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Abstract

This paper is concerned with continuous-time portfolio selection models in a com-
plete market where the objective is to minimize the risk subject to a prescribed expected
payoff at the terminal time. The risk is measured by the expectation of a certain func-
tion of the deviation of the terminal payoff from its mean. First of all, a model where
the risk has different weights on the upside and downside variance is solved explicitly.
The limit of this weighted mean—variance problem, as the weight on the upside vari-
ance goes to zero, is the mean-semivariance model which is shown to admit no optimal
solution. This negative result is further generalized to a mean—downside-risk portfolio
selection problem where the risk has non-zero value only when the terminal payoff is
lower than its mean. Finally, a general model is investigated where the risk function
is convex. Sufficient and necessary conditions for the existence of optimal portfolios
are given. Moreover, optimal portfolios are obtained when they do exist. The solu-
tion is based on completely solving certain static, constrained optimization problems

of random variables.
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1 Introduction

Risk is a central issue in financial investment, yet it is a subjective notion as opposed to
return. Therefore, a fundamental problem is how risk should be measured. In the early
1950s, Markowitz [17] proposed the single-period mean—variance (M-V) portfolio selection
model, where he used the variance to measure the risk. This seminal work has been widely
recognized to have laid the foundation of modern portfolio theory. However, there has also
been substantial amount of objection to the measurement of risk by variance. The main
aspects of the M—V theory under criticism include the penalty on the upside return, and the
equal weight on the upside and downside whereas the asset return distribution is generally
assymmetric. Consequently, some alternative risk measures were proposed, notably the so-
called downside risk, where only the return below its mean or a target level is counted as risk
[6, 22, 19]. One of the downside risk measures is the semivariance. In [18] Markowitz himself
agreed that “semivariance seems more plausible than variance as a measure of risk”. On the
other hand, in a single-period financial market, other risk measures have also been proposed
and studied, including VaR [9], mean-absolute deviation [12], and minimax measure [2]. For
a recent survey on the Markowitz model and models with various risk measures, refer to [23].

The M-V approach “has received comparably little attention in the context of long-term
investment planning” ([23, p.32]), especially in continuous time setting, until very recently.
In a series of papers [26, 14, 13, 25, 1] the continuous-time Markowitz models have been
investigated thoroughly with closed-form solutions obtained in most cases. In this paper,
we will study continuous-time portfolio selection models, in a complete market, with risk
measures different from the variance. We will start with a weighted mean—variance problem
where the risk has different weights on upside and downside returns. Explicit solution will
be obtained for this model. While the weighted mean-variance model is important in its
own right, it also converges to the mean—semivariance model when the weight on the upside
variance goes to zero. Surprisingly and in sharp contrast to the single-period setting, based
on this convergence approach we will show that the mean—semivariance model has no optimal
solution, although asymptotically optimal solution can be obtained from the solution to the
weighted mean-variance model. This “negative” result motivates us to study a general
mean—downside-risk model where only the downside return is penalized, not necessarily in
the fashion of variance. It turns out that this general downside-risk model provides no
optimal solution either, under a very mild condition.

Finally, we will study a “most general” mean-risk model, where the risk is measured by

the expectation of a convex function of the deviation of the terminal payoff from its mean.



For this model, we give a complete solution in terms of characterization of the existence of
optimal portfolio and presentation of the solution when it exists.

The basic approach to solving the dynamic mean-risk portfolio selection is to reduce the
problem into two subproblems: one is to solve a constrained static optimization problem on
the terminal wealth, and the other is to replicate the optimal terminal wealth. This approach
is rather standard; see [20, 7, 11, 1]. The second subproblem is straightforward to solve in
view of the completeness of the market. The main contribution of this paper is that we
solve the first subproblem thoroughly for very general functions that define the underlying
risk. This subproblem is sufficiently interesting in its own right, from the viewpoints of both
probability and optimization.

The rest of this paper is organized as follows. In section 2, we specify the continuous-
time financial market under consideration, and introduce the equivalent static optimization
problem for a dynamic portfolio selection problem. In section 3, we investigate the weighted
mean—variance problem, and in section 4, we treat the mean—semivariance model based on
the results in section 3 and a convergence approach. Section 5 is devoted to the study on
the mean—downside-risk problem. In section 6, we turn to the general mean-risk model,
and find the sufficient and necessary conditions for the problem to admit optimal solutions.
Several examples are presented to illustrate the general results obtained. Finally, the paper

is closed in section 7 with some concluding remarks.

2 Problem formulation

In this paper T is a fixed terminal time and (2, F, P, {F;}1>0) a fixed filtered complete
probability space on which is defined a standard F;-adapted m-dimensional Brownian motion
W(t) = W),---,W™(t))" with W(0) = 0. It is assumed that F, = o{W(s) : s < t}.
For ¢ > 1, we denote by L%(0,T;R?) the set of all R%valued, F;-adapted measurable
stochastic processes f(-) = {f(t) : 0 < ¢t < T} such that E [T |f(t)|%dt < +oo, and by
Li(Fr,R% the set of all R-valued, Fr-measurable random variables X such that E|X|? <
+00. Throughout this paper, a.s. signifies that the corresponding statement holds true with
probability 1 (with respect to P).

Suppose there is a market in which m + 1 assets (or securities) are traded continuously.
One of the assets is the bank account whose price process Sy(t) is subject to the following

(stochastic) ordinary differential equation:

dSo(t) = r(t)Se(t)dt, t€[0,T]); So(0) = so > 0,



where the interest rate r(¢) is a uniformly bounded, F;-adapted, scalar-valued stochastic
process. Note that normally one would assume that r(¢) > 0; yet this assumption is not
necessary in our subsequent analysis. The other m assets are stocks whose price processes

S;i(t), i =1,---,m, satisfy the following stochastic differential equation (SDE):

dS;(t) = S;(t)[b;(t)dt + Za,] HdW(t)], t€0,T]; S;(0)=s; >0,
7j=1
where b;(t) and 0;;(t), the appreciation and dispersion (or volatility) rates, respectively, are
scalar-valued, F;-adapted, uniformly bounded stochastic processes.
Define the volatility matrix o(t) := (0i;(t))mxm- A basic assumption throughout this

paper is that the covariance matrix
o(t)o(t) > 6I,, Vtel0,T], as.,

for some § > 0, where I, is the m x m identity matrix. This assumption ensures that the
market is complete.

Consider an agent whose total wealth at time ¢ > 0 is denoted by z(¢). Assume that
the trading of shares takes place continuously in a self-financing fashion (i.e., there is no
consumption or income) and there are no transaction costs. Then z(-) satisfies (see e.g.
Karatzas and Shreve [10] and Elliott and Kopp [5])

dz(t) = { )+ i (t)]mi(t) }dt—i— ZZJZJ (t)dWI(t), x(0) = x4 >0,

j=1li=1

where m;(t), i =0,1,2---,m, denotes the total market value of the agent’s wealth in the
i-th asset. We call 7(-) = (m1(-), - - -, mm(+))" the portfolio of the agent.

Set B(t) := (bi(t) — r(t), -+, bm(t) — r(t)), and define the risk premium process 6(t) =
(01(t), -+, 0,(t)) := B(t)(c(t)") ! and the pricing kernel

1

o(0) = e { = [[1r(s) + 5106s) s — [ 0(s)aw (s)} (

—_
~—

With this notation, wealth equation becomes
dz(t) = [r(t)z(t) + B(t)w(t)ldt + m(t)'o(t)dW (t), =(0) = . (2)

Before we formulate our continuous-time portfolio selection model, we specify the “allowable”

investment policies with
Definition 2.1 A portfolio 7(-) is said to be admissible if w(-) € L%(0,T; R™).

4



The various portfolio selection models we are going to consider in this paper are all special

cases of the following general problem

Minimize Ef(z(T)— Ex(T)),

7(-) € L%(0,T; R™),

subject to ¢ (z(.),7(-)) satisfies equation (2) with initial wealth zo,

where x4, z € R and the function f : R — R are given. In words, problem (3) is to minimize
the risk, measured by certain function of the deviation of the terminal wealth from its mean,
via continuous trading, subject to an initial budget constraint (specified by ;) and a target
expected terminal payoff (specified by z). The trade-off between return and risk is realized
by achieving the minimum possible risk after one specifies the target return. A mean-risk
efficient frontier will then be traced out as z varies over certain range. The Markowitz
mean—variance problem is a special case of (3) with f(z) = z2.

Applying [4, p. 22, Proposition 2.2] to equation (2) we have
o(t) = p(O) " E(p(T)x(T)|F), Vte[0,T], as.. (4)
In particular,
zo = E[p(T)z(T)].

Hence, as in [1] the portfolio selection problem (3) can be decomposed into a static opti-

mization problem and a wealth replication problem. The static optimization problem is

Minimize FEf(X — z),
()
subject to EX =z, E[p(T)X] = x¢, X € L*(Fr,R).

Suppose X* is an optimal solution to (5), then the replication problem is to find a portfolio
such that its terminal wealth hits X*; in other words, the problem is to find (z(-), 7(-)) that

solves the following equation
dz(t) = [r(t)z(t)dt + B(t)w(t)]dt + 7 (t) o (t)dW (t), =(T)= X" (6)

Theorem 2.1 If (z*(-),n*(-)) is optimal for problem (3), then x*(T) is optimal for problem
(5) and (z*(-),7*(:)) satisfies (6). Conversely, if X* is optimal for problem (5), then (6)

must have a solution (x*(-),7*(-)) which is an optimal solution for (3).
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Proof: The proof is the same as that of [1, Theorem 2.1]. a

Remark 2.1 The replication problem (6) is essentially a backward stochastic differential
equation (BSDE); refer to [15, 16, 24] for various approaches in solving BSDEs. Indeed, the
unique solution (z*(-),7*(t)) of (6) is given by

(1) = (o(t)) "y (1), (7)
whereas (z*(+), y*(+)) is the unique solution to the BSDE
dz(t) = [r(t)z(t) + 0()y(t)]dt + y(t)'dW (¢), z(T)=X". (8)

Thus, according to Theorem 2.1 the key is to solve the static optimization problem (5). The

remainder of this paper will be mainly devoted to solving problem (5) for various situations.

3 The Weighted Mean—Variance Model

The classical mean—variance portfolio selection problem uses the variance as the measure
for risk, which puts the same weight on the downside and upside (in relation to the mean)
of the return. In this section, we study the “weighted” mean-variance portfolio selection
model where the weights on the downside and upside may be different. Specifically, for given
a>0,8>0,z € R,zg € R, we consider problem (3) with f(z) = az? + S22, where
x4 > 0 and x_ > 0 denote the positive and negative parts of x respectively. It reduces to
the classical mean—variance model when o = f.

As discussed at the end of Section 2, to solve the above problem it suffices to solve a

static optimization problem (5) in terms of X. Define Y := X — z, then (5) specializes to

Minimize E(aY? + BY?2),
(9)
subject to EY =0, E[pY] =1y, Y € L*(Fr,R),

where p := p(T) and yo := zo — 2zFp.

Since the above is a static convex optimization problem with a nonnegative infimum,
using the Lagrange multiplier approach (see [1, Proposition 4.1]), we conclude that Y* is an
optimal solution of (9) if and only if Y* is a feasible solution of (9) and there exists a pair
(A, i) such that Y* is an optimal solution of the following problem

i ElaY?+B8Y2 =2\ = up)Y]. 1
yen o [@Y [+ BYZ —2(A — pp)Y] (10)



Lemma 3.1 Problem (10) admits a unique optimal solution Y* = ()‘_5’))+ — (’\_’5”)‘.

Proof: For any Y € L*(Fr,R), we have, sample-wisely,

Y} + BY? = 2(\ — pp)Y

_ (V2= 22T Py )y gy 4 g d _ﬂ“py_)

A — = 2 2\ — N\ — 2
— oY, - TW)a N % LAY+ Bup)g _( ﬂup)
o _Q=wp)i  (A—po)?
> - 5

= a(Y7)? +B(Y2)" = 2(A — pp)Y™.

This shows that Y* is an optimal solution. The uniqueness of the optimal solution follows

from the strict convexity of the problem (10). O

Proposition 3.1 For any vy, there exists a unique pair (A, u) such that the optimal solution
Y* in Lemma 3.1 satisfies EY* = 0, E[pY*] = yo. Moreover, A\ < 0,pup < 0 if yo > 0,
A>0,u>014y <0, and A=pu=0ifyo=0.

Proof: If yy = 0, then we simply take A = = 0 (in which case Y* = 0).
If yo < 0, then it is easy to see, using the mean-value theorem of a continuous function,

that the following equation admits a unique solution ¢ > 0:

E(C—p)+/a=E(C—p)-/B. (11)
Set
a:= E[p(¢ = p)+]/a = E[p(¢ — p)-]/8. (12)
Since EY™* = 0, E[pY*] = yo, p cannot be a constant, by (11) we have

a < CE[(C—p)+]/a—CE(C—p)-/B=0.

Take p:=yo/a > 0, := (u > 0. Then it is straightforward that (), u) is the desired pair.
Finally, if yo > 0, then let £ > 0 be the unique solution of equation

E(§ —p)-/a=E(E —p)+/B- (13)

Set
bi= Blp(¢ — p)-l/a - Blp(€ — p)+]/8. (14)



An argument similar to above yields b > 0. Take p := —yo/b < 0, A := &u < 0. Then (\, p)
is the desired pair.
For the uniqueness, it is not difficult to prove by discussing for the cases 4 < 0 and p > 0

respectively. O

Theorem 3.1 The unique optimal solution for problem (9) is

c_ A=pp)r (A —pp)-
yr= o 5

where (A, 1) is the unique solution of the system of equations:

EQ—up)+ _ E(z\*ﬂup)— =0

(15)

E[p(A;up)H _ E[p(Agup)—] = yp.

Moreover, for the case yo < 0,y0 = 0, and yo > 0, the minimum value E[a(Y})* + B(Y*)?]
of the problem (9) is equal to —y3/a,0,y2/b, respectively, where a is given by (12) and b is
given by (14).

Proof: The first part of the theorem is immediate from Lemma 3.1 and Proposition 3.1. To

prove the second part, note that the case when gy, = 0 is trivial; so we consider y, # 0. One

has
—%E(A —up)? = %E[(A — 1p)—(A — pp)]
_ L EQN—pp)-  Elp(\ = pp)]
= A 3 7 3
_ L EO ;up)+ L {E[p(/\ ; pp)s] yo}

1

= EE[()\ — 1p)+(A — pp)] + 1Yo
1

= —E(\ = po)% + po,

where we have utilized the equations (15). Consequently,

Bla(y"); + B(Y"P] = <EO = up)} + 5EO = o) = =y

By the proof of Propositioin 3.1, we obtain immediately the desired result. O

Translating back to the weighted mean—variance portfolio selection problem (3), in view

of Theorem 2.1, the unique optimal portfolio corresponding to z > 0 is the replicating

8



portfolio for the terminal contingent claim z*(7T') = (’\_5’) Je _ (= 5 )= + 2. Details are left to
the reader. We note that if z = %%, then A\ = p = 0 implying that z*(T) = z a.s. under
the optimal portfolio. Hence in this case the optimal portfolio is a risk-free portfolio or a
zero-coupon bound. As a by-product, we have proved that a risk-free portfolio is available

(which involves exposure to the stocks) even though the interest rate is random.

4 The Mean—Semivariance Model

In this section we consider the mean—semivariance problem, where only the downside return
is penalized. This is a case of (3) with f(z) = 22.

As before we denote p := p(T') where p(-) is defined by (1). Define

po:=inf{n e R: P(p<n) >0}, py:=sup{n€ R: P(p>n)>0}. (16)

Lemma 4.1 Let ((«), € (0,1), be the solution to (11) with B =1 — «, then lim, o (o) =
po- Similarly, let (), o € (0,1), be the solution to (13) with =1 — «, then lim, o &(a) =
p1-

Proof: Define f(() := g Z)+, ¢ € (po, p1)- Then equation (11) is equivalent to f({) =

%=. Obviously, f(¢) is a strictly positive and strictly increasing function on ¢ € (po, p1);

hence ((«) is strictly increasing on « € (0, 1), and in this interval, py < ((a) < p;.

Denote lim,jo((a) = (p, then (o > po. If (o > po, then take ¢ € (py,{p). Since
¢ < (o = limy 0 ((x), we have H = 0, implying F(¢ — p)+ = 0. However, ¢ > py, so
P(p < ¢) > 0 leading to a contradiction. Therefore, (o = po.

Similarly, we can prove the other part of the lemma in terms of £(«). O

We are now in a position to prove the following negative result.

2

Theorem 4.1 The mean-semivariance problem (3) with f(x) = z2 does not admit any

optimal solution so long as z # ]“E—‘;

Proof: In view of Theorem 2.1, it suffices to prove that the static optimization problem

Minimize FE(Y?),
(17)

subject to EY =0, E[pY]=1yo =0 — 2Ep, Y € L*>(Fr,R)

has no optimal solution. Consider problem (9) with 8 = 1 — « and « € (0,1). It has
been proved in the proof of Proposition 3.1 that there exists a pair (A(«), u(«)) such that

9



Y (o) = Yakzpl@ply  (A=p@)= gatisfies EY () = 0, E[pY (a)] = yo. This implies that
each Y () is feasible for problem (17).

Since z # £ >, we have yy # 0. First consider the case when yo < 0. It was proved in
the proof of Proposition 3.1 that M) > 0, u(a) > 0. Let ((a) = AM)/p(c). Then () is

the solution to (11) with § = 1 — . Lemma 4.1 along with its proof yields {(a) > py, and

((a) = po as a | 0. Consequently,

0 < El(p—po)(C(a) = p)il/a < (¢(a) = po) E(((a) — p)+/a
= (¢(a) = po)E(¢(a) = p)-/(1 - a)
< (C(@) =p)Ep/(1—a) =0, asall,

and
El(p—po)(C(@) = p)-]/(1 —a) = E(p = po)®, asalO.

However, by (11) we have

Yo Yo

ula) = =
)= ae) = Ello= m)(C(@) = p)11/a = El(p = po)(C(@) = ) J/(1 = )
so that p(a) = —yo/E(p — po)?, as a } 0. Therefore,

*E(G(a) = p)?

[ (e)?) = HZEE,

On the other hand, for any feasible solution Y of problem (17), Cauchy—Schwartz’s inequality
vields {E[(p — po)Y_]}* < E[Y_]?E[(p — po)*1y<o]. Note that E[(p — po)*1y<o] # 0, for
otherwise P(Y > 0) = 1 which together with EY = 0 would imply P(Y = 0) = 1 and hence
1Yo = 0. As a result,

E[Y_ ]2 {E[(p— po)Y_ ]}2 {E[(p— po)Yy] — yO}Q yg
= Ellp—po)?ly<s]  E[(p— po)?ly<o] B po)?

where the last strict inequality is due to the facts that yo < 0 and EY = 0. Comparing (18)

— yo/E(p—po)®, asalO. (18)

(19)

and (19) we conclude that there is no optimal solution for (17) in this case.

For the case yo > 0, we have proved that A(«) < 0, u(a) < 0 and &(a) := Aa)/p(a) >0
where &(«) is the solution to (13) with f = 1 — a. According to Lemma 4.1, {(a) — p; as
a | 0. First assume that p; < +00. Then an argument completely analogous to the above
yields

ElY(a)’] = y3/E(p1 — p)?, as a0, (20)

whereas E[Y_]?> > y2/E(p; — p)? for any feasible solution Y of problem (17). Thus there is

no optimal solution for (17).
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Note that

b(@) > &(@)B(E(@) — p)- /o — Elp(E(@) — p)1]/(1 - o)
= &(@)E(¢(e) = p)+/(1 - a) = E[p(é(@) — p)4]/(1 - a) (21)
= B(E(@) - p2/(1-a).

Consequently, by (21) and the fact that p(a) = —yo/b(c) we have

B[y (a)2] = 1) g(f(Z;; P ‘f(f‘);b(a) - % (22)

Thus, if £(a) = p; = 400, as a | 0, then E[Y (a)?] — 0, as o | 0. On the other hand, for
any feasible solution Y , if EY2 = 0, then Y = 0 implying yo = 0. This, once again, proves
that (17) has no optimal solution. O

Remark that if z = ]‘g—‘;}, then there is a risk-free portfolio under which the terminal
wealth is exactly z. This portfolio is therefore an optimal portfolio for (17). Also, although
the mean-semivariance problem in general does not admit optimal solutions, the infimum
of the problem has been obtained explicitly in the proof of Theorem 4.1. Specifically, the

infimum is Flo—rpo)? if yo < 0, and is For ug o) if yo > 0. Moreover, asymptotically optimal

2
E(p p
portfolios can be obtained by replicating Y («) as a — 0.

Theorem 4.1 shows that, quite contrary to the single-period case, the mean—semivariance
portfolio selection problem in a complete continuous-time financial market does not admit
a solution (save for the trivial case when z = jfj—‘;) In the next section, we shall extend this

“negative” result to a general model that concerns only the downside risk.

5 The Mean—Downside-risk Model

Some alternative measures for risk have been proposed in lieu of the variance, and one of such
measures is the downside risk which concerns only the downside deviation of the return from
the mean. The semivariance studied in the previous section is a typical type of downside
risk measure. In this section, we will generalize the result obtained in Section 4 to a general
portfolio selection model with downside risk.

Before we formulate the underlying portfolio selection problem, let us investigate an
abstract static optimization problem, which is interesting in its own right. Let (2, F, P)

be a probability space. For ¢ > 1, we denote by LY(F,R) the set of all F-measurable real
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random variables X such that |X|? is integrable under P. Let £ be a strictly positive real

random variable, with the property that
P{¢ e (M, M)} >0, and P{{=M,} = P{{ =My} =0, VO < M; < My < 4o00. (23)

Consider the following optimization problem, with a given y, € R:

Minimize Ef(Y),
(24)
subject to EY =0, E[(Y] =1y, Y € LY(F,R),

where f : R — R is a given function. Throughout this section we impose the following

assumption on f:

Assumption 5.1 f > 0, left continuous at 0, strictly decreasing on R, and f(z) = 0
Vz € RT.

An example of such a function is f(x) = (z_)? for some p > 0. By virtue of the assumed

properties of f, problem (24) has a finite (nonnegative, in fact) infimum.
Theorem 5.1 Problem (24) admits no optimal solution for any yo # 0.

This theorem will be proved via several intermediate results. Denote L{(F, R™) := {X €
Li(F,R): X <0}. For any a <0, define

ha) = ZeLq(}”,IllI—lg, E[¢Z)=a Ef(2).

Lemma 5.1 h(a) is decreasing on R~. Moreover, if for a given ay, < 0, there exists Z €
Li(Fr,R7) such that E[€Z] = a1, Ef(Z) = h(a1), then h(a1) > h(az) Vas € (ay,0).

Proof: For any a1 < ay < 0, we have
. D) .
< f Ef(—2)< f Ef(Z) = h(ay).
h(az) < ZeLq(]-'T,IltIl),E‘[fz}:al f(al )< ZELCI(]-'T,II{I}),E[gZ]:al 1(Z) (a1)
If there exists a Z € L(Fp,R ") with E[¢Z] = a;, Ef(Z) = h(a;), then

h(ay) < Ef(j—jm < Ef(Z) = h(a).

This completes the proof. O

12



Lemma 5.2 For any a« > 0, § > 0, and 0 < B < «ad, there erists a uniformly bounded
random variable Y > 0 such that EY = a, E[€Y] = B, and Y = 0 on the set {w € 2 : £ > §}.

Proof: Take 6; < d3 < § so that E(£|d; < € < d2) = 8/a. The property of the distribution of
€ and the fact that 3/a < § ensure the existence of such §;, 8. Define Y = m15135<52.

Then Y satisfies all the desired requirements. O

Lemma 5.3 For any yo < 0 and € > 0, there exists a feasible solution Y for problem (24)
such that Ef(Y) < h(yo) + €.

Proof: For any € > 0, there exists Z € L%(Fr,R™) such that E[£Z] = vy, and h(yy) <
Ef(Z) < h(yo) +e€. Since +E[{Z] = a Va < yo, we have h(a) < Ef(+Z). Fix a <yo. Since
the distribution of £ has no atom by the assumption, there exists do(a) > 0 such that

a
—E[Z&1¢>50(a)] = Yo-
Yo

As a result, one can take d;(a) > 0 with §;(a) < dy(a) and

—E[- 7155, (a) o1
Yo — o E[Z€1¢>50)) ~ di(a)

It is easy to see that limgsy, do(a) = 0; hence limgsy, 61(a) = 0.
Define Y, = ;%Zlgzgl(a) + Yal§<51(a), where Y, > 0 is such that Y, = 0 on the set
{we:€&>61(a)}, and

BY, = —E[£Z1gs),
ElEY)] = yo— B[;:Z1e54,(a))-

The existence of such Y, is implied by Lemma 5.2. Consequently, EY, = 0, E[£Y,] = yo,
meaning that Y, is feasible for problem (24).
Now Ef(Ya) = E[f(;5Z)Le>61()] + ELf (Yo)lecs (o)) = E[f (55 Z)1e>51(a)]- Thus, we have

a

Ef(%Z) > Ef(Y,) > E[f(2)1e56,(a))

which implies limgy, Ef(Y,) = Ef(Z) < h(yo) + e. Thus, we can take a < y, such that
Ef(Ya) < h(yo) +e. =

Proposition 5.1 Problem (24) admits no optimal solution for any yo < 0.
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Proof: In view of Lemma 5.3 it suffices to show that Ef(Y) > h(yo) for any feasible solution
Y of (24). To this end, first note that E[(Y*] > 0, for otherwise Y+ = 0 which along with
EY = 0 yields Y = 0 and hence yy = 0. Therefore, a := E[—£Y ] < yp, suggesting h(a) >
h(yo) by virtue of Lemma 5.1. If A(a) = h(y), then the contrapositive of Lemma 5.1 implies
that Ef(—=Y ) > h(a). Since f(z) = f(—z ), we have Ef(Y) = Ef(=Y ") > h(a) = h(y)-
Otherwise, if h(a) > h(yo), then Ef(Y) > h(a) > h(yo). O

Now let us turn to the case when gy > 0.
Proposition 5.2 Problem (24) admits no optimal solution for any yo > 0.

Proof: Since yy > 0, any feasible solution Y of problem (24) satisfies Ef(Y) > 0. Thus we
only need to show that there exists a sequence {Y,} of feasible solutions for problem (24)
with lim, 4o Ef(Y,) = 0. Indeed, for any n > 0, define Y;, = —a,1¢cp, + bplesp, where
ay, by, are defined by

Yo Yo

= EEE=n) —BEE<mPE<n) " BEE=n —BEE<n)PE=n)

Then it is easy to verify that a, > 0,b, > 0, lim,, . a, = 0, and EY,, = 0, E[£Y,] = .
Thus, {Y,,} are feasible solutions for (24), and

0 < Ef(Y,) = Elf(~au)lecn] < f(=an).
Since f is left continuous at 0, we conclude lim,, ,, ., Ff(Y,) = 0. O

Remark 5.1 In the proof of Proposition 5.2, only the following properties of f(-) was uti-
lized: f(z) > 0if z <0, f(z) =0 if z > 0, and limgy f(2) = 0. The strictly decreasing

property of f(-) was not necessary.

Combining Proposition 5.1 and Proposition 5.2 yields the conclusion of Theorem 5.1.

Now we turn to the continuous-time portfolio selection problem (3) where f satisfies
Assumption 5.1. The way the function f is given suggests that only the downside deviation
of the terminal wealth from its mean is penalized; hence the model constitutes a (very
general) mean—downside-risk portfolio selection problem.

Let p(-) be the price kernel defined by (1). We impose the following assumption:

Assumption 5.2 For any 0 < M; < M, < 400, P{p(T) € (M, M3)} > 0 and P{p(T) =
My} = P{p(T) = Mz} = 0.

14



This assumption is satisfied when, say, r(-) and 6(-) are deterministic and [ |(t)[>dt > 0.
The corresponding static optimization problem (5), after taking a transformation ¥ :=
X — z, is exactly the problem (24) with ¢ = 2. Hence, by virtue of Theorems 5.1 and 2.1,

we conclude the following result.

Theorem 5.2 Under Assumptions 5.1 and 5.2, Problem (3) admits no optimal solution for

any z # E;”(OT). On the other hand, if z = #(OT), then (8) has an optimal portfolio which is

the risk-free portfolio.

Theorem 5.2 claims that a mean—downside-risk portfolio selection problem does not gen-
erally attain an optimal solution in a complete continuous-time financial market. It is a very
general result; however it does not completely cover Theorem 4.1 since the latter does not

require Assumption 5.2.

6 The General Mean—Risk Model

We have shown in the last section that in the continuous-time setting, the mean—downside-
risk model does not achieve optimality in general. In other words, problem (24) does not
admit an optimal solution if the function f has the property that it vanishes on the nonneg-
ative half real axis. Notice that for this negative result to hold the function f is not required
to be convex. In this section, we will study model (24) where a general convex function f
is used to measure the risk. We will give a complete solution to the problem in terms of
telling exactly when the problem possesses an optimal solution and, when it does, giving the
explicit solution.

Let (2, F, P) be a probability space and & a strictly positive real random variable on it
satisfying (23). Consider a convex (hence continuous) function f : R — R, not necessarily
differentiable. For any = € R, its subdifferential df(x) in the sense of convex analysis (see,
e.g., [21]), is defined as the set

0f(z) :={2" €R: f(y) = f(&) 22" (y —x), Yy e R}=[fL(2), fi(2)], (25)

where f’ (z) and f (x) are the left and right derivatives of f at x respectively. The set 0f ()
is a non-empty bounded set for every z € R ([21, Theorem 23.4]). Moreover, the convexity

of f implies that the subdifferential is non-decreasing in the sense that

filz) < fl(@e), Vo <z (26)
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We call a convex function f to be strictly convex at zy € R if

f(zo) < kf(x1) + (1 = K) f(w2)

for any x1 < 2y < z2 and k € (0,1) with k21 + (1 — k)22 = xp. A convex function is called
strictly convex if it is strictly convex at every x € R. Some properties of a convex function
that are useful in this paper are presented in an appendix.

Throughout this section we assume that f satisfies
Assumption 6.1 f is convex, and strictly convex at 0.

Note that the strict convexity at 0 is a very mild condition, which is valid in many
meaningful cases (see the examples at the end of this section).
In view of Jensen’s inequality, one has Ef(Y) > f(EY) = f(0) for any feasible solution
Y of (24). Hence problem (24) has a finite infimum if its feasible region is non-empty. Also
we see that if yo = 0, then (24) has (trivially) an optimal solution Y* = 0 a.s.. On the other
hand, due to the convexity of f, we can apply [1, Proposition 4.1] to conclude that (24)
admits an optimal solution Y* if and only if Y* is feasible for (24) and there exists a pair
(A, p) such that Y* solves the following problem
min ELf(Y) = (A= uY]. (27)

YeLi(FR

Lemma 6.1 Y* € LY(F,R) is an optimal solution to (27) if and only if
FT) = (A= pE)Y™ = min[f(y) — (A — uyl, as.

Proof: The “if” part is obvious. We now prove the “only if” part. Suppose Y* €
LY(F,R) is an optimal solution to (27). Define h(y) := f(y) — (A — pf)y, v € R, and
¢ := infyer h(y). Let Z := Upen{(21, -, 2n) : 20 € Q}, where Q is the set of rational
numbers, and h(z) := infi<;<, h(z;,w) for 2 = (21,---,2,) € Z. Since h(y) is continuous
in y, we have ¢ = inf,c; h(z). Now, if Y* is not almost surely a minimum point of h(-),
namely, P{c < h(Y*)} > 0, then there exists z = (21,-+-,2,) € Z such that P{h(z) <
h(Y*)} > 0. It is easy to see then that there is y* € Q with P{h(y*) < h(Y*)} > 0. Put
A:=A{w: h(y",w) < h(Y*(w),w)}, and Y’ := y*14 + Y*14.. Then Y’ € LI(F,R), and
Eh(Y'") < Eh(Y™), leading to a contradiction. O

Define a set-valued function G: Uzerdf(z) — 28
G(y) :={r e R:y € df(z)}, Vy€ Userdf(x),
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and define g: Uyerdf(2) — R as the “inverse function” of 0f as follows

g(y) = argminmEG(y)|x|’ V?J € Ul‘ERaf(x)

In Appendix we prove that g is a well-defined function (on its domain), and the set of y’s

where G(y) is not a singleton is countable. In other words, denoting
I':={y € UyerOf(x) : G(y) is a singleton},

then the set [UycrOf(x)] \ [ is countable. Moreover, g(-) is increasing on Uzcrdf(z) and
continuous at points in I' (Proposition A.5).

The objective of this subsection is to identify the ranges of y, where problem (24) admits
optimal solution(s) and, when it does, to obtain an optimal solution in various situations of
f. It follows from Lemma 6.1 that problem (24) admits an optimal solution if and only if

there exists a pair (A, ) satisfying the following condition:

A — p€ € UgerOf(z) a.s., and there is Y* € LY(F,R) with Y* € G(\ — pé), a.s., EY* =0,

and E[¢Y™] = yo.
(28)
Moreover, when there exists a pair (A, u) satisfying the above condition, Y* is one of the
optimal solutions for (24). Remark that if g # 0, then, since the set [UzerOf(x)] \ T is
countable and the distribution of £ has no atom, we have P{\ — u& € I'} = 1. In this case

G(\ — u&) is almost surely a singleton; hence problem (24) has a unique optimal solution
V"= g(A = pl).
We will solve problem (24) in each of the following four (mutually exclusive) cases:

Case 1: The set UpcrOf(x) is upper bounded but not lower bounded;
Case 2: The set Upcr0f(x) is lower bounded but not upper bounded;
Case 3: Ugerdf(z) = R;

Case 4: The set U,er0f(x) is both upper and lower bounded.

Let us first focus on Case 1. In this case, it follows from Proposition A.1 that Uyer0f ()

is either a closed interval (—oo, k] or an open one (—oo, k) where

k:= lim f'(z)€R. (29)



It is also clear that lim,, o g(y) = —oco. Moreover, in this case one only needs to consider
i > 0 in searching for (A, u) satisfying condition (28), for otherwise U,cr0f(x) would be

unbounded from above.

The following technical lemma plays an important role in the subsequent analysis.

Lemma 6.2 In Case 1, assume that there are Ao > f'(0), o > 0 such that g(Ao — poé) €
Li(F,R). Then for any u1 € (0, o), A1 € (f-(0), \o), there exists v € LY(F,R™), such that
|9(A=p&)| < v for any p € [0, ] and A € [fL(0), Mi]. If in addition £g(Ao—po§) € L(F, R),
then v satisfies &y € LY(F,R).

Proof: Since g(-) is increasing (Proposition A.5), for any p € [0, 1], A € [f"(0), A1], we have

g(f(0) = 1) < g(A — p) < g(\y).

Xo—f1 (0

On the other hand, on the set {w : £(w) < )}, we have

= Mo—p1

o fL(0) — Aom)
Mo — M1

)

g(f (0) — ) > g (

and on the set {w: £(w) >

g(f(0) = 111&) > g(Ao — pof).

Thus, if we put

,Uofl_(o) — Aot
=g(\) +
v = g(A1) ‘g ( p—

then v meets the requirement. O

)‘ + 19(Xo — o),

Lemma 6.3 In Case 1, for any given A € (—00, k), ga(i) := Eg(A—ué) is strictly decreasing
inp€RT.

Proof: Since g(+) is increasing, ¢,(+) is decreasing. Moreover, for any pu > 0, gx(1) < gx(0).
Indeed, if gx(1) = ga(0), then Eg(A — u&) = Eg()) leading to g(A — p&) = ¢g(A). This, in
turn, implies that A — u& € df(g(A\)) which contradicts to the boundedness of df(g(}\)).

Next, for any 0 < p1 < pg, if ga(p1) = ga(pe), then g(A — &) = g\ — pef) as..
We are to show that in this case g(-) must be constant on (—oco, A — 1]. In fact, if g(-)
is not constant on (—oo, A — 1], then for any ¢ > 0, there exists y; < A — 1 such that
g(y1) < g(y1 +€). Take € = (uo — p1)/(2u2). Then it is straightforward to verify that

A— A—(y1+e) . A—y1 A—(y1+e) s . N o _
< A Now, if € € [, 2122, then the monotonicity of g(-) yields g(A— &) >
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g(y1 + €) and g(A — p2€) < g(y1). It then follows from the inequality g(y1) < g(y1 + €) that
P{g(A—p2€) < g A—m&)} > P{€ € [)‘—;2?’—1, W]} > 0, which contradicts the assumption
that g(A — &) = g(A — p2f) as..

We have shown that g(-) is constant on (—oo, A — 1]; nevertheless this is impossible

because lim,_,_ g(y) = —oo. The proof is complete. O

Theorem 6.1 In Case 1, assume that there are Ao > f'(0), o > 0 such that g(Ao — uo&) €
Li(F,R) and Eg(Ao — 1o&) = 0. Then for any A € [fL(0), Xo], there ezxists a unique 0 <
w(A) < po such that g(A — p(N)€) € LYF,R) and Eg(A — p(N)€) = 0. Moreover, p(A) =0
for A € [f(0), f1.(0)] = 0f(0), and pu(-) is continuous and strictly increasing on [f’ (0), Ao].

Proof: For any fixed A € (f'(0), \o), define gx(u) := Eg(\ — u&) for p € [0, po)- It follows
from Lemma 6.2 that for any p; € (0, ), the family of random variables {g(A — pf) :
i € [0, 1]} are uniformly integrable. Hence by the dominated convergence theorem g,(-) is
continuous on [0, ip). On the other hand, g(\ — &) is decreasing when u 1 po, and when
po > > po/2, g(A — p€) < g(A —&uo/2) € LI(F,R). Hence, the monotonic convergence
theorem yields

lim Eg(A — p§) = E lim g(A — p&) = Eg(A — pof).
wlhuo o

Note that the above equality may take the value of —oco. If Eg(A — po&) > —oo, then the
strict monotonicity of g leads to Eg(A — &) < Eg(Ao — po€) = 0. Thus it always holds
that limp,, gx(1) < 0. But ¢A(0) = Eg(\) > Eg(f (0)) = 0; so it follows from the facts
that g»(-) is strictly decreasing (Lemma 6.3) and continuous on [0, 1) that there exists a
unique u(A) € [0, po) with gr(u(A)) = Eg(A — p(A)€) = 0. Moreover, Lemma 6.2 ensures
that g(A — p(\)€) € LY(F,R).

To prove the second part of the theorem, first notice that Ag > f(0). Indeed, if it is
not true, then \g € 9f(0) and hence g()\¢) = 0. However, appealing to Lemma 6.3 we have
Eg(Xo — o) > g(Xo) = 0 which is a contradiction. Now, whenever A € [f’ (0), f1.(0)] =
df(0), we have Eg(\) = g(A) = 0; thus the uniqueness of p(A) yields p(A\) = 0. Next,
consider \g > Ay > Ay > f1(0). Since p(A) > 0 whenever A > f!(0), and Eg(Ay — pé) <
Eg(A1 — p&) whenever p > 0, we have gy, (1(A1)) = Eg(X2 — p(A)€) < Eg(h — p(M)§) =
0 = ga,(1(A2)). Since gy, (-) is strictly decreasing, we conclude p(A1) > p(Ag), proving that
() is strictly increasing on [’ (0), Ao].

Next we show by contradiction the right continuity of u(-) on [f!(0), Ag). Assume that
there exists A € [0, Ag), and € > 0 such that for any X' > A, u(\') > p(A) + . Without loss
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of generality, suppose p(A) + € < pu(Ag). Then
_ N 1 ! < .
0= lim Eg(X' — u(X)¢) < lim Bg(X' — (n(A) + €)¢).
On the other hand, it follows from Lemma 6.2 that the family of random variables {g(\ —
((A) +€)€) = X € [\, \]}, for any fixed Ay € (A, Ag), is uniformly integrable. Therefore we
have

lim Eg(X = (1(}) + 9¢) = Eg\ = (1(}) + 9¢) < Eg(A = u(A)¢) =0,

leading to a contradiction.

It finally remains to prove the left continuity of u(-) on (f}(0), Ao]. Assume that there
exists A € (f1(0), Ao] and € > 0 such that for any X" < A, u(X') < () — e. Without loss of
generality, suppose () — e > 0. Then

1 o ! > .
0= lim Eg(X' — u(X)¢) 2 lim Bg(X — (u(3) — €)¢)-
Obviously, g(A — (u(A) — €)€) is increasing when X' 1 A, and when X > A/2, g(X — (u(\) —
€)&) > g(A/2 — (u(\) — €)€) € LY(F,R) by virtue of Lemma 6.2. Hence by the monotonic
convergence theorem,
lim Eg(X — (u(Y) — €)¢) = Eg(A — (n(A) = €)§) > Eg(A — p(A)¢) = 0.

Again, this is a contradiction. O

Define

4

=1

:={\ € [f' (0),k] : There exists p = p()) so that g(A — u(N)€) € LI(F,R),

Eg(A = p(N)§) =0, &g(A—p(NE) € L'(F,R)},

>~

= SUDP)ci A,

g = Elgg(X — p(NE)], A € [£L(0), N).

\

Notice that A # (), since 9f(0)
6.2 and Theorem 6.1, [f"(0), \)

. As a result f!(0) < A < k. Also, by virtue of Lemma

CA
C A.

Theorem 6.2 In Case 1, g(A) = 0 for A € [f.(0), f1.(0)] = 0f(0), and g(-) is continuous
and strictly decreasing on [f.(0),\). Moreover, if X\ € A and X < k, then §(-) is also left

continuous at .
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Proof: Theorem 6.1 provides that u(A) = 0 for any A € 9f(0); hence g(A) = E[¢g(N\)] = 0.
Furthermore, for A > A; > Ay > f%(0) (if A € A, then A; may take the value of \), it follows
from Theorem 6.1 that p(A;) > p(A2) > 0. Denote & := % > 0. If &€ > &, then

AL —

(A1) =nu(

1(A)€ < Ap — p(A2)€ resulting in g(A — p(A1)€) — g(Ae — p(A2)€) < 0. Similarly, if

£ < &, then g(A1 — p(A1)€) — g(A2 — p(A2)§) > 0. As a consequence,

[ VAN ||

g(A1) — (o)

E{Elg(M — pu(A)§) — g(ha — pu(X2))]}

E{Elg(h — u(A)8) — 9(ha — u(Xe)é)1ezg } + E{€lg(A — 1(M)E) — 9( A2 — 1(A2)€)|Leceo}
SE {lg(M — u(M)E) — g(Ae — p(A2)E)]Lezgo} + & E {[9(A1 — p(A)E) — 9(A2 — p(A2)E)|1e<s, }
SoElg(M — 1(A1)€) — g(A2 — pu(A2)€)]

0.

)
)

Moreover, if g(A1) — g(A2) = 0, then g(A1 — p(A1)€) = g(A2 — p(A2)€) a.s.. By a reasoning

similar to that in the proof of Lemma 6.3, we can prove that this is impossible. So g(-) is

strictly decreasing on [} (0), ).
Fix A € [f}(0),A). There is Ay € A with A < ). By Lemma 6.2, the family {£g(\ —
w(A)E) + N € [0, (A+ Ap)/2]} is uniformly integrable. Thus by the continuity of p(-), we have

Jim g(X) = lim Blgg(X — (X))
= E[lim £g(X — p(\)€)]
= Elgg(A— p(N))]
= G\

This proves the continuity of §(-) on [f% (0), A).
Finally, in the case when A € A and ) < k, one has

3 < lim3(X) = lim Blgg(\' — u(V)9)] < lim Elég(A — n(X)¢)]

On the other hand, since g(-) is increasing, we have |g(A — u(A)E)| < |g(A)| +[g(A— u(A)E)].

Thus the dominated convergence theorem yields

lim Blg(\ — n(\)€)€] = Ela(A — n(N)E] = 5.

Therefore, §(-) is left continuous at . O

The following result gives the complete solution to problem (24) for Case 1.
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Theorem 6.3 Consider Case 1.

(i) If X ¢ A, then (24) admits an optimal solution if and only if yy € (y,0], where y =
limy,5 §(A). If X € A, then (24) admits an optimal solution if and only if yo € {G(\)} U
(y,0]. If in addition X < k, then g(\) = y.

(i) When yo =0, Y* := 0 is the unique optimal solution to (24).

1(A)E) is

(iii) When yo < 0 and the ezistence of optimal solution is assured, Y* := g(\ —
the unique optimal solution to (24), where X is the unique solution to §(\) = yo.

Proof: (i) The “if” part follows immediately from Theorem 6.2. To prove the “only
if” part, suppose that (24) admits an optimal solution Y*, then there exists a pair (\, p)
satisfying condition (28). If A < f’ (0), then p = 0 (for otherwise Eg(A — pf) < Eg(\) <
g(f-(0)) = 0). Hence it follows from (28) that EY* =0 and Y* € G()), a.s. or A € 0f(Y™),
a.s.. If P(Y*=0) <1, then P(Y* > 0) > 0,P(Y* <0) > 0. Therefore \ € [Up~odf(x)] N
[Uz<00f(z)], which is impossible by Proposition A.2 and the fact that f is strictly convex
at 0. Thus P(Y* = 0) = 1 and, consequently, yo = E[(Y*] = 0. On the other hand, if
A > f"(0), then the conclusion follows from Theorem 6.2.

(ii) If yo = 0, it follows from Jensen’s inequality that, for any feasible solution Y of (24),
Ef(Y) > f(EY) = f(0) = Ef(0). Hence Y* := 0 is an optimal solution. To prove that
Y* is the only solution, let Y be any feasible solution of (24) with P(Y # 0) > 0. Since
f is strictly convex at 0, there exists an affine function g(z) = ax + b so that f(0) = ¢(0)
and f(x) > g(xz) Vz # 0. Therefore P(f(Y) > ¢g(Y)) > 0, resulting in Ef(Y) > Eg(Y) =
g(EY) = ¢(0) = f(0) = Ef(0). This shows that Y is not optimal.

(iii) This is evident from Theorem 6.2. O

Note that the “if” part of Theorem 6.3-(i) does not require the strict convexity of f at
0. However, this assumption cannot be dropped for the “only if” part; see the following

example.

Example 6.1 Take f(z) = (22 — 1)1,<_;, which is not strictly convex at 0. It is easy to

see that Uycrdf(z) = (—00,0]. Pick a € R such that P(§ > a) > 3 > P(§ < a) > 0,

and take Y* := 28581, — lec,. Then, EY* =0, and y§ := E[£Y”] = P(¢ < a)[E(¢[¢ >

a) — E(£J€ < a)] > 0. On the other hand, Y* > —1 a.s., hence Ef(Y*) = 0. This shows that
problem (24) does admit an optimal solution Y* even though y, = y§ > 0.
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We have now completed the study on Case 1. As for Case 2, it can be turned into Case
1 by considering f(x) = f(—z). Hence we only state the result.
Set
k:= lim f'(z)€R, (31)

T——00
and define

4

A = {X € [k, f1(0)] : There exists u = u(A) so that g(A — u(N)§) € LY(F,R),

Eg(A = p(A)§) =0, &g9(A—p(NE) € L'(F,R)},

A=infyep A,

9(A) = Elgg(A = p(NE)], A€ (A, fL(0)].

\

Theorem 6.4 Consider Case 2.

(1) If A ¢ A, then (24) admits an optimal solution if and only if yo € [0,9), where y =
limyx g(A). If A € A, then (24) admits an optimal solution if and only if yo € {g(A)}U

[0,7). If in addition A > k, then g(\) = 3.
(ii) When yo =0, Y* := 0 is the unique optimal solution to (24).

n(N)€) is

(iii) When yo > 0 and the existence of optimal solution is assured, Y* := g(A —
the unique optimal solution to (24), where X is the unique solution to G(\) = yo.

Let us now turn to Case 3. It can be dealt with similarly combining the analyses for the
previous two cases. Define

4

A :={X € R: There exists u = p(A) so that g(A — p(A)¢§) € LI(F,R),
Eg(A = p(A)€) =0, &g(A—p(N)E) € L' (F,R)},
A= SUPyep A, A t=infyep A, (33)

g = Elgg(A — u(NE)], A€ (A, ),
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Theorem 6.5 Consider Case 3. Problem (24) admits an optimal solution if and only if
Yo € AU B, where

[y,0], ifAeA b 0,7, ifA€A
(5,0, fAEA 0,7), fAgA.

Moreover, when yo = 0, Y* := 0 is the unique optimal solution to (24), and when yo # 0
and the existence of optimal solution is assured, Y* := g(A — u(\)§) is the unique optimal

solution to (24), where X is the unique solution to g(\) = yo.
The final case, Case 4, only has a trivial solution, as shown in the following theorem.

Theorem 6.6 Consider Case 4. Problem (24) admits an optimal solution if and only if

Yo = 0, tn which case the unique optimal solution is Y* = 0.

Proof: Suppose that Y* is optimal to (24). Then there exists (A, u) so that A\ — ué €
df(Y*), a.s.. It follows from the uniform boundedness of 0f(z) that x = 0. Employing the

same argument as in the proof of Theorem 6.3-(i) we conclude that Y* = 0, a.s.. a

Once the static optimization problem (24) is completely solved, as before we can then
immediately obtain the solution for the continuous-time portfolio selection problem (3) by
applying Theorem 2.1. We omit the detailed statement of the results here; instead we give

several examples to demonstrate the results.

Example 6.2 Let f(z) = ami+ﬂx% with a, 8 > 0. This corresponds to the weighted mean—
variance model that has been studied in Section 3. f is strictly convex, Uzerdf(z) = R,
and ¢(y) = ier — ﬁy_. For any A > 0, it is straightforward to see that the equation
Eg(XA — pp) = 0 has a unique solution pu(A) = A/¢ where ¢ > 0 uniquely solves (11). Hence

A = +o00, and
() = Elp(A —Qz(A)pM ~ Elp(A —Qg(A)p)—]

As a result, limy_, ;o g(A) = —oo (recall that g(1) < g(0) = 0). Similarly, we can prove that

= A\g(1).

A = —o0 and limy ,_ g(A) = +oc. We can then apply Theorem 6.5 to conclude that the
weighted mean-variance model admits a unique optimal solution for any z € R. Finally, the
optimal portfolio obtained in Section 3 can be easily recovered. (It should be noted, however,

the result in Section 3 cannot be superseded as Assumption 5.2 is not imposed there.)
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Example 6.3 Let f(z) = 2. This is the mean-semivariance model investigated in Section
4. Clearly, f is convex, strictly convex at 0, and Ugerdf(z) = (—00,0]. The inverse
function g(y) = 2y, y < 0. It is easily seen that A = {0} and A = 0 € A. Now,
G\ = Elpg(A — pp)] = 5(Ep — Z2)A. Thus y = limy§(A) = 0. Tt then follows from
Theorem 6.3 that the mean—semivariance model admits an optimal solution if and only if

z = zo/Ep. (Again, this does not recover Theorem 4.1 completely due to Assumption 5.2.)

Example 6.4 Let f(x) = |z|. The corresponding portfolio selection problem is called the
mean—absolute-deviation model. Single-period mean—absolute-deviation model is studied in
[12]. Now, f is strictly convex at 0, and UyerOf(x) = [—1,1]. Thus in view of Theorem 6.6
the continuous-time mean—absolute-deviation model admits an optimal solution if and only

if z = xy/Ep, in which case the optimal portfolio is simply the risk-free one.

Example 6.5 Let f(x) = e~®. This function captures the situation where lager deviation
of the terminal wealth from its mean is heavily penalized. Again, f is strictly convex,
UzerOf (z) = (=00, 0) (hence k = 0), and g(y) = —In(—y), v < 0. Now, the equation Eg(0—
p1p) = 0 has a solution p = 1(0) = e EmP > 0, Moreover, g(0— 12(0)p) = [T [r(s) + & 8)‘2]ds—|—
JT0(s)dW (s) + Elnp € L*(F,R). Tt follows then from Theorem 6.1 that A = [~1, 0] and,
consequently, A = 0 = k. Furthermore, §(0) = E[g(0 — 1(0)p)p] = (Ep)(EInp) — E(pln p).
On the other other hand, when —1 < A 10, g(A — u(A)p) = —In(=A + p(N)p) > —In(1 +
1(0)p) = —p(0)p, and g(A — p(A)p) = —In(=A + p(A)p) < —In(u(A)p) < —In(u(-1/2)) -
Inp. Thus the dominated convergence theorem ensures that y = limyy g(A\) = §(0). By
Theorem 6.3, the mean-risk portfolio selection problem admits an optimal solution if and
only if g —zEp € [(Ep)(EIn p) — E(pln p), 0] or, equivalently, z € [£2, xo_(E”)(EgppHE(plnp)]
Finally, when the problem does admit an optimal solution, the optimal portfolio is the one

replicating the claim z —In(—A+ pp) where (A, i) is the unique solution pair to the following

algebraic equation (which must admit a solution):

Eln(—X+ pp) =0,
Elpln(=A+ pp)] = zEp — .

Example 6.6 Let f(z) = (x—1)%. The corresponding portfolio selection model is a variant
of the mean—semivariance model, except that the terminal wealth being less than its mean
plus 1 is now considered as risk. In this case, f is not strictly convex everywhere; but it

is indeed strictly convex at 0. It is easy to see that UyecrOf(z) = (—oc,0] (hence k = 0),
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and g(y) = y/2+ 1, y < 0. Meanwhile the equation Eg(0 — up) = 0 has a solution
p = u(0) =2/Ep > 0. By virtue of Theorem 6.1, A = [-2, 0] and, consequently, A = 0 = k.
Note that g(0 — u(0)p) = g(0 — up) = Ep — Ep®/Ep, and y = limyy §(A) = §(0). By
Theorem 6.3 the original portfolio selection problem admits an optimal solution if and only
. . 20 @ 2

if o — 2Ep € [Ep — Ep?*/Ep,0] or, equivalently, z € [E‘lp, Voriaa (5—2)2 — 1]. At last, when
the problem does admit an optimal solution, the optimal portfolio is the one replicating the
claim z + 1 + % where (), p) is the unique solution pair to the following linear algebraic

equation:

A—uEp= -2,

AEp — uEp? = 2x¢ — 2(1 + 2)Ep.

Compared with Example 6.3 it is interesting to see that a shift of the mean makes the
mean—semivariance model, which does not admit an optimal solution in any non-trivial case,

possess non-trivial optimal solution.

7 Conclusion

In this paper we have first solved a weighted mean—variance portfolio selection model in a
complete continuous-time financial market. Inspired by its result, we have proved that, other
than a trivial case, the mean—semivariance problem in the same market is not well-posed in
the sense that it does not have any optimal solution. This negative result has then been
extended to a general mean—downside-risk mode. Furthermore, for the model with a general
convex risk measure, delicate analysis has been carried out to obtain a complete solution.
The results in this paper suggest that there are strikingly difference between the single-period
and continuous-time markets.

There have been many researches on hedging and/or optimization problems; see [3, 4,
10, 7, 11] just to name a few. However, the constraint Fz(T) = z is absent from these work
(probably a sample-wise constraint such as 0 < z(7") < Y is present instead). We should
emphasize that the constraint Fz(T) = z is dictated by the very framework we are working
within, i.e., a framework a la Markowitz, except that we went beyond Markowitz’s original
measure of risk — the variance — and considered risk measures determined by very general
functions (as mentioned in introduction this mean-risk model has received little attention
in the dynamic setting until very recently). On the other hand, it is this constraint that

made our models different from those in the aforementioned papers as well as those utility
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based models, both in terms of economic interpretations and the mathematical techniques
required to tackle them.

While the continuous-time portfolio selection models with the security price processes
governed by diffusion processes are considered in this paper, our results readily extend to
any semimartingale models, including the discrete-time case, as long as the completeness
of the underlying market is assumed and some other technical assumptions are modified
accordingly. On the other hand, the incomplete market case will be fundamentally different
and more difficult to solve. In this case not every terminal contingent claim is replicable
by admissible portfolios. In a recent paper [8], we have solved the mean—variance problem
in an incomplete market by explicitly charactering the attainable terminal wealth set and
solving the static optimization problem with the attainable set as an additional constraint.

The general mean-risk problem in an incomplete market, however, is yet to be explored.

Appendix

A Some Properties of Convex Functions on R

In this appendix we present some properties of a convex function f: R — R, which are useful
in the main context. Let such a convex function f be fixed, and 0f(x) be its subdifferential
at r € R.

Proposition A.1 For any interval A C R, Uzca0f(z) is a conver set (and hence is an

interval).

Proof: Suppose y; € 0f(x1),ys € Of (x2) where x1,29 € A with 21 < x5 and y; < yo. It
suffices to show that for any yo € (y1,y2), there is zy € [x1, 22] such that yo € 0f(zo).

It follows from the convexity that z; € argmin, g {f(z)—v:12} and zy € argmin, g {f(z)—
yox}. On the other hand, the continuity of f ensures that there exists xy € [z1, 2] so that

J(x0) — Yoo = MiNge[e, 2,1 f (%) — yox}. However, for any z < ;,

f@)—yoz = [flz) —pz+ (1 — )z
> f(z1) — iz + (y1 — o)z
= f(=1) —yor1 + (Y1 — wo)(z — 1)
> f(z1) — Yo
> f(x0) — Yoo
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Similarly we can prove that f(z) — yox > f(w0) — Yoo for any x > x5. Therefore zy €

argmin,_g{f(z) — yox}, which implies that yo € f(zo). O
Proposition A.2 If f is strictly conver at xq, then
(Ur<ao0f (2)) N (Us>00f (2)) = 0. (34)

Proof: If the conclusion is not true, then there are 2, < 2y < x5 so that f’ (zy) < fi(z1).
Hence f’ (z2) = f! (x1) due to the non-decreasing property of the subdifferential of f. How-

ever, the convexity of f yields

fi(wr) < fLzo) < fi(xo) < fL(x2).

Thus, all the above inequalities become equalities which, in turn, implies that f is not strictly

convex at x. a

Define a set-valued function G: Ugerdf(z) — 28
G(y)={z e R:y€df(r)}, Vy € Userdf(a).
If f is strictly convex, then G(y) is a singleton for each y. In general, we have
Proposition A.3 For any y € Uyer0f(z), G(y) is a closed interval in R.

Proof: First we prove that G(y) is an interval. For any z; € G(y),z2 € G(y) with 21 < z9,
and any = € (z1,22), we have f'(z) < f'(22) < y < fi(z1) < fi(x). This implies
y € 0f (z), or x € G(y).

To show the closedness of G(y), take z,, € G(y) with z,, — = € R. Since y € 0f(z,),
we have f(z') — f(z,) > y(2' — z,) Va' € R. This yields f(z') — f(z) > y(2' — z) V2’ € R,
implying that y € df(z) or z € G(y). O

Now, define the function g: Uyerdf(z) = R as

g(y) = argminweG(y)“’rL Vy € UwERaf(x)

Thanks to Proposition A.3, g is well defined.

Proposition A.4 The set {y € Uyer0f(x) : G(y) is not a singleton} is countable.
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Proof: Take any y; < ys such that G(y;) and G(y2) are not singletons. It follows from
Proposition A.3 that both int(G(y;)) and int(G(y2)) are nonempty. Moreover, int(G(y;)) N
int(G(y2)) = 0. Indeed, if it is not true, then there exist a < b such that [a,b] C G(y1)NG(y2),
leading to f’ (a) >y, > y1 > f’(b) which is impossible. This proves the desired result. O

Denote I' := {y € U,er0f(z) : G(y) is a singleton}.
Proposition A.5 g is increasing on UzerOf(x), and continuous at every y € T.

Proof: For any yi,ys € UzerOf(x) with y1 < yo, if 1 1= g(y1) > g(y2) =: z2, then
y1 > fL(x1) > fi(x2) > yo, which is a contradiction. So g(y1) < g(y2).

To prove the continuity at points in ', fix yo € T and let zo := g(yo). Since g is an
increasing function, = := limy,, g(y) > g(yo) = zo. If T > ¢, then for any € > 0 and y > yp,
one has g(y) > = — €. Hence y > f' (g(y)) > f1.(Z — €), which implies

Yo > f1(T —€) Ye> 0. (35)
Now, for any z € (zo,Z) and y € 0f(x), we have
Yo < fi(zo) <y < fi(x) <wo

where the last inequality is due to (35). The above argument leads to Uze(q0,2)0f (2) = {%0};
so G(yo) D (xo, ) is not a singleton, which contradicts the fact that yo € I'. This proves the

right continuity of g. Similarly, one can show the left continuity of g. O
Corollary A.1 If f is strictly convex, then g is increasing and continuous on UzerOf(x).

Proof: In view of Proposition A.5, it suffices to prove I' = U,erdf(z) or, equivalently, G(y)
is a singleton for any y € Uzer0f ().

Suppose [z1,22] C G(y), then y < fi(21) < fL(z2) < y. Hence f\(z1) = fl(z2) =y
which implies that 0f(z) = {y} for all = € (z1, ;). Therefore f(-) is not strictly convex on
(x1, z2). a
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