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Abstract

In a recent paper (Jin, Yan and Zhou 2004) it is proved that efficient strategies of
the continuous-time mean—semivariance portfolio selection model are in general never
achieved save for a trivial case. In this note, we show that the mean—semivariance
efficient strategies in a single period are always attained irrespective of the market
condition or the security return distribution. Further, for the below-target semivariance
model the attainability is established under the arbitrage-free condition. Finally, we

extend the results to problems with general downside risk measures.
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1 Introduction

Mean—variance analysis would be the most widely used form of risk—return analysis in finan-
cial practice, except that it is questionable to use variance as a measure of risk. Variance is a
measure of volatility since it penalizes upside deviations from the mean as much as downside
deviations. Markowitz (1959) Chapter 9 presents semivariance as an alternate measure. The
two forms of semivariance proposed there are the expected squared negative part of (a) the
deviation from expected value, also known as the below-mean semivariance, and (b) the devi-
ation from some fixed value such as zero return, or the below-target semivariance. The latter,
in particular, includes expected squared loss. Markowitz (1959) presented a computing pro-
cedure for tracing out the set of single-period mean—semivariance (in either sense) efficient
sets subject to a bounded polyhedral constraint set, assuming that the joint distribution of
returns is a finite sample space. But Markowitz does not establish even the existence of
such an efficient set when the constraint set is unbounded. The research on semivariance
abounds in literature, see, e.g., Quirk and Saposnik (1962), Mao (1970), Hogan and Warren
(1972), Klemkosky (1973), Porter (1974), Nantell and Price (1979), as well as a survey paper
Nawrocki (1999). Since there is no closed-form solution to the mean-semivariance models
(as opposed to the mean—variance; see Merton 1972 for a mean—variance analytical solution
where shorting is allowed), all these works seem to have focused on the comparison between
semivariance and variance or the numerical computation of the semivariance efficient fron-
tier, whereas the very existence of such an efficient frontier has not been established to our
best knowledge (Lemma 1.23 of Steinbach 2001 states such an existence; unfortunately its
proof is incorrect').

The present paper shows the existence of the mean—semivariance efficient set for any
(generally unbounded) closed subset of R", provided only that finite semivariance exists on
the set. This result was needed, and is important, for three reasons: (1) completeness; (2)
CAPM constraint sets are unbounded; and (3) recent results on semivariance efficiency in
continuous time (Jin, Yan and Zhou 2004) show that efficient strategies are never achieved
except for a trivial case. Thus the results for the single-period case reported here contrasts
with the results for the continuous-time case. These results also contrast with those for
mean-variance efficiency in which optimal strategies are achieved both in the continuous-
time case (Zhou and Li 2000) and in the single-period case (Markowitz 1959 and Merton
1972).

Technically, the existence of a mean—variance efficient portfolio follows from the coer-

In the proof of Lemma 1.23 of Steinbach (2001), the following assertion is used: a convex function
attains its infimum over a non-empty closed convex set, which is not correct in general; see, e.g., Section 27

of Rockafellar 1970 for an extensive discussion on this issue.



civity of the variance function? if the covariance matrix is non-singular. In this case, the
corresponding optimization problem is effectively one of minimizing a continuous function
over a closed bounded region, and hence the attainability of optimal solutions. When the
covariance matrix is singular, the above argument does no longer apply, yet the celebrated
Frank-Wolfe theorem (Frank and Wolfe 1956) ensures the existence.®> Clearly, in the realm
of semivariance one needs to resort to a different approach to establish the existence. In this
paper, we will study both below-mean and below-target semivariance models in a single pe-
riod. For the former, we prove the attainability almost unconditionally, even when there are
arbitrage opportunities in the market. For the latter, one has to assume the arbitrage-free
condition, and a counter example is given if the condition is violated.

The remainder of the paper is organized as follows. In section 2 we introduce the models
under consideration. Section 3 is devoted to two technical lemmas that are key to this paper.
The main results are derived in section 4. Extensions to more general downside-risk models,
including the lower partial moment model (Bawa 1975 and Fishburn 1977), are presented in

section 5.

2 Models

Suppose there are n (n > 2) securities available in the market and consider a single investment
period. The market uncertainty is described by a probability space (2, F, P) where the
mathematical expectation is denoted by E(-). The total return of the i** security during the
period is a random variable &;, meaning that the payoff of one unit investment in security ¢
is & units, i = 1,2,---,n. Suppose E¢ = r; and Var(§;) < +o0.

We consider two portfolio selection models. The first one is the mean—semivariance

portfolio selection modelled as follows:

minimize E[( Yz — Bk, xzfz)) B

Yl T = a, (1)
subject to
21 T = 2,
where z; € R represents the capital amount invested in the i** security, i = 1,2, ---,n (hence

x:= (21, -, T,) is a portfolio), a € R is the initial budget of the investor, and z € R a pre-

determined expected payoff. Here = := max(—z, 0) for any real number x. This problem is

2A function f: R? — R is called coercive if lim| g 400 f(z) = +o00.
3The Frank-Wolfe theorem asserts that any quadratic function bounded below on a nonempty polyhedron

must achieve its infimum on the polyhedron.



also referred to as below-mean semivariance model. In contrast, the second problem, termed
below-target semivariance model, is the following

minimize  E[(XF, x:& — b)),
subject to >, x; = a,

where b € R represents a pre-specified target.

3 Two Lemmas

In this section we present two technical lemmas which are key to the proofs of the main

results. The lemmas are on the following optimization problem

min E[(A+ B'z) %, (3)
zeR™
where B = (By,---, B,,)" (' is the matrix transpose), and A, B;, i = 1,---,m, are random

variables with FA? < 400, EB? < +00,i=1,---,m.
Lemma 3.1 If EB; =0, i=1,---,m, then problem (8) admits optimal solutions.

Proof. First we assume that By, ---, B,, are linearly independent, namely, a; = --- =
o, = 0 whenever P(3X7, o; B; = 0) = 1 for real numbers oy, - - -, Q.

Define S := {(k,y) € R™" : 0 < k < 1,|y| = 1}, | := inf(yy)es E[(kA + B'y) ]>. When
(k,y) € S, E[(kA+ B'y)~]? < E(kA+ B'y)?> < 2(EA? + E|B|?). By virtue of the dominated
convergence theorem, we conclude that E[(kA + B'y)~]? is continuous in (k,y) € S. Since
S is compact, there exists (k*,y*) € S such that | = E[(k*A + B'y*)" .

If | = 0, then we claim k* > 0. In fact, if k* = 0, then E[(B'y*)"]*> = 0 which yields
P(B'y* > 0) = 1. However, E[B'y*] = E[B'|ly* = 0; hence P(B'y* = 0) = 1, violating
the assumption that By, - - -, B,, are linearly independent. Therefore, £* > 0. As a result,
x* := y*/k* is an optimal solution for (3) since it achieves the zero value of the objective
function (recall that [ = 0).

If [ > 0, then for any z € R™ with |z| > 1, we have

A 7
HM+B®W2=IWEMT+TPYF2MV
x x
This shows that the function to be minimized in (3) is coercive. Furthermore, the objective
function in (3) is continuous in z, hence (3) must admit optimal solutions.
Now we remove the assumption that By, ---, B, are linearly independent. If P(B =

0) = 1, then every x € R™ is optimal. If P(B # 0) > 0, then there is a subset of
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{Bi, -, By} whose elements are linearly independent, and every element not in this subset
is a linear combination (with deterministic linear coefficients) of the elements in the subset.
Without loss of generality, suppose this subset is {By,---, By} with k& < m. Denote B :=
(B1,---, Bg)'. By the preceding proof, the problem

min E[(A + B'y)]? (4)
yeR"
admits optimal solutions, with the same optimal value as that of problem (3). Let y* € R¥
be an optimal solution to (4). Then z* := ((y*)’,0)" is optimal for problem (3). O

The assumption that each B; has zero mean is crucial in Lemma 3.1 and cannot be

removed in general. The following is a counter-example.

Example 3.1 Let A= —1,B = (e",--- "), where (Wy,---,W,,) follows N(0, I,,,). For
any 0 # = € R, it follows from the dominated convergence theorem that lim,_, ;o E[(A +
B'(az))”]? = 0. This implies that the optimal value of (3) is zero. However, this value
cannot be achieved since E[(A + z2'B)~]*> > 0 for any z € R™.

Notwithstanding the above example, the zero-mean condition of Lemma 3.1 can be re-

moved if replaced by other proper conditions.

Lemma 3.2 Assume that P(B'y > 0) < 1 for any y € IR™ with |y| = 1, then problem (3)

admits optimal solutions.

Proof. We only need to consider the case | = 0 in the proof in Lemma 3.1. If £* = 0,
then E[(B'y*)"]? = 0 leading to P(B'y* > 0) = 1. But this contradicts to the assumption.
So it must hold that £* # 0. The rest of the proof is the same as that of Lemma 3.1. O

Remark 3.1 The assumption of Lemma 3.2 is mild and includes many meaningful cases.
For example, it is satisfied when By, - - -, B, have multivariate (nondegenerate) normal dis-
tributions (i.e., there is a finite set of mutually independent normal random variables such
that each B; is a linear combination of these normal random variables, and none of them
degenerates to be non-random). More importantly, as we will see in the subsequent section,

the assumption translates into the no-arbitrage condition when applied to portfolio selection.

4 Main Results

We first deal with the below-mean semivariance model (1).



Theorem 4.1 For any a € R and z € IR, problem (1) admits optimal solutions if and only

iof it admats feasible solutions.

Proof. Set R; .= &, —1r;, 1 =1,2,-+--,n. Then FR; = 0 and we can rewrite the problem
(1) as

minimize  E[(X0, 7 R;) )%,

T = a, (5)
subject to

YT = 2.

Eliminating z; by replacing it by a — >, x;, we get that problem (5) is equivalent to

minimize  E[(aR; + X, zi(R; — Ry))7)?, (6)

subject to I o xi(r; — 1) =z — ary.

We now consider two cases. The first case is when r; = r; for all . In this case, if 2 # arq,
then problem (1) clearly admits no feasible solution. So we assume z = ar;. Problem (6),

with its constraint satisfied automatically, becomes

min _ Ef(aR; + > zi(Ri — R))7, (7)
(m2,zn)elR"™ i=2

which admits optimal solutions by Lemma 3.1.

The second case is when there exists ¢ so that r; # r;. Without loss of generality, we

suppose 13 # r1. In this case, we replace x5 by x5 = % — > xzfg:—:ll in problem (6) to
get the following equivalent problem:
" Ry — R\ ’
. z—ar —
min E (aRl + L (Re — Ri)+ Y _xi(Ri — Ry — (r;i — Tl)# )
(wsa"'ﬂzn)E]Rln_z T2 —T 1=3 o —T

(8)

Again, the existence of optimal solutions follows immediately from Lemma 3.1. O

Remark 4.1 The main idea of the proof of the preceding theorem is that, save for some
trivial cases, the objective function of (1) is essentially coercive. So the optimization problem
is equivalent to one with a bounded closed feasible region which leads to the existence of
optimal solutions. Consequently, the result still holds if there are additional constraints so
long as the corresponding constraint sets are closed. These include the no-shorting constraint

or, more generally, polyhedral constraints.



Next we move on to the below-target semivariance model (2). For this model we need to
impose the following assumption on the underlying market.

Assumption (A) There is no arbitrage opportunity in the market, namely, there is no z =
(z1,---,z,) € R" such that >, z; =0, P(X, z;6 > 0) =1 and P(37, z:& > 0) > 0.

Theorem 4.2 Under Assumption (A), problem (2) admits optimal solutions for any a € R.

Proof. First we assume that &, - -+, &, are linearly independent. Eliminating x; from the
constraint of (2) we get the following equivalent problem:

min FE

12
. <a§1 —b+ ) zi(& — §1)> ] : 9)
(z2,+7n)elR i=2

For any (zg,---,2,) € R""*\{0}, with a slight abuse of notation define z, := —>" , ;.
Then by Assumption (A), either P(37; ;& > 0) <1 or P(Y7, 26 = 0) = 1 holds. Since
&, -+, &, are linearly independent, the latter is impossible. Hence P(} 1, z;& > 0) < 1,
which can be rewritten as P37 5, xi(& — &) > 0) < 1. It then follows from Lemma 3.2 that
problem (9) admits optimal solutions.

When &, - - -, &, are not linearly independent, a similar argument as in the proof of Lemma

3.1 can be established to prove the existence. O

Remark 4.2 It is interesting to note that the attainability of optimal solutions is uncon-
ditional for the below-mean model (1), even when the market provides arbitrage opportu-
nities, whereas the result for the below-target counterpart (2) requires the arbitrage-free
condition. Assumption (A) can not be removed from Theorem 4.2. Indeed, take a market
where & = (b— 1)/a (i-e., it corresponds to a fixed-income security) and & — & = e™i,
1=2,---,n, then Example 3.1 reveals that there is no optimal solution. Clearly this market
is not arbitrage-free since one security deterministically dominates another one.

5 Extensions to General Downside Risk

In this section, we generalize the risk measure from semivariance to a general downside-risk
function. We call a measurable function f : R — R, a downside risk function if f(z) =0
when z > 0, and f(x) > 0 when z < 0. A typical downside risk function is f(z) = (z7)?,
p > 0, corresponding to the so-called lower partial moment risk measure.



Parallel to the semivariance case, we study the following two models with downside-risk

measure respectively:
Minimize  Ef (X5, z:& — B(Xh, 7:&)),
Z?:l T; = a, (10)
subject to
D1 T = 2,
and

minimize  Ef(}X, z& —b), (1)
11

subject to > i, z; = a.
As before we first consider the following optimization problem:

min Ff(A+ B'z), (12)
zeR™
where B = (By,---,Bp)’, and A, B;, i = 1,---,m, are random variables. This problem is

called feasible if there exists zo € R™ so that Ef(A + B'z,) < +o0.

Lemma 5.1 Assume

() EB;=0,i=1,---,m;
(i) f(-) is lower semi-continuous;

(iii) there exists a measurable function g : R — IR, with lim, , . g(x) = 400 such that
f(kz) > g(k)f(z) for any k,z € R.

Then problem (12) admits optimal solutions if and only if it is feasible.

Proof. Suppose the problem is feasible. As before we need only to prove the existence of
optimal solutions assuming that By, - - -, B, are linearly independent. Define S := {(k,y) €
R™':0<k <1,y =1}, | :==infyes Ef (kA + B'y) < +o0.

Now we prove that there exists a (k*,y*) € S such that [ = Ef(k*A 4+ B'y*). Suppose
{(ki,y;) 4 = 1,2,---} is a minimizing sequence for inf( g Ef(kA + B'y). Since S is
compact, there exists a convergent subsequence of {(k;,y;) : ¢ = 1,2,---}. Without loss of
generality, suppose lim; o (k;, v;) = (k*,y*) € S. Then

Ef(k*A+ B'y*) = Ef (limj,o(kiA+ B'y;))

VAN

Elim; o f(k;A + B'y;)
—+ (13)

IN

lim; , , o Ef(kiA + B'y;)

= 1,



where the last inequality is due to Fatou’s lemma. This shows [ = Ef(k*A + B'y*).
If | =0, then Ef(k*A + B'y*) = 0 leading to P(k*A + B'y* > 0) = 1. On the other
hand, an argument exactly the same as that in the proof of Lemma 3.1 yields £* > 0. Thus

P(A+ B’Z—i > 0) = 1 which results in Ef(A + B’Z—:) = 0 = [. This suggests that z* := Z_
is an optimal solution for (12) since it achieves the zero (optimal) value of the objective
function.

If [ > 0, then for any z € R™\{0}, we have

!

Ef(A+Bx) > g(c)Ef (ﬁ+ﬂ3) > 1. g(Ja]).

This shows that Ef(A + B'z) is coercive, and hence problem (12) is equivalent to one with
a closed bounded feasible region. A similar argument as in (13) then establishes the desired
existence. a
Lemma 5.2 In Lemma 5.1, the condition (i) can be replaced by

(i) P(B'y >0) <1 for any y € R™ with |y| = 1.

Proof. Tt can be proved in the same way as that of Lemma 3.2. O

Theorem 5.1 Assume

(i) f(-) is lower semi-continuous;

(ii) there exists a measurable function g : R — IR, with limz_,g(z) = 400 such that
f(kz) > g(k)[f(z) for any k,z € R.
Then for any a € R and z € R, problem (10) admits optimal solutions if and only if it
admits feasible solutions.

Proof. Given Lemma 5.1, the proof is the same as that of Theorem 4.1. O

Remark 5.1 Both conditions (i) and (ii) imposed on the risk function f in the preceding
theorem are rather mild. For example, the lower partial moment risk f(z) = (z7)?, p > 0,
satisfies these conditions as long as the p-th moment of each return &; is finite. Note that
the conditions also imply that limgsg f(2) = 0, lim,, o f(z) = +o0.

In a similar fashion, we have the following result concerning the below-target downside
risk model (5.2).

Theorem 5.2 Under Assumption (A) and the same conditions (i) and (ii) of Theorem 5.1,

problem (5.2) admits optimal solutions.
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