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Abstract

In this paper, we consider hybrid controls for a class of linear quadratic problems
with white noise perturbation and Markov regime switching, where the regime switch-
ing is modeled by a continuous-time Markov chain with a large state space and the
control weights are indefinite. The use of large state space enables us to take various
factors of uncertain environment into consideration, yet it creates computational over-
head and adds difficulties. Aiming at reduction of complexity, we demonstrate how to
construct near-optimal controls. First, in the model, we introduce a small parameter
to highlight the contrast of the weak and strong interactions and fast and slow motions.
This results in a two-time-scale formulation. In view of the recent developments on LQ
problems with indefinite control weights and two-time-scale Markov chains, we then
establish the convergence of the system of Riccati equations associated with the hy-
brid LQ problem. Based on the optimal feedback control of the limit system obtained
using the system of Riccati equations, we construct controls for the original problem
and show that such controls are near-optimal. A numerical demonstration of a simple
system is presented.
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1 Introduction

How can we deal with optimal controls for hybrid linear quadratic systems with white noise
perturbation, in which the control weights are indefinite and the total number of elements in
the switching set is large? More specifically, how can we reduce the complexity for handling
such systems when the random process governing the regime switching is a Markov chain
with large state space? To answer these questions is the objective of this paper. The models
considered and the methods we use feature in several distinct aspects, including regime

switching, indefinite controls, multi-scale modeling, and comparison controls.

Indefinite LQ Problems. L(Q problems have a long and illustrated history. Nowadays,
LQ control methodology is studied in almost every standard textbook in control theory, and
is a “must” in undergraduate and graduate curriculum. Nevertheless, until very recently,
the main focus has been on the case when the control weight (the matrix associated with the
control action) is positive definite. In fact, for deterministic systems, if the control weight
is not positive definite, the problem is not well posed. It has been shown recently that for
stochastic systems, LQ with indefinite control weights could make sense if certain balance
is reached [3, 8, 20]. The control weights can be indefinite or even negative definite as long

” The stochastic influence, to some extent, compensates the

as they are not “too negative.
negative control weights to make the problem well posed. The reference [3, p. 1686] contains
a couple of simple although illuminating examples to explain this point. Owing to greatly
many applications, especially optimal controls in financial engineering, LQQ with indefinite

control weights have drawn increasing attention lately.

Hybrid Systems. Along another line, realizing that many optimal control problems are
hybrid in nature. Not only do they include the usual analog dynamics, but also they involve
discrete events. In response to such demand, much effort has been devoted to the study of
such systems. Since uncertainty is ubiquitous in daily life, it is necessary to take random
environment into consideration. One of possible ways of handling the random environment
is to use a regime switching model. It has been found that such models can be used in many
applications. To mention just a few, they include tracking time-varying parameters, filtering
[17], and mean-variance portfolio selection [22]. Mean-variance model was originally pro-
posed in [11] for portfolio selection in a single period. It enables an investor to seek highest
return after specifying the risk level (given by the variance of the return) that is acceptable
to him/her. Observing that the environment does influence the market significantly result-
ing in the variations of key system parameters, such as appreciation and volatility rates, a
viable alternative is to consider a regime switching model. Then the corresponding control

system in the mean-variance portfolio selection problem becomes a L.(QQ problem modulated



by a continuous-time Markov chain. The inclusion of random discrete events opens up the
possibilities for more realistic modeling and enables the consideration of various random envi-
ronment factors. But the underlying system may be qualitatively different from one without
the switching process. There is a vast literature on LQ controls involving Markov chains.
For jump linear systems, coupled Riccati systems, and singular perturbation approaches in
such problems, we refer the reader to [7, 10, 12, 13, 14, 15, 17, 18] and references therein.

Large-scale Systems. Focusing on the Markov modulated regime switching systems, from
a modeling point of view, when we take many factors into consideration, the state space of
the Markov chain becomes inevitably large. The resulting control problem becomes a large-
scale one. Although, one may proceed with the dynamic programming approach, and obtain
the associated Hamilton-Jacobi-Bellman (HJB) equations, the total number of equations
(equal to the number of states of the Markov chain) is large. Computational complexity is
of practical concerns. To resolve this issue, we realize that in many large-scale systems, not
all components, parts, and subsystems evolve at the same rate. Some of them change in a
fast pace, and others vary slowly. To take advantage of the intrinsic time-scale separation,
one can introduce a small parameter ¢ > 0 to bring out the hierarchical structures of the
underlying systems; see [1, 6, 15, 18, 21] among others. We remark that in practical systems,
¢ is just a fixed parameter and it separates different scales in the sense of order of magnitude
in the generators. It does not need to go to 0. For further explanation and a specific example,
see [18, Section 3.6: Interpretation of Time-Scale Separation]. In this paper, we use a two-
time-scale formulation for the Markovian hybrid system having indefinite control weights.
We obtain a system of Riccati equations associated with the optimal control problem, prove
the convergence of the system of the Riccati equations, construct near-optimal controls based

on the limit system, and establish near optimality.

Organization of the Paper. The rest of the paper is arranged as follows. Section 2 begins
with the formulation of the problem. Section 3 discusses the optimal control, which is of
theoretical, rather than computational, interest. In Section 4, we study the near-optimal
controls by examining two cases. In the first one, all the states of the Markov chain are
recurrent belonging to [ recurrent classes, and in the second one, in addition to recurrent
states, some transient states are included. As an illustration, Section 5 presents a numerical

example for demonstration. Section 6 concludes the paper with further remarks.

2 Problem Formulation

Let «(t) be a homogeneous continuous-time Markov chain with state space M = {1,...,m}

and w(t) be a standard 1-dimensional Brownian motion on a complete probability space
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(2, F, P). Suppose that the generator of the Markov chain is given by @ = (¢g;;) € R™*™.
That is, g;; > 0 for i # j and ) g;; = 0 for each i € M. Let F; = o{w(s),a(s) : s < t}.
We will work with a finite horizon [0, T'] for some 7" > 0. Our objective is: Find the optimal

control u(-) to minimize the expected quadratic cost function

J(s,2, 0, u(")) = B, [ / [ () M (a(t))2(t) + o ()N (a(t) yu(t)]dt + x'(T)D(a(T))x(T)],
(2.1)

subject to the system constraint

dz(t) = [A(a(t)z(t) + Bla(t)u(t)]dt + C(a(t))u(t)dw(?),

z(s) =z, as) =aq, for s<t<T,

(2.2)

where z(t) € R™ is the state, u(t) € R™ is the control, and E; the expectation given
a(s) = aand z(s) = x. A control is admissible if it is an F;-adapted measurable process. The
collection of all admissible controls is denoted by U,4. In (2.2), A(3), M(3), D(i) € R *™,
B(i),C(i) € Rm"*™ and N(i) € R**" for each i € M. i = 1,...,m. Define the value
function

v(s,z,a) = u(l)lelf[.] ) J(s,z, a,u()). (2.3)

We use the following conditions throughout this paper.

(A1) For each i € M, M(i) is a symmetric positive semidefinite, N (i) is symmetric, and

D(7) is symmetric positive semidefinite.

(A2) The process «(-) and w(-) are independent.

Remark 2.1. We do not require the control weights N (i) for i € M be positive definite.
This relaxation enables us to treat applications that do not verify the usual positive defi-
niteness conditions. The regime switching allows us to take many factors with discrete shifts

into consideration. The condition on the independence of w(-) and «(-) is natural.

Notation. For G € R"*" G’ denotes its transpose and |G| denotes its norm when G
is a square matrix or a vector. We use S™ to denote the space of all n X n symmetric
matrices, ST the subspace of all positive semidefinite matrices of S™, and :S'\_’ﬁ the subspace
of all positive definite matrices of S™. For a matrix G' € S", G > 0 means that G € S, and
G > 0 indicates that G € :S'\_ﬁ The notation C([0,T]; X) is for the Banach space of X-valued
continuous functions on [0,7] endowed with the maximum norm for a given Hilbert space
X. Given a probability space (2, F, P) with a filtration F,: a <t < b (—o0 < a < b < 00),
a Hilbert space X with the norm |- |x, and p (1 < p < o0), define the Banach space



L% ([a,b]; X) to be a collection of F-adapted, X-valued measurable process ©(+) on [a,b|
such that Efab lo(t)[5dt < oo, with the norm |p(-)|£, = (E f: \gp(t)\&dt)p . Suppose that

@ is the generator of a continuous-time Markov chain. For a suitable A(-),

Qh(-)(i) = Z%’jh(j) = aii(h(j) — h(3)). (2.4)

J#i
3 Optimal Controls

In this section, we highlight the optimal control for the LQG problem (2.1)—(2.2). Since
most of the results in this section are extensions of those without Markovian switching in
(3], we will only provide detailed argument of proofs that are distinct from previous work.

Introduce a system of Riccati equations as follows:

/

K(t,1) = —K(t,i)A@x) — A'()) K (t,i) — M(3) — Zqin(t,j)

VK (t,9)BG)(NG) + C'(G)K(t,)C(0) "\ B'(0)K(t,7), s<t<T,
| K(T,i)=D(i), NG)+C'OK(LNCE) >0, i=1,2,---,m.

(3.1)
The following result is proved in [8, Corollary 3.1].

Theorem 3.1. If {K(-,i): i € M} is a solution of the system of Riccati equations (3.1),
then the optimal feedback control for (2.1)—(2.2) is given by

m

u(t) = — Z(N(z) + C'()) K (t,9)C (1)) "' B' (i) K (t, 1) L1o@)-iy (1), (3.2)

=1
where the value function is given by v(s,x,1) = 'K (s,i)x.

Next, we derive a sufficient and necessary condition for the unique solvability of the

system of Riccati equations (3.1). First, we have the following lemma.

Lemma 3.2. Assume that N(i) > 0. Then (3.1) has a solution {K(-,i) : i € M} on [0,T]
with K(t,7) >0, Vt€[0,T], i € M.

Proof. Since N(i) + C'(i)D(:)C(i) > 0, it follows from the classical theory of ordinary
differential equations (see, e.g., [16, p. 66]) that the Riccati equations (3.1) have a local
solution. Let (¢,7] C [0,7T] be the maximal interval on which a local solution {K(-,7) :
i € M} exists with N(i) + C'(:)K(t,4)C(z) > 0. In order to prove that the existence is
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in fact global on [0,77], it suffices to show that there is no escape time, or each K(-,%) is
uniformly bounded on (,7]. To this end, we will show that there exists a positive scalar
B > 0 independent of ¢ such that 0 < K(t,7) < 8I, for all t € (¢,T] and i € M.

First, let zo € R™ be an arbitrary initial state of the system (2.2) starting at a time ¢ €
(¢,T], and a(t) = i. Then Theorem 3.1 implies that z{ K (¢, 7)zo = infy()cv,, J (¢, Zo, %, u(:)) >
0 owing to the positive (semi)definiteness assumption of the cost weighting matrices. Next,
let x(-) be a solution to (2.2) corresponding to the initial (x(¢),a(t)) = (zo,%) and the
admissible control u(-) = 0. Then Theorem 3.1 implies

ey K (1, i)z < B /t 2/ (5)M (a(s))a(s)ds + 2(T) D(a(T))a(T)], for all i € M.

From the above inequality and the fact that z(-) satisfies a homogeneous linear equation,
it follows that there exists a scalar 8 > 0 such that x{K(¢,i)x¢ < Bzixe. The proof is
completed. O

Denote W = {(W(1),---,W(m)) € [L®(0,T; S™)™ | W(i)"* € L®(0,T;572), Vi€
M}. Tt is easy to check that [C(0,T;S7)]™ C W. By virtue of Lemma 3.2, for any given
W= (W(),---,W(m)) € W the following equation

f

K(t,i) = =K (tDAG) ~ ADK(11) ~ MG) = Y 05K (¢,5)

+K(t,)BEW (i) 'B'(6)K(t,i), s<t<T, (3.3)

| K(T,i)=D(i), i=1,2,---,m,

admits a unique solution W = (W(-,1),---,W(-,m)) € [C(0,T;5%?)]™. Thus we can
define a mapping ¥ : W — [C(0,T;S5")]™ as K = (K(-,1),---,K(-,m)) = ¥(W) =
(T (W),---, U, (W)). The following theorem can be proved in exactly the same way as [3,
Theorem 4.2].

Theorem 3.3. The system of Riccati equations (3.1) admits a unique solution if and only
if there exists W = (W (1),---,W(m)) € [C(0,T; S")]™ such that N (i) +C'(i)¥;(W)C (i) >
W (i), Vie M.

4 Near-optimal Controls

By using the results obtained in the last section, we are able to derive optimal L) controls.
At a first glance, it seems that the problem is largely solved. Nevertheless, it barely begins.

Unlike the usual LQ problem, in lieu of one Riccati equation, we have to solve a system of



Riccati equations. The number of Riccati equations in the system is exactly the same as that
of | M|, the cardinality of the set M or the total number of states of the Markov chain. Note
that in the LQ formulation with regime switching, the factor process «(t) often has a large
state space. The large dimensionality of the Markovian state presents us with opportunities
of modeling various aspects of uncertainty, but it also creates computational burden. If | M|
is very large, the computational task could be infeasible. Therefore, not only is it desirable,
but also it is necessary to look into better alternatives. Our main concern here is to treat
such large-scale systems and obtain the desired “good” controls with reduced computational
effort.

To reduce the complexity, we introduce a small parameter £ > 0 into the system under
consideration. The purpose is to highlight the contrast of the fast and slow transitions among
different Markovian states and to bring out the hierarchical structure of the underlying
system. This task is accomplished by letting the generator of the Markov chain depend on

a scale parameter €. That is, ) = Q¢ with
€ 1 A
@ =-G+Q (4.1)

where both @ and @ are generators of continuous-time Markov chains. Thus the generator
Q¢ consists of two parts, a rapidly changing part and a slowly varying part, and the resulting
Markov chain can be written as «a(t) = af(t).

In the rest of the paper, we consider (2.1) subject to (2.2) in which the process «f(-) is
replaced by a°(-). The resulting cost function is denoted by J¢(s, z, o, u(-)). Our objective

is to find the optimal control u(-) so as to minimize the expected quadratic cost

J(s, 2, a, u(+)) = E; [/ [ () M (o (2))2(t) + ' ()N (o (¢))u(t)]dt + 2’ (1) D (" (1)) 2(T) |,
(4.2)

subject to the system constraint

dz(t) = [A(a” ()= (1) + B(a®(t))u(t)]dt + C(a"(t))u(t)dw(?),

z(s) ==z, a’(s) =a, for s<t<T.

(4.3)

Note that in the above, z(t) should really have been written as z°(t). We suppressed &-
dependence for notational simplicity. In the rest of the paper, whenever there is a need to
emphasize the dependence of ¢, we will retain it. It will become clear from the context.

It follows that the value function is v°(s,z,a) = infyyer,, J°(s, 2, o, u(-)). We retain
the assumptions (A1) and (A2). Then by the generalized Ito lemma for Markov-modulated
processes in [2], the optimal feedback control provided in Theorem 3.1, the solvability of the
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Riccati system Lemma 3.2, and Theorem 3.3 all hold. In fact, we have the following system

of Riccati equations

(

K= (t,3) = —K*(6,)AG) — A K(86) = M(3) = Y _ a5 K°(4.7)

FKE(4,0)B() (N () + C'(6)K*(t,0)C (i) ' B'(6)K*(t,i), s <t < T,
K°(T,i) = D(i), N()+C'()K°(t,i)C(i)>0, i=12...,m.

\

(4.4)
The corresponding optimal control is
u(t) = — Z(N(i) + C'())K*(t,7)C (1))~ B' (1) K°(t, 1) [{as -1y 2° (1), i € M. (4.5)
i=1

The essence of our approach is that in lieu of solving the optimal control problem directly,
we construct approximations, which are much simpler to solve than that of the original
problem, leading to near optimality. Using the hierarchical structure of the two-time scales,
we decompose the state space naturally so that within each subspace, the transition frequency
is of the same order of magnitude, and transitions among different subspaces evolve in a much
slower rate. For a finite-state Markov chain, there is at least one state that is recurrent.
Either all states are recurrent, or in addition to recurrent states, there are some transient
states. Taking advantage of the time-scale separation, we lump all the states in each ergodic
class (each subspace of the recurrent states) into one state and obtain an aggregated process.
Then the entire problem is recast into one, in which the total number of aggregated states is [.
If | < m, a substantial reduction of complexity will be achieved. We show that as the small
parameter goes to zero, the value functions converge to that of the limit problem. Using
the optimal control from the limit problem, we then build controls leading to approximate
optimality. We divide the rest of the section into two parts, namely, recurrent states only

and inclusion of transient states.

4.1 Recurrent State Case

Here, suppose that the underlying Markov chain is divisible to a number of recurrent groups
(or ergodic classes) such that it fluctuates rapidly among different states within a group
consisting of recurrent states, but jump less frequently from one group to another.

Let the generator of the Markov chain be given by (4.1). Assume that @ has the form
Qv = diag(@, ... ,a), where diag(@l, A él) denotes a block diagonal matrix having matrix
entries Q',...,Q', and @’“ € R™ > are irreducible, for £ = 1,...,[, and 22:1 my = m.

Let My = {Ck1,- -+ Ckm, } for k =1,...,1 denotes the state space corresponding to ka. Then
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the state space of the Markov chain admits the decomposition

M=MiU--- UM ={C1,. - Cm } YU {15+ Gy }-

Note that in the above, we have relabeled the states by use of (;; with £ = 1,...,] and
j=1,...,my. Because QF = ((Alkzg)mernk and @ = (@ij)mxm are generators, for k =1,...,1,
Z;n:kl@fj = 0fori=1,...,m, and 337" G = 0, for i = 1,...,m. In the above, Q
represents the rapidly changing part and () describes the slowly varying components. The
slow and fast components are coupled through weak and strong interactions in the sense
that the underlying Markov chain fluctuates rapidly within a single group Mj and varies
less frequently among groups M; and M; for £ # j. Aggregating the states in My as a
single super-state, all such states are coupled by the matrix @ We obtain an aggregated
process o () defined by a°(t) = k if o°(t) € Mj. The process @°(-) is not necessarily
Markovian; see [18, Example 7.5]. Nevertheless, by a probabilistic argument, it is shown in
[18, Theorem 7.4, pp. 172-174] that @°(-) converges weakly to a continuous-time Markov

chain @(-) generated by
Q = diag(v*, .. ., yl)@diag(lml, ce ), (4.6)

where v* is the stationary distribution of Q¥, for k = 1,...,l, and 1, = (1,...,1) € R-.
Moreover, for any bounded deterministic 3(-) (see [18, Theorem 7.2, pp. 170-171]),
2

T
E ( / Las)=ciy} = ¥} f{a&(t)—k}]ﬁ(t)dt) = O(e). (4.7)

For preparation of subsequent study, we establish two lemmas concerning the a prior: esti-

mate of K¢ and its Lipschitz continuity.

Lemma 4.1. There exist constant k1 and k4 such that for all s € [0,T] and i € M, we
have |K¢(s,1)| < k(T + 1)erAT,

Proof. We claim that for each 7 € M,

0 < vé(s,i,x) < ke T |z 2(T + 1). (4.8)
Clearly v¢(s,4,z) > 0 because J¢(s,1,z,u(-)) > 0 for all admissible u(-). To derive the upper
bound, set uo(t) = 0. Then, under such a control, z(t) = z + fstA(of(r))x(r)dr. Using the
Gronwall inequality, we have |z(t)| < |z|e®4T, where k4 = max; |A(7)|. This inequality holds
forallt € [0,7]. For 0 < s <T,

T
vi(s,i,2) < J°(s, 4,2, u0(")) < E{/ a'(t)M (o (1)) (t) + 2'(T) D(e*(T))=(T)}

< ke |z (T + 1).



Owing to Theorem 3.3, K¢(s,4) is symmetric and positive semi-definite. By the definition
of the matrix norm |K*(s,7)| = max{eigenvalues of K¢(s,4)}, it suffices to verify that for
any unit vector &, &'K*¢(s,1)é < k1e™T(T + 1). In view of (4.8), by taking = af with a
being a scalar a26' K¢ (s,1)& = v°(s, 4, af) < k1e*4Ta?(T+1). Dividing both sides of the above

inequality by a?, we complete the proof. O

Lemma 4.2. Fori € M, the solutions to (4.4), namely K¢(-,i) are uniformly (in €) Lips-

chitz continuous on [0, T].

Proof. We first prove that v°(s,,z) is uniformly Lipschitz. Then, we prove the Lipschitz
property of K*.

Step 1. There exists a constant ko that may depend on T such that for any 6 > 0 and
(5,4,7) € [0,T] x M x R" | |v°(s + 8,1, 2) — v°(s,1,2)| < ka(|z|?> + 1)d. For given (s,1,x),

write the value function v*(s, i, x) as

T
vi(s,1,x) = E[/ [(z (1) M (o (2))2° () + u®' ()N (o (£))u®(2))]dt + 2 (T) D (" (T))2*(T)],
’ (4.9)
where u°(t) = u°(t,af(t),xz°(t)) is the optimal control defined in (3.2), z°(¢) is the cor-
responding trajectory, and E is the conditional expectation given (a®(s),z°(s)) = (4, ).
By changing variable ¢ — ¢ 4+ ¢ in (4.9), using similar argument as in [21], we obtain
v¥(s + 6,4, 2) — v°(s,4,2) < ko|x|? + 1)6. Moreover, we can also establish the reverse in-
equality v¢(s + 0,7, ) — v¥(s,1,x) > —ka(|z|> + 1)0.
Step 2. The K*(-,i) are Lipschitz. As in the proof of lemma 4.1, taking x = a& with &
being a unit vector and sending a — oo, we obtain |K¢(s + 6,1) — K¢(s,1)| < k0. O

4.1.1 Limit Riccati Equations

To proceed, we obtain a result concerning the limit Riccati equations. For any function F
on M, we define F(k) = Y77 viF((y;) for k=1,...,1, for Fy and Fj, define FyFy(k) =
> VEFL(Crg) Fa (Crg)-
Theorem 4.3. Fork=1,...,landj=1,...,mg, K*(s,(;) — K(s, k) uniformly on [0, T]
as € — 0, where K(s, k) is the unique solution to

K (s, k) = —K (s, k)A(k) — A (k)K (s, k) — M (k)

(s, k)B(k)(N (k) + C'(k) K (s, k)C (k) ' B'(k)K (s, k) — Q K (s, ) (k),
(4.10)

=

+
where K (T, k) = D(k) & S vED(Cry)-
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Proof. By virtue of Lemma 4.1 and Lemma 4.2, {K*(s,(x;)} is equicontinuous and uni-
formly bounded. By Arzela-Ascoli theorem, for each sequence of (¢ — 0), extract a further
subsequence (still indexed by ¢ for simplicity) such that K®(s, (x;) converges uniformly on
[0, 7] to a continuous function K (s, (x;). The Riccati equation in its integral form with time

running backward and terminal condition K¢(T', (x;) = D((k;) is:

T
K*(s, Crj) = D(Ckj) +/ (K (1, Cij) A(Crj) + A (Grj) K (r, CGoj) + M (Crg)
—K*(r, Gej) B(Ge) P (1, Geg) B (G ) K (7, Crg) + Q7K (r, ) (Ciy)Jdlr,

(4.11)

where P 1(r, () = (N (Ckj) + C'(Ckj) K (7, Cj)C(Cky)) ' and noting that QF is given by (4.1)

and the uniform boundedness of K¢, multiplying both sides of (4.11) by ¢ and sending ¢ — 0

yield [ QFK (r,-)(Crj)dr = lim,_q fST Q¥K*(r,-)(Cyy)dr = 0, for s € [0,T]. Owing to the

continuity of K(s,(x;), we obtain

QFK(s,-)(Gej) =0, for s€[0,T]. (4.12)

The irreducibility of @k implies that the null space of @’“ is one-dimensional spanned by 1,,, .
Eq. (4.12) yields that the vector (K (s, (1), K(s,Ck2),-- -, K(S,Cem,))" is in the null space of
QF and as a result K(s,Cy1) = K(s,Cro) = --- = K (s, Cemy) = K (s, k) (see also [18, Lemma
A.39, pp. 327-328] for further details). We proceed to show K(s,k) = K(s,k). For each
k=1,...,1, multiplying K*(s, (x;) by v§, summing over the index j and sending ¢ — 0, we
obtain

K(s, k / (K (r, k)A(k) + A (k)K (r, k) + M(k)

K(r,k)BP-1B'(r,k)K(r, k) + QK (r,-)(k)]dr.
[Recall the notation (2.4).] Thus, the uniqueness of the Riccati equation implies K (s, k) =
K(s,k). As a result, K*(s, () — K(s, k). O
4.1.2 Near-optimal Controls

The convergence of K*(s, (x;) leads to that of v°(s, (x;, x) = ' K*(s, (x;)x. It follows that as
g — 0, v°(8, (kjy ) — v(s,k,z) for j = 1,...,my, where v(s, k,z) = 2'K(s, k)x corresponds

to the value function of a limit problem. Let I/ denote the control set of the limit problem:

11



U={U=U...,U"Y : UF = (uM,... ub™, u* € R")}. Define

f(s,k,z,U) = x-l—ZVBCk] 7

Mhm:EE%MWW%MQ, (4.13)
C(k,U)C'(k, Zu’“o Gy )u T uFH O (Giy).-

j=1

The control problem for the limit system is:

min J(s, k,z,U(:)) = E[/ [ ()M (@(t))z(t) + N(@(t), U(t)]dt + 2'(T)D(k)z(T)|,
s.b. dz(t) = f(t,a(t), z(t), U(t))dt + C(k,U)dw(t), x(s) ==,

where @(-) € {1,...,1} is a Markov chain generated by Q. The optimal control for this limit

problem is U°(s, k, x) = (U%}(s,x),...,U% (s, x)) with U%*(s, ) = (u®F'(s, ), ..., u*™ (s, 1)),

and u®(s,x) = —P(s, (k) B (ij) K (s, k)z. Using such controls (as in [15] for manufac-

turing systems), we construct
(s, ) ZZI{O‘ Gy u”M (s, @) (4.14)
k=1 j=1

for the original problem. This control can also be written as if « € My, u®(s,a,z) =
—P~Y(s,a)B'(a)K (s, k)z. We use

u(t) = u®(t,a(t), z(t)) (4.15)

for the original problem. It will be shown that this is a near-optimal control. If A((x;) =

A(k), B(Ckj) = B(k), C(Ckj) = C(k), M(Ck;) = M(k), and N(Cx;) = N(k) are independent
of j, owing to (4.7), we may replace I(ae(r)=,} by I{as(t):k}uf and consider

(s,a, 1) ZZI{aEMk}VkUO ¥i(s,x) = —P7'(s,k)B'(k)K(s, k). (4.16)

k=1 j=1

Therefore, we write u°(s,a,z) = u®(s,k,z). The control %° only needs the information

af(t) € My. As a result, we use
T (t) = w(t,a (b), z(t)). (4.17)
Theorem 4.4. The following assertions hold.
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1) Thewu®(t) defined in (4.15) with the use of (4.14) is near-optimal in that |J¢(s, a, z, u®)—
ve(s,a,x)] = 0 as e — 0.

2) Assume A((yj) = A(k), B(Cj) = B(k), C(CGj) = C(k), M (i) = M (k) and N (i) =
N(k) independent of j. Thenu®(t) defined in (4.17) is near-optimal in that |J¢(s, o, z,T°)
—ve(s,a,x)] > 0 ase — 0.

Proof. Recall @°(t) = k if o°(t) € Mj. The constructed control u® can be written as
uf(t) = —P71(t,af(t))B' (o (t)) K (t, o (t))x* (), where 2°(t) is the corresponding trajectory

governed by the differential equation
dz®(t) = (A(a”(t)) — B(a® ()P~ (t, o (8)) B'(a" (1))
x K (t,a°(t)))z°(t)dt — C(af ()P~ (¢, a5 (¢))B' (o (¢)) K (t, " (t))z° (t)dw(2)
with 2°(s) = z. Let z(t) denote the optimal trajectory of the limit problem. Then
dz(t) = f(t,a(t), z(t), U°(t))dt + C(k, U°)dw(t) (4.18)

with z(s) = z, and f(-) and C(-) defined by (4.13). Using the convergence of @ (-) — @(-)
and (4.7), as in [18, Chapter 9], by using the Skorohod representation,

E|z°(t) — z(t)] = 0, so |J°(s,a,z,u®) —v(s, k,z)| = 0. (4.19)

This together with v® — v leads to lim,_,o |J*(s, o, x, uf) — v°(s, @, )| — 0, as desired.
To obtain the second part of the theorem, under the condition A((y,;) = A(k), B((kj) =
B(k), C(Ck]) = C(k‘), M(ij) = M(k), and N(Qk]) = N(k)), we have
w(t) = —P~'(t,a(t)) B (@(t) K (t, a(t))a*(t)-

The corresponding trajectory is

dz®(t) = (A(e (1)) — B(@(t))P~'(t,a"(t)) B'(@ () K (t, a(t))z" (t)dt
—C(@ (1)) P~ (t,&" (1)) B'(@ (1)) K (¢, a(t)) 2" (t)dw(t)
with z¢(s) = z. The optimal trajectory z(t) for the limit problem is
dz(t) = f(t,a(t), z(t), U°(t))dt + C(k, U")dw(t)

with z(s) = z, and f(-) and C(-) being defined in (4.13). Then (4.19) can be verified in a

similar way as in the previous case. a
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4.2 Inclusion of Transient States

In this section, we consider the case in which the Markov chain includes transient states. To

(5 _ o

incorporate the transient states, we assume @) = ~T _ where Q, = diag(Q', ..., Q"),
QO Q*

Qvo = ( .- ,Ql) such that foreach k =1,...,1, @k is a generator with dimension my X my,

QV* € R™ %™ matrix, Qf e R™*™k and mq + ---my + m, = m. Consequently, the state

space of the underlying Markov chain is

M:MIU"'UMZUM*:{Clla"'aCITru}U"'U{glla'"7<lml}U{C*1a---a<*m*}a

where M,={(,1,-..,(um.} consists of the transient states. Suppose for k =1,...,1, @k are
@11 @12
@21 @22
where @11 € Rim—m=)x(m—m.) @12 € Rm—m«)xm. @21 e Rmx(m=m) and @22 € R XM
Define

irreducible, and @* has eigenvalues with negative real parts. Write @ =

Q, = diag(v', ... ,I/l)(@\ui + @12(am1, s Q) (4.20)
with T = diag(Lm,, - .-, L), Im; = (1,...,1) € R™ > and, for j =1,...,1,

gy = (@m; (1), -y Oy (1) = Q' QML (4.21)

As in [19], it can be shown that a,, > 0 and Z;Zl Um; = Ly,,. Let & denote a random
k, if Ozs('/}) € My
gj) lf ag(t) = C*]

can be shown as in [19], that @°(-) converges weakly to @(-), where a@(-) € {1,...,l} is a

variable such that P(§; = i[a®(t) = (i) = am, (i). Define a°(t) =

Markov chain generated by @Q,. Moreover, for k =1,...,1,
T 2 T 2
E < /0 fas(9=cr;) — y;?[{as(t):k}]ﬁ(t)dt) =0(), E ( /0 I{aa(t):@j}dt) =0(&”).
(4.22)

Theorem 4.5. Ase — 0, K(s, (i) = K(s,k), fork=1,...,0,5=1,...,my, K(s,(s) —
K.(s,j) for j = 1,...,m, uniformly on [0,T], where K.(s,§) = m,(j)K(s,1) + -+ +
am,(j)K (s,1) and K(s,k) is the unique solution to

K(s, k) = —K(s, k)A(k) — A (K (s, k) — M(k) + K(s, k) BP1B'(s, k) K (s, k) — QK (s,-)(k),

K(T,k) = D(k).



Proof. For notational simplicity, consider only a scalar case (K¢ is a scalar function).
Following the proof of Theorem 4.3 up to (4.12), for s € [0,7], @kK(s,-)(ij) = 0, for
k=1,...,l,7=1,...,mg, and

( *:"'7Q @)( (sacu)a"':K(Svclml)?'"7K(87Cl1)7
K(S: glml): K(Sa C*l)a e ,KO(Sa C*m*)), =0.

The irreducibility of Q* implies (K(8,Ck1)s- - KO8, Comy ) = K(8,k) Ly, Let K.(s) =
(K(5,C), -y K5, G ))'- Then, Q Ly, K (5, 1)+ - +Q 1, K (5, 1) +Q. K. (s) = 0. Hence,
K.(8) = @, K(8,1) 4+ - + a,n, K (8,1). The rest of except replacing Q by Q,. O

The convergence of K¢ leads to v°(s, (xj, ) = v(s, k,z), for k=1,...,1, 7 =1,...,my,
ve(S, Cujr ) — Ui(s,4,2), for j = 1,...,m,, where v.(s,7,2) = ap, (j)v(s,1,2) + --- +
am, ()v(8, 1, 7) and v(s, k,z) = 2'K (s, k)z. The control set for the limit problem is the same
as that for the recurrent case U = {U = (U}, ..., U") : U* = (UM, ... ub™), ub € R},

min J(s, k, z,U(+) E{f ()M (@(t)z(t) + N(@(t), U(t)]dt + &' (T)D(k)z(T)}
s.t. dz(t) = f(t,a(t),x(t),U(t))dt+C(k,U)dw(t), z(s) = z,

where f(t,@,z,U) and C(k,U) are defined in (4.13).
The optimal control for this limit problem is U°(s, k, x) = (U%!(s, x),...,U% (s, r)) with
Uo*(s,z) = (uF'(s,z),...,u>*™(s,x)) and u”* = —P~(s,(x;)B (ij) K (s,k)x. Similar

to that of the recurrent case, construct

u®(s, a, ) ZZI{O‘ i yu’ (s, z) Zl{a . 3u” (s, ) (4.24)

k=1 j=1

for the original problem, where u®*(s,z) = —P7!(s,(;)B' () K4(s,j)r. Assume that

A(Gkj) = A(k), B(Gy) = B(k), C(Gy) = C(k), D(Gj) = D(k), M(G;) = M(k), and
N((kj) = N(k) are independent of j. We may consider

(s, o, 1) ZZI{aEMk}Vk ok (s, x) —i—ZI{a:C*j}uO’*j(s,x). (4.25)
k=1 j=1 j=1

Note that @® only needs the information on if af(t) € My, for k =1,...,l and o°(t) = (,;.

Theorem 4.6. The following assertions hold.

1) The control u®(t) defined in (4.24) is near-optimal in that lim. o |J(s, o, x,u®) —

ve(s,a, )| = 0.
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2) If A(Gj) = A(k), B(G;j) = B(k), C(Gs) = C(k), D(Crj) = D(k), M(Ces) = M(k),
and N(Ck;) = N(k) are independent of j, u(t) defined in (4.25) is near-optimal in that
lim, ¢ [J*(s, o, , ) — ve(s, a0, z)| = 0.

Proof. The proof is similar to that of Theorem 4.4, except the use of (4.22) lieu of (4.7) to

verify the convergence of the trajectories. O

5 A Numerical Example

As a demonstration, we consider a numerical example with strictly negative definite control
weights N (i) for all i € M. Suppose that the Markov chain o (t) have three states, M =
{1,2, 3}, and generator (4.1) with

07 03 04 02 01 0.1
Q=1| 04 —07 03 |, and Q=] 02 —04 02 |. (5.1)
03 04 -07 01 02 —03

Consider the control objective (4.2) subject to the system constraint (4.3), in which z(0) =
3, af(0) =2, for 0<t<T =10, A(1) =0.2, A(2)=0.3, A(3)=0.4,B(1) =18, B(2) =
19, B(3) =22,C(1) =10, C(2) =11, C(3) =12, M(1) =1, M(2) =2, M(3) = 3,N(1) =
-1, N(2) = =2, N(3) = -3, D(i) =4, v = (1/3,1/3,1/3). The limit system of Riccati
equations is given by (4.10) with Q@ = 0.

By using an explicit Runge-Kutta solver with relative accuracy tolerance 1075 and abso-
lute error tolerance 10~%, we numerically solve the Riccati equations to obtain K¢(-,%) and
K(-). The integration step size is chosen to be h = 0.01. Define the following norm to

measure the average absolute errors and maximal relative errors:

.k 3 3] o o
K~ K| = ;; |K*(jh, k) — K(jh)], (5.2)
where |z] denote the integer part of z € R. The calculated error bounds are provided in
Table 1. It shows the dependence of the bounds on €. To further demonstrate, we plot the
trajectories of the difference of K¢(s,4) and K(s) by using the norm defined above. Figure
1 displays the results corresponding to ¢ = 0.1 and € = 0.01, respectively. It is easily seen

that the smaller the ¢, the better approximation one obtains.
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£ K¢ — K| | |[v° — v

0.1 1.7234¢ | 0.3394¢

0.01 2.1477¢ | 0.3553¢

0.001 | 2.2003¢ | 0.3549¢

0.0001 | 2.2065¢ | 0.3618¢

Table 1: Error Bounds

02 02}

01r 01l

L L L L L L L L L L L L L L L L L L
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

(a) e = 0.1, CPU times: 0.125 second. (b) e =0.01, CPU times: 0.421 second.

Figure 1: Horizontal axes denote time ¢, and vertical axes denote > |K*(t,7) — K (t)|;
0<t<Tand T = 10.

6 Concluding Remark

Near-optimal controls of LQ with regime switching and indefinite control weights are treated
in this paper. Currently, the formulation is under the assumption that a scalar Brownian
motion is used. The techniques used and the near-optimal control construction can be
extended to multidimensional diffusion with regime switching. Although the asymptotic
results are obtained with the small parameter ¢ — 0, in practical systems, ¢ is a fixed
parameter that may present different order of magnitude of the elements of the generators.
The near-optimal control presented here gives an effective approximation using comparison
controls, which indicates that instead of solving the complex systems with the Markov chain

having large state space, we can use a much simplified system.
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