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Abstract

A continuous-time Markowitz's mean-variance portfolidesgion problem is studied in a market with one
stock, one bond, and proportional transaction costs. FEhas singular stochastic control problem, inherently
with a finite time horizon. Via a series of transformatioe problem is turned into a so-called double obstacle
problem, a well studied problem in physics and partial défeial equation literature, featuring two time-varying
free boundaries. The two boundaries, which define the bilyasel no-trade regions, are proved to be smooth in
time. This in turn characterizes the optimal strategy, vé&karokhod problem, as one that tries to keep a certain
adjusted bond-stock position within the no-trade regioave®al features of the optimal strategy are revealed
that are remarkably different from its no-transactiontamsunterpart. It is shown that there exists a critical
length in time, which is dependent on the stock excess retsrwell as the transaction fees butlependent
of the investment target and the stock volatility, so thaiea&pected terminal return may not be achievable if
the planning horizon is shorter than that critical lengtthifesin the absence of transaction costs any expected
return can be reached in an arbitrary period of time). It ithier demonstrated that anyone following the optimal
strategy should not buy the stock beyond the point when the to maturity is shorter than the aforementioned
critical length. Moreover, the investor would be less kil buy the stock and more likely to sell the stock when
the maturity date is getting closer. These features, whifsistent with the widely accepted investment wisdom,

suggest that the planning horizon is an integral part ofrtliestment opportunities.
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1 Introduction

Markowitz’s (single-period) mean—variance (MV) portfokelection model [Markowitz (1952)] marked the start
of the modern quantitative finance theory. Extensions todgmeamic — especially continuous-time — setting in
the asset allocation literature have, however, been ddedrzy the expected utility maximization (EUM) models,
which take a considerable departure from the MV model. Wihite utility approach was theoretically justified
by von Neumann and Morgenstern (1947), in practice “few if Bwvestors know their utility functions; nor do
the functions which financial engineers and financial ecastsniind analytically convenient necessarily repre-
sent a particular investor’s attitude towards risk andrrét{Markowitz and Zhou (2004)]. Meanwhile, there are
technical and conceptual difficulties in studying a dynaivi¢ model. In particular, an optimal trading strat-
egy generated initially may no longer be optimal half waytigh. This so-calletime inconsistencyneans that
dynamic programming — which is the main tool for solving dyr@ optimization problems — is not directly ap-
plicable. Furthermore, one could argue that it would be liardn investor to follow a time-inconsistent strategy.
Kydland and Prescott (1977) instead argue that time-iristerg solutions are economically meaningful if the
investor can commit at the initial time to follow a strateggl{ed apre-committed strategy

Time inconsistent control problems have recently atthstame interest; see &k and Murgoci (2008) and
Ekeland and Lazrak (2007). We note also that there are prabteher than dynamic MV analysis that are inher-
ently time inconsistent. For example, a dynamic behaviooatfolio selection problem is time inconsistent due to
the distortions in probabilities [Jin and Zhou (2008)].

Basak and Chabakauri (2008) specifically address the tiommBistency problem in MV analysis by proposing
the construction of a trading strategy that is locally ogtiin an MV sense and time-consistent, although it is not
globally optimal in the sense of Problem 2.1 (to be formwateSection 2). Basak and Chabakauri (2008) further
show that their strategy solves a global optimization pFobivith a state-dependent CARA utility function.

In this paper, we solve the global Problem 2.1, and do so wiasling is subject to transaction costs. The
solution obtained is pre-committed, instead of time-cstasit. We solve the problem by reformulating it in a way
that makes it amenable to dynamic programming.

Richardson (1989) is probably the earliest paper that atudifaithful extension of the MV model to the
continuous-time setting (albeit in the context of a singtek with a constant risk-free rate), followed by Bajeux-
Besnainou and Portait (1998). Li and Ng (2000), in a disetiete setting, developed an embedding technique
to change the originally time-inconsistent MV problem iatstochastic LQ control problem. This technique was
extended by Zhou and Li (2000), along with a stochastic lingaadratic control approach, to the continuous-time
caset Further extensions and improvements are carried out inngmuany others, Lim and Zhou (2002), Lim
(2004), Bieleckiet al. (2005), and Xia (2005).

All the existing works on continuous-time MV models havetamed that there is no transaction cost, leading to
results that are analytically elegant, and sometimes sullgrising [for example, it is shown in Li and Zhou (2006)
that any efficient strategy realizes its goal — no matter higl h is — with a probability of at least 80%]. However,
elegant they may be, certain investment behaviors derik@d the results simply contradict the conventional

wisdom, which in turn hints that the models may not have beepegrly formulated. For instance, the results

10ne should note that the trading strategies derived in LiNg¢2000) and Zhou and Li (2000) are not time-consistent.



dictate that an optimal strategy must trade all the time;aoeer, there must be risky exposures at any time [see
Chiu and Zhou (2009)]. These are certainly not consistettt tie common investment advice. Indeed, the
assumption that there is no transaction cost is flawed, whisteadingly allows an investor to continuously trade
without any penalty.

Portfolio selection subject to transaction costs has beetiesl extensively, albeit in the realm of utility maxi-
mization. Mathematically such a problem is a singular shstic control problem. Two different types of models
must be distinguished: one in an infinite planning horizod #re other in a finite horizon. See Magill and Con-
stantinides (1976), Davis and Norman (1990), and Shrevesanér (1994) for the former, and Davis, Panas and
Zariphopoulou (1993), Cvitanic and Karatzas (1996), andr®te and Jung (1994) for the latter. Technically,
the latter is substantially more difficult than the forménce in the finite horizon case there is an additional time
variable in the related Hamilton-Jacobi-Bellman (HJB) &tpn or variational inequality (VI). This is why the
research on finite-horizon problems had been predominantlyualitative and numerical solutions until Liu and
Loewenstein (2002) devised an analytical approach based approximation of the finite horizon by a sequence
of Erlang distributed random horizons. Dai and Yi (2009)sduently employed a different analytical approach
— a PDE one —to study the same problem.

This paper aims to analytically solve the MV model with traction costs. Note that such a problem is
inherently one in a finite time horizon, because the very neatf the Markowitz problem is about striking a
balance between the risk and return of the wealth at a fitgteninaltime. Compared with its EUM counterpart,
there is a feasibility issue that must be addressed befomptmal solution is sought. Precisely speaking, the
MV model is to minimize the variance of the terminal wealtlbjgat to the constraint that an investment target
— certain expected net terminal wealth — is achieved. Thalddidy is about whether such a target is achievable
by at least one admissible investment strategy. For a Bicheles market without transaction costs, it has been
shown [Lim and Zhou (2002)] thany target can be reached in an arbitrary length of time (so lentha risk
involved is not a concern, that is). For a more complicatedehaith random investment opportunities and no-
bankruptcy constraint, the feasibility is painstakinglyestigated in Bielecket al (2005). In this paper we show
that the length of the planning horizon is a determinant f igsue. In fact, there exists a critical length of time,
which is dependertnly on the stock excess return and the transaction fees, so shft@ently high target is not
achievable if the planning horizon is shorter than thataaitiength. This certainly makes good sense intuitively.

To obtain an optimal strategy, technically we follow theddsf Dai and Yi (2009) of eventually turning the
associated VI into a double-obstacle problem, a problermiths been well studied in physics and PDE theory.
That said, there are indeed intriguing subtleties whenadlgtaarrying it out. In particular, this paper is the first
to prove (to the best of the authors’ knowledge) that the twe boundaries that define the buy, sell and no-trade
regions are smooth. This smoothness is critical in deritiregoptimal strategy via a Skorokhod problénThe
optimal strategy is rather simple in implementation; itdskeep a certain adjusted bond-stock position within the
no-trade region. Several features of the optimal strategyevealed that are remarkably different from its no-
transaction-cost counterpart. Among them it is notabledha should no longer buy stock beyond the point when

the time to maturity is shorter than the aforementionedceaditength associated with the feasibility. Moreover,

2This smoothness also plays a crucial role in studying theefimbrizon optimal investment and consumption with tratisacosts under

utility framework, see Section 3 of Dai et al. (2009) wheraraagral over one free boundary is used.



one is less likely to buy the stock and more likely to sell tteck when the maturity date is getting closer. These
are consistent with the widely accepted financial advicd,sarggest that the planning horizon should be regarded
as a part of the investment opportunity set when it comesttiraaous time portfolio selection.

The remainder of the paper is organized as follows. The madéér consideration is formulated in section
2, and the feasibility issue is addressed in section 3. Thienapstrategy is derived in sections 4—6 via several
steps, including Lagrange relaxation, transformationhefilJB equation to a double obstacle problem, and the
Skorokhod problem. Finally, the paper is concluded withagks in section 7. Some technical proofs are relegated

to an appendix.

2 Problem Formulation

We consider a continuous-time market where there are ordyitvestment instruments: a bond and a stock with
price dynamics given respectively by

dR(t) = rR(t) dt,

dS(t) = aS(t)dt + oS(t) dB(¢).
Herer > 0, a > r ando > 0 are constants, and the procg#¥t) },c(o,r is a standard one-dimensional Brownian
motion on a filtered probability spad€?, 7, { F; }.c[o,r), P) with B(0) = 0 almost surely. We assume that the

filtration { ; } 10,77 iS generated by the Brownian motion, is right continuous, @ach; contains all thé>-null

sets of 7. We denote by.Z the set of square integrableF; }+<(o,7-adapted processes,

9 def The processX = {X(t)}ico,r 18 an {Fi}icjo,r)-
Ly=<X ,

adapted process such tfﬁaﬁ E [X?%(t)] dt < o0
and byL%rT the set of square integrahfe--measurable random variables,

L%, & {X | X is anFr-measurable random variable such tBatX?] < oo }.

There is a self-financing investor with a finite investmentzan [0, 7] who investsX (¢) dollars in the bond
andY (¢) dollars in the stock at time. Any stock transaction incurs @roportional transaction feewith \ €
[0,+00) andp € [0, 1) being the proportions paid when buying and selling the stoespectively. Throughout
this paper, we assume thatt- ¢ > 0, which means transaction costs must be involved. The béock-salue

process, starting frorfi, y) att = 0, evolves according to the equations:

XeMN@) = ¢4 T/tXI’M’N(s) ds — (1 +N)M(t) + (1 — p)N(2), (2.1)
0

YUMN@G) = y 4« /tviMvN(s) ds+o /tviMvN(s) dB(s) + M(t) — N(t), (2.2)
0 0

where M (t) and N(t) denote respectively the cumulative stock purchase andipeth timet. Sometimes we
simply useX, Y or XM:N yM.N instead ofX =MV y¥-M.N if there is no ambiguity.
Theadmissible strategy set of the investor is defined as follows:
The processed! = {M(t)}icio,r) and N = {N(t)}icpo,r) are
AL (M, N) | {Fi}+epo,r-adapted, RCLL, nonnegative and nondecreasing, ang the

processest > M:N andY¥"M:N are both inL%, for any(z, y) € R?



(M, N) is calledan admissible strateg§ (M, N) € A. Correspondingly( X *-*:N yv:M.N) is called aradmis-
sible (bond—stock) proceffs(z,y) € R? and(M, N) € A.

For an admissible proce¢x »-N 'y v.M.N) 'we define the investoriset wealth processy
WXY )X X+ (1 - pYR)r - A +NY (@), telo,T]

Namely, WY (¢) is the net worth of the investor's portfolio atafter the transaction cost is deducted. The

investor’sattainable net wealth sett the maturity timel” is defined as

WXY(T) is the net wealth af" of an ad-
Wy L L XY (T) | missible procesgX,Y) with X(0—) = z,
Y(0-)=y.

In the spirit of the original Markowitz's MV portfolio thegr anefficient strategys a trading strategy for which
there does not exist another strategy that has higher mebncahnigher variance, and/or has less variance and no
less mean at the terminal tinffé In other words, an efficient strategy is one thaaseto optimal Clearly, there
could be many efficient strategies, and the terminal meashsaances corresponding to all the efficient strategies
form anefficient frontier The positioning on the efficient frontier of a specific ineds dictated by his/her risk
preference.

Itis now well known that the efficient frontier can be obtairfeom solving the followingvariance minimizing

problem:

Problem 2.1.

Minimize Var(W),
subject to E[W] =2z, W eW".

Herez is a parameter satisfying
z>eTe+(1—pe Tyt — 1+ Ne Ty,

which means that the target expected terminal wealth isehighan that of the simple “all-bond” strategy (i.e.
initially liquidating the stock investment and putting #tle money in the bond account). The optimal solutions
to the above problem with varying values ofwill trace out the efficient frontier we are looking for. Fdrig
reason, although Problem 2.1 is indeed an auxilary matheahgroblem introduced to help solve the original
mean-variance problem, it is sometimes (as in this papslf italled the mean—variance problem.

It is immediate to see that Problem 2.1 is equivalent to theving problem.

Problem 2.2.

Minimize E[W?],
subject to E[W] =2z, W eW".

3 Feasibility

In contrast with the EUM problem, the MV model, Problem 2.8sfan inherent constrailt[iW] = z. Is there

always an admissible strategy to meet this constraint ntemadw aggressive the targeis? This is the so-called



feasibility issue. The issue is important and unique to thépgvbblem, and will be addressed fully in this section.

To begin with, we introduce two lemmas.
Lemma 3.1. If Wy € WY, W, € L3 andW, < Wy, thenW, € WgY.

Proof. By the definition of W;*Y, there exist{M, N) € A such thatx ¥ (0—) = z, Y™ N(0-) = y and

XIM’N,YIM’N

w (T) = W;. We define
M(t), if t <T, _ N(t), if t <T,
M(t) = _ N(t) = _
mry+ =W ey _p N+ W2 ey g
A p A+ p

XMN (), if t <T,

XM’N(T)—W1+W2, |ft:T,
Thereforely = W M

The proof above is very intuitive. If a higher terminal wédk achievable by an admissible strategy, then so is
a lower one, by simply “wasting money”, i.e., buying andisgllthe same amount of the stockztthanks to the

presence of the transaction costs. Thisasnecessarily true when there is no transaction cost.

Lemma 3.2. For any(z, y) € R?, we have (1) the s, is convex; (2) Ifz;, y;) € R?, W; € Wy ,i = 1,2,
theniVy + W, € W Ha291582: (3)if 1) < ag andy; <y, thenW2t¥t C W2z, (4) W= (HVevte ¢ yyey
andWet=mev=r c ey foranyp > 0; (5) WESY = pW2 foranyp > 0; (6) if a+(1— )yt —(1+ )y~ >
0, then0 e WY,

Proof. (1) For anyW;, Wa € WyY, assume thalV; = WXiYi(T), where(X;,Y;) = (X®MoNi yvMiNiy,
(M;,N;) € A, i = 1,2. Foranyk € (0,1), let M = kM, + (1 — k)Ms, N = kNy + (1 — k)N,. Then
(M,N) € A, and
XOMN — X 4+ (1 - k)Xo,
YvMN = kvy 4+ (1 - k)Ya.
Thus
WANT) = X(T) + (1 = )Y(T)* = (L+ XY (1) = X(T) + (1 = w)Y(T) — (u+NY(T)~
2 kX1(T) + (1= k) Xo(T) + (1 = p)(BYA(T) + (1 = k)Y2(T))
— (uF NRYT) ™ + (1 - k)Ya(T)7)
= k(X1(T) + (1 = Y1 (D) = (1 + X)Yi(T)7)
+ (1= k) (X(T) + (1 = W)Yo ()" — (1+ N)Y2(T)7)
= kW1 + (1 — k)Wa.

SinceW Y (T) € Wy, kW1 + (1 — k)W, € L%, it follows from Lemma 3.1 thak W + (1 — k)W, € Wy,

(2) This can be proved by the same argument as above.



@) If 1 < z9 andy; < o, then for any(M, N) € A, we haveX @t M:N  xoz.MN - yy MN-
Yy MN gy X MYy X2 MLy My o yrave - Therefore by Lemma 3.1, we have
XY Ty @ vz This showsA Yt C WER2,

(4) Foranyp > 0, (M, N) € A, we define

M(s)=M(s)+p, Vsel0,T].

Then(X#~ 1+ MN yy+p MNY = (XoMN Yy Ny gy X* HNrttn yutedhn WXy v N
WEY, Hencews TVPvte c you gimilarly, we can prove thatys (1 =#ev=r c yyey,
(5) Noting thatpy/ X =" oM yreethet — pp X« B0y e % g 5 0, we have immediatelyV Y = pWe.
(6) If y > 0andx + (1 — p)y = 0, then obviously) € W{f“l Y0 by Lemma 3.1. Noting (4) proved above,
we conclude thath € W;Y. Similarly we can prove the case gf< 0 andx + (1 + \)y > 0. O

Denote

2% sup {EW] | W e W3V} (3.2)

In view of Lemma 3.1, Problem 2.2 is feasible when
zep (T + (1—pe Tyt —(1+Ne Ty, 2). (3.2)

Itis clear that Problem 2.2 is not feasible whep- 2. So, it remains to investigate whether Problem 2.2 admits a
feasible solution when = 2.

It is well known that in the absence of transaction costs fi.e- © = 0), we havez = oo and thus Problem
2.2 is always feasible for any > e Tz + (1 — u)e" Tyt — (1 + N)e" Ty~ [see Lim and Zhou (2002)]. In other
words, no matter howsmall the investor’s initial wealth is, the investor can alwaysvar at anarbitrarily large
expected return in aplit secondpy taking a huge leverage on the stock. The following theoiradicates that

things become very different when the transaction costigelved.

Theorem 3.3. Assumd@’ < T+ &£ 11y (1+,\) Then

eTo+ (1 —peTy, ify>0,

N>
I

eTo+ (1+NeTy, ify<o0

Moreover, ify > 0 andz = Zz, then Problem 2.1 admits a unique feasible (thus optimai)tem and the optimal
strategy is(M, N) = (0,0). If y < 0, thenD = {).



Proof. For any(M, N) € A, due to (2.1), (2.2) anddts formula, we have

XM +1-—pY(T) =eTe+ 1 —peTy+ /OTe’”<Tt> (dX(t) —rX(t)dt)

+ / T(l — e T (Y (t) — oY (t) dt)
0
T
— €TT$ _ eaT _ ea(Tft) _ €T(T7t) c
+(1—p) y+/0 ((1 1) (1+X) )dM (t)

+ /O T(l — 1) (eT(T_t) - ea<T—t>) AN°(t) + /0 T(1 — e T VoY (t) dB(t)

+ 30 (= e ™ — (1 0T ) (M (1) - M(t-))

0<t<T

+ 0 A=) (T e M) (V) — N(t-)
0<t<T .,
<ot (L= wey+ [ (1= e oy (1) dB(r),
0

where we have notefl < ——In (}Jj—*) .So
"

E[X(T) + (1 — )Y (D)] < T+ (1 - )Ty,

It follows

EWXY]=EX(T)+1-p)Y (D" —1+NY(T) ]<EX(T)+ (1 —pY (D) <eTz+ (1—pey.

Wheny > 0, we haveE[WXY] = ez + (1 — p)e*Ty if and only if (M, N) = (0,0). Thus, ify > 0, then
2=e"Tx+ (1 - p)e*Ty, and(0,0) is the unique feasible strategy when- 2.

Now we turn to the case of < 0. Definer = inf{t € [0,T) : Y(t) > 0} AT. Thenr is a stopping time [cf.
Theorem 2.33, Klebaner (2004)]. On the §8Y(7) > 0}, by the same argument as above, we have

WY <erTDIX(r) 4+ (1= w)eT 7Y (1) < T DX () + (1 4+ N)e" Ty (7).

Onthe se{Y (r) < 0}, we haver =T,

WY = X(T)+ A+ NY(T) =" TDX(7) + (1+ X" Ty (7).
On the other hand, noting th&i(¢) < 0, ¢ € [0, ), we have

rTIX () + 1+ N)er Ty (7)
=eToe+ 1+ NeTy— / A4 p)e" T AN°(t) + / (o —7)e" Ty (t) dt
0 0

+ / T = oy () dBE) - Y A+ e TN () — N(t-))

0 0<t<r

<eTz+ 1+ NeTy+ / e"T=D(1 — )oY (t) dB(t).
0

It follows

Ele" X () + 1+ e’ TV (1] < e Tw+ (1+ Ve Ty,



Therefore,

EW, | <E[e" T X (1) + 1+ N)er Ty (n)] <o+ 1+ N)eTy.

This indicates thaE[W, "] = ¢’Tz + (1 + A)e" Ty if and only if the investor puts all of his wealth in the bond
attime 0. Thug = e Tz + (1 4+ N)eTyif y < 0. O

This result demonstrates the importance of the length aftrestment planning horizof;, by examining the
situation wherr" is not long enough. In this “short horizon” case, if the ineesstarts with a short position in
stock, then the only sensible strategy is the all-bond oinegsanyother strategy will just be worse off iloth
mean and variance. On the other hand, if one starts with adtwwi position, then the highest expected terminal
net wealth (without considering the variance) is achievedhe “stay-put” strategy, one that does not switch at
all between bond and stock from the very beginning. Theegfany efficient strategy is between the two extreme
strategies, those of “all-bond” and “stay-put”, accordio@n individual investor’s risk preference.

More significantly, Theorem 3.3 specifies explicitly thigtical length of horizonT™* = ﬁ In (}f—#) Itis
intriguing that7™ depends only on the excess returr; r, and the transaction feasy, noton the individual target
z or the stock volatilitys. Later we will show that, indeed, = +oco whenT' > T in Corollary 6.3. Thereforg™
is such a critical value in time that divides between “gldiealsibility” and “limited feasibility” of the underlying
MV portfolio selection problem. It signifies the opportunthat a longer time horizon would provide in achieving
a higher potential gain. In this sense, the length of therpfanhorizon should be really included in the set of
the investment opportunities, as opposed to the hithedelywiaccepted notion that the investment opportunity set
consists of only the probabilistic characteristics of thims. Moreover, it follows from the expressionidf that
the less transaction cost and/or the higher excess retuhe stock the shorter time it requires to attain the global
feasibility. These, of course, all make perfect sense anarally.

In the remaining part of this paper, we only consider the gdsenD # () andz € D.

4 Unconstrained Problem and Double-Obstacle Problem

4.1 Lagrangian Relaxation and HJB equation

By virtue of Lemma 3.2, Problem 2.2 is a convex constrainetiiropation problem. We shall utilize the well-
known Lagrange multiplier method to remove the constraint.
Let us introduce the following unconstrained problem.
Problem 4.1(Unconstrained Problem.
Minimize E[W?] — 2((E[W] — 2)
subject to W e WY,
or equivalently,
Problem 4.2.
Minimize E[(W — £)?]
subject to W e WY,



Define the value function of Problem 2.2 as follows:

Vi(z,y; 2) &t inf EW?, zeD.
w a
B

The following result, showing the connection between ReobP.2 and Problem 4.2, can be proved by a standard

convex analysis argument.
Proposition 4.1. Problem 2.2 and Problem 4.2 have the following relations.

(1) If W7 solves Problem 2.2 with parameterc D, then there exit§ € R such thatiV} also solves Problem

4.2 with parameter.

(2) Conversely, ifi’, solves Problem 4.2 with parametére R, then it must also solve Problem 2.2 with

parameterz = E[WW,].

It is easy to see that);"¥ — ¢ = wg*””-ﬂ. As a consequence, we consider the following problem idstea
of Problem 4.2:

Problem 4.3.

Minimize E[W?]
subject to W € ngeeiﬂ’y
To solve the above problem, we use dynamic programming. imgdgo we need to parameterize the initial
time. Consider the dynamics (2.1)—(2.2) where the initrakt0 is revised to some € [0,7), and defin@V*¥

as the counterpart o8;¥ where the initial time is and initial bond—stock position i&, y). We then define the

value function of Problem 4.3 as

Vo)< inf BW?L (ta.y) € 0.7) < B (4.)

The following proposition establishes a link between Peabl.3 and Problem 2.2.

Proposition 4.2. If z € D, then

sup(V(0,2 — Le™" T y) — (€ — 2)%) = Vi(z, y;2) — 2%
LeR

Proof. Note that

sup(V (0,2 — Le™ "1 y) — (£ — 2)?) = sup inf EW? - (0 - 2)?]

LeR LeR WewgffefrT’y
=sup inf E[(W —£)>?—-({—2)?<sup inf E[(W —£)?—({—2)%
PR WeEWTY (€R V;[evrﬁy

E[W]=z E[W]=z

Therefore

sup(V (0,2 — Le™ y) — (0 — 2)?) < Vi(w,y;2) — 22
LeR

10



SinceV; is convex andt is an interior point ofD, by convex analysis, there exigtsc R such that
Vilz,y;2) — 202 < Vi(x,y;2) — 2072, YV ZeD.
For anylV € Wy, by the definition ofi;, we have

E[(W —£7)? = (" = 2)"] = E[W?] = 20*(B[W] - 2) = 2° > Vi(z,y; E[W]) - 20°(E[W] - 2) — 2°

P ‘/l(xaya Z) - ZQ'

It follows
sup(V (0,2 — e y) — (0 — 2)?) =sup _inf E[(W —£)? — (£ — 2)?]
LeR LeER WEWY
> inf E[(W — ") — (¢* — 2)?] > Vi(z,y;2) — 22,
B ) — (6" — 22 2 Vi(a,y;2) — 2
which yields the desired result. O

Therefore, we need only to study the value funcfioft, «, ), which we set out to do now.
Lemma 4.3. The value functioiv’ defined in (4.1) has the following properties.
(1) Foranyt € [0,T), V(t,-,-) is convex and continuous ik,
(2) Foranyt € [0,T), V(t,z,y) is nonincreasing inc andy.

(3) Foranyp > 0,t € [0,7), we haveV (t,z + (1 — w)p,y — p) = V(t,z,y), Vt,z — (1 + Np,y + p) =
V(t,z,y).

(4) Foranyp > 0,t € [0,T), we haveV (¢, pz, py) = p?V (t,x,y).
B) fz+ 1 —pyt — 1+ Ny =0,thenV(t,z,y) = 0.
Proof. All the results can be easily proved in term of the definitibivoand Lemma 3.2. O

Due to part (5) of the above lemma, we only need to considdyl®m4.3 in thénsolvency region

S (w,y) €R?| 2+ (1— py™ — (1+ Ny~ <0}

It is well known that the value functiol is a viscosity solution to the following Hamilton-JacobéliBnan (HJB)
equation or variational inequality (VI) with terminal cdtidn:

min {¢, + Low, (1 — p)p, — ¢y, 0, — 1+ N, } =0, V(t,z,y) €[0,T)x.7,

(4.2)
@(T,x,y):(m+(1—u)y+—(1+)\)y_)2, V(m,y) €.,
where
def 1 2 92
Lop = 30 Y Py t oy, TP,

The idea of the subsequent analysis is to construct a pkntisolution to the HIB equation, and then employ

the verification theorem to obtain an optimal strategy. Thwestruction of the solution is built upon a series of
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transformations on equation (4.2) until we reach an eqoattated to the so-calledbuble-obstacl@roblem in
physics which has been well studied in the partial difféedmquation literature.

We will show in Proposition 4.4 below that the constructetlison ¢ satisfiesp, — (14 A) ¢, = 0 when
y < 0. Hence, we only need to focus gn> 0. A substantial technical difficulty arises with the HIB edoiat
(4.2) in that the spatial variable:, y) is two dimensional. However, the homogeneity of Lemma 4)3x(otivates
us to make the transformation

o(t,z,y) = y*V(, §>, fory > 0,

so as to reduce the dimension by one. Accordingly, (4.2)riseito

min {V; + L1V, (x+1-p)V, =2V, —(z+ 1+ NV, +2V} =0, V (t,x)€[0,T)x £,
V(T,z) = (x+1—p)?, VeeZ,

where 2 g(—oo, —(1—p)),and

Further, let
nV(t,x), (t,z)€0,T)x Z.
It is not hard to show thab (¢, =) is governed by

min {wt—i—[,gw,w%—(;v—i—l—u),(;v—l—l—&—)\)—w%}:0, V(t,x) € [0,T) x Z,

(4.3)
w(t,z) =In(—z — (1 — u)), VeeZ,
where
d_efl 2,2 2\ 2 1 2
ng—2ax (Wee + 2w7) — (« r+0)xww+a+20 .

4.2 A Related Double-Obstacle Problem

Equation (4.3) is a variational inequality with gradienhstraints, which is hard to study. As in Dai and Yi (2009),
we will relate it to a double obstacle problem that is traltabVe refer interested readers to Friedman (1988) for

obstacle problems.

Let
oto) e L a0 T)x 2. (4.4)
) waj(ﬁ,ZE)? ) )
Notice that
1 1 2 2 . — 2,2
%ng = 2 iazx%m —(a—r)av, + (oz —r+ 02) v+ o2 (xvvxvz — 2x)] .

Thisinspiresus to consider the following double-obstacle problem:

(4.5)

max {min{—v; — Lv,v—(z+1—p},v—(z+1+XN)} =0, V(t,z)€[0,T)x X
v(T,z)=ax+1—pn, VzeX,

12



where

1 2220, — 2202
Lot 502x2vm —(a—7)zvy + (@ —r+ 0% v+ 02 (w — 2x> . (4.6)

It should be emphasized that at this stage we have yet to kheguation (4.5) is mathematically equivalent
to equation (4.3) via the transformation (4.4). Howeveg, fthllowing propositions show that (4.5) is solvable, and

the solution to (4.3) can be constructed through the saistad (4.5).

Proposition 4.4. Equation (4.5) has a solution € W,*([0,T) x (=N, — (1 — u))), forany N > — (1 — p),
€ (1, 00). Moreover,

v <0, 4.7)
0< v, <1, (4.8)

and there exist two decreasing functiaris-) € C*°[0,T) andz} () € C*°[0,T}) such that

{t,z) € [0,T) x Z : v(t,z)=x+1—pu}={(t,z) €[0,T)x Z : > z5(t)} (4.9)
and
{(t,2) € [0, T) x Z : v(t,x) =+ 1+ A} ={(t,x) € [0,Tp) x Z : z <zp(t)} (4.10)
where
1 14+
TomaX{T a—rln <1—,u) ,O}. (4.11)

Further, we have

limz*(t) = (1 — lim 2*(0) = z* lim 27 (t) = — lim 27(0) = 2} 4.12
tlTr,?xs( ) ( M)‘TM) Tl%})loxS( ) xs,oo7 t%r’l% ‘rb( ) 0, TITI<I>10 xb( ) xb,oo7 ( )
wherez); = —2="£%" andz* . andz} . are defined in (A.1) and (A.2).

Proposition 4.5. Define

x

() LA +n(~a3(0) ~ (1- ) + [ ay, (4.13)

(1) v(t,y)

where

) d:ef/T re?(r) 4+ (a+r)(1 — p)ai(r) + (o + %02)(1 —n)?

CHOESEE dr. (4.14)

Thenw € C12 ([0, T) x 2) is a solution to equation (4.3). Moreover, for atyz, y) € [0,T) x .7, we define

2 2w(t,£) .
y“e Yy, if y > 0,
plt,z,y) , (4.15)
2B (24 (14+N)y)?, ify<0

wherew (¢, x) is given in (4.13) and

dr.

st [Tra(r) + (o )L+ Nai(r) + (o + 20?)(1 1 02
B [ CAGENESE

Theny € C122([0,T) x .\ {y = 0}) is a solution to the HIB equation (4.2).
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Due to their considerable technicality, the proofs of thecpding two propositions are placed in Appendix A.
Most of the above results are similar to those obtained byaDdiYi (2009) where they considered the expected
utility portfolio selection with transaction costs. Noheless, there is one breakthrough made by the present paper:
bothz%(-) andz;(-) are proven to b€, whereas Dai and Yi (2009) only obtained the smoothness @f. In
fact, Dai and Yi (2009) essentially considered a doubleasistproblem forwv,.. In contrast, the present paper takes
the double obstacle problem fofw,, into consideration. This seemly innocent modification ict &implifies the
proof greatly. More importantly, it allows us to provide afied framework to obtain the smoothnessigf-) and
z; (). Later we will see that the smoothnesswjf-) andz; (-) plays a critical role in the proof of the existence of
an optimal strategy.

Note that (4.8) is important in the study of the double oldstpooblem (4.5). In essence, the result is based on
parts (1) and (2) of Lemma 4.3.

In the subsequent section, we plan to show @t x, y) is nothing but the value function through the verifi-

cation theorem and a Skorokhod problem. At the same timeptimal strategy will be constructed.

5 Skorokhod Problem and Optimal Strategy
Due to (4.9)—(4.10) and Proposition 4.5, we define

SR={(t,z,y) €[0,T) x . |y>0, = >xi(t)y},
BR ={(t,z,y) €[0,T) x & |y >0, = < x(t)y, ory <0}, (5.1)

NT = {(t,z,y) €[0,T) x % |y >0, z5(t)y <z < z;(t)y},

which stand for the sell region, buy region and no trade regiespectively. Here we sef (t) = —oo when
t € [To,T] in view of the fact thatti%rTn x;(t) = —oo; henceBR = () whent e [Ty, T]. Notice that these regions
0

do not depend on the target

5.1 Skorokhod Problem and Verification Theorem

In order to find the optimal solution to the MV problem, we néedtudy the so-called Skorokhod problem.

Problem 5.1(Skorokhod Problem). Given(0, X (0),Y (0)) € N7, find an admissible stratedy/, V) such that
the corresponding bond—stock value procg&sY) is continuous in0, 7], and (¢, X (t), Y (t)) € N7, for any
t e 0,17.

In other words, a solution to the Skorokhod problem is anstwent strategy with which the trading only takes
place on the boundary of the no trade region. It turns outadhgisn can be constructed via solving the following

more specific problem.

Problem 5.2. Given (0, X (0),Y(0)) € N7, find a process of bounded total variatioand a continuous process
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(X,Y) such that for any € [0, 7],

(t, X(t),Y(t) e NT,
dX(t) = rX(¢) dt + v, (X(8), Y (¢)) d|k[(t),

dY (t) = oY (t) dt + oY (t) dB(t) + v (X (1), Y (t)) d|k|(t),

|k|(t) :/01{(S,X(s),Y(s))€8NT}d|k|(s)a

where|k|(t) stands for the total variation éfon [0, ¢],

-1 i
ot \/m( (1+XN),1), if (t,z,y) € HNT,

(11(2,9),72(2, ) = _
Tl ml), i (hayy) € NT,

and

INT X {(t,2,9) €[0,T)x 7 |y >0, z=a;(t)y}.

ONT L {(t,2,9) € [0,T) x & |y >0, = =a(t)y} .

Letting a triplet(k, X,Y") solves Problem 5.2, define

t
def
M(t) = \/ﬁ /0 14(s,x(s),v (s))eonnTy dE[(5), (5.2)
t
def
N(t):\/ﬁ/01{(5,1/(5),1/(3))652/\/'7} d‘k|(8) (53)

Then(M, N) is a solution to the Skorokhod problem. Moreover, sifikg N, X,Y) satisfies equations (2.1) and
(2.2), we can prove that the corresponding terminal nettw@&lX-¥ (T') is the optimal solution to Problem 4.3.
To prove that we need the verification theorem.

Note that one can extend naturally the definition of the Skiood problem to the time horizda, 7', for any
s€0,T).

Theorem 5.1(Verification Theorem). Lety be defined in (4.15) and be the value function defined in (4.1). If
the Skorokhod problem admits a solutior{snT’], wheres € [0,T), then

V(t,z,y) = p(t,z,y), V (t,2,y) € [s,T] x R%

Proof. The proof is rather standard in the singular control litgrat We only give a sketch and refer interested
readers to Karatzas and Shreve (1998). Similar to KaratzdsSareve (1998), we can show that the function
¢ < Vin N'T. Moreover, ifr is a stopping time valued ifs, 7], wheres € [0,7'), and(X,Y) is a solution to
Problem 5.1 ins, 7], then

o(s,X(5),Y(s)) = Elp(r, X(7),Y(7))].
Particularly, ifr = T, thenp = V in N'7 N [s, T] x R?, and

V(s,X(s),Y(s)) = E [(WX-Y(T))Q} . (5.4)
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The verification theorem in th&/7 follows. By Lemma 4.3, we know that (¢, -, -) is convex inR?. So we can

define itssubdifferentialas

OV (t,2,y) == {(6,,0,)|V (£, 7,5) > V(t,2,9) + 6, - (7 — ) +6, - (7 — 1), ¥(Z,7) € R?}.
Then, we are able to utilize the convex analysis as in Shred&Saner (1994) to obtain the verification theorem in
BR andSR. |

5.2 Solution to Skorokhod Problem

Note that, in the Skorokhod problem, Problém, the reflection boundary depends on titn&his is very different
from the standard Skorokhod problem in the literature; geg, Lions and Sznitman (1984). To remove the
dependence of the reflection boundary on time, we introdutevastate variableZ(¢) and instead consider an

equivalent problem.

Problem 5.3. Given (0, X (0), Y (0)) € N'7, find a process of bounded total variatibmnd a continuous process
(Z, X,Y) such that, for any € [0, 77,

(Z(t), X (t),Y (1) € NT,

dX () = rX(t)dt +,(X(2), Y () d[k[(2),

dY (t) = oY (t) dt + oY (¢) dB(t) + 72 (X (1), Y (2)) d[K[(2),
dZ(t) = dt +;5(Z(), X (1), Y () d[E[(2),

t
|k|(t) = /01{(2(5),X(s),Y(s))66./\/'T} d[k|(s),
whereZ(0) = 0, v = 0.

ClearlyZ(t) = t becausey;(z, z,y) = 0. Therefore if(k, Z, X,Y) solves Problem 5.3, the(t, X, Y) solves
Problem 5.2. It is worthwhile pointing out that the refleatimoundary of Problem 5.3 becomes time independent.

Now let us consider Problem 5.3.
Theorem 5.2. There exists a unique solution to Problem 5.30517].

Proof. Both Lions and Sznitman (1984) and Dupus and Ishii (1993glestablished existence and uniqueness for
the Skorokhod problem on a domain with sufficiently smootbrimtary. Since th€'>° smoothness af*(-) and
x;(-) is in place, the proof is similar to that of Lemma 9.3 of Shrame Soner (1994). It is worthwhile pointing
out that Shreve and Soner (1994) did not concern the smaRlufie; andx; because they took into consideration

a stationary problem which leads to time-independent diffree boundaries). O
Thanks to Theorem 5.1 and Theorem 5.2, we have

Corollary 5.3. V(t,z,y) = ¢(t,z,y), V¥ (t,7,y) € [0,T] x R
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6 Main Results

Theorem 6.1. For any initial position(zg, o) € ., define

((I0+(1*H)yo)ﬂﬂ§(0) wo+(1fﬂ)yo) if (0, 20,70) € SR

zx(0)+1—p » xr(0)+1—p
def ) _
()((0)7}/(0»é (l'o,yo), if (O,I'Q,y()) GNT,
(zo+(14+XN)yo)z; (0) zo+(14+N)1 :
( 0 xz(0)+{i)\b , mog(0)+1+‘];) , |f (O,xo, yo) € BR.

Let(k, Z, X,Y) be the solution to Problem 5.3 as stipulated in Theorem 5t@&nTX,Y") is the unique solution
to the Skorokhod problem, Problem 5.1, and

V(0, 20, 0) = E {(WXvY(T))Q} .
Moreover, the optimal strategy\/, V) is defined by (5.2) and (5.3).
Proof. Noting that(0, X (0),Y(0)) € N7, by (5.4),
V(0,X(0),Y(0) = E {(WXvY(T))Q} .
SinceV = , itis not hard to check that
V(0,20,90) = V(0, X(0),Y(0)).
The proof is complete. O

As a final task before reaching the main result, we prove tistence of the Lagrange multiplier.

Proposition 6.2. For any(z,y, ) € R? x D, there exists a uniqué& € R such that

V(0,z — e T y) — (0 — 2)* = sup(V (0,2 — EeiTT,y) — (L= 2)?).
L€R

Moreover,/* is determined by equation
eV (0, — e T y) + 20 = 2z (6.1)
The proof is placed in Appendix B.

Corollary 6.3. If T > —L_1In (ﬂ) then

1—pn
f=400, D= (Tx+1—pe Tyt —(1+Ne Ty, +o0).
Proof. Suppose < +oo. Then by the definition of, for anyiV € WY, we haveE[W] < Z. So for anyz > 2,
>0,

V(0,2 —Lle™™ y) — (0 —2)* = inf EW? - (-2 = inf E[(W—-£0)—(—-2)7?
Wewg‘fﬁe*”ﬂyy Wewy?

= Wei%[?’y(E[W2] +2((z — BE[W]) — 2%)

> 20(z — 3) — 22
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Consequently,

sup(V (0,2 — Le™ "™ y) — (£ — 2)?) = +o0.
LER

However, the proof of Proposition 6.2 (Appendix B) showd tha above supremum is finite under the condition

T>—=1In (1“) see (B.1). The proof is complete. O
Now we arrive at the complete solution to the MV problem, Reaob2.1.

Theorem 6.4. Problem 2.1 admits an optimal solution if and only iE D, where

(eTz+ (1—pe Tyt —(1+ Ny ,+00), ifT>-"In (i 2) ,
A

= def
D=4 (eTx+ (1 —pe Ty eTe+ (1 - weTyl, T < ai -In (1—) , y >0,

o
+A
o Tln(l_“), y < 0.

0, if T <

Moreover, ifz is on the boundary b, i.e.,T < -2 1In (1“) y > 0,andz = e"Tz + (1 — p)e*Ty, then the
optimal strategy i§M, N) = (0, 0); otherwise, the value function and the optimal solution gikeen by Theorem

6.1, in which the initial positiofizo, yo) = (x — £*e~ "7, y) where/* is determined by equation (6.1).

Proof. If z ¢ D, then there is no feasible solution by Theorem 3.3; so Pnol@d admits no optimal solution. If
z=re¢Tz+ (11— pe*TywhileT <
strategy iS M, N) = (0,0).

(}“) andy > 0, then Theorem 3.3 again shows that the optimal

In all the other cases, it follows from Proposition 6.2 thre exists a unique Lagrange multipli&rsuch that
V(0,2 — 0T y) — (0" — 2)2 =sup(V(0,z — Le™ T y) — (£ — 2)?).

LeR

Appealing to Proposition 4.2, we have
V(O,IE - g*efTT7y) - (f* - Z>2 = Vl(‘raya Z) - 22'
Theorem 6.1 then dictates that there exists an admissiakegy(M*, N*) € A such that

o= e T MY N oy M NT 2
W : @) |.

V(0,2 — e y)=E

Noting that for any(M, N) € A, we have

Xl__e*e—rT’M?N(T) — XT’M’N(T) _ g*’
YvAMN(TY = yvMN ()

—¢*e="T M,N yy,M,N
kil kil 7Y

z—0*
wX

)

X®MN yy,M,N

(T)=w (1) -7

SO

o M* N* M* N* 2
V(0,2 — e T y) =E {(WX‘ R S (T)fﬁ*) }
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By the definition ofl/, for any (M, N) € A,

— 2
e—er e M, v, M,
V(O,l‘ f*eirT7y) <E (WX ‘£ MN yy M N( ))

=B | () )]

ThereforelV* is optimal to Problem 4.2 with paramet&r, wherel* is defined by

@M N oy, M N*
,

W* =W 7).

Owing to Proposition 4.1W* is optimal to Problem 2.2 with parametB{iW*]. By the uniqueness of*, we
haveE[W*] = z. ThusW* is the optimal solution to both Problems 2.2 and 2.1, ghtf, N*) is the optimal
strategy. O

The preceding theorem fully describes the behavior of am@btMV investor under transaction costs. |If
the planning horizon is not long enough (the precise clitmagth depends only on the stock excess return and
the transaction fees), then what could be achieved at thertaktime (in terms of the expected wealth) is rather
limited. Otherwise, any terminal target is achievable byngestment strategy, while an optimal (efficient) strategy
is to minimize the corresponding risk (represented by thimmae). The optimal strategy is characterized by three
regions (those of sell, buy, and no trade) defined by (5.1 ifiplementation of the strategy is very simple: a
transaction takes place only when the “adjusted” bondkgtoacess(X — ¢*e~ "7, Y), reaches the boundary of
the no-trade zone so as for the process to stay within the @@mdtially the process is outside of the no-trade
zone then a transaction is carried out as in Theorem 6.1 t@ibdvstantaneously into the no-trade zone).

The optimal strategy presented here is markedly differ@mhfits no-transaction counterpart [see, e.g., Zhou
and Li (2000)]. With transaction costs, an investor triesto trade unless absolutely necessary, so as to keep the
“adjusted” bond—stock ratio”,“**yi, between the two barriers; (t) andz%(¢), at any given time. When there
is no transactions cost, however, the two barriers coinsid¢he optimal strategy is to keep the above ratio exactly
atthe barrie?. This, in turn, requires the optimal strategy to tradlehe time Clearly, the strategy presented here
is more consistent with the actual investors’ behaviors.

Let us examine more closely the trade zone consisting ofeleasd buy regions, defined in (5.1). By and
large, when the adjusted bond—stock raﬁé,”yei, starts to be greater than a critical barrier (namelyt),
which is time-varying), then one needs to reduce the stodflifgs. When the ratio starts to be smaller than
anotherbarrier ¢ (t), again time-varying), then one must accumulate the stdd&.iriteresting to see that< 0
always triggers buying; in other words shorting the stoakeger favored, and any short position must be covered
immediately. The essential reason behind this is the stgralisumption that > r; so there is no good reason to
short the stock.

Another not-so-obvious yet extremely intriguing behawbrthe optimal strategy is that when the time to

maturity is short enough (precisely, when the remainingetisless thad™ = -1 In (%)) then one should

oa—r

not buy stock any longer (unless to cover a possible shoitigas This is seen from the fact thgtTn zf(t) = —o0
0

stated in Proposition 4.4 along with the definition of the bbegion. Moreover, since both the two barriers are

3In an EUM model—-the Merton problem for example—the optinsdilion is to keep the bond—stock ratio exactly at a certalne. In the

MV model the ratio must be “adjusted” in order to account fe tonstraint of meeting the terminal target.

19



-1 X,
*’"A M'nm‘“\w“ﬂﬁmmy’Wﬂ“\mwmwmmw’“ WA

LA o]

N :

X, (0

0 0.5 1 15 2

Figure 1: A Sample Path Corresponding to Optimal Strategy

decreasing in time, the buy region gets smaller and theesgilbn gets bigger as time passes along. This suggests
that the investor would be less likely to buy the stock andetliteely to sell the stock when the maturity date is
getting closer. These phenomena, again, are in line with pieaail in practice.

We end this section by a numerical example. Consider a maikethe following parameters:
(o, vy o, A\, p, T) = (0.15, 0.05, 0.2, 0.02, 0.02, 2).

In this case,l" > ﬁ In (%) In terms of a penalty method developed by Dai and Zhong (R008
numerically solve equation (4.5) and then construct the fiwe boundaries by Proposition 4.4. Consider an
investor having the initial positiotw, y) = (=1, 1) with an expected retura = 1.1 at time7'. Based on (6.1)
we can calculate that = 4.5069; so the adjusted initial position g — ¢*e~"T, ) = (—5.078, 1). The optimal
strategy is the following. At time 0, applying Theorem 6Hg fnvestor carries out a transaction so as to move his
adjusted position to the boundary &f7". This is realized by buying 4.3395 units (in terms of the aloimount)
of the stock, with the new adjusted position to(b€9.5043, 5.3395). After the initial time, the investor trades only
on the boundaries of th&"7 region just to keep his adjusted position within tkg” region.

Next consider another investor with an initial position, y) = (1,0) and expected retura = 1.2. In
this case/* = 2.3690 and (z — £*e¢~"T,y) = (—1.1436,0). So initially the investor buys 1.5047 worth of the
stock moving the adjusted position to (-2.6784,1.5047)cWié on the boundary o¥/7. Afterwards, the trading
strategy is simply to keep the adjusted position withiff. The two boundaries are depicted in the Figure 1,
where the horizontal axis is timeand the vertical one is the ratio between- ¢*¢="(T—% andy. A sample path
corresponding to the optimal strategy is also illustrated.

Finally we compare the MV efficiency with and without transaic costs, by plotting the respective efficient
frontiers. We use the same model parameters as above arti¢akéial position(z, y) = (1,0). Figure 2 depicts
the efficient frontiers with different transaction co$tk.is worth pointing out that the frontiers in the presence of

transaction costs are still straight lines due to the aliifp of a risk-free asset. The figure shows clearly that the

4The no-transaction cost frontier follows from the analgtisolutions in Zhou and Li (2000).
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MV efficiency declines as the transaction costs increasgedd, one could easily derive numerically the rate of
the efficiency decline with respect to the transaction costs

Now that the frontiers are straight lines, we plot in Figuth@&slopes of the lines (known as the prices of risk)
against different times (the expiration date T=2 is fixedhaA transaction costs are incurred, we have shown that
there is a threshold time value after which one never buyskstod hence the corresponding price of risk is 0. The
threshold value§” — ——log((1 4+ A)/(1 — n)) = 1.6 or 1.8 for A = y = 0.02 or 0.01 respectively. These are
verified by Figure 3.

7 Concluding Remarks

This paper investigates a continuous-time Markowitz’s meariance portfolio selection model with proportional
transaction costs. In the terminology of stochastic carlreory, this is a singular control problem. We use the

Lagrangian multiplier and partial differential equati@anapproach the problem. The problem has been completely
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solved in the following sense. First, the feasibility of thedel has been fully characterized by certain relationship
among the parameters. Second, the value function is gieea RPIDE, which is analytically proven to be uniquely
solvable and numerically tractable, whereas the Lagranggpier is determined by an algebraic equation. Third,
the optimal strategy is expressed in terms of the free baigwlaf the PDE. Economically, the results in the paper
have revealed three critical differences arising from ttesence of transaction costs. First, the expected return on
the portfolio may not be achievable if the time to maturityét long enough, while without transaction costs, any
expected return can be achieved in an arbitrarily short.ti&ezond, instead of trading all the time so as to keep a
constant adjusted ratio between the stock and bond, thistetiexe-dependent upper and lower boundaries so that
transaction is only carried out when the ratio is on the bauied. Third, there is a critical time which depends
only on the stock excess return and the transaction feels,tkatbeyond that time it is optimal not to buy stock
at all. Finally, although shorting is allowed in our modelisi never favored by an optimal strategy. Our results
are closer to real investment practice where people tentbrinvest more in risky assets towards the end of the
investment horizon.

Methodologically this paper employs the PDE approach of &l Yi (2009) developed for EUM (CRRA
utility). In both MV (this paper) and CRRA [Liu and Loewenst¢2002) and Dai and Yi (2009)] cases it is shown
that if the investor is holding the stock then he should stogriy more shares if the time left is too short. Thisis an
interesting and important feature of the finite horizon peabwith transaction costs. The intuition behind this is
that the investor should not purchase any additional shifafesremaining investment period is not long enough to
offset at least the transaction costs. However, there gnifisiant differences between the MV and EUM modkels.
First of all, the issue of feasibility is unique to the MV maddehich itself is interesting both mathematically
and economically. Second, the present paper has shown tiegtewer the investor is shorting the stock the MV
problem (with transaction costs) has no feasible solufidhe remaining time is short enough, or otherwise one
should immediately buy shares. There are no correspondsgts in the EUM settinfj. Last but not least, the
smoothness of the switching boundaries is proved for thetiiing in this paper, which is instrumental in deriving

rigorously the optimal trading strategies.
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A Proofs of Propositions 4.4 and 4.5

Proposition 4.5 is straightforward once Proposition 4.grisved. So we prove Proposition 4.4 only. Note that
equation (4.5) could have a singularitwit= 0. To remove the possible singularity, let us begin with thétary
counterpart of the problem. As in Theorem 6.1 of Dai and YiO@0 we are able to show that the semi-explicit

stationary solution is available through a Riccati equatio

Lo =0, if v € (25 o, 75 o),
UOO(Q:Z,OO) = xz,oo + 1 + >\’ véx;(a’?;,oo) = 1’

UOO(:C:,OC) = m:,oo +1- 122 Uéo(‘r:,oo) = 1’
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with

def a
= — 1-— A.l
xs,oo a _|_ ]{;* ( /‘L)’ ( )
mz,oo d:e{ - - o+ (1 + )‘>7 (A2)
@+ =

where/ is defined in (4.6),

a=— = (—o0, —2),
k* € (1,2) is the solution to
14 A
F(k)= 2,
I1—p
1
at k k=1 1,1\ 220
1 (ot Faet i) : if Ay <0,
a+k (c2 + “=a)(c1 + 3a)
k
F(k)y%E ot 5 1 1 if Ay =0
ark P2\ ot Blar e ) )0 o
a+ 5 1 k(a—1) —4a 4a — k(3a +1) .
tan ——— —~ " arctan —————— 2 ) ) | if Ay >0,
atk OF m(m TV, 7 VR TV, V. V% g

c1, ¢z are the two roots ofc® + (a — 1)c + £3La? = 0, and

defk_lg 1 2
A= 2 ¢ —g(a—l).

Let v(t,z) be a solution to equation (4.5) restricted to the regi@ary’) x (—oo,z% ) with a boundary

) 5,00

conditionv(t, z3 ) = z% ., + 1 — p. Apparently,v is a super-solution to equation (4.5) in the region, i.e.,

5,00

v(t,x) <wveo(x)forallz < —(1—p),t € [0,T). Itis easy to show that,, (x) is increasing inc. We then deduce

V(t, ) < Voo (T5 o) = Th oo T 1 — Md:ef —Co <0 for x < af . (A.3)

5,00

In what follows, we will confine equation (4.5) to the resteid region0, 7") x (—oo, x;w) in which, due to (A.3),
the equation has no singularity. It is worthwhile pointing thatv(¢, ) can be trivially extended to the original
region by lettingu(t,z) =z + 1 —p for z >z .

In terms of a penalized approximation (see, for exampledanan (1988)), it is not hard to show thét, z) €
WE2([0,T) x (=N, %)) forany—N < z% . p > 1. By the maximum principle, (4.7) and (4.8) follow. Then
we have

0 0
o= (o1 = o= @+ 1+ N)] = — 10,

which implies the existence af(-) (or z;(-)) as a single-value function. The monotonicityaQf(-) andx,(-) is
due to
g[vf(x+1f )]*Q[U*(IEﬁLl‘F)\)]*U <0
ot = o Ss T
The proof of (4.12) is the same as that of Theorem 4.5 and 4Dabénd Yi (2009).
It remains to show the smoothnessigf-) andz?%(-). To begin with, let us make a transformation and introduce

two lemmas.
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Letz = log (—z), u(t, 2) = v(t,x). Then
max {min {—u; — Liu,u — (—e*+1—p)},u—(—e*+14+N)} =0,
w(T, z) =—e*+1—yp, (t,2) €0, T) x Z,
u (t,)og (—2% o)) = 2500 +1—p,
whereZ = (log (-} ) ,+00), and

2 2 2
Elu:J—uzz— a—rJrU— uz+(a—r+02)u702 &+262k7262
2 2 U U

Lemma A.1l. Forany(¢,z) € [0,T) x £, we have (1 < —Co; Q) u, = zv, > v = —€®,i.e,u, +€* > 0;

(3) u — u, > 0. Moreover, there is a constant; > 0 such thatu — u, > C;.

Proof. Part (1) and (2) are immediate from (A.3) and (4.8). Let uvei@art (3). Denotey = u,. So,

0 2
5(—ut—£1u):—wt—£2w+2e¥02 (%—1)
where
2 2 2 . z . . 2¢%
ngza—wzz— a—r+a— wz+(a—r+02)w—02 (u —s—e)wz_u(u—i— e)w .
2 2 U u?
We define

SR={(t,2) € [0,T) x Z |u= —e* +1—p},
BR={(t,2) €[0,T) x Z |u=—€*+1+ A},

NT={(t,2) €[0,T)x Z | —e"+1—p<u<—e +1+A}.

Notice that we can rewrite
—up — Lyu = —up — Lou + 2e70> (k - 1) .
u

DenoteH = u — u,. Then
—H; — LoH =0inNT

ClearlyH = 1—pinSRandat = 7, andH = 1 + A in BR. Hence, applying the maximum principle yields
H > 0. Moreover, it is not hard to verify that the coefficientsdaH are bounded. We then infer that there is a

constantC; > 0, such thatd > C.
Lemma A.2. There is a constanfs > 0, such thatu; > —Cs.

Proof. Let z5(t) = log(—x%(t)) be corresponding the selling boundary. Eas z4(t)

(1-p)°

Ut‘t:T = —ﬁl(—ez—i-l—u):—(Oé—’l“)(l_/i)_7624»17#

> —(a—r)(1-p).

Applying the maximum principle gives the desired result.
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We are now to prove that both(-) andz,(-) areC*>, wherez,(t) = log(—x%(t)) andz,(t) = log(—z; (¢)).
Thanks to the bootstrap technique, we only need to showhlbgtare Lipschitz-continuous. Hence, it suffices to

prove the cone property, namely, for aftyzy) € [0,T") x %, there exists a consta6t > 0 such that

(T—t)ut+0£(uf(fez+lf,u) > 0,
0z (t,20)
9 .
(T—t)ut-i-C—(u—(—e +1+)\)) > 0,
0z (t.20)
which is equivalent to
(T = t)yuy + C (uz + €7)| ) = 0. (A.4)

Now let us prove (A.4). We can only focus on the NT region. Niosg
0 0
(e (e

(gt _ 52) (T = £)ug] = ug in NT.

On the other hand, it is not hard to check

It follows

9 z 2 U — Uz z
(—g—ﬁg)(uzﬁ‘@):fje 2 (u+u; + 2€%)

> o2e? ;;Lz (u+u, —2u,)

uU—u Cio%e” .
= g% 22) L——, inNT
u u

whereu — u, > C1 is used in the last inequality. Thus,

(_% - 52> (T = t)uy + C (us + €*))]

22z
Clae CQ"’CC

>ut—|—C ,inNT.

Since NT is unbounded, we can follow Soner and Shreve (1@9ihtroduce an auxiliary functiogh(t, z; zo) =

eT=1) (2 — z0)2 with a constant: > 0. We can choose big enough so that

0
(—5 - Ez) O (t, 2 20) = Cs (2 — 20)° — Cu,

whereC5; andC} are positive constants independentof). It follows
a z
(—a—£2> (T — t)us + C (u + %) + ¥ (¢, 25 20)]

> 02+CCloe

+ 03 (Z — Z()) — 04.
Then we can choose> 0 such that

037“2—02—0420
and choos€&’ > 0 big enough such that

Clo e*

w2

—Cy—Cy =0for |z— 2| <r
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It then follows

<_8at - 52) (T —t)us + C (uy +€*) + ¢ (¢, 2;20)] = 0, in NT.

Applying the maximum principle and penalty approximatiae conclude
(T—tur+C(uz +e*)+ v (t 2;20) 20, (¢,2) €0, T) x Z.

Letting z = 2o, we get the desired result.

B Proof of Proposition 6.2

Proof. From

V(0,2 —Lle ™ y) — (0 —2)* = inf EW? - ({ —2)% = inf E[(W —£)>2—(¢{—-2)%
WGWSC_EC_TT’?’ WEW;‘y

= int (V] 20(BW) - =),

it follows thatV (0, z — fe="T,y) — (¢ — 2)? is concave ir/. So its maximum attains at poifit which satisfies

a —rT 2 _
S(Vor—te Ty~ -2?) =0,

{=0*

e_TTVI(O, z— 0T, y) + 20° = 22.
Define
FO) e TV, (0,2 — te™ T, y) + 2.

Then by the convexity oF (0,2 — fe~"T, ) — (¢ — 2)2 in £, we have thaf is increasing. Sinc¥, < 0, we have

f(z) < 2z. By the monotonicity off, the existence of* depends on hIle f o).

¢ We first consider the case wh&p > 0. In this caser; (0) € (—o0,0). If y < 0, then
0,2 —te " y) e BR, V1> =z
If y > 0, then
(0,2 — e ™ y) € BR, VL= (z—z5(0)y).

Therefore,

lim f(0) =, lim (7 "V, (0,2 — Le™™y) +20)

{——+o00
- K (2 —rT2B(0) (1 _ =T | (] 9
Jim (2e7 e (x—Lle™™ + (1+N)y) + E)
=, ligl 2 (1 - 672TT+2(’B(0)) 0427 (x4 (1+ Ny)
= +OO,
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where we have used the fact t#a{0) < 7 whenT, > 0. Therefore, for any
ze(ez+(1—pe Tyt — (1+ ey, +00)
there existg* such that

e TV (0,2 — e T y) 4 20F = 2z,

V(0,2 — e y) — (0" —2)> =sup(V(0,z — Le™ T, y) — (£ — 2)?).

LeR

Now we prove the uniqueness. Fiy > 0, we have
2A00) < rT, B(0) <rT.

If (0,2 —¢te ™" y) € SR, then

F'0) = —e 2TV, (0,0 — Le™ T y) + 2 = —2e=2TH2%0) L9 5,
Similarly, if (0,2 — £e="T y) € BR, then

) == 2TV, (0,2 — le™ T ) + 2 = =227 T+2B0O) L9 5 0.
By the maximum principle, we have

() >0, for(0,z—te ™" y) e NT.

This implies the uniqueness 6f.
Now, we move to the case whé&iy = 0. According to Theorem 3.3, we have

5 €Tz + (1 —peTy,eTe+(1—peTy), ify>0,

0, ify <O0.

We only need to consider the caseyof 0. Note that in this case,
(0,2 — e T ) e NT, VL= T(z—a2(0)y).
By the homogeneity property, we have
Valt, pz, py) = pVa(t,z,y), ¥ (t2,y,p) € [0,T) x R* x Ry
So we can make the following transformationNfiZ,
_ Y -1 _ _ 1
s=—2e(0.5). ot = —Viltay).

Then

U + %g%ﬂ@zz +(a—1)z0,+2rv =0, (t,2) €[0,T) x (0, m:&))) .

(T, z) =2(—14+ (1 — p)z).

Therefore

o(t,0) = —2e27(T—1),
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Leto(t, z) = v,(t, z), which satisfies

B+ 30720+ (@ — 7+ %20+ (a4 1T =0, (£,2) €[0,7) x (0,555

(T, z) = 2(1 — p).

Therefore
B(t,0) = 2(1 — p)ela+nT=1),
It follows
Va0,2.y) = ~a0 (0.~ ) =~ (5(0,0) - £0.(0,0) + 0 (%))
= 20> + 2y(1 — p)e T 4 0 (ﬁ) ‘
So
: _ N —rT _ p,—rT
i 0= i (0 ) 420
T T\ 2rT (a+r)T v’
= Jim (7T (20 = e )M T 4 2y(1 — p)e )+0<m)+%

=2z + (1 - p)eTy).
The monotonicity off ensures the existence @f. The proof for the uniqueness is similar as above.

The proof is complete.
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