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Abstract

This paper is concerned with a (minimizing) multiple-objective risk-sensitive control prob-
lem. Asymptotic analysis leads to the introduction of a new class of two-player, zero-sum,
deterministic differential games. The distinguishing feature of this class of games is that the
cost functional is multiple-objective in nature, being composed of the risk-neutral integral costs
associated with the original risk-sensitive problem. More precisely, the opposing player in such
a game seeks to maximize the most ‘vulnerable’ member of a given set of cost functionals
while the original controller seeks to minimize the worst ‘damage’ that the opponent can do
over this set. It is then shown that the problem of finding an efficient risk-sensitive controller
is equivalent, asymptotically, to solving this differential game. Surprisingly, this differential
game is proved to be independent of the weights on the different objectives in the original
multiple-objective risk-sensitive problem. As a by-product, our results generalize the existing
results for the single-objective risk-sensitive control problem to a substantially larger class of

nonlinear systems, including those with control-dependent diffusion terms.

Keywords. risk-sensitive control; multiple-objective optimization; differential games; Hamilton-

Jacobi-Bellman equations; upper/lower Isaacs equations; viscosity solutions.
AMS subject classification: 93E20, 90C29, 90D25.
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1 Introduction

The distinguishing feature of risk-sensitive control problems is that cost functionals involve
the expectation of an exponential where the exponent of this exponential is the cost functional
of a standard (risk-neutral) stochastic control problem. One consequence of the exponential
term is that larger values of the exponent are weighted more heavily. For this reason, robust
(or risk-averse) controllers can be obtained by minimizing the risk-sensitive cost. Another
important property of the risk-sensitive control problem is its relationship with the class of
two-player, zero-sum, deterministic differential games associated with the so-called H, control
problem. In this setting, the controller (for the risk-sensitive problem) takes the part of the
minimizing player in the differential game while the opponent may be interpreted as a worst
case disturbance. As a consequence, robustness issues for linear, nonlinear and stochastic
systems can be studied in the framework of risk-sensitive control as well as differential games.
For further details of such interpretations of the H., control problem, we refer the reader to
[4, 11, 18].

In this paper, we study (minimizing) risk-sensitive control problems with multiple objec-
tives. Multi-objective optimization problems arise naturally in practice. For example, the clas-
sical Markowitz mean-variance model for portfolio selection [25] is a typical multi-objective
optimization problem, with two competing objectives: return and risk. A single-objective
optimization problem with several constraints may also be formulated as a multi-objective
problem, with the constraints functions regarded as objective functions. Here, we are partic-
ularly interested in the relationship between a given class of multiple-objective risk-sensitive
control problems and a new class of deterministic differential games, which is to be introduced
in this paper. To make it precise, asymptotic analysis leads to the introduction of a class
of two-player, zero-sum, deterministic differential games. The distinguishing feature of this
new class of problems is that its cost is multiple-objective in nature, being comprised of the
risk-neutral integral costs associated with the original risk-sensitive problem. Specifically, in
this differential game a set of finitely many cost functionals is given. Rather than seeking to
maximize a single cost functional (as in the usual differential game), the opponent seeks to
maximize the largest member of this set of cost functionals - that is, the opponent attacks
the most vulnerable member of the set, and disregards the others. On the other hand, the
original controller tries to minimize the worst damage that the opponent can do. Naturally,
this general situation arises in many applications. We show that this problem, from the view-
point of the original controller, is a multiple-objective optimization problem. Furthermore, as
the small noise parameter ¢ — 0, the value function for the multiple-objective risk-sensitive
problem converges to the upper value associated with the aforementioned differential game.

More interestingly, we show that finding efficient solutions for different performance tradeoffs



is equivalent, asymptotically, to solving the same deterministic differential game.

We also point out that our results apply to a large class of nonlinear stochastic systems
under reasonably mild assumptions. In particular, our work incorporates some fairly recent
advances on stochastic control in which the diffusion term may depend on the state and/or the
control. For a complete account of the latest results on this topic, the reader is directed to the
book [26]. We highlight that control dependence of the diffusion term gives rise to interest-
ing phenomena which reveals some essential differences between deterministic and stochastic
control problems; for instance, in the stochastic linear quadratic problem, the control weight-
ing matrix may be negative definite, but the problem remain well posed [7]. In addition,
stochastic optimal control problems with control dependent diffusions arise naturally in many
finance applications; see, for example, [5, 13, 23, 26]. Also, unlike the analysis in [19] for the
single-objective problem, we need not assume that the control enters linearly in the drift (or
diffusion) and certain smoothness assumptions on the value function are not required in the
analysis. In fact, one consequence of our analysis is that many of the results in [19] for the
single objective problem can be generalized to a substantially larger class of nonlinear systems
under milder assumptions.

The paper is organized as follows. In Section 2, we formulate multiple-objective risk-
sensitive control problems, and in Section 3, we introduce a new class of deterministic dif-
ferential games that are closely related to the multiple-objective risk-sensitive problems. In
Section 4, a transformation that is required in the subsequent asymptotic analysis is dis-
cussed. In Section 5, we study the asymptotic properties of the value function associated with
the multiple-objective risk-sensitive problem and show that it converges to the value function
of the deterministic differential game that was introduced in Section 3. Finally, Section 6 gives
some concluding remarks. The Appendix highlights results from nonsmooth analysis and the

viscosity solution theory that are used in the paper.

2 Multiple-objective risk-sensitive control

2.1 Multiple-objective optimization

A fundamental problem in many applications is finding a control input that meets the require-
ments of several competing objectives, simultaneously. Suppose that each of [ + 1 objectives
in a certain application is represented by an objective function J;(-), ¢ = 0,---,l. Suppose
that by lowering the value of a particular objective functional, the corresponding objective is
more successfully met. An input w is said to be efficient if none of the objective functionals
Jo(u),- -+, Ji(u) can be decreased any further without increasing one of the other cost func-

tionals. The vector of objective functionals resulting from an efficient input is said to belong



to the efficient frontier.

Two major issues in multiple-objective optimization are:
1. Constructing the efficient frontier (useful for determining which trade-offs are possible);
2. Finding the efficient inputs which correspond to points on the efficient frontier.

Given a constraint set {2 and objective functionals J; : @ — R, for 1 =0, -- -, [, the problem of

finding an efficient input is commonly expressed in the following way:

min{JO(u)a"'aJl(u)}' (1)

uenN
In the case when the objective functionals are convex and §) is convex, efficient inputs and
points on the efficient frontier are completely parametrized as follows: u* € € is efficient if and
only if there exists A = (Xg,+++,\;) € R X >0, A # 0 such that u* is the optimal solution
of the single-objective problem

min L(\; u) := Z Aidi(u). (2)

ueN

On the other hand, when the problem is not convex, the optimization problem (2) only char-
acterizes a subset of the efficient frontier. In this case, to identify the entire efficient frontier,
one needs to resort to different approaches, such as transforming to a single-objective minimax
problem or a single-objective problem with constraints. However, the equivalent new problems
are hard to solve due to the non-convex nature of the problem. For a detailed discussion, the

reader may consult [6, 27].

Remark 2.1 Our focus throughout this paper is finding the efficient inputs for (1) which can
be parametrized according to (2); that is, solving (2) for a given and fixed A > 0, A # 0. In
this situation, we may assume, without loss of generality, that \; > 0 for every ¢ = 0,---, [.
More specifically, having Ay = 0 for some k is the same as removing Ji(-) from the objective
set and solving (2) for a problem with fewer objectives but with A; > 0 for each one of them.

Hence, we shall assume for the remainder of this paper that A\; > 0 for every 3.

2.2 Statement of multi-objective risk-sensitive problem

In this subsection we formulate the multiple-objective risk-sensitive control problem under
consideration in this paper. Since we shall be using dynamic programming, we shall work
within the framework of the weak formulation for stochastic control (see [26]) which we shall
summarize later for reader’s convenience. Let (s, z) € [0,7) x R” be given and fixed. Consider
the following controlled SDE:
dz(t) = b(t, z(t), u(t)) dt + 3.7 o(t,z(t),u(t)) dB(t)
(3)

z(s) ==z



where € > 0 and y > 0 are parameters and u(-) is the U-valued control input. Note in particular
that unlike the model studied in [19], the drift may be nonlinear in u, and the diffusion may
depend on u. The Brownian motion B(t) is assumed to be scalar-valued throughout this paper.
Note, however, that this is only for the sake of simplicity and a multi-dimensional Brownian
motion renders no essential difficulty.

For every 1 =0, ---,l, we have an associated risk-sensitive cost functional, which is defined

as follows:
Jﬂ&auH)ZE{wP%[ATﬂ@w@LMﬂﬁh+¢mHW]}- ()

We introduce the following assumptions:
Assumption:

(A1) U CR™ is compact, and T > 0.

(A2) Themaps b: [0,T]xR* xU = R*, 0 : [0, T|xR* xU = R*, fi: [0, T]xR* xU = R
and ¢¢ : R* - R, i = 0,---,l, are uniformly continuous and bounded. Also, there exists a

constant L > 0 such that for ¢(¢,z,u) = b(t,z,u), o(t,z,u), f(t,z,u), ¢'(z),
lp(t,z,u) — p(t,y,u) < L|lz—y|, Vte[0,T], z,y e R*, uel. (5)

Our aim is to find a so-called efficient control associated with (3)-(4). The class of ad-
missible controls (in the weak formulation) is as follows. (For more details, the reader is
directed to the books [21, 26]). For every fixed s € [0,T'), let U[s,T| denote the set of 5-tuples
(Q,F, P,B(-),u(-)) which satisfy the following properties:

1. (Q,F,P) is a complete probability space;

2. {B(t)}t>s is a 1-dimensional standard Brownian motion defined on (€2, F, P) over [s,T],
and F} = o{B(r)|s <r < t}, augmented by all the P-null sets in F;

3. u:[s,T] x Q2 — U is an {F}};>,-progressively measurable process on (2, F, P);

4. Under u(-), for any initial condition z € R", the SDE (3) admits a unique solution z(-)
on (2, F,{F} }+>s, P), and the integrals in the cost functionals (4) are well-defined with
this solution.

If it is clear from the context what (2, F,P) and B(-) are, we will write u(-) € U[s,T] as
shorthand for 5-tuple (Q,F, P, B(-),u(-)) € U[s,T].
Let A € R, \; > 0 be given and fixed. For every such ), consider the cost functional

l

LG5, 2, % u()) = 30N T (s, 35 (). (6)

1=0

In this paper we shall focus on solving problems of the following form:



Problem: For a given (s, ) € [0,7)xR" and A € R*!, \; > 0, find a 5-tuple (Q, F, P, B(-),u(-)) €
Uls, T] such that:

Lf(s, z, A; u(-)) = min  L(s, z, A; u(+)). 7
(s, A al)) = | min - L4(s, 2, X () (7

It should be noted that the original multiple-objective optimal control problem associated
with (3)-(4) is to find, for every given (s,z) € [0,T) xR, a 5-tuple (Q, F, P, B(-),4(-)) € U[s, T]
which is efficient for J§(s,z;u(-)), -+, Jf(s,z;u(-)). As mentioned earlier, in the case when
the cost functionals Jf(s,z;u(-)) are convex in u(-) and the SDE (3) is linear in z(-) and
u(+) (a typical such case is the so-called linear quadratic control), the entire efficient frontier
associated with (3)-(4) can be traced out by solving the optimal control problem (7) with
different A € R, X > 0, A # 0. On the other hand, if the problem is not convex, the optimal
controls to (7) will generally only give rise to a subset of the efficient frontier. However, (7)
still plays a key role in the multiple-objective problem, and we shall focus our attention on
problems of this form.

In the papers [22, 24], the multiple-objective linear quadratic (LQ) control problem is stud-
ied. Since a linear combination of convex quadratic functionals is also a convex quadratic func-
tional, the Lagrangian L¢(s, z, A; u(+)) resulting from integral quadratic functionals J (s, z; u(-))
is also a convex integral quadratic functional. Therefore, in the LQ case, (7) is a standard LQ
problem, and efficient controls are completely obtained by solving LQ problems. On the other
hand, a linear combination of risk-sensitive cost functionals Jf (s, z;u(-)) can not be reduced to
something simpler. It seems that elegant solutions can not be obtained, even in the simplest
cases. This may account for the fact that (to our knowledge) no earlier work has been done

on this problem.

2.3 Hamilton-Jacobi-Bellman equation

In this subsection, we present the Hamilton-Jacobi-Bellman (HJB) equation associated with
the problem consisting of (3) and (7).

For technical reasons (the requirement of bounded terminal conditions in the theory of
viscosity solutions), it is convenient to replace the cost functional (4) with an equivalent
expression which we now introduce. By (A2), the functionals f? are uniformly bounded.

Hence, there is a constant K < oo such that
T
‘/ i, z(t), u(t))dt| < K, V(s,z)€[0,T)xR" u(-) €Uls, T). (8)
S
Let ¥ : R — R be any smooth, uniformly Lipschitz functional such that:
2K, ye€ (2K, x),

U(y) = y, y€[-K, K], (9)
—2K, y € (—o0,—2K).

7



Due to the uniform bound (8), we may replace (4) by:

356,25 = B {ewp o [ a0t ) + oo} (10)

In order to study (7) (with (4) replaced by (10)) using dynamic programming, we make the
following problem transformation. For convenience, we shall denote y(t) = [yo(t), -, yi(t)]
with f(t,z,u) defined similarly. For every (s,z,y) € [0,T] x R* x R+!, consider the optimal

control problem with dynamics:
dz(t) = b(t,z(t) dt+,/ o(t,z(t),u(t)) dB(t)
dy(t) = f(t,z(t),u(t)) dt (11)

z(s) = x, y(s) =y

and cost:

L(s, z, y, A; u( {Zz\ exp (z(T)) + \I/(yz(T))] } } (12)
The HJB equation associated with (11)-(12) is
i(tz,) + inf, {os(t2,) - bt 2,0) + Slg v, (h2y) - £t 2,0
g tr lo(to,u) otz v (b o))} =0, (5,) € 0,7) xR xR (13)
/Ue(Ta:an) = Zé:() Ai exp% [gz(x) + lIJ(yZ)] 3 (.’L’, y) € R" x R
We have the following result.

Theorem 2.1 Suppose that (A1) and (A2) hold. Then

v(s,2,9) = inf L(s, x4, A ul), (s,2,y) € [0,7] x R* x R (14)
u(-)eU[s,T]

is the unique bounded viscosity solution of (13), where L(s, z, y, A; u(-)) is given by (12) and
(z(+),y(+)) is the unique solution of (11) corresponding to u(-) € Uls, T].
Proof:  Since (A1) and (A2) hold and the terminal cost (12) is uniformly bounded, from

[26, Theorems 5.2 and 6.1] the result follows immediately. n

Throughout this paper, for any given and fixed A € R+ such that \; > 0, we shall refer to
v¢(s, z, y) as defined by (14) as the value function associated with (11)-(12).



3 A differential game

In this section, we introduce a class of two-player, zero-sum, deterministic differential games
that are closely related to the multiple-objective risk-sensitive problems formulated in the
previous section. We shall adopt the Elliott-Kalton formulation for this problem; see [12, 16],
for example. As will be shown later this family of differential games is closely related to the
multiple-objective risk sensitive problem, introduced in Section 2.2, and is characterized by a
non-standard cost functional ((16) below). We assume throughout that the functions b, o and
f? satisfy (A2).
Suppose that the system dynamics are governed by the ordinary differential equation
(ODE):
z(t) = b(t, z(t),u(t)) + o(t, z(t), u(t)) w(t)
(15)
z(s) = z,
where u(-) is the U-valued input of player 1 (the control player), and w(-) is the W-valued
input of player 2 (the disturbance player, or opponent). Let A € Ri*T!, A; > 0 be given and
fixed (see Remark 2.1). The cost associated with inputs u(-) and w(-) is given by:

J (s, z;3u(-), w(-))
T , T
= maX{/ Fit,x(t),u(t) dt + ' (2(T)) — / Iw(t)Ith}- (16)
3 s S
The set of admissible controls/disturbances for players 1 and 2 are:
Ua[s, T] = {u() s, T] = U ‘ u(-) is B[s,T| — measurable}, (17)
Wals, T] = {w() s, T] > W ‘ w(-) is B[s, T] — measurable}, (18)
respectively, where Bls, T'] denotes the Borel o-algebra on [s, T|. We make the following
assumption:
Assumption:

(A1) U CR™ and W C R are compact, and T' > 0.
In addition, for any t € (s,T], two admissible inputs u1(-), ua(-) € Uy[s,T], are said to be
equivalent on [s, T] if ui(-) = uz(-) on [s,t]. We shall denote this by ui(:) & uz(:) on [s,t].
(Similarly for disturbances). We note that under (A1)’ and (A2), the ODE (15) has a unique
solution z(-) for every u(-) € Uy[s, T] and w(-) € Wyls, T.

We are interested in the upper differential game associated with (15)-(16), which calls for

the definition of a strategy for player 2. The class of admissible strategies for player 2 is:
L4ls, T] = {a s Ugs, T = Wyls, T] | for every t € [s,T]

u1(-) = uz(-) on [s,t] = afui(-)] = alua(-)] on [s,t]}. (19)

9



The upper differential game associated with (15)-(16) can be stated as follows: Find (u(-),w(-)) €
Ug[s,T] x Wy[s,T|] such that

Visia) = Josa) o) = inf - sup J(s,35u),olul) (20)

V' is commonly referred to as the upper value of the differential game (15)-(16).

As in the risk-sensitive case, the boundedness of f? in (A2) allows us to replace (16) with
an equivalent expression involving the function ¥(-) as defined by (9). To employ the dynamic
programming approach to the differential game just introduced, let y € R+ be given and
consider the ODE:

z(t) = b(t,z(t),u(t)) + o(t, z(t), u(t)) w(t)
y(t) = f(t, z(t), u(t)) (21)
z(s) =z, y(s) =y

and cost:

T
Io, 2, yiu(),w()) = max {W((T) + g/ (a(T) 7 [ (o) dt}. (22

S

Clearly, (15)-(16) corresponds to the special case y = 0 in (21)-(22). The upper Isaacs equation
associated with (21)-(22) is:

Vi + infyep supy,ew {(b tow) - Ve+ o iV =72 |w\2} =0,
(t, z, y) €[0,T) x R* x R+! (23)
V(T,z,y) = max; {g"(z) + U(y:)}, (z,y) € R* x RHL
We have the following characterization of the solution of (23).

Theorem 3.1 Under (A1) and (A2),

V(s,z,y)=  inf sup  J(s, z, gru(), ofu()]), (s,2,9) €[0,T) x R* x R (24)
u(-)€Ua[s,T] o.|€T 4[s,T]

is the unique viscosity solution of (23), where J(s, =, y;u(-), w(-)) is given by (22) and (z(-), y(-))
is the solution of (21) corresponding to (u(-), w(-)) € Uyls, T] x Wy[s, T].

We note that (15)-(16) (similar comments apply to (21)-(22)) is a differential game problem
in which player 2 chooses an input w(-) € Wy[s,T| to maximize the cost J(s,z;u(-), w(-)) by

making the largest of the terms
T . T
Ji(s,z3u(), w()) = / Fi(t 2(t),u(®) dt + g (2(T)) — 2 / w(t)|2dt

10



as large as possible; that is, intuitively, w(-) inflicts damage by attacking the cost functional
Ji(s,z;u(-),w(-)) that it can do most harm to (the most vulnerable one), and ignores the
others. On the other hand, player 1 chooses the input u(-) € Uy[s,T| which minimizes the
worst damage that w(-) can do over all these J;(s, z; u(-), w(+)).

One important observation is that the optimal input @(-) € U[s,T] for player 1 is also
an efficient input for a certain multiple-objective control problem. To see this, consider the
following. For every u(-) € U([s, T, let

Ji (s, z;u(-)) ;== sup  Ji(s, zul-), afu(r)]).
al-]€Tq[s, T]
Then the upper value of the game (15)-(16) is

inf su Jsaiv;u',au-
u(-)EUg[s, T] a[-]eI‘dI[)S,T] ( (), efu()])

= inf su max { J; (s, z; u(-), afu(-
“(')Eud[S,T]a[.]ePdIfs,T] i { ( () [ ()D}

- inf  max su Ji(s, z; u(-), afu(-
u(-)EUyls, T] {a[']EF(iI?s,T] ( (), af ()])}

= u(-)elgtlf[s,T] miax{Ji (s, z; u())} (25)

It is easy to show that the optimal control u*(-) for the min-max problem (25) is efficient for the

multiple-objective problem with objectives J(s, z; u(+)). For this reason, the deterministic

differential games (15)-(16) and (21)-(22) are multiple-objective in nature.

4 Transformation

To show the relationship between the multiple-objective risk-sensitive problem (11)-(12) and

the differential game (21)-(22), we introduce the following transformation:
VEe(t,z,y) = elnv(t, z,y). (26)

In this section, we prove several results on the properties of V€. These are required in our
study of the asymptotic behavior of V¢ and the correspondence between the multiple-objective
risk-sensitive problem and the differential games. The first result shows that the super- and
sub-differentials of V¢ are uniformly bounded. However, the proof of this result requires the

following additional assumption.
Assumption:

(A3) o(t,z,u) = o(t,u), and b(t, z, u), fi(t, z, u) i = 0,---,1 are differentiable in z.

Proposition 4.1 Suppose that Assumptions (A1), (A2) and (A3) hold. Let V¢(s,z,y) be

defined by (26), and Dtl’(2$’ Z)Ve(s,a:,y) and Di’é’ ;) Ve(s,z,y), the super- and sub-differentials,

11



be defined as in (51) and (52) in the Appendiz. Then there exists K < oo, independent of
(s,2,9) € [0, T]xR* xR*! and e > 0, such that |p| < K, for all (g, p, P) € D;’Q’+ Ve(s,z,y)U

o s (2,y)
Dt:(aéyy)ve(sa z, y)

Proof: Let e > 0and (s, 7, y) € [0,T] x R* x R+ be given, and (Z(-), 9(-), 4(-)) be an ad-
missible triple for (11) with the initial condition (s, z, y). For any z € R", let (z(-), y(-), @(-))
be an admissible triple for (11), corresponding to the initial condition (s, z + z, y). It follows

that:
z(t) — z(t) = T'(¢t) 2, (27)

where the R"*"-valued process I'(-) is the solution of the SDE:

{ dr(t) = [bo (¢, 2(1), a(t)) + S (1)) T(2) dt (28)
I(s)=1
and
t

21(0) = [ [balrsalr) + @ (ar) ~ 2(), 4() ~ balr,2(r), u(®)

In addition,
t !
o(®) = 9(0) = ( [ Ualralr),ar)) + o)) D dr) = = 8(2) 2 (29)

where o(+) is defined like 31 (+), but with f, replacing b,. Since b is Lipschitz continuous in
z, uniformly in (t,u) € [0,7] x U, it follows from Gronwall’s inequality that there exists a

constant K > 0 (which is independent of (s,z,y) and € > 0) such that:
|2(t)| < K, |T(t)| <K, Vte[s,T], P—a.s. (30)

In particular, the bound (30) (together with the uniform Lipschitz continuity of f in z) implies
that

|2(T) = 2(T)| < K |2, |y(T) —5(T)| < K |z]. (31)

Now, fix (s,z,y) € [0,T] x R* x R*! 2 € R* and € > 0. For any 6 > 0, there exists an
admissible triple (Z(-),%(-),@(-)), possibly depending on (s, z,¥), 2, €, and ¢, such that:
VC(Sa z, y) > JE(Sa T,Y; 'U'()) - 5;

where

!
J(s,z,y5u(-) =eIn E {Z Ai eXP% 9" (=(T)) + T (yi(T))] }

1=0

12



and (z(-),y(-)) is the state process obtained from (11) when the input is u(-). Therefore,
Ve(sa T+ z, y) - V6(37'Tay) < Je(sa T+ 2,Y; ’lj,()) - Je(sa Y, ’a()) + 4. (32)
It is easy to show that:

J(s,z + z,y5u(-)) — Je(s,i% y;u(-))

 B{TLon e L[ (e(T) + Bw(D)])

l
xB {3 A exp - [6((T)) + Wi (T))]
1=0

+o(|2(T) — 2(T)| + [y(T) — (1))

Substituting (27), (29) into this expression, and noting (30) as well as the Lipschitz continuity
of g* and U, it follows that:

VG(S,J,‘—f—Z,y) _VE(S’xay)
< JYs,x +z,y50() — (s, 2, y34() + 6 < K [2] +o(|z2]) + 6 (33)

for some constant K < oo, which is independent of u(-), (s,z,y), z, € > 0 and § > 0. Since
this is true for all § > 0, we can let § — 0 in (33). In a similar way, the reverse inequality
can be obtained. Hence, it follows from (33) and (59) (see Appendix) that |p| < K for all
p € 0, VE(s,x,y), where 0, V¢ denotes the partial generalized gradient of V¢ with respect to z.
Our result is then an immediate consequence of:

(g,p,P) € Di’(zxj'y)Ve(t, z,y) U Dt,’(%c,_y)Ve(t, z,y) = p € oy V(t, z, y).

(This follows from (56)-(57) and (60)). [

We point out that Proposition 4.1 is a generalization of Lemma 2.1 in [19] (which is proved
using ideas from [14]). However, certain key differences between our proof of Proposition 4.1
and that of Lemma 2.1 in [19] should be noted. First, we have not assumed the existence of
an optimal control u(-) and an optimal disturbance strategy «]-] in our proof. Second, unlike
Lemma 2.1, the diffusion term in Proposition 4.1 may depend on the control u(-). Finally, we

have not assumed that V¢ is smooth.

Proposition 4.2 Suppose that (A1), (A2) and (A3) hold. Let ¢ > 0 and A € R, \; > 0
be given and fized. Let v¢ be the value function of the risk-sensitive problem (11)-(12) and
V¢ = elnve. Then there exists a compact subset W C R which is independent of € > 0 such
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that V¢ is the unique viscosity solution of the PDE:

¢

Vet 3,) + infucu supger { Vi (t 3, 9) - (b(t, 3,u) + o(t,u) w)

+ Z'L 0 yz (t z y) fz(t’ Z, ’U,) - ’72 |’U)|2 + #t’r[(}'(t,u) U(ta 'u')l V:cezc(taxay)]} =0,
< (34)
(t, z,y) € 0,T) x R* x R+,

VT, z,y) =€¢ln {Zi‘:o Ai exp L [g'(z) + ()] } , (z,y) € R® x R+,

Proof: It follows immediately from Theorem 3.1 that V¢ is the unique bounded viscosity
solution of the PDE (34) but with W = R. To see that W may be replaced by an e-independent

\

compact subset of R, consider the following. For every (¢,p, P) € D1 2+ V¢(s,z,y) where

1, (2,9)
p= (W, p@) e R* x R*!, we have:
g+ inf sup {pM) - (b(t, z,u) + o(t, u) w)
u€l ywew
+sz (6 2,u) =" ol + o) Poltu)} 20, (35)
where the maximizing w in (35) is given by
W a(t, ). (36)

272 P
Since o(t, w) is uniformly bounded on [0, T] x U (Assumption (A2)), and p is bounded (uni-
formly in (¢,z,y) and € > 0) for every (g, p, P) € D1 (2 +)V€(t,:(;, y)UD1 (Qx y)Ve(t, z,y) (Propo-
sition 4.1), it follows that

2})/2;0() o(t,u) € W, Y(t,z,y) €[0,T] xR* xR* weU

for some compact W € R, which is independent of € > 0. Therefore, we may replace W = R
with and compact subset W C R (with W C W), and the maximizing w in (35) will still be
given by (36). It is easy to see that the same argument applies for the case of sub-solutions.

5 Asymptotic results: € | 0

Clearly, it follows from (A2) that the terminal values V (T, z, y) of (23) and V¢(T, z, y) of (34)
are continuous. The following uniform convergence result is required in the proof of Theorem
5.1.

Lemma 5.1 Suppose that (A2) holds. Let A € RiT! be given such that \; > 0. Then
eln{Z)\ exp () + U(y;) }—)max{g )+ T(y))} aselO, (37)

14



uniformly on compact subsets of R* x R,

Proof: In fact, we show that convergence is uniform on the whole space R* x R'*!. First,
note that there is a constant —oo < K < oo such that In A; > K for every A; > 0. Also, let us

denote

i(z) := arg max {g'(z) + T(y;)} -

Since
€ln (zl: /\i) + max {g"(z) + T(y)}
i=0

!
i=0
> eln)() + max {g'(z) + O (y:)},

it follows that
l l 1 ) )
eln (Z )\i) > eln{ D i exp - [g'(2) + ()] } —max {g'(z) + U(y:)} > €K
=0 =0

which implies the result. ]

It is interesting to note that the limit in (37) does not depend on the values of the parameters
A, which accounts for the seemingly surprising fact that the small noise limit of the multiple-
objective risk-sensitive problems is independent of the weights on the different objectives (see
Theorem 5.1 below).

The following asymptotic result shows the relationship between the risk-sensitive prob-
lem (11)-(12) and the differential game (21)-(22). The convergence proof follows the general
methods of Barles and Perthame [2]. In particular, the notion of solution that is used in this
approach (and in the proof of Theorem 5.1) is the generalized definition of a discontinuous
viscosity solution. This is required since the functions (39) and (43) below are only semi-
continuous in general. In addition, the proof uses a comparison theorem for semi-continuous
viscosity sub- and super-solutions. The definition of a discontinuous viscosity solution is quite
similar to that of a continuous solution. The reader should refer to [17, Chapter VII] for a
detailed description of the Barles and Perthame method. The definition of a discontinuous vis-
cosity solution as well as the comparison theorem for semi-continuous sub- and super-solutions

can also be found there.

Theorem 5.1 Assume that (A1), (A2) and (A3) hold. For every € > 0, let v¢ be the value
function of the multiple-objective risk-sensitive problem (11)-(12), as defined by (14), and
Ve =c¢€lnve. Let W C R be the compact set as determined in Proposition 4.2, and V be the
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upper value of the associated deterministic differential game (21)-(22). Then V and V€ are
the unique viscosity solutions of (23) and (34), respectively. Moreover,
limn Vet z,y) = V(t,z,y), (38)
€.

uniformly on compact subsets.

Proof: Let W C R be as stated in the Theorem. By Theorem 3.1, V is the unique viscosity
solutions of (23) and the upper value of (21)-(22). Also, by Proposition 4.2, V¢ is the unique
viscosity solution of (34).

To prove (38), for every (t,z,y) € [0,T] x R* x R*L, define

Vit,z,y) = lim sup Vs, Z,7). (39)

el0, s—t, T—x, gy

Since V¢(s,z,y) is uniformly bounded on compact subsets, it follows that V is well defined
and upper-semi-continuous. We now prove that V is a viscosity sub-solution of (23). First,
since V(T z, y) — V (¢, z, y) uniformly on compact subsets, see Lemma 5.1, it follows from
[17, Proposition VIL.5.1] that

Let 9 € C°((0,T) x R* x RI*!). Suppose that ¥V — 4 has a local maximum at (¢°,2°,4°) €
(0, T) xR™ x RIFL . Tt follows from (39) that there exists a sequence {(t¢, z¢, y¢)} such that V¢—1)
has a local maximum at (¢, z¢,y¢), (¢, z¢,v¢) — (t°,2°,4%) and V(t¢, z¢,y¢) — V (2, 20,4°).
Since V€ is a viscosity sub-solution of (34), it follows that at every (t¢,z¢,y¢) (denoting ¢ =

P(t€, z¢, y°) etc.), we have:
[
¥+ inf S‘évpv{#“ (00" Y50) + b+ ow) 95+ F o5, — 7w} >0 (41)
w i=0

for every € > 0. Hence, by the continuity properties of v, the convergence properties of

(t¢,z¢,y¢) and Assumptions (A1)’-(A2), we can let ¢ — 0 which gives:

l
1y + inf sup {(b+aw)-¢$+Zfi¢yi—72|w|2}20 (42)
i=0

uelU yeWw

at (t9,2°,94%). Therefore, it follows from (39) and (42) that V is a viscosity sub-solution of
(23). In the same way, the function
V(t,a,y) =  Timinf  V¥(s,7,7) (43)
el0, s—t, Tz, gy

is well defined, lower semi-continuous, satisfies the terminal condition
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(using Lemma 5.1 and [17, Proposition VIL.5.1] as above) and is a viscosity super-solution of
(23). By the definition of V and V, we have V > V. On the other hand, the comparison
theorem for semi-continuous viscosity sub- and super-solutions, see [17, Theorem VII.8.1]),
gives V < V. Therefore, V := V =V is continuous on [0,T] x R* x R+! and
V(t,z,y) = limVe(t, z,y)
el0
uniformly on compact subsets. Finally, V = V by the uniqueness of viscosity solution to (23).

This completes the proof. [

It is interesting that V is independent of the actual value of \;. Note that in the setting of
the multiple-objective risk-sensitive problem (11)-(12), A; can be viewed as a weight for the i‘"
criteria: the higher the value of )\; the more important the i*? criteria becomes with different
values of \; representing different performance trade-offs between the [+1 criteria. Theorem 5.1
suggests that various different performance tradeoffs for the multiple-objective risk-sensitive
problem are equivalent, asymptotically, to the same limiting deterministic differential game.
This seems to be quite surprising and counter-intuitive. However, the multiple-objective nature
of the original problem is indeed captured by the cost functional (22) associated with the
limiting differential game; see also the discussion in the last paragraph of Section 3.

The proof of Theorem 5.1 is analogous to its single-objective counterpart, namely, Theorem
4.1 in [19]. One difference, however, should be noted. In [19], it is assumed that V¢ is a classical
solution of the associated PDE. This fact is then used in the convergence proof to establish
the parallel inequality to (41). However, it can be seen from the proof of Theorem 5.1 that
smoothness of V¢, which as well known is not a reasonable assumption, is not essential for the
result to hold. In particular, we have only made assumptions which guarantee that V¢ is a
viscosity solution of (34).

The (upper) differential game (15)-(16) plays an important role in robust control. (For a
detailed account on the role of differential games in robust control, the reader is referred to
the book [4]). The relationship between the (single-objective) risk-sensitive control problem
and the upper value of the differential game (15)-(16) was first established in [19]. The single-
objective problem is a special case of the problem we are studying. One contribution of this
paper is to show that the results in [19] hold under milder conditions for a significantly larger
class of systems. In particular, the diffusion term may depend on the control. Also, we need

not assume that the drift term in (3) is linear in the control.

6 Conclusion

In this paper, we have studied the relationship between multiple-objective risk-sensitive control

problems and a class of new deterministic differential games introduced in this paper. More
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specifically, we have shown that the problem of finding an efficient risk-sensitive controller
is equivalent, asymptotically, to solving this problem. In addition, we have proved that this
limiting differential game is independent of the size of the weights A; > 0 on the competing
objectives in the risk-sensitive problem. That is, various different performance tradeoffs for
the risk-sensitive problem are equivalent, asymptotically, to the same game problem.

This class of deterministic differential games is characterized by a cost functional which is
multiple-objective in nature, being composed of the risk-neutral integral costs associated with
the original risk-sensitive problem. In this game, the opposing player seeks to attack the most
vulnerable member in the given finite set of cost functionals (corresponding to the exponents
of the risk-sensitive costs), whereas the controller tries to minimize the worst damage that the
opposing player can do over this set. It appears that many practical problems can be modeled
as a differential game of this sort. To our best knowledge, this paper is also the first one
that examines the connection between multiple-objective risk-sensitive control and differential
games.

Our results apply to a large class of nonlinear stochastic systems, under reasonably mild
assumptions. In particular, our work incorporates some fairly recent advances on the control
of systems in which the diffusion term may depend on the state and/or the control. (See the
book [26] for a comprehensive treatment of stochastic control problems with control dependent
diffusions). In particular, optimal control problems with control dependent diffusions arise
frequently in finance applications.

Although we have focused on multiple-objective problems, we have also been able to gen-
eralize some known results for the single-objective case. In particular, we have shown that the
main results in [19] are true under milder conditions for a significantly larger class of stochastic
systems, as discussed above. On the other hand, unlike the standard (risk-neutral) stochas-
tic linear quadratic case [7], when the diffusion depends on the control, the linear quadratic
risk-sensitive problem and the linear quadratic stochastic and deterministic differential games

have not been solved, even in the single-objective case. They are interesting open problems.

Appendix

We present here some basic definitions and results from the theory of viscosity solutions and
nonsmooth analysis which are referred to in the paper. For a detailed discussion of viscosity
solutions, the reader is referred to the papers [9, 10] as well as the books [1, 15, 26]. For a
discussion of nonsmooth analysis, we recommend the book [8]. A proof of the relationship

between sub/super-differentials and Clarke’s generalized gradient can be found in [26, 28].
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Viscosity solutions

Consider the following nonlinear, scalar, first-order PDE

v+ H(t,z,vy) =0, (t,z)€[0,T)xR"

(44)
v(T,z) = g(x)
(a special case of which is (23)), and the nonlinear, scalar second-order PDE
ve+ H(t,z,0g5,055) =0, (¢t,z) €[0,T) xR
(45)

v(T,z) = g(x).

(see (13) or (34), for example). It is well known that the PDEs (23), (13) and (34) do not, in
general, have classical (smooth) solutions. A generalized concept of solution, called a viscosity
solution, is introduced in [10]. The main result in [10] is that under certain mild conditions,
there exists a unique viscosity solution of (44). In the second-order case, uniqueness is proven

in [20]. The definition of a viscosity solution of the first-order PDE (44) is as follows:

Definition 6.1 Let v € C([0,T] x R") and (to,z0) € (0,T) x R*. Then the first order super-
differential of v at (tg, zo) is given by

Dy ulto, 50) = { (u(to, 20), a(to, 20))

P € C((0,T) x R") and v — v has a local mazimum at (to,a:o)} (46)

and the first order sub-differential by

Dtl,’x_v(toa%) = {(wt(toawo), g (to, o))

P € C((0,T) x R") and v — v has a local minimum at (to,wo)}. (47)

Moreover, v is a viscosity solution of (44) if

v(T,z) =g(z), VzeR" (48)

and
q+H(t,z,p) >0, V(q,p) € D’ v(t,z) (49)
q+H(t,z,p) <0, V(q,p) € D’ v(t,z) (50)

for all (t,z) € [0,T) x R".

In particular, v is called a wviscosity sub-solution if it satisfies (48)-(49), and a wviscosity super-
solution if it satisfies (48) and (50). Also, for any v € C([0,T] x R™), we can define partial
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super/sub-differentials of v with respect to & at (t, z¢) (which we denote by DY Tu(t, z) and
D, v(t, z), respectively) by keeping t = t; fixed, and calculating the super/sub-differentials

t,,z
of v(tp, ) in the z variable.

For the second-order case, we have the following:

Definition 6.2 Let v € C([0,7] x R*) and (ty,z9) € (0,7) x R*. Then the second-order
super-differential of v at (tg,xo) is defined by

Dtl,,a%_'—fu(tO,a:O) = {("/’t(tﬂaﬁcO)a zpw(thxO)),"pzz(thxO)

P € C®((0,T) x R*) and v — 1 has a local mazimum at (to,:z:o)}, (51)
and the second order sub-differential of v is defined by

D;,’j’_'u(to,ﬂﬁo) = {(wt(toaﬂﬁo), e (to, %0)), Yae (to, o)

P € C((0,T) x R") and v — v has a local minimum at (to,xo)}. (52)

Moreover, v is a viscosity solution of (45) if

v(T,z) =g(z), VzreR" (53)

and
g+ H(t,z,p,P) >0, Y(g,p)€ D2 v(t,z) (54)
g+ H(t,z,p,P) <0, Y(g,p) € Dy2 v(t,x) (55)

for all (t,z) € [0,T) x R".

As in the first-order case, v is called a wviscosity sub-solution of (45) if (53)-(54) are satisfied,
and a wviscosity super-solution if (53) and (55) are satisfied. Clearly,

(¢,p,P) € Dp2*u(t,z) = (q,p) € Dy fv(t,z) = p € DY Fo(t, ) (56)
and
(¢,p,P) € D2 "v(t, z) = (q,p) € Dy'y v(t,x) = p € Dy w(t, ). (57)

Nonsmooth analysis

The following results from nonsmooth analysis are used in our proof of Proposition 4.1. For
an in depth discussion, we recommend the book [8].

We begin with a definition of the generalized gradient.
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Definition 6.3 (Generalized gradient) Let f : R* — R be a locally Lipschitz function.
The generalized gradient of f at x € R” is

0(c) = {e € B | (€ y) < limsup LTIV ZJENY,

z—x, h]0 ‘h|

(58)

If f: R" x U — R for some subset U of R™, the partial generalized gradient of f at (Z,a) €
R™ x U is obtained by fixing u = 4, and calculating the generalized gradient by treating f(z, )
as a function of z.

An alternative characterization of J0f is obtained from the following well known result: If
f : R" — R is Lipschitz, then f is differentiable almost everywhere (Rademacher’s Theorem
[8]). Let Qf denote the set of all points at which f is not differentiable. Then we have the
following result. (See Theorem 2.5.1, p. 63 of [8]).

Theorem 6.1 Let f satisfy the conditions in Theorem 6.3 and suppose that S is any set of

Lebesgue measure 0. Then

of (z) = co{,lim V f(z;)

1— 00

T — T, T; &S, xi¢Qf}. (59)
where co denotes the conver hull.
The following result is used in the proof of Proposition 4.1. (See [26, 28]).

Proposition 6.1 If v is locally Lipschitz in (t, x), then

Dy Vu(t,z) UDy ~u(t, ©) C 8 v(t, z). (60)
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