolio (77) turns out to be strikingly
similar to its shorting-permitted counterpart [28]. In particular, if shorting is allowed, then the
definition (64) should be modified so that £_(¢, P,A) is the minimum point of H_(t,v, P, A)
over v € R™, or £_(t,P,A) = (o(t)o(t)") " [B(t)' + o(t)A]. If furthermore all the market
coefficients are deterministic, then A(t) = 0 and the result of [28] is recovered.

Also, it follows from (78) that the wealth trajectory under the efficient portfolio is capped
almost surely, at any time, by the present value of a deterministic constant \*.

Finally, we remark that in the portfolio selection application the control (portfolio) con-
straint is taken to be I' = R?, for it has significant financial interpretation (no-shorting). We
can easily cope with other forms of constrained portfolio thanks to the general results estab-
lished in Sections 4-5. An example is, in the case of two stocks, I' = {(u1,us) € R?|u; < 2us}.
Such a constraint can be interpreted as maintaining certain weights on different stocks. Note
that if we deal with a general portfolio constraint, then explicit characterization of the feasi-
bility such as (55) may no longer be possible. However, it is still possible to obtain certain
implicit feasibility condition based on the dual of the constraint cone, I'. Details are left to

the interested reader.

7 Concluding Remarks

In this paper, we have solved explicitly a stochastic LQQ control problem where the control is
constrained by a cone and all the coefficients are random. The solution is heavily dependent
on the two nonlinear BSDEs which are introduced in this paper for the first time. The study
on these two equations is interesting from the point view of BSDE theory. A continuous-time
mean—variance portfolio selection problem has been then solved as a special case of the general
constrained stochastic LQ model.

A major assumption of the paper is that the state variable be one-dimensional. Although
this assumption is valid in many interesting applications including the financial one, it is a
very challenging open problem to obtain explicit solution to a multi-dimensional problem and
study the possible associated BSDEs.
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