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Abstract

We study a multi-factor block model for variable clustering and connect it to the regularized
subspace clustering by formulating a distributionally robust version of the nodewise regression.
To solve the latter problem, we derive a convex relaxation, provide guidance on selecting the
size of the robust region, and hence the regularization weighting parameter, based on the data,
and propose an ADMM algorithm for implementation. We validate our method in an extensive
simulation study. Finally, we propose and apply a variant of our method to stock return data,
obtain interpretable clusters that facilitate portfolio selection and compare its out-of-sample
performance with other clustering methods in an empirical study.

Keywords. Variable clustering, subspace clustering, nodewise regression, regularization, distribu-
tionally robust optimization, portfolio selection.

1 Introduction

The rapid development of technologies has created an enormous amount of data in many fields.
Such high-dimensional data often have many similar variables, in the sense that they convey a
similar message and hence are replaceable with one another for certain tasks. It would then be
useful to identify groups of similar variables and reduce the data complexity. This problem is called
variable clustering.

Generally speaking, variable clustering is the problem of grouping similar components of a d-
dimensional random vector X = (X1, . . . , Xd). The resulting groups are referred to as clusters.
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In many applications, the problem of interest is to recover the clusters from a sample of n inde-
pendent copies, or observations, of X. This is essentially clustering the d vectors, each having the
n observations. Examples of the application of variable clustering include gene expression data
(Jiang et al., 2004) and protein profile data (Bernardes et al., 2015). Recently, Tang et al. (2022)
apply variable clustering to returns data of financial assets. Based on the clustering results, a small
set of diversified stocks are selected from a large stock universe, and the resulting portfolios show
outstanding performances.

Many solutions to the variable clustering problem, e.g., K-means, graph-based hierarchical
clustering, spectral clustering, are usually based on heuristics. Model-based approaches are pursued
for being more principled and more interpretable. A recent development in variable clustering is
the G-block model proposed by Bunea et al. (2020), which offers clearly defined population-level
clusters. Under the G-block model, the covariance matrix of X has a block structure, and the
blocks correspond to the clusters in a partition G, hence the name “G-block”. In the G-block
model, each cluster has one latent factor. Each variable is comprised of the factor in its cluster and
an idiosyncratic component. Consequently, all variables in the same cluster are noisy realizations
of the same latent factor. Since their observations lie near a single point in Rn, it is natural to use
centroid-based clustering approaches such as k-means (Bunea et al., 2020).

A more flexible model is the multi-factor block model in Ando and Bai (2017), where each cluster
may have several latent factors. Each variable is represented as a linear combination of its cluster-
specific factors and an idiosyncratic component. Observations of variables in the same cluster lie
near a low-dimensional subspace in Rn spanned by the same set of factors. All of the d vectors
in Rn, each representing the observations of a variable, reside near a union of low-dimensional
subspaces. The variable clustering problem can be solved by identifying these subspaces and their
corresponding variables. This task is usually referred to as subspace clustering, for which many
techniques have been developed and applied to various real-world problems ranging from computer
vision to machine learning (Parsons et al., 2004; Vidal, 2011).

A majority of commonly-used approaches in subspace clustering exploit the subspace structure
by nodewise regression, where each variable is regressed against all other variables. The hope is
that the regressions will favor the other variables in the same cluster over variables in different
clusters. This way, the regression coefficients create an association matrix that defines a weighted
graph among variables. Then, the clusters can be recovered easily using, for example, spectral
methods.

To deal with high dimensional data where the dimension exceeds the number of observations,
regularization is added in the nodewise regression to make the regressions well-posed. To this
end, sparse subspace clustering (SSC), which adds L1 regularization to the nodewise regression,
is widely studied (Elhamifar and Vidal, 2013; Soltanolkotabi and Candés, 2012; Wang and Xu,
2016). However, a few drawbacks persist when using nodewise sparse regression for subspace
clustering. First, tuning the parameter that controls the L1 regularization depends on the unknown
variance of the idiosyncratic components and is difficult. In addition, pursuing sparsity in the
regression coefficients might be unnatural since the true association matrix can be dense as long
as the subspaces are not orthogonal to each other or many variables in the same subspace have
non-negligible correlations. To address these drawbacks, we propose a method that naturally
incorporates regularization in the nodewise regression from the perspective of distributionally robust
optimization (DRO). For a review on DRO, see Rahimian and Mehrotra (2022).
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The main contributions of this article are the following. First, we connect a multi-factor block
model for variable clustering to the subspace clustering problem. Specifically, we show that under
a multi-factor block model, the observations of the variables lie near a union of low-dimensional
subspaces. Hence subspace clustering methods are directly applicable to such models. Second, we
formulate a distributionally robust version of the commonly used nodewise regression method in
subspace clustering. To our best knowledge, we are the first to apply DRO to nodewise regression
and subsequently subspace clustering. This version of nodewise regression is motivated by the
uncertainty in the data and leads to an interpretable regularization. Third, we obtain a convenient
convex relaxation of distributionally robust nodewise regression, provide guidance on the choice of
the size of the robust region, and propose an ADMM algorithm for efficient implementation. Instead
of artificially introducing sparsity through the L1 regularization, the convex relaxation results in a
natural spectral-norm regularization that does not necessarily pursue sparsity. The regularization
parameter is related explicitly to the size of the robust region, which can be informed purely by
the data and easily computed given a generic confidence level. In addition, our proposed ADMM
algorithm significantly speeds up the calculation compared to off-the-shelf convex optimizers, which
enables us to test it on dimensions higher than the hundreds. Our method is validated in an
extensive simulation study. Lastly, we make an empirical contribution in obtaining interpretable
clusters and utilizing them to facilitate portfolio selection. Backtesting results show that clustering
information can offer a substantial advantage in obtaining diversified portfolios, and our method
generally improves existing algorithms for portfolio selection.

The rest of the paper is organized as follows. In Section 2, we provide a more detailed overview
of variable clustering, subspace clustering, and nodewise regression. In Section 3, we introduce
our DRO nodewise regression method and present theoretical results. A simulation study and an
empirical study for portfolio backtesting are reported respectively in Sections 4 and 5.

Notation We define a set of rules for notations that will be used throughout this paper. Boldfaced
capital letters, e.g., B, represent matrices. Non-boldfaced capital letters, e.g., X, represent random
variables. Non-boldfaced lower-case letters represent vectors or scalars, which will be made clear
in the context. All vectors are column vectors unless otherwise stated. Lower-case letters with
subscripts represent specific columns, rows, or elements of a matrix of the corresponding capital
letters. For a matrix B, b·i or simply bi denotes the i-th column vector, bj· denotes the j-th row
vector, and bij denotes the j-th element of the i-th row.

2 Multi-Factor Block Model and Nodewise Regression

2.1 Problem setup

Given a d-dimensional random vectorX = (X1, . . . , Xd) and a sample of n independent observations
of X, we want to find similar components of this random vector.

First of all, consider the following single-factor block model, in which each random variable Xi

belongs to one of the K clusters, indexed by z(i) ∈ {1, . . . ,K}. All random variables in the same
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cluster k are associated with the same latent factor Fk. Formally,

Xi = Fz(i) + Ui,

where Cov(Fz(i), Ui) = 0, Cov(F ) = ΣF , and the idiosyncratic parts Ui are uncorrelated, i.e.,
Cov(U) = Γ which is diagonal.

This single-factor block model naturally leads to the G-block model (Bunea et al., 2020). In the
G-block model, the covariance matrix of X has a block structure, with the blocks corresponding
to groups of similar variables. Specifically, given a partition G := {G1, . . . , GK} of the variable
indices {1, . . . , d} such that each Gk is a set of mk indices, define the membership matrix A ∈ Rd×K

associated with G: aik = 1 if i ∈ Gk and aik = 0 otherwise. Suppose that G is the true underlying
cluster partition of the random variablesX1, . . . , Xd. The model assumes that the covariance matrix
Σ of the random vector X ∈ Rd follows a block decomposition, in which the blocks correspond to
the groups in the partition G. This block structure means that variables in the same cluster have
the same covariance with all other variables, and the covariance matrix Σ of X can be decomposed
as:

Σ = AΣFA
⊤ + Γ,

where A is associated with the partition G, ΣF is a symmetric K ×K matrix, and Γ is diagonal.
When such a decomposition exists, we say that X follows an (exact) G-block model.

The single-factor block model justifies methods where a single variable is used to represent the
entire cluster. For example, the K-means algorithm essentially approximates Fz(i) using the average
of all Xi’s with the same z(i), and Tang et al. (2022) apply a variant of this model to clustering
financial time series. The above model is arguably restrictive, as it assumes that each cluster is
controlled by only one latent factor and all variables therein have the same loading. One may
benefit from considering a more general model that allows the variables in the same cluster to be
controlled by a set of factors. This motivates us to study the multi-factor block model, which is a
natural extension of the single-factor block model.

Specifically, consider a d-dimensional random vector X = (X1, . . . , Xd), and an underlying
partition G := {G1, . . . , GK} of the indices {1, . . . , d}. Denote by mk the size of cluster Gk. For
each k = 1, . . . ,K, let F k

G be a dk-dimensional random vector that represents the factors controlling
the k-th cluster, and without loss of generality, assume that Cov(F k

G) = I. We also assume that
mk > dk, i.e., there are more variables than factors in each cluster. For each i = 1, . . . , d, denote
by z(i) ∈ 1, . . . ,K the index of the cluster that Xi belongs to.

Definition 2.1 (Multi-factor block model). Under the multi-factor block model, for each i, the
random variable Xi satisfies:

Xi = (F
z(i)
G )⊤βi + Ui, (2.1)

where βi ∈ Rdk is the loadings of the i-th variable on the factors F
z(i)
G and Ui is a one-dimensional

random variable that represents the idiosyncratic part satisfying Cov(Ui, Uj) = 0 for i ̸= j.

We note that, although the factors in the same cluster are assumed to be uncorrelated in this
model, factors controlling different clusters are not necessarily uncorrelated.

The multi-factor block model studied in this paper is similar to the multi-factor asset pricing
model studied in Ando and Bai (2017), which we briefly review below.
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Let R = (R1, . . . , Rd)
⊤ represent the returns of d stocks and let R∗

i := (Ri − E(Ri))/
√

Var(Ri)
be the standardized return. Let {Gk}Kk=1 form a partition of {1, . . . , d}, i.e., for i ∈ {1, . . . , d}, there
exists a unique z(i) ∈ {1, . . . ,K} such that j ∈ Gz(i). The returns of the stocks are characterized
by:

R∗
i = F⊤

CβC(i) + F⊤
HβH(i) + (F

z(i)
G )⊤βG(i) + εi ∀i = 1, . . . d. (2.2)

where

� FC ∈ Rp is the random vector of p observable common factors;

� FH ∈ Rr is the random vector of r unobservable common factors;

� F
z(i)
G ∈ Rdz(i) is the random vector of unobservable group-specific factors that control the

returns of only group z(i);

� βC(j), βH(j) and βG(j) are the corresponding (unknown) factor loadings;

� The idiosyncratic error term U = (ε1, . . . , εd) is assumed to be uncorrelated with the factors.

The multi-factor asset pricing model in Ando and Bai (2017) generalizes the multi-factor block
model by including observable global factors. Their model is specifically motivated by and applied to
financial asset pricing, while our study focuses on identifying and analyzing the subspace structure
for constructing clusters.

Following the multi-factor block model (2.1), we can see that the covariance matrix also displays
a block structure and can be decomposed similarly to the G-block model.

Fact 1 (Multi-factor block model, matrix form). Let FG ∈ RD be the vector of all latent factors
stacked together: FG := (F 1⊤

G , . . . , FK⊤
G )⊤, with D := d1 + · · ·+ dK being the total number of latent

factors. We can write
Σ = AΣFA

⊤ + Γ,

where the i-th row of A ∈ Rd×D shows loadings of Xi on all the D factors: if z(i) = k, then

ai· = (

(d1+···+dk−1) 0’s︷ ︸︸ ︷
0, . . . , 0 , β⊤

i , 0, . . . , 0︸ ︷︷ ︸
(dk+1+···+dK) 0’s

), ΣF = Cov(FG), and Γ = Cov(U).

To better illustrate the model, we provide a simple example with 5 variables, 3 factors, and 2
clusters.

Example 1. Let X = (X1, X2, X3, X4, X5) be a random vector in R5. Consider a partition
G := {G1, G2} := {{1, 2, 3}, {4, 5}}, where the first three random variables are in the same cluster,
and the last two in the same cluster. Let d1 = 2, d2 = 1, i.e. the first cluster is controlled
by two factors, and the second cluster by one factor. Denote the latent factors by FG, and FG =
(F 1⊤

G , F 2⊤
G )⊤ = (F⊤

1 , F
⊤
2 , F

⊤
3 )

⊤, where F1, F2, F3 represent the three latent factors, whose covariance
matrix is

ΣF =

 1 0.1 0.5
0.1 1 0.5
0.5 0.5 1

 .
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Each random variable Xi only loads on the latent factors controlling the corresponding cluster.
The loading matrix A ∈ R5×3 is

A =


0.4 0.6 0
0.7 0.3 0
0.4 0.6 0
0 0 0.8
0 0 0.7

 .

Let the covariance of the idiosyncratic components, denoted by Γ, be a diagonal matrix with diag-
onal entries (0.1, 0.1, 0.1, 0.1, 0.1), then the covariance of the random vector X can be calculated:

Σ = AΣFA
⊤ + Γ =


0.722 0.478 0.586 0.4 0.35
0.478 0.722 0.514 0.4 0.35
0.586 0.514 0.668 0.4 0.35
0.4 0.4 0.4 0.74 0.56
0.35 0.35 0.35 0.56 0.59

 .

We observe that the covariance matrix Σ displays a near-block structure. Figure 1b illustrates this
observation with a heatmap. One can see four blocks and similar values within the blocks. The
3× 3 block on the top left and the 2× 2 block on the bottom right have slightly higher values than
the off-diagonal blocks.

2.2 Subspace clustering and nodewise regression

Let X ∈ Rn×d be the data matrix of n observations of X. Suppose that the (unobserved) real-
izations of the latent factors are FG ∈ Rn×D, then X can be decomposed as X = Y + U , where
Y = FGA is the group-specific component controlled by the factors, and U is the idiosyncratic
components. Both Y and U are unobservable. One can see that the factor part of the i-th variable

yi = F
z(i)
G βi, which is an n-dimensional vector, lies in a dz(i)-dimensional subspace, spanned by

(unobserved) factor realizations F
z(i)
G ∈ Rn×dz(i) . For the subspaces to be meaningful, we assume

that the number of observations is strictly larger than the maximum dimension of the subspaces,
i.e., n ≥ dk + 1, k = 1, . . . ,K. Let Sk be the linear subspace of Rn spanned by the columns of F k

G,
then each column of Y lies in the union of the K subspaces:

S1 ∪ S2 ∪ . . . ∪ SK .

The task of variable clustering is now to identify these subspaces and thus uncover the clustering
structure among the random variables Xi’s, using only the observations X.

Notice that under this subspace structure, each yi can be written as a linear combination of all
other yj ’s that lie in the same subspace. To exploit the subspace structure of the group-specific
components, it is then natural to perform a nodewise regression on the observations of the variables
in the data matrix X, where each column xi is regressed against all other xj ’s. Specifically, for
each i = 1, . . . , d, we solve

min
bi∈Rd

∥xi −Xbi∥22 s.t. bii = 0, (2.3)

In matrix form, we can write equivalently

min
B∈Rd×d

∥X −XB∥2F s.t. diag(B) = 0 (2.4)
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where ∥·∥F is the Frobenius norm of a matrix. The hope is that the resulting regression coefficients
B will mainly connect vectors that are in the same cluster, i.e., |bij | ≈ 0 if z(i) ̸= z(j). Then, the
clusters can be easily recovered by performing, for example, spectral clustering on the symmetrized
matrix C := B⊤

abs +Babs, where (Babs)ij = |bij |.

To demonstrate the efficacy of nodewise regression in subspace clustering, let us recall Example
1. With the population covariance matrix, we can calculate in closed-form the true nodewise
regression coefficients B. This is the optimal B that we would obtain from (2.4) as n approaches
infinity. The symmetrized similarity matrixC calculated from the optimalB, i.e., C := B⊤

abs+Babs

is shown below.

C =


0 0.141 1.357 0.107 0.085

0.141 0 0.865 0.179 0.145
1.357 0.865 0 0.101 0.079
0.107 0.179 0.101 0 1.530
0.085 0.145 0.079 1.530 0


Figure 1 visualizes and compares C and Σ in heatmaps. We can see that in C, the two blocks
along the diagonal have much larger values than the off-diagonal blocks, whereas, in Σ, the same
blocks are more difficult to distinguish.
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Figure 1: The heatmap of C compared with that of the covariance matrix from population-level
nodewise regression on variables in Example 1. Diagonals of C are filled with value 2.

In summary, the subspace structure can be exploited through the following two-step clustering
scheme:

1. Compute a similarity matrix C between vectors, ideally connecting only vectors in the same
subspace with non-zero edges.

2. Construct clusters by applying spectral clustering techniques to C.

2.3 A review of nodewise regression

In this paper, we focus on step 1, specifically using nodewise regression to obtain the similarity
matrix. In this section, we briefly review some existing variants of nodewise regression applied to
subspace clustering and how nodewise regression connects to other areas of research.

In the existing literature, regularization of the regression coefficients is often added to the
nodewise regression to overcome overfitting due to noise in the data and to deal with the issue
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of the regression (2.3) becoming ill-posed when d > n. One of the commonly used regularizers is
the L0 regularizer, which penalizes the number of non-zero regression coefficients. This L0 semi-
norm is usually relaxed to the L1-norm as its tightest convex relaxation. The regression thus
becomes the Lasso, which promotes sparse solutions and can be solved efficiently. Such subspace
clustering methods using nodewise sparse regression for subspace clustering are called “sparse
subspace clustering” (SSC) (Elhamifar and Vidal, 2013; Soltanolkotabi et al., 2014). Others use
nodewise regression with a nuclear-norm regularization, penalizing ∥B∥∗ in (2.4), thus encouraging
it to be low-rank. This type of method is called “low-rank representation” (LRR) and is used in
subspace clustering, segmentation, and feature extraction (Chen and Yang, 2014; Favaro et al.,
2011; Liu et al., 2013; Liu and Yan, 2011).

Much of the current subspace clustering algorithms using nodewise regression can be improved.
Take the Lasso-type SSC algorithm (Elhamifar and Vidal, 2013; Soltanolkotabi et al., 2014) as an
example. SSC solves the following optimization problem. For every j = 1, . . . , d,

min
bj∈Rd

∥∥xj −Xbj
∥∥2
2
+ λj

∥∥bj∥∥1 s.t. bjj = 0, (2.5)

for all j = 1, . . . , d. Or in matrix form,

min
B∈Rd×d

∥X −XB∥2F + ∥BΛ∥1 s.t. diag(B) = 0, (2.6)

where Λ is a d×d diagonal matrix whose diagonals are the parameters controlling the regularization
(λ1, . . . , λd). However, this approach has a few drawbacks. First of all, even under the true
model, the coefficients are not necessarily sparse but usually a dense combination. Second, strong
correlations among variables make L1-based sparse recovery difficult. In addition, the appropriate λi

depends on the variance of the idiosyncratic components, and heterogeneous and unknown variances
of idiosyncratic components make tuning these parameters hard. As such, pursuing sparsity in the
nodewise regression is unnatural and difficult to implement in practice. In comparison, we propose a
method that naturally derives regularization in the nodewise regression by reformulating (2.4) in the
context of distributionally robust optimization (DRO). This formulation results in a spectral-norm
regularization. Importantly, the DRO analysis leads to an endogenous choice of the regularization
parameter that is data driven, easy to compute and interpretable.

As a widely used technique in structural learning, the application of nodewise regression is
not limited to subspace clustering. Aside from being a natural approach to subspace clustering,
nodewise regression is also closely related to the popular k-means clustering. The k-means algorithm
for variable clustering (Bunea et al., 2020) amounts to the following problem:

min
z1,...,zd∈[K],µ1,...,µk∈Rn


d∑

i=1

∥xi − µzi∥22

 ,

where xi ∈ Rn is the observations of the i-th variable, zi is the index of the cluster that xi is
assigned to, and µk is the mean of all variables in cluster k. According to the analysis of k-means
in Peng and Wei (2007), this optimization problem can be reformulated as a nodewise regression
problem with constraints:

min
B∈Rd×d

∥X −XB∥2F ,

s.t. B ∈ {Z(Z⊤Z)−1Z⊤ : Z ∈ {0, 1}d×K , Z1K = 1d, Z⊤1d > 0},
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where 1K and 1d are vectors of all ones with lengths K and d, respectively; Z⊤1d > 0 is an entrywise
positivity constraint.

Outside of clustering, the idea of nodewise regression is also used in graphical model selection.
For example, Meinshausen and Bühlmann (2006) use an L1-norm-regularized nodewise regression
to recover neighbors by estimating a sparse inverse covariance matrix. This technique is recently
applied to Markowitz-type portfolio selection by Callot et al. (2019).

Finally, nodewise regression also relates to network analysis. Mantegna (1999) analyzed the
financial market by creating a minimum-spanning-tree out of correlation network of stock returns.
Since then, network analysis of the financial market has included structural analysis (Aste et al.,
2010; Tumminello et al., 2007), clustering analysis (Musmeci et al., 2015; Rosén, 2006), and portfolio
construction (Korzeniewski, 2018; León et al., 2017; Pozzi et al., 2013). Such analysis requires some
sort of filtering of the fully connected network to reveal its structure, and topological filters like the
maximum spanning tree or the PMFG (Tumminello et al., 2005) have been used. Similar filtering
techniques are also utilized to estimate the sparse inverse covariance matrix in graphical models
(Barfuss et al., 2016) and to analyze the structure of partial correlation networks (Musmeci et al.,
2017). As mentioned above, regularized nodewise regression, e.g., the L1-norm-regularized sparse
nodewise regression, can also be used in estimating a sparse inverse covariance matrix, which can
serve as a natural filter for the partial correlation network.

3 Distributionally Robust Nodewise Regression

In this section, we put the nodewise regression (2.4) in a probabilistic context. Consider the d-
dimensional random vector X whose coordinates have zero mean and unit variance. Denote by P∗

the true probability measure underlying the distribution of X, and EP∗ the expectation under P∗.
The classical least-square nodewise regression problem (2.4) is to solve:

min
B∈Rd×d

EP∗

[∥∥X −B⊤X
∥∥2
2

]
s.t. diag(B) = 0 (3.1)

Suppose that we have a data matrix X := (x1, . . . , xn)
⊤, where xt ∈ Rd is the t-th observation

of the standardized random vector X. Denote by Pn the empirical distribution:

Pn(dx) :=
1

n

n∑
t=1

δxtdx.

Given a cost function c : Rm × Rm → [0,∞] where c(u,w) := ∥w − u∥22 and two probability
distributions P andQ supported on Rm, we define the optimal transport cost or discrepancy between
P and Q, denoted by Dc(P,Q) as

Dc(P,Q) = inf{Eπ

[
c(U,W )

]
: π ∈ P(Rm × Rm), πU = P, πW = Q}

= inf{Eπ

[
∥w − u∥22

]
: π ∈ P(Rm × Rm), πU = P, πW = Q}.

Notice that this discrepancy function is the squared Wasserstein distance of order two; it can be
extended to any lower semi-continuous function c such that c(u, u) = 0 for every u ∈ Rm. As long
as c1/ρ is a metric for some ρ > 1, D1/ρ(P,Q) is also a metric (Villani, 2009).
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Recall that our original goal is to solve (3.1), which is the expected loss under the true distribu-
tion. The plug-in method, i.e., optimizing (3.1) under Pn generally yields unfavorable results that
are poor out-of-sample, or under the true distribution P∗. However, we cannot observe P∗ but can
only access the empirical distribution Pn inferred from the observations. The DRO approach is to
postulate that P∗ lies somewhere close to Pn, e.g., within a region of radius δ around Pn, leading
to the following problem:

minimize
B∈Rd×d,diag(B)=0

sup
P:Dc(P,Pn)≤δ

EP

[∥∥X −B⊤X
∥∥2
2

]
. (3.2)

By solving (3.2), we try to find coefficientsB that optimize the worst regression error of (3.1) among
all probability distributions within a region around Pn. This region Uδ(Pn) := {P : Dc(P,Pn) ≤ δ}
is called the uncertainty region with radius δ (Blanchet et al., 2019). If P∗ indeed lies in this region,
we are guaranteed that the loss under P∗ will be no larger than what is achieved in (3.2).

At first glance, (3.2) appears very difficult to solve, as it involves the supremum over an infinite-
dimensional space of probability measures. However, as we will show, this DRO problem can be
relaxed as a finite-dimensional convex optimization problem. We also provide an ADMM algorithm
that efficiently solves this convex optimization problem. Finally, we provide a simple recipe for
choosing the appropriate radius δ of the uncertainty region.

3.1 Transforming the DRO problem to convex optimization

Blanchet et al. (2019) have presented the equivalence between distributionally robust linear re-
gression with Wasserstein discrepancy of order p and Lq regularization, where 1 ≤ p ≤ ∞ and
1/p + 1/q = 1. Based on that, one might want to separate (3.2) into d distributionally robust
linear regressions and then solve their equivalent L2-regularized formulations. However, this is not
correct because the variables in those linear regressions are coupled. We will instead analyze the
program (3.2) as a whole. The theorem below, whose proof is deferred to the appendix, relaxes the
DRO problem (3.2) to a convex optimization problem.

Theorem 3.1. With cost function c(u,w) = ∥w − u∥22, we have:

sup
P:Dc(P,Pn)≤δ

EP

[∥∥X −B⊤X
∥∥2
2

]
≤
(

1√
n
∥X −XB∥F +

√
δ ∥I −B∥2

)2

, ∀B ∈ Rd×d,

where ∥·∥2 represents the spectral norm of a matrix.

Thanks to Theorem 3.1, the DRO problem (3.2) can be relaxed as:

minimize
B∈Rd×d,diag(B)=0

(
1√
n
∥X −XB∥F +

√
δ ∥I −B∥2

)2

,

which is equivalent to a convex program

minimize
B∈Rd×d,diag(B)=0

{
1√
n
∥X −XB∥F +

√
δ ∥I −B∥2

}
. (3.3)
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Note that the right-hand-side of (3.3) is convex in B. This characteristic offers our result
more generalizability beyond just nodewise regression. A good example is distributionally robust
regularized nodewise regression, such as the L1-regularized nodewise regression (2.6) for sparse
subspace clustering. Specifically, the direct DRO formulation of (2.6) is

minimize
B∈Rd×d,diag(B)=0

sup
P:Dc(P,Pn)≤δ

{
EP

[∥∥X −B⊤X
∥∥2
2

]
+ ∥BΛ∥1

}
.

According to Theorem 3.1, a convex relaxation is

minimize
B∈Rd×d,diag(B)=0

{(
1√
n
∥X −XB∥F +

√
δ ∥I −B∥2

)2

+ ∥BΛ∥1

}
.

In fact, we may replace the L1 penalty ∥BΛ∥1 with any convex function and still get a convex
relaxation.

The regularization weight parameter δ is nothing but the diameter of the uncertainty region.
In simple words, the distributionally robust nodewise regression with squared loss (3.2) is ap-
proximately equivalent to a spectral-norm-regularized nodewise regression with square-root loss,
where the strength of the regularization is controlled by the radius of the uncertainty region δ. The
spectral-norm (also called the operator norm) is widely used in the machine learning literature to de-
scribe the generalizability of a model by measuring its vulnerability against adversarial attacks (see,
e.g., Szegedy et al., 2014). The same intuition applies to our problem. Let l(xt,B) = ∥xt −B⊤xt∥22
be the regression loss for a given parameter B associated with an observation xt. If the observation
is modified with some perturbation ξ, then we have∣∣l(xt + ξ,B)− l(xt,B)

∣∣
∥ξ∥22

=

∥∥(I −B)⊤ξ
∥∥2
2

∥ξ∥22
≤ ∥I −B∥22 .

This means that the magnitude of relative changes in the loss compared with the magnitude of the
perturbation can be bounded by the spectral norm of I −B. This interpretation is consistent with
the intuition that DRO minimizes the worst-case loss inside a plausible region.

3.2 An ADMM algorithm

Program (3.3) is a convex optimization problem and can be solved by off-the-shelf optimizers.
However, we find it prohibitively expensive in practice as soon as the dimension d reaches the hun-
dreds. We propose an efficient algorithm based on the alternating direction method of multipliers
(ADMM). For an overview of ADMM, see Boyd et al. (2010).

First we rewrite (3.3) as:

min
B1,B2∈Rd×d

{
1√
n
∥X −XB1∥F +

√
δ ∥B2∥2

}
s.t. B1 +B2 = I, diag(B1) = 0.

We now describe the ADMM algorithm. Given an arbitrarily initialized B0
2 and Λ0, we repeat

the following steps: At iteration t, update:

Bt+1
1 ← argmin

diag(B)=0

{
1√
n
∥X −XB∥F +

ρ

2

∥∥∥B +Bt
2 − I +Λt

∥∥∥2
F

}
(3.4)
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Bt+1
2 ← argmin

B

{√
δ ∥B∥2 +

ρ

2

∥∥∥Bt+1
1 +B − I +Λt

∥∥∥2
F

}
(3.5)

Λt+1 ← Λt +Bt+1
1 +Bt+1

2 − I,

where ρ is an exogenous penalty parameter, and B0
2 and Λ0 are initialized as zeros. The above is

repeated until the magnitudes of the updates are smaller than a predetermined threshold.

Each of the two sub-problems (3.4) and (3.5) are easily solved. Problem (3.4) is strongly convex
due to the quadratic penalty and thus can be solved by first-order algorithms. Problem (3.5) has
a partially closed-form solution based on the singular decomposition of I −Bt+1

1 −Λt, as stated in
the following lemma.

Lemma 3.1. Consider the optimization problem:

minimize
B∈Rm×n

∥B −C∥2F + λ ∥B∥2 , (3.6)

where C ∈ Rm×n. Let C = UΣV ⊤ be the singular value decomposition of C, where U ∈ Rm×r,
V ∈ Rn×r, and Σ is an r × r diagonal matrix whose diagonals are the singular values σ1 ≥
σ2 ≥ · · · ≥ σr ≥ 0 of C. Define σr+1 = 0. Then the optimal solution B̂ can be expressed as
B̂ = UŜV ⊤, for some diagonal Ŝ ∈ Rr×r whose diagonal s satisfies for some k ∈ {1, . . . , r},

s =

 k terms︷ ︸︸ ︷
t, · · · , t, σk+1, σk+2, · · · , σr

 , where u := argminσk+1≤u≤σk

{∑k
j=1(σj − u)2 + λu

}
.

We defer the proof of Lemma 3.1 to the appendix. By virtue of the above lemma, we can easily
find the solution to (3.5) by computing the singular decomposition of I −Bt+1

1 − Λt = UΣV ⊤,

and then comparing the losses
∑k

j=1(σj − u)2 + 2t
√
δ/ρ among all k ∈ {1, . . . , d}.

3.3 Choice of δ

In machine learning, the strength of the regularization, controlled by δ, is usually determined
exogenously or by cross-validation. However, since δ is the radius of the uncertainty region in our
setting, the choice of δ should be informed by the degree of uncertainty in the data. Specifically,
we determine a distributional uncertainty region in a way that it is just large enough so that the
correct set of regression coefficients, which we would obtain if the true distribution were known,
becomes a plausible choice with a sufficiently high confidence level. A simple, actionable recipe for
choosing δ is provided at the end of this subsection.

Define the covariance of a random matrix M ∈ Rd×d, denoted by Cov(M), as a (d × d) ×
(d× d) tensor, with Cov(M)ij,kl := Cov(Mij ,Mkl), i, j, k, l ∈ [d]. Before describing our method for
choosing δ, we introduce the following assumptions:

Assumption 3.1. The time series {X(t) ∈ Rd : t ≥ 0} underlying the observations is a stationary,

ergodic process satisfying EP∗

(∥∥X(t)
∥∥4
2

)
< ∞ for each t ≥ 0. Moreover, for each measurable

function g : Rd → Rd×d such that
∑

i,j

∣∣g(x)ij∣∣ ≤ c(1 + ∥x∥22) for some c > 0, the limit

Υg := lim
n→∞

CovP∗

n−1/2
n∑

t=1

g(X(t))

 ∈ R(d×d)×(d×d)

12



exists, and the central limit theorem holds:

n1/2
[
EPn

(
g(X)

)
− EP∗

(
g(X)

)]
⇒ N(0,Υg),

where “⇒” denotes weak convergence as n → ∞ with fixed d, and N(0,Υg) represents a random
matrix Z whose entries follow a normal distribution with E[Zij ] = 0 and Cov(Zij , Zkl) = (Υg)ij,kl.

Assumption 3.2. The classical optimization problem (3.1) has a unique solution B∗.

Assumption 3.3. X(t) has a density for each t ≥ 0.

Assumption 3.1 is standard for most time series models. Assumption 3.2 holds when the true
underlying covariance matrix is invertible, which is true when no random variable is exactly a linear
combination of other random variables. This condition is easily satisfied when, for example, each
random variable is generated with an idiosyncratic noise.

In order to choose an appropriate δ, we follow the idea behind the robust Wasserstein profile
inference (RWPI) approach introduced in Blanchet et al. (2019). Intuitively, the uncertainty region
Uδ(Pn) := {P : Dc(P,Pn) ≤ δ} contains all the probability measures that are plausible variations of
Pn implied by the data. Let H := I −B for simpler notation. We denote by Q(P) the classical
regression problem with P being the underlying probability distribution:

minimize
H∈Rd×d

EP
[
X⊤HH⊤X

]
, s.t. diag(H) = 1.

Also, denote by HP a solution to Q(P) and by HP the set of all such solutions. According to
Assumption 3.2, we have HP∗ = {H∗} for some H∗ := I − B∗. Therefore, there exist unique
Lagrange multipliers λ∗

1, λ
∗
2, . . . , λ

∗
d such that

EP∗
[
XX⊤

]
H∗ −Λ∗ = 0, diag(H∗) = 1,

where Λ∗ is the diagonal matrix with entries λ∗
1, λ

∗
2, . . . , λ

∗
d.

We choose δ > 0 such that Uδ(Pn) contains all probability distributions that are plausible
variations of Pn, any hence HP with P ∈ Uδ(Pn) is a plausible estimate of H∗. Thus, if we collect
all such plausible estimates as the set:

Λδ(Pn) =
⋃

P∈Uδ(Pn)

HP,

then Λδ(Pn) is a natural confidence region for H∗. Therefore, δ should be chosen as the smallest
number δ∗n such that H∗ falls in this region with a given confidence level. Namely,

δ∗n = min
{
δ : P∗ (H∗ ∈ Λδ(Pn)

)
≥ 1− α

}
,

where 1− α is a user-defined confidence level (typically 95%).

In order to be able to compute δ∗n, we provide a simpler representation using an auxiliary function
called the Robust Wasserstein Profile (RWP) function. First observe that any H ∈ Λδ(Pn) if and
only if there exist P ∈ Uδ(Pn) along with λ1, λ2, . . . , λd ∈ (−∞,∞) and their corresponding diagonal
matrix Λ such that

EP
[
XX⊤

]
H −Λ = 0, diag(H) = 1.
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By plugging the second equation into the first, we have

λi = −
(
EP
[
XX⊤

]
H
)
ii
− EP

[
X2

i

]
(1− hii), for i ∈ [d],

where hii is the i-th element of the i-th row of H. Then the system of equations that H needs to
satisfy becomes:

1− hii = 0 and
(
EP
[
XX⊤

]
H
)
ij
= 0, for i, j ∈ [d] and i ̸= j.

Now we define the following RWP function

Rn(H) := inf

{
Dc(P,Pn) : 1− hii = 0,

(
EP
[
XX⊤

]
H
)
ij
= 0, for i, j ∈ [d] and i ̸= j

}
for H ∈ Rd×d where Sd×d

+ . Then, we can rewrite δ∗n as:

δ∗n = inf
{
δ : P∗ (Rn(H

∗) ≤ δ
)
≥ 1− α

}
. (3.7)

In other words, δ∗n is now the 1−α quantile of the distribution of Rn(H
∗). If we can asymptotically

approximate the distribution of Rn(H
∗), δ∗n can then easily determined.

Before presenting the asymptotic distribution of Rn(H
∗), we first introduce the notation for

asymptotic stochastic upper bound:
nRn(H

∗) ≲D R̄,

which means that, for every continuous and bounded non-decreasing function f(·), we have

lim sup
n→∞

E
[
f
(
nRn(H

∗)
)]
≤ E

[
f(R̄)

]
.

Similarly, we write ≳D for an asymptotic stochastic lower bound, namely

lim inf
n→∞

E
[
f
(
nRn(H

∗)
)]
≥ E

[
f(R̄)

]
.

If both the stochastic upper and lower bounds hold for the same R̄, then nRn(H
∗)⇒ R̄.

Now let us state an asymptotic stochastic upper bound for nRn(H
∗).

Theorem 3.2. Under Assumptions 3.1 and 3.3, write Σ∗ := EP∗ [XX⊤] and g(X) := XX⊤. If
Σ∗ is invertible, then

nRn(H
∗) ≲D R̄ :=

d∑
i=1

1

4
Z⊤
·iΣ

−1
∗ Z·i

where Z·i is the i-th column of Z ∼ N(0,Υg).

The result of Theorem 3.2 involves Σ−1
∗ . The true covariance matrix Σ∗ can be estimated

using the sample second-moment matrix Σn = EPn [XX⊤] = 1
n−1

∑n
t=1 g(xt). However, estimating

Σ−1
∗ with Σ−1

n is not possible when n < d. Even when n is moderately large but of the same
order as d, the sample covariance matrix has been shown to be unreliable (e.g., Johnstone, 2001).
Here, we apply a commonly used remedy in machine learning, i.e., estimating Σ−1

∗ by only keeping
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the diagonals of Σ∗ when calculating its inverse; see e.g., Bickel and Levina, 2004. After this,
we can obtain δ∗n as the 1 − α quantile of R̄/n, as long as we know the distribution of Z. We
can draw samples from the distribution of Z and then numerically estimate the quantile of R̄.
Z follows a normal distribution with a covariance matrix Υg, which can be estimated using the
sample covariances of observations of g(xt) ∈ Rd×d, t = 1, . . . , n. We note that since Z is a random
symmetric matrix in Rd×d, the covariances of its entries Υg is a (d×d)×(d×d) tensor. Nonetheless,
(Υg)ij,kl which represents the covariance between Zij and Zkl can be approximated by the sample
covariance 1

n−1

∑n
t=1

(
g(xt)ij − ḡij

) (
g(xt)kl − ḡkl

)
, where ḡij := 1

n

∑n
t=1 g(xt)ij . One should be

mindful that applying this method is not always realistic in practice. First of all, Υg has size d4

and can be difficult to fit in the RAM of a consumer computer (e.g., when d = 500, Υg is roughly
250 GB in float32 format). Further, it would require n > d2 observations for the sample covariance
matrix to be positive definite. In many applications, the number of observations of n is on the
same order as d, so the Υg estimated this way could be highly unstable. An alternative method
is to simply disregard the covariances assuming entries in Z are independent, and only calculate

the diagonals. Recall that Υg = limn→∞CovP∗

(
n−1/2

∑n
t=1 g(X(t))

)
. Because g(x) := xx⊤,∑n

t=1 g(X(t)) follows the Wishart distribution with degree of freedom n if we further assume that
X is normal, and its variance is n

[
σiiσjj + (σij)

2
]
. Then the diagonals of Υg can be computed1:

(Υg)ij,ij = σiiσjj + (σij)
2. The independence also greatly simplifies the sampling of Z.

We now provide a simple recipe for choosing δ:

1. Collect standardized data {xt}nt=1, xt ∈ Rd.

2. Calculate second moments
{
g(xt) = xtx

⊤
t

}n
t=1

.

3. Use the sample second-moment matrix Σn = EPn [XX⊤] = 1
n−1

∑n
t=1 g(xt) to approximate

Σ∗. Then estimate Σ−1
∗ by only keeping the diagonals of Σ∗.

4. Calculate Υg using either of the following methods:

(a) (Υg)ij,kl =
1

n−1

∑n
t=1

(
g(xt)ij − ḡij

) (
g(xt)kl − ḡkl

)
.

(b) (Υg)ij,ij = σiiσjj + (σij)
2, (Υg)ij,kl = 0 if (k, l) ̸= (i, j).

5. Draw M samples {Zm}Mm=1 from the distribution N(0,Υg) to numerically estimate the 1−α
quantile of R̄/n. Apply Theorem 3.2 and (3.7) to set δ = δ∗n to this quantile.

4 Simulation Experiments

We demonstrate our results through simulation. For an easier illustration, we take a simplified
version of (2.2) as the underlying model, where we disregard the observable common factors FC

and reduce the number of unobservable common factors to 1:

Xi = βH(i)FH + F⊤
z(i)βG(i) + εi, for i = 1, . . . , d. (4.1)

With given parameters n, d, K, βH(i), dk, and Var(εi), the samples X are generated as follows.
First, the sizes of the clusters, {mk}Kk=1, are determined following the multinomial distribution

1The off-diagonals can also be computed: http://personal.psu.edu/drh20/asymp/fall2002/lectures/ln08.pdf
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with equal probabilities d/K. For example, the first m1 variables are marked as Cluster 1, then
the next m2 Cluster 2. Then, a pool of min(n, d) candidate group-specific factors are generated
as i.i.d. standard normal vectors. The direction of each factor is uniformly sampled from the unit
sphere in Rn. From this pool of candidate factors, dk group-specific factors are then randomly
chosen for each cluster k. We note that two clusters may share one or more group-specific factors,
as all clusters randomly pick factors from the same pool. Even if they do not, the two correspond-
ing subspaces might not be orthogonal to each other since different group-specific factors can be
correlated. Next, the factor loadings are determined. Loadings of variable i, represented by the
dz(i)-dimensional vector βG(i), are determined by sampling from the standard normal distribution.

βG(i) is then normalized so that
∥∥βG(i)∥∥22+βH(i)2 = 1. Then, a hidden global factor FH is sampled

from an n-dimensional standard normal distribution, and similarly εi’s are drawn independently
from a normal distribution with given variance Var(εi). In the end, the samples for each random
variable are standardized to have zero mean and unit variance.

In the following experiments, we compare our DRO nodewise regression subspace clustering
method (“DRO”) with the Lasso nodewise regression subspace clustering method (“Lasso”) as de-
scribed in (2.5), the ACC algorithm proposed by Tang et al. (2022), and the k-medoids algorithm
(or Partitioning Around Medoids, “PAM”, Kaufman and Rousseeuw, 1990). For DRO, the param-
eter δ is determined following the recipe described at the end of Section 3.3, where method (b) is
used to calculate Υg, and M = 1000 samples of Z are generated to determine the quantile, for
which we use a confidence level 1−α = 0.95. For Lasso, we use a uniform parameter λ for all regres-
sions and determine the value for λ using cross-validation by minimizing the validation regression
error. For the two methods above, the regression coefficients B are obtained then symmetrized by
calculating C := B⊤

abs + Babs, where (Babs)ij = |bij |. Clusters are then calculated using spectral
clustering (see, e.g., von Luxburg, 2007) with C being the similarity matrix. For ACC, we use a
slightly modified version where the dissimilarity measure is defined as

CORD(i, j) := min

(
max
l ̸=i,j

∣∣ρil − ρjl
∣∣ ,max

l ̸=i,j

∣∣ρil + ρjl
∣∣)

in order to accommodate both positive and negative factor loadings. We also fix the number of
desired clusters, instead of letting the algorithm decide. For k-medoids, we use the distance measure
1− ρ2 with ρ being the sample correlation between two variables.

For DRO only, we have also tested two additional values for α: α = 0.1 and α = 0.01, cor-
responding to a 90% confidence level and a 99% confidence level, respectively. We find that the
clustering results are nearly identical to α = 0.05, which means that the algorithm is not sensitive
to the confidence level 1− α. Below we will only report the results of α = 0.05, which corresponds
to a 95% confidence level.

We create a total of K = 25 clusters among d = 500 variables, fixing βH(i) = 0 for all i, which
means no hidden factor. The number of factors controlling each cluster k is randomly chosen from
1 to mk − 1, where mk is the number of variables in cluster k. We keep the noise level fixed for all
variables at Var(ε) = 0.1 and generate n = 250 i.i.d. samples. Note that although our theoretical
results for the DRO are stated when n grows to infinity with d fixed, we choose n to be much smaller
than d to test the robustness of the DRO result. Figure 2a shows the true clustering structure among
the d = 50 variables, and Figure 2b shows a heatmap of the sample correlation matrix. The blocks
along the diagonal of Figure 2b are much more difficult to distinguish, likely due to the presence
of multiple group-specific factors. Figures 3a and 3b show the C matrices from DRO and Lasso,
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respectively. We observe that the blocks along the diagonal are more prominent visually with both
methods. DRO maintains more connections than Lasso in the C matrix, reflected in the light grey
background off the diagonals. In contrast, Lasso leaves more blanks on the off-diagonals. On the
diagonals, the blocks are also darker in DRO than Lasso. This is consistent with our intuition
that DRO does not artificially pursue sparsity and thus has the advantage of keeping more true
connections while weakening, instead of eliminating, irrelevant connections.
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Figure 2: The heatmap of the true similarity matrix (a) and the sample correlation matrix (b),
with βH = 0, σ2

e = 0.1, and dk randomly chosen. Variables in the same cluster have similarity 1
and otherwise 0.
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Figure 3: The heatmap of the C matrices for DRO (a) and Lasso (b), with βH = 0, σ2
e = 0.1, and

dk randomly chosen.

To further validate the result, we repeat the experiment on 10 random trials and examine
the quality of the clusters by calculating the adjusted mutual information (“AMI”, Vinh et al.,
2010) between the obtained clusters and the ground truth. The AMI is a measure of similarity
between two partitions; an AMI of 1 represents identical partitions, while uniformly random cluster
assignments will have an AMI close to 0. The higher the AMI is for a partition compared with
the ground truth, the more accurate the clustering results are. Table 1 shows the average AMI of
each clustering method over the 10 random trials. Between the two subspace clustering methods,
DRO achieves an average AMI of 0.96, followed by Lasso with an average AMI of 0.94. ACC
and k-medoids underperform in this experiment, with average AMIs of 0.34 and 0.55, respectively.
The under-performance of ACC and k-medoids is expected, because they are not tailored to the
subspace clustering problem: the model underlying ACC assumes variables from the same cluster
are generated around the same single factor, and similarly, k-medoids only seeks points that are
spatially close to each other.
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Table 1: Average AMI of different clustering methods compared with ground truth, over 10 different
random trials.

DRO Lasso ACC k-medoids

Average AMI 0.96 0.94 0.34 0.55

We also test different noise levels by setting σ2
e = 0.1, 0.2, . . . , 2.0 and repeating the experiment

on 10 random trials for each value of σ2
e . These values of σ

2
e represent signal-to-noise ratios from 10:1

to 1:2. The average AMI of each method is shown in Figure 4. Overall, the average AMI decays
for all methods as the level of noise increases. The DRO subspace clustering methods perform
similarly with Lasso, and both consistently outperform ACC and k-medoids in this experiment.
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Figure 4: Comparison of average AMI between different clustering methods, with βH = 0 and dk
randomly chosen.

Finally, we examine the performance of the clustering algorithms in the presence of a global
hidden factor and with heterogeneous factor loadings and noise levels. In these experiments, DRO
again leads the cohort overall, and we include the detailed results and analysis in Appendix B.1.

5 Empirical Experiments on Financial Data

5.1 Overview

In this section, we test subspace clustering algorithms by applying them to clustering financial time
series data. Our task is to cluster the stocks in the S&P 500 universe using historical returns, and
based on these clusters, construct stock portfolios. More specifically, we pick one representative
stock from each cluster, and construct an optimized portfolio using these representative stocks.
The underlying rationale is that by identifying stocks capable of representing others, one can create
portfolios with a small number of stocks compared to the size of the full universe, yet still achieve
a sufficient level of diversification. For more detailed discussion on clustering and diversification,
please see Tang et al. (2022).
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5.2 Data preparation

We take the constituents of the S&P 500 as the universe. The data is obtained from Compustat
through Wharton Research Data Services (WRDS), which consists of

� the daily closing prices of the constituents;

� the historical constituents data; and

� the daily closing S&P 500 total return index with dividends reinvested,

between January 1996 and January 2020.

We apply clustering, stock selection, portfolio optimization, and backtesting for the period
between February 2001 and January 2020. Partitions and portfolios are calculated on the first
trading day of each February, starting with February 2001, in the then S&P 500 constituent stock
universe. Specifically, at the end of the first trading day of each February, we choose the stocks in
the S&P 500 Index according to the historical constituent data. Of all the current constituents,
we discard stocks with less than 5 years of history and those with more than 5% missing data in
the past n = 500 days. If the same company has multiple classes of stocks in the S&P 500 Index
(e.g. Alphabet Inc’s GOOG and GOOGL), we only keep the class with the longest history. The
numbers of eligible stocks that remained after the above filtering range between 468 and 487 over
the backtesting period. For these eligible stocks, any missing prices are linearly interpolated using
the previous and subsequent prices. Then, partitions are estimated based on the daily returns of the
past n = 500 trading days. A smaller set of stocks are then selected, and portfolios are constructed
with stock weights optimized. These steps are described in detail in the following subsections.

5.3 Clustering

We first describe the clustering methods to be tested:

1. DRO-ACC: First create K1 clusters using the DRO subspace clustering algorithm, then
further split each cluster into K2 sub-clusters using the ACC algorithm.

2. ACC Create K1 ×K2 clusters using the ACC algorithm.

3. k-medoids Create K1 ×K2 clusters using the k-medoids algorithm.

Method 1 is a combination of the DRO subspace clustering and the ACC clustering in a hierar-
chical fashion. We believe clusters generated by this approach is more suitable for stock selection,
compared to, for instance, clusters generated directly by subspace clustering algorithms. This is
because stocks in the same low-dimensional subspace may still be quite different from each other
(vectors in the same subspace can point to rather different directions), and it may be difficult to use
a single stock to represent a whole cluster. With the DRO clustering at the higher level followed
by the ACC at the lower level, the former breaks down the universe into stocks driven by groups
of factors, and the latter then easily finds stocks most closely associated with each single factor.
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We parsimoniously choose K1 = K2 since we have no prior knowledge of how many subspace there
should be vs. the dimensions of these subspaces. We compare this method with Method 2, which
directly applies the ACC algorithm on the full universe. The ACC algorithm works very well in
this task as demonstrated in Tang et al. (2022). We also include k-medoids as another benchmark.

At the end of the first trading day of each February, the above three clustering methods are
applied to daily log returns in the backward 500-trading-day window for valid constituent stocks
as described in Section 5.2. For each clustering method, we create a total of 19 sets of clusters, one
for each year. The choice of parameters for the clustering algorithms is the same as described in
Section 4.

5.4 Portfolio construction

Under each clustering method described earlier, once clusters have been constructed, we select
the stock with the lowest volatility from each cluster and then form a portfolio on the resulting
smaller set of stocks. Here the volatility is measured by the sample variance of daily returns in the
past n = 500 trading days, the same window used for clustering. From a practical and empirical
perspective, the reason why we choose low volatility as the criterion is twofold. First, volatility as
a criterion does not involve the estimation of the mean returns. All clustering algorithms tested
avoid using the stocks’ mean returns. It would then be inconsistent if we selected stocks from the
clusters based on return-related criteria, e.g., mean return or Sharpe ratio. More importantly, the
estimation of mean returns is well known to be often inaccurate (the “mean-blur” problem; see, e.g.,
Merton, 1980), rendering return-related criteria unreliable of indicating future performance. The
second reason is that stocks with low volatility have been observed to outperform the benchmarks
over time, which is contrary to CAPM and is documented as the “low-risk anomaly” (e.g., Zaremba
and Shemer, 2017). We only choose one stock with the lowest volatility from each cluster, yielding
the same number of stocks as clusters for each clustering method every time we update the portfolio.

Once a set of stocks is determined by the above procedure, we construct portfolios using the min-
imum variance allocation strategy to determine the weights of the stocks. The minimum variance
allocation strategy is similar to Markowitz’s mean-variance optimization but without the expected
return constraint:

min w⊤Σw

s.t. w⊤1 = 1, w ≥ 0.

We choose the minimum variance allocation because it also does not involve the estimation of the
mean return. Similar to why we use low volatility as a criterion to select stocks from the clusters, we
aim to keep the experiment consistent by avoiding the estimation of the mean returns throughout
the experiment.

The portfolios are updated annually. At each portfolio update, a new set of stocks are selected
according to the clustering result. Their allocations are calculated using all daily returns in the past
500 trading days, starting with the first day when all stocks are available. The positions are then
held until the first trading day of the following update. Any dividends are immediately reinvested
in the same stock. We assume no transaction cost for simplicity. As a benchmark, we take the
S&P 500 ETF (NYSE ticker: SPY), which is the largest ETF in the world and designed to track
the S&P 500 Index.
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5.5 Results and analysis

Below we present the results when K1 = K2 = 6. At each update in February, 6× 6 = 36 clusters
are recovered, each of which contributes one stock in the portfolio. While this is a reasonable
number of stocks to have in a portfolio, we also present results of K1 = K2 = 3, 4, 5 in Appendix
B.2. In the results below, we update the portfolios once every year after the first trading day in
February, when we re-do stock selection and re-compute allocation. Figure 5 shows the cumulative
performance of these portfolios, and Table 2 reports the performance of the portfolios based on
metrics commonly used in the wealth management industry. The DRO-ACC portfolio outperforms
the others significantly in many important metrics, including Sharpe, Sortino, and Calmar ratios,
annualized return, maximum drawdown, and recovery time, while it performs similarly to the best
performers in other metrics.
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Figure 5: Cumulative performance of portfolios; DRO-ACC creates 6x6 clusters, ACC and k-
medoids create 36 clusters

To examine the compositions of the clusters, we compare the clusters with sectors defined by the
Global Industry Classification Standard (GICS)2. Figure 6 shows the clustering results obtained
by the DRO-ACC clustering method on Feb 1st, 2019, date of the last portfolio update in our
experiment. The clusters are first ordered by the 6 major clusters from DRO, and then by size
within each major cluster. In other words, Clusters 1 to 6 are from the first DRO major cluster,
Clusters 7 to 12 are from the second, and so on.

One observation that immediately stands out is the similarity to GICS sectors in the 2nd through
6th DRO major clusters (noting the colors starting from Cluster 7). Each of the 2nd through 5th
major clusters covers a different sector and often includes most companies in that sector. The last
DRO cluster (Clusters 31-36) includes two sectors, namely, Consumer Discretionary and Consumer
Staples, which are closely related to each other. In comparison, clusters within the first DRO
cluster tend to be larger, especially Cluster 1. They also include companies from many different
sectors, such as Communication Services, Consumers Discretionary, Industrials, and Information
Technology. Intuitively, these sectors appear to be more closely related to the notion of the “day-to-
day” economy, than some sectors represented by the other major clusters, like Real Estate, Energy,
Utilities, and Financials. The reason why the sectors in the DRO clusters 2 through 6 (Clusters
7-36 in Figure 6) stand out is likely because they are the most distinguishable sectors from the rest

2Available at https://www.msci.com/gics
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Table 2: Performance metrics of the minimum variance portfolios; DRO-ACC creates 6x6 clusters,
ACC and k-medoids create 36 clusters

DRO-ACC ACC k-medoids SPY

Ending VAMI 10694.3 5830.69 7701.07 3442.53

Max Drawdown 27.72% 36.24% 31.87% 55.25%

Peak-To-Valley 2008-09-08 -
2009-03-09

2007-12-10 -
2009-03-09

2007-12-10 -
2009-03-09

2007-10-09 -
2009-03-09

Recovery 194 Days 446 Days 250 Days 774 Days

Sharpe Ratio 1.05 0.77 0.9 0.36

Sortino Ratio 1.73 1.25 1.46 0.57

Calmar Ratio 0.48 0.27 0.36 0.12

Ann. Volatility 12.73% 12.59% 12.69% 18.63%

Ann. Downside Volatility 7.71% 7.77% 7.81% 11.83%

Correlation 0.78 0.8 0.81 1.0

Beta 0.53 0.54 0.55 1.0

Annualized Return 13.32% 9.75% 11.38% 6.74%

Positive Periods 2608 (54.63%) 2611 (54.69%) 2595 (54.36%) 2600 (54.46%)

Negative Periods 2166 (45.37%) 2163 (45.31%) 2179 (45.64%) 2174 (45.54%)

of the market. DRO being able to single them out in the first stage of clustering guarantees that
a sufficient number of stocks are selected from each of these distinguishable sectors, which may
facilitate diversification and lead to the good performance of the DRO-ACC portfolio.
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Figure 6: DRO-ACC clustering results on 2019-02-01 compared with GICS sectors
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6 Conclusion

In this paper, we propose a distributionally robust nodewise regression method and apply it to
variable clustering. We derive a convenient convex relaxation of the problem. The uncertainty
level in the distributionally robust regression can be chosen in a data-driven way. Compared with
the popular sparse subspace clustering that uses nodewise Lasso, our method is tuning-free and
has a naturally interpretable regularization. The only exogenous parameter of the algorithm is a
confidence level 1−α, which the algorithm is very insensitive to, as results are nearly identical with
α = 0.01, 0.05, 0.1. Simulation experiments show that our subspace clustering method outperforms
the sparse subspace clustering (SSC), the newly developed ACC clustering algorithm, and the classic
k-medoids clustering algorithm. We also apply the clustering method to financial time series data
for asset selection and obtain promising results in portfolio backtesting.

Our work can be extended in the following directions. First, we have only worked with dis-
tributionally robust nodewise regression with quadratic cost c(u,w) = ∥w − u∥22, which leads to
Wasserstein distance of order 2 as the discrepancy measure. A similar analysis may be attempted
for other cost functions and thus other discrepancy measures. For example, if one could find a
cost function that connects distributionally robust nodewise regression to the LASSO nodewise
regression, we would obtain an easy way to choose the parameter for the L1 regularization term.
In addition, existing results for linear regression (Blanchet et al., 2019) are exact reformulations
of the distributionally robust problems as non-robust optimization problems, while our result is a
relaxation. Exact formulations are difficult with the Wasserstein distance of order 2 as it appears
in our analysis but could be possible for other distance measures. Finally, the regularization pa-
rameter δ is determined using a quantile in the asymptotic distribution of Rn(H

∗), which could be
different from the actual distribution when the data is limited. It remains an interesting question
whether it is possible to derive the actual distribution of Rn(H

∗) with limited data.
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Appendix A Proof of Theorems

A.1 Proof of Lemma 3.1

We know that the optimal solution B̂ to (3.6) can be expressed as B̂ = UŜV ⊤, for some Ŝ ∈ Rr×r.
Then we have: ∥∥∥B̂ −C

∥∥∥2
F
+ λ

∥∥∥B̂∥∥∥
2
=
∥∥∥Ŝ −Σ

∥∥∥2
F
+ λ

∥∥∥Ŝ∥∥∥
2
.

To proceed, we need to use the following lemma.

Lemma A.1 (Pinching Inequality (e.g., Bani-Domi and Kittaneh, 2008)). If a matrix A has a
block form:

A =


A11 A12 . . .
A21 A22 . . .
...

...
. . .

 ,

then for any weakly unitary invariant norm ∥·∥,

∥A∥ ≥

∥∥∥∥∥∥∥∥∥

A11 0 . . .
0 A22 . . .
...

...
. . .


∥∥∥∥∥∥∥∥∥ .

Let S̃ := diag (ŝ11, ŝ22, . . . , ŝrr). Because Σ is diagonal and the Frobenius norm and the spectral
norm are both weakly unitary invariant, by the pinching inequality, we have∥∥∥S̃ −Σ

∥∥∥
F
≤
∥∥∥Ŝ −Σ

∥∥∥
F
,
∥∥∥S̃∥∥∥

2
≤
∥∥∥Ŝ∥∥∥

2
.

Because of the optimality of Ŝ, we know that S̃ = Ŝ and thus Ŝ is diagonal. Hence, (3.6) is
equivalent to

min
S∈Rr×r, S is diagonal

{
∥S −Σ∥2F + λ ∥S∥2

}
,

which is just

min
S∈Rr


r∑

j=1

(sj − σj)
2 + λmax

j
|sj |

 ,

where σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0 are singular values of C, and s1, . . . , sr are diagonal entries of S.
This can be further transformed to

min
S,t


r∑

j=1

(sj − σj)
2 + λt


s.t. 0 ≤ s1 ≤ s2 ≤ · · · ,≤ sr ≤ t,

which is now easy to solve by noticing that for σk+1 ≤ t ≤ σk, k = 1, . . . , r, the optimal s is

s = (

k terms︷ ︸︸ ︷
t, · · · , t, σk+1, σk+2, · · · , σr),

and the loss for such t is
∑k

j=1(σj − t)2 + λt, so the optimal t is (2
∑k

j=1 σj + λ)/k.
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A.2 Proof of Theorem 3.1

We argue by strong duality using a lemma of Theorem 1 in Blanchet and Murthy (2019).

Lemma A.2. For γ ≥ 0 and loss functions l(x,B) that are upper semi-continuous in x for each
B, define:

ϕγ(xt;B) := sup
u∈Rd

{l(u;B)− γc(u, xt)}. (A.1)

Then,

sup
P:Dc(P,Pn)≤δ

EP[l(X;B)] = min
γ≥0

γδ +
1

n

n∑
t=1

ϕγ(xt;B)

 . (A.2)

Recall that our loss function is the total squared error: l(X,B) = ∥X −B⊤X∥22 = X⊤HH⊤X
where H := I −B, and the cost function is c(u,w) = ∥w − u∥22. Using Lemma A.2, we can reduce
the inner supremum of (3.2) to

sup
P:Dc(P,Pn)≤δ

EP[l(X;B)] = min
γ≥0
{γδ + 1

n

n∑
t=1

ϕγ(xt;B)}, (A.3)

where

ϕγ(xt;B) := sup
u∈Rd

{l(u;B)− γc(u, xt)}

= sup
u∈Rd

{u⊤HH⊤u− γ ∥xt − u∥22}

Rewriting ∆ := u− xt, we have:

ϕγ(xt;B) := sup
∆∈Rd

{(∆ + xt)
⊤HH⊤(∆ + xt)− γ ∥∆∥22}

=x⊤
t HH⊤xt + sup

∆∈Rd

{∆⊤HH⊤∆+ 2x⊤
t HH⊤∆− γ ∥∆∥22}

=x⊤
t HH⊤xt + sup

∆∈Rd

{−∆⊤(γI −HH⊤)∆ + 2x⊤
t HH⊤∆}

Observe that inside the supremum is a quadratic function of ∆, so the supreme is only finite if
the quadratic function is concave. This means that γI −HH⊤ needs to be positive definite, and
thus invertible, which requires that γ > λ1 where λ1 is the largest eigenvalue of (HH⊤). Then,
according to the first order condition, the supremum is achieved when (γI −HH⊤)∆ = HH⊤xt,
i.e., ∆ = (γI −HH⊤)−1HH⊤xt. Plugging in the value for ∆, we have

ϕγ(xt;B) =x⊤
t HH⊤xt + x⊤

t HH⊤(γI −HH⊤)−1HH⊤xt.

Through eigendecomposition, we can write

(γI −HH⊤)−1 =Q(γI −Λ)−1Q⊤,

where Λ is the diagonal matrix with Λii = λi being the i-th largest eigenvalue of HH⊤, and
Q = [Q1 Q2 . . . Qd] is the matrix whose i-th column is the eigenvector Qi of HH⊤ corresponding
to the eigenvalue λi. Then

ϕγ(xt;B) =x⊤
t HH⊤xt + x⊤

t HH⊤Q(γI −Λ)−1Q⊤HH⊤xt
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=x⊤
t QΛQ⊤xt + x⊤

t QΛ(γI −Λ)−1ΛQ⊤xt

=x⊤
t Q



γλ1

γ − λ1
0 . . . 0

0
γλ2

γ − λ2
. . . 0

...
...

. . .
...

0 0 . . .
γλd

γ − λd


Q⊤xt

=
d∑

i=1

γλi

γ − λi
(Q⊤

i xt)
2.

Now the minimum in (A.3) becomes:

min
γ>λ1

γδ +
1

n

d∑
i=1

γλi
∑n

t=1(Q
⊤
i xt)

2

γ − λi

 . (A.4)

Inside the minimum of (A.4) is a convex function of γ on γ > λ1 that tends to infinity as γ →∞
or γ → λ1. The optimal γ should follow the first-order condition

δ − 1

n

d∑
i=1

 λ2
i

(γ − λi)2

n∑
t=1

(Q⊤
i xt)

2

 = 0. (A.5)

It is easy to see that this equation has a solution on (λ1,∞), because the left hand side goes to
−∞ as γ approaches λ1, and goes to δ > 0 as γ approaches ∞. However, analytically solving this
equation involves the 2d-th order product

∏d
i=1(γ − λi)

2 and is therefore difficult. So we introduce
an approximation by replacing (γ − λi)

2 with (γ − λ1)
2 in the denominator and replacing one of

the λi’s in the numerator with λ1
3. In other words, we try to find the γ that satisfies:

δ − 1

n

d∑
i=1

 λ1λi

(γ − λ1)2

n∑
t=1

(Q⊤
i xt)

2

 = 0, (A.6)

which yields

γ = λ1 +
1√
δ

√
λ1

√√√√ 1

n

n∑
t=1

d∑
i=1

λi(Q⊤
i xt)

2 = λ1 +
1√
δ

√
λ1

√√√√ 1

n

n∑
t=1

x⊤
t HH⊤xt.

Using this value for γ, we obtain an upper bound of (A.4):

min
γ>λ1

γδ +
1

n

d∑
i=1

γλi
∑n

t=1(Q
⊤
i xt)

2

γ − λi


3The informed reader might have noticed that the rest of the proof still follows if, instead of replacing with λ1,

we replace λi with any number larger than or equal to λ1. We choose λ1 because it offers the tightest approximation
of this simple form.
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≤ min
γ>λ1

γδ +
1

n

d∑
i=1

γλi
∑n

t=1(Q
⊤
i xt)

2

γ − λ1


≤ min

γ>λ1

{
γδ +

γ 1
n

∑n
t=1 x

⊤
t HH⊤xt

γ − λ1

}

=λ1δ +
√
δ
√
λ1

√√√√ 1

n

n∑
t=1

x⊤
t HH⊤xt

+

(
λ1 +

√
λ1√
δ

√
1
n

∑n
t=1 x

⊤
t HH⊤xt

)(
1
n

∑n
t=1 x

⊤
t HH⊤xt

)
√
λ1√
δ

√
1
n

∑n
t=1 x

⊤
t HH⊤xt

=λ1δ + 2

√√√√δλ1
1

n

n∑
t=1

x⊤
t HH⊤xt +

1

n

n∑
t=1

x⊤
t HH⊤xt

=


√√√√ 1

n

n∑
t=1

x⊤
t HH⊤xt +

√
δ
√
λ1)


2

=


√√√√ 1

n

n∑
t=1

x⊤
t HH⊤xt +

√
δ ∥H∥2)


2

where ∥H∥2 is the spectral norm of H and is equal to its largest singular value
√
λ1.

A.3 Proof of Theorem 3.2

By Proposition 3 in Blanchet et al. (2019), we have for any H ∈ Rd×d and diag(H) = 1,

Rn(H) = sup
Λ∈Rd×d

−EPn

 sup
u∈Rd

 ∑
i,j∈[d],i ̸=j

λij

(
uu⊤H

)
ij
− ∥u−X∥22





= sup
Λ∈Rd×d:diag(Λ)=0

−EPn

[
sup
u∈Rd

{
tr(Λ⊤uu⊤H)− ∥u−X∥22

}]
Define h(X,H) := XX⊤H, then observe that the inner-most supremum

sup
u∈Rd

{
tr(Λ⊤uu⊤H)− ∥u−X∥22

}
= sup

∆∈Rd

{
tr(Λ⊤h(X +∆,H))− ∥∆∥22

}
= sup

∆∈Rd

{
tr(Λ⊤[h(X +∆,H)− h(X,H)])− ∥∆∥22

}
+ tr(Λ⊤h(X,H)).
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We can write

tr(Λ⊤[h(X +∆,H)− h(X,H)]) =

∫ 1

0

d

dt
tr(Λ⊤h(X + t∆,H))dt.

Calculating the derivative, we have

d

dt
tr(Λ⊤h(X + t∆,H)) =2 tr(HΛ⊤(X + t∆)∆⊤)

=2 tr(HΛ⊤X∆⊤) + 2t∆⊤HΛ⊤∆,

which is linear in t. So we deduce

Rn(H) = sup
Λ∈Rd×d:diag(Λ)=0

{
− EPn

[
sup
∆∈Rd

{
2 tr(HΛ⊤X∆⊤) + ∆⊤HΛ⊤∆− ∥∆∥22

}
+ tr(Λ⊤XX⊤H)

]}
.

Introduce the scaling ∆ = ∆̄/n1/2 and Λ̄ = Λn1/2. Then we have

nRn(H) = sup
Λ̄∈Rd×d:diag(Λ̄)=0

{
− EPn

[
sup
∆̄∈Rd

{
2 tr(HΛ̄⊤X∆̄⊤) + ∆̄⊤HΛ̄⊤∆̄/n1/2 −

∥∥∆̄∥∥2
2

}
+ n1/2 tr(Λ̄⊤XX⊤H)

]}
.

Under Assumption 3.3, we have, for any matrix Λ ∈ Rd×d such that diag(Λ) = 0 and Λ ̸= 0,

P∗

 d∑
i=1

(
tr(Xh∗⊤i· Λ

⊤ +Xλ⊤
i·H

∗⊤)
)2

> 0

 > 0,

where h∗⊤i· represents the i-th row of H∗ and λ⊤
i· the i-th row of Λ. Then, Assumptions A2) - A4)

in Blanchet et al. (2019) are satisfied, and by Lemma 2 in Blanchet et al. (2019), for every ε > 0,
there exists n0 > 0 and b ∈ (0,∞) such that for all n ≥ n0,

P

(
sup
∥Λ̄∥

F
≥b

{
− EPn

[
sup
∆̄∈Rd

{
2 tr(HΛ̄⊤X∆̄⊤) + ∆̄⊤HΛ̄⊤∆̄/n1/2 −

∥∥∆̄∥∥2
2

}

+ n1/2 tr(Λ̄⊤XX⊤H)

]}
> 0

)
≤ ε.

This result means that if we want the value in the outer supremum to be larger than 0 with high
probability as n approaches infinity, we need

∥∥Λ̄∥∥
F
smaller than a finite b. In other words, the Λ̄∗

that attains the supremum will have
∥∥Λ̄∗∥∥

F
smaller than a finite b. In this case, for any fixed H,

∥H∥F should be finite, then

∆̄⊤HΛ̄∗⊤∆̄/n1/2 ≤
∥∥∆̄∥∥2

2
∥H∥F

∥∥Λ̄∗∥∥
F
/n1/2 ≤ b

∥∥∆̄∥∥2
2
∥H∥F /n1/2,
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which is negligible is negligible compared with
∥∥∆̄∥∥2

2
as n→∞. The remaining terms in the inner

supremum can be simplified:

sup
∆̄∈Rd

{
2 tr(HΛ̄⊤X∆̄⊤)−

∥∥∆̄∥∥2
2

}
= sup

∆̄∈Rd

{
2
∥∥HΛ̄⊤X

∥∥
2

∥∥∆̄∥∥
2
−
∥∥∆̄∥∥2

2

}
=
∥∥HΛ̄⊤X

∥∥2
2
.

Also, we can write

EPn

[
n1/2 tr(Λ̄⊤XX⊤H)

]
= tr

(
n1/2

(
Λ̄⊤EPn

[
XX⊤

]
H − Λ̄⊤EP∗

[
XX⊤

]
H
))

because the diagonals of Λ̄⊤ are zero, and by definition, the off-diagonals of EP∗ [XX⊤]H are zero,
thus the additional term Λ̄⊤EP∗ [XX⊤]H = 0. Then by Assumption 3.1, as n→∞,

EPn

[
n1/2 tr(Λ̄⊤XX⊤H)

]
=⇒ tr

(
Λ̄⊤ZH

)
where Z ∼ N(0,Υg), and g(X) := XX⊤. Finally, as n→∞,

EPn

[∥∥HΛ̄⊤X
∥∥2
2

]
⇒ EP∗

[∥∥HΛ̄⊤X
∥∥2
2

]
.

Because the dimension of Λ̄ is fixed at d, we can safely take the limit inside the supremum.
Therefore, we conclude that, as n→∞,

nRn(H)⇒ sup
Λ̄∈Rd×d:diag(Λ̄)=0

{
−EP∗

[∥∥HΛ̄⊤X
∥∥2
2

]
− tr

(
Λ̄⊤ZH

)}
.

This supremum can be bounded from above by substituting HΛ⊤ with any G ∈ Rd×d:

sup
Λ̄∈Rd×d:diag(Λ̄)=0

{
−EP∗ [

∥∥HΛ̄⊤X
∥∥2
2
]− tr(Λ̄⊤ZH)

}
≤ sup

G∈Rd×d

{
−EP∗ [∥GX∥22]− tr(GZ)

}
.

Breaking up G into rows, where the i-th row is Gi·, and let Z·i be the i-th column of Z, we have

nRn(H) ≲D sup
Λ̄∈Rd×d:diag(Λ̄)=0


d∑

i=1

(
−EP∗ [(G⊤

i·X)2]−G⊤
i·Z·i

) .

Taking the derivative with respect to Gi·, we obtain

− 2EP∗ [X⊤Gi·X]− Z·i = 0. (A.7)

Let Σ∗ = EP∗(XX⊤), which we assume to be invertible. Then (A.7) can be written as

−2Σ∗Gi· − Z·i = 0,

which has a unique solution:

Gi· = −
1

2
Σ−1

∗ Z·i,
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where Σ−1
∗ is the inverse of Σ∗. Therefore,

−EP∗ [(G⊤
i·X)2]−G⊤

i·Z·i =−G⊤
i·Σ∗Gi· −G⊤

i·Z·i

=− 1

4
Z⊤
·iΣ

−1
∗ Σ∗Σ

−1
∗ Z·i +

1

2
Z⊤
·iΣ

−1
∗ Z·i

=
1

4
Z⊤
·iΣ

−1
∗ Z·i,

and we conclude that

nRn(H
∗) ≲D

d∑
i=1

1

4
Z⊤
·iΣ

−1
∗ Z·i,

where Z·i is the i-th column of Z ∼ N(0,Υg).

Appendix B Additional Numerical Results

B.1 Simulation analysis

We set a moderate noise level σ2
e = 1 and test β2

H(i) = 0.1, 0.2, . . . , 0.9 for all i, each value on
10 random trials. The higher βH(i) is, the less group-specific information there is in the data,
and when βH(i) = 1, there is no group-specific information. The average AMI of each method is
shown in Figure 7. The performances all decrease as the common factor becomes more dominant.
DRO performs noticeably better than Lasso in this experiment, while both outperform ACC and
k-medoids again.
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Figure 7: Comparison of average AMI between different common factor loadings, with σ2
e = 1.0

and dk randomly chosen.

In the previous experiments, we assume fixed common factor loadings and noise levels across
all variables, i.e., βH(i) is the same for all i. However, in a more realistic setting each variable may
have a different factor loading and a different signal-to-noise ratio. To further test the performance
of the algorithms in those situations, we let each βH(i)2 and Var(εi) be drawn independently and
uniformly from [0, 0.5]. We keep the dimension of the problem at d = 500 and the number of
observations at n = 250. As done previously, the number of factors controlling each cluster k is
randomly chosen from 1 to mk − 1, where mk is the number of variables in cluster k. We run the
experiment on 10 different random trials and calculate the average AMI.
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Before showing the clustering results, we first visualize the sample correlation matrix and com-
pare it with the C matrix extracted by the subspace clustering methods. Figure 8a shows the
true clustering structure, and Figure 8b shows a heatmap of the sample correlation matrix. The
blocks along the diagonal of Figure 8b are nearly indistinguishable. Figures 9a and 9b show the
C matrices from our regularized regressions. Similar to the previous experiments, both methods
can extract the blocks by making them visually more prominent, with Lasso extracting a sparse C
matrix while DRO keeps more entries in the matrix but at lower magnitudes.
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Figure 8: The heatmap of the true similarity matrix (a) and the sample correlation matrix (b),
with βH(i)2 and Var(εi) drawn independently and uniformly from [0, 0.5], and dk randomly chosen.
Variables in the same cluster have similarity 1 and otherwise 0.
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Figure 9: The heatmap of the C matrices for DRO (a) and Lasso (b), with βH(i)2 and Var(εi)
drawn independently and uniformly from [0, 0.5], and dk randomly chosen.

Table 3 shows the average AMI of each clustering method over the 10 random trials. DRO
performs the best and much better compared to Lasso. Both methods still outperform ACC and
k-medoids. As expected, neither ACC nor k-medoids can meaningfully recover the clusters in this
experiment due to the additional complexity in the underlying model.

B.2 Additional portfolio backtesting results

Here we present Sharpe ratios of the portfolios in backtesting with different values for K1 = K2.
As shown in Table 4, with annual portfolio updates, the DRO-ACC performs well with 3× 3 and
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Table 3: Average AMI of different clustering methods compared with ground truth, over 10 different
random trials.

DRO Lasso ACC k-medoids

Average AMI 0.92 0.83 0.15 0.33

4× 4 clusters. With 5× 5 clusters, the DRO-ACC portfolio underperforms the other portfolios in
Sharpe ratio but still outperforms the benchmark SPY.

Table 4: Sharpe Ratio of portfolios with different numbers of clusters, updated annually.

Number of clusters 3× 3 = 9 4× 4 = 16 5× 5 = 25 6× 6 = 36

DRO-ACC 0.87 0.87 0.73 1.05

CORD 0.9 0.85 0.79 0.77

k-medoids 0.82 0.85 0.84 0.9

SPY 0.36 0.36 0.36 0.36

We also present the Sharpe ratios with monthly and quarterly portfolio updates. This means
that the stocks are selected monthly/quarterly and weights re-calculated using the newest clustering
results. As shown in Tables 5 and 6, DRO-ACC portfolios are also robust to the stock selection and
allocation update frequency, as they tend to outperform with both monthly and quarterly updates.

Table 5: Sharpe Ratio of portfolios with different numbers of clusters, updated monthly.

Number of clusters 3× 3 = 9 4× 4 = 16 5× 5 = 25 6× 6 = 36

DRO-ACC 0.8 0.83 0.88 0.89

CORD 0.65 0.84 0.77 0.74

k-medoids 0.78 0.8 0.81 0.87

SPY 0.36 0.36 0.36 0.36

Table 6: Sharpe Ratio of portfolios with different numbers of clusters, updated quarterly.

Number of clusters 3× 3 = 9 4× 4 = 16 5× 5 = 25 6× 6 = 36

DRO-ACC 0.91 0.83 0.78 0.87

CORD 0.76 0.82 0.88 0.84

k-medoids 0.72 0.78 0.78 0.82

SPY 0.36 0.36 0.36 0.36
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