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Abstract

A continuous-time Markowitz’s mean-variance portfolio selection problem is studied in a market with one

stock, one bond, and proportional transaction costs. This is a singular stochastic control problem, inherently

with a finite time horizon. Via a series of transformations, the problem is turned into a so-called double obstacle

problem, a well studied problem in physics and partial differential equation literature, featuring two time-varying

free boundaries. The two boundaries, which define the buy, sell, and no-trade regions, are proved to be smooth in

time. This in turn characterizes the optimal strategy, via aSkorokhod problem, as one that tries to keep a certain

adjusted bond–stock position within the no-trade region. Several features of the optimal strategy are revealed

that are remarkably different from its no-transaction-cost counterpart. It is shown that there exists a critical

length in time, which is dependent on the stock excess returnas well as the transaction fees butindependent

of the investment target and the stock volatility, so that anexpected terminal return may not be achievable if

the planning horizon is shorter than that critical length (while in the absence of transaction costs any expected

return can be reached in an arbitrary period of time). It is further demonstrated that anyone following the optimal

strategy should not buy the stock beyond the point when the time to maturity is shorter than the aforementioned

critical length. Moreover, the investor would be less likely to buy the stock and more likely to sell the stock when

the maturity date is getting closer. These features, while consistent with the widely accepted investment wisdom,

suggest that the planning horizon is an integral part of the investment opportunities.

Key Words. continuous time, mean-variance, transaction costs, singular stochastic control, planning horizon,

Lagrange multiplier, double-obstacle problem, Skorokhodproblem

∗Dai is partially supported by Singapore MOE AcRF grant (No. R-146-000-096-112) and NUS RMI grant (No. R-146-000-117-720/646).

Zhou acknowledges financial support from Nomura Centre for Mathematical Finance and a start-up fund of the University ofOxford, and both

Xu and Zhou acknowledge research grants from the Oxford–ManInstitute of Quantitative Finance. The authors thank the referees and the AE

for their constructive comments which have led to a much improved version of the paper.
†Department of Mathematics, National University of Singapore (NUS), Singapore. Also an affiliated member of Risk Management Institute

of NUS.
‡Mathematical Institute and Nomura Centre for MathematicalFinance, University of Oxford, 24–29 St Giles, Oxford OX1 3LB, UK.
§Mathematical Institute and Nomura Centre for MathematicalFinance, and Oxford–Man Institute of Quantitative Finance, The University

of Oxford, 24–29 St Giles, Oxford OX1 3LB, UK, and Departmentof Systems Engineering and Engineering Management, The Chinese

University of Hong Kong, Shatin, Hong Kong. Email:<zhouxy@maths.ox.ac.uk>.

1



1 Introduction

Markowitz’s (single-period) mean–variance (MV) portfolio selection model [Markowitz (1952)] marked the start

of the modern quantitative finance theory. Extensions to thedynamic – especially continuous-time – setting in

the asset allocation literature have, however, been dominated by the expected utility maximization (EUM) models,

which take a considerable departure from the MV model. Whilethe utility approach was theoretically justified

by von Neumann and Morgenstern (1947), in practice “few if any investors know their utility functions; nor do

the functions which financial engineers and financial economists find analytically convenient necessarily repre-

sent a particular investor’s attitude towards risk and return” [Markowitz and Zhou (2004)]. Meanwhile, there are

technical and conceptual difficulties in studying a dynamicMV model. In particular, an optimal trading strat-

egy generated initially may no longer be optimal half way through. This so-calledtime inconsistencymeans that

dynamic programming – which is the main tool for solving dynamic optimization problems – is not directly ap-

plicable. Furthermore, one could argue that it would be hardfor an investor to follow a time-inconsistent strategy.

Kydland and Prescott (1977) instead argue that time-inconsistent solutions are economically meaningful if the

investor can commit at the initial time to follow a strategy (called apre-committed strategy).

Time inconsistent control problems have recently attracted some interest; see Björk and Murgoci (2008) and

Ekeland and Lazrak (2007). We note also that there are problems other than dynamic MV analysis that are inher-

ently time inconsistent. For example, a dynamic behavioralportfolio selection problem is time inconsistent due to

the distortions in probabilities [Jin and Zhou (2008)].

Basak and Chabakauri (2008) specifically address the time inconsistency problem in MV analysis by proposing

the construction of a trading strategy that is locally optimal in an MV sense and time-consistent, although it is not

globally optimal in the sense of Problem 2.1 (to be formulated in Section 2). Basak and Chabakauri (2008) further

show that their strategy solves a global optimization problem with a state-dependent CARA utility function.

In this paper, we solve the global Problem 2.1, and do so when trading is subject to transaction costs. The

solution obtained is pre-committed, instead of time-consistent. We solve the problem by reformulating it in a way

that makes it amenable to dynamic programming.

Richardson (1989) is probably the earliest paper that studies a faithful extension of the MV model to the

continuous-time setting (albeit in the context of a single stock with a constant risk-free rate), followed by Bajeux-

Besnainou and Portait (1998). Li and Ng (2000), in a discrete-time setting, developed an embedding technique

to change the originally time-inconsistent MV problem intoa stochastic LQ control problem. This technique was

extended by Zhou and Li (2000), along with a stochastic linear–quadratic control approach, to the continuous-time

case.1 Further extensions and improvements are carried out in, among many others, Lim and Zhou (2002), Lim

(2004), Bieleckiet al. (2005), and Xia (2005).

All the existing works on continuous-time MV models have assumed that there is no transaction cost, leading to

results that are analytically elegant, and sometimes trulysurprising [for example, it is shown in Li and Zhou (2006)

that any efficient strategy realizes its goal – no matter how high it is – with a probability of at least 80%]. However,

elegant they may be, certain investment behaviors derived from the results simply contradict the conventional

wisdom, which in turn hints that the models may not have been properly formulated. For instance, the results

1One should note that the trading strategies derived in Li andNg (2000) and Zhou and Li (2000) are not time-consistent.
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dictate that an optimal strategy must trade all the time; moreover, there must be risky exposures at any time [see

Chiu and Zhou (2009)]. These are certainly not consistent with the common investment advice. Indeed, the

assumption that there is no transaction cost is flawed, whichmisleadingly allows an investor to continuously trade

without any penalty.

Portfolio selection subject to transaction costs has been studied extensively, albeit in the realm of utility maxi-

mization. Mathematically such a problem is a singular stochastic control problem. Two different types of models

must be distinguished: one in an infinite planning horizon and the other in a finite horizon. See Magill and Con-

stantinides (1976), Davis and Norman (1990), and Shreve andSoner (1994) for the former, and Davis, Panas and

Zariphopoulou (1993), Cvitanic and Karatzas (1996), and Gennotte and Jung (1994) for the latter. Technically,

the latter is substantially more difficult than the former, since in the finite horizon case there is an additional time

variable in the related Hamilton-Jacobi-Bellman (HJB) equation or variational inequality (VI). This is why the

research on finite-horizon problems had been predominantlyon qualitative and numerical solutions until Liu and

Loewenstein (2002) devised an analytical approach based onan approximation of the finite horizon by a sequence

of Erlang distributed random horizons. Dai and Yi (2009) subsequently employed a different analytical approach

– a PDE one – to study the same problem.

This paper aims to analytically solve the MV model with transaction costs. Note that such a problem is

inherently one in a finite time horizon, because the very nature of the Markowitz problem is about striking a

balance between the risk and return of the wealth at a finite,terminal time. Compared with its EUM counterpart,

there is a feasibility issue that must be addressed before anoptimal solution is sought. Precisely speaking, the

MV model is to minimize the variance of the terminal wealth subject to the constraint that an investment target

– certain expected net terminal wealth – is achieved. The feasibility is about whether such a target is achievable

by at least one admissible investment strategy. For a Black–Scholes market without transaction costs, it has been

shown [Lim and Zhou (2002)] thatany target can be reached in an arbitrary length of time (so long as the risk

involved is not a concern, that is). For a more complicated model with random investment opportunities and no-

bankruptcy constraint, the feasibility is painstakingly investigated in Bieleckiet al (2005). In this paper we show

that the length of the planning horizon is a determinant of this issue. In fact, there exists a critical length of time,

which is dependentonly on the stock excess return and the transaction fees, so that asufficiently high target is not

achievable if the planning horizon is shorter than that critical length. This certainly makes good sense intuitively.

To obtain an optimal strategy, technically we follow the idea of Dai and Yi (2009) of eventually turning the

associated VI into a double-obstacle problem, a problem that has been well studied in physics and PDE theory.

That said, there are indeed intriguing subtleties when actually carrying it out. In particular, this paper is the first

to prove (to the best of the authors’ knowledge) that the two free boundaries that define the buy, sell and no-trade

regions are smooth. This smoothness is critical in derivingthe optimal strategy via a Skorokhod problem.2 The

optimal strategy is rather simple in implementation; it is to keep a certain adjusted bond–stock position within the

no-trade region. Several features of the optimal strategy are revealed that are remarkably different from its no-

transaction-cost counterpart. Among them it is notable that one should no longer buy stock beyond the point when

the time to maturity is shorter than the aforementioned critical length associated with the feasibility. Moreover,

2This smoothness also plays a crucial role in studying the finite horizon optimal investment and consumption with transaction costs under

utility framework, see Section 3 of Dai et al. (2009) where anintegral over one free boundary is used.
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one is less likely to buy the stock and more likely to sell the stock when the maturity date is getting closer. These

are consistent with the widely accepted financial advice, and suggest that the planning horizon should be regarded

as a part of the investment opportunity set when it comes to continuous time portfolio selection.

The remainder of the paper is organized as follows. The modelunder consideration is formulated in section

2, and the feasibility issue is addressed in section 3. The optimal strategy is derived in sections 4–6 via several

steps, including Lagrange relaxation, transformation of the HJB equation to a double obstacle problem, and the

Skorokhod problem. Finally, the paper is concluded with remarks in section 7. Some technical proofs are relegated

to an appendix.

2 Problem Formulation

We consider a continuous-time market where there are only two investment instruments: a bond and a stock with

price dynamics given respectively by

dR(t) = rR(t) dt,

dS(t) = αS(t) dt+ σS(t) dB(t).

Herer > 0,α > r andσ > 0 are constants, and the process{B(t)}t∈[0,T ] is a standard one-dimensional Brownian

motion on a filtered probability space(Ω,F , {Ft}t∈[0,T ],P) with B(0) = 0 almost surely. We assume that the

filtration {Ft}t∈[0,T ] is generated by the Brownian motion, is right continuous, and eachFt contains all theP-null

sets ofF . We denote byL2
F the set of square integrable{Ft}t∈[0,T ]-adapted processes,

L2
F

def
==

{
X

∣∣∣∣∣
The processX = {X(t)}t∈[0,T ] is an {Ft}t∈[0,T ]-

adapted process such that
∫ T

0
E
[
X2(t)

]
dt <∞

}
,

and byL2
FT

the set of square integrableFT -measurable random variables,

L2
FT

def
==
{
X
∣∣ X is anFT -measurable random variable such thatE

[
X2
]
<∞

}
.

There is a self-financing investor with a finite investment horizon [0, T ] who investsX(t) dollars in the bond

andY (t) dollars in the stock at timet. Any stock transaction incurs aproportional transaction fee, with λ ∈
[0,+∞) andµ ∈ [0, 1) being the proportions paid when buying and selling the stock, respectively. Throughout

this paper, we assume thatλ + µ > 0, which means transaction costs must be involved. The bond–stock value

process, starting from(x, y) at t = 0, evolves according to the equations:

Xx,M,N (t) = x+ r

∫ t

0

Xx,M,N (s) ds− (1 + λ)M(t) + (1 − µ)N(t), (2.1)

Y y,M,N (t) = y + α

∫ t

0

Y y,M,N (s) ds+ σ

∫ t

0

Y y,M,N (s) dB(s) +M(t) −N(t), (2.2)

whereM(t) andN(t) denote respectively the cumulative stock purchase and sellup to timet. Sometimes we

simply useX, Y orXM,N , Y M,N instead ofXx,M,N , Y y,M,N if there is no ambiguity.

Theadmissible strategy setA of the investor is defined as follows:

A def
==





(M,N)

∣∣∣∣∣∣∣

The processesM = {M(t)}t∈[0,T ] and N = {N(t)}t∈[0,T ] are

{Ft}t∈[0,T ]-adapted, RCLL, nonnegative and nondecreasing, and the

processesXx,M,N andY y,M,N are both inL2
F , for any(x, y) ∈ R

2




.

4



(M,N) is calledan admissible strategyif (M,N) ∈ A. Correspondingly,(Xx,M,N , Y y,M,N ) is called anadmis-

sible (bond–stock) processif (x, y) ∈ R
2 and(M,N) ∈ A.

For an admissible process(Xx,M,N , Y y,M,N ), we define the investor’snet wealth processby

WX,Y (t)
def
==X(t) + (1 − µ)Y (t)+ − (1 + λ)Y (t)−, t ∈ [0, T ].

Namely,WX,Y (t) is the net worth of the investor’s portfolio att after the transaction cost is deducted. The

investor’sattainable net wealth setat the maturity timeT is defined as

Wx,y
0

def
==




WX,Y (T )

∣∣∣∣∣∣∣∣

WX,Y (T ) is the net wealth atT of an ad-

missible process(X,Y ) with X(0−) = x,

Y (0−) = y.




.

In the spirit of the original Markowitz’s MV portfolio theory, anefficient strategyis a trading strategy for which

there does not exist another strategy that has higher mean and no higher variance, and/or has less variance and no

less mean at the terminal timeT . In other words, an efficient strategy is one that isPareto optimal. Clearly, there

could be many efficient strategies, and the terminal means and variances corresponding to all the efficient strategies

form anefficient frontier. The positioning on the efficient frontier of a specific investor is dictated by his/her risk

preference.

It is now well known that the efficient frontier can be obtained from solving the followingvariance minimizing

problem:

Problem 2.1.

Minimize Var(W ),

subject to E[W ] = z, W ∈ Wx,y
0 .

Herez is a parameter satisfying

z > erTx+ (1 − µ)erT y+ − (1 + λ)erT y−,

which means that the target expected terminal wealth is higher than that of the simple “all-bond” strategy (i.e.

initially liquidating the stock investment and putting allthe money in the bond account). The optimal solutions

to the above problem with varying values ofz will trace out the efficient frontier we are looking for. For this

reason, although Problem 2.1 is indeed an auxilary mathematical problem introduced to help solve the original

mean–variance problem, it is sometimes (as in this paper) itself called the mean–variance problem.

It is immediate to see that Problem 2.1 is equivalent to the following problem.

Problem 2.2.

Minimize E[W 2],

subject to E[W ] = z, W ∈ Wx,y
0 .

3 Feasibility

In contrast with the EUM problem, the MV model, Problem 2.2, has an inherent constraintE[W ] = z. Is there

always an admissible strategy to meet this constraint no matter how aggressive the targetz is? This is the so-called
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feasibility issue. The issue is important and unique to the MV problem, and will be addressed fully in this section.

To begin with, we introduce two lemmas.

Lemma 3.1. If W1 ∈ Wx,y
0 ,W2 ∈ L2

FT
andW2 6 W1, thenW2 ∈ Wx,y

0 .

Proof. By the definition ofWx,y
0 , there exists(M,N) ∈ A such thatXM,N (0−) = x, YM,N (0−) = y and

WXM,N ,Y M,N

(T ) = W1. We define

M(t) =





M(t), if t < T,

M(T ) +
W1 −W2

λ+ µ
, if t = T,

N(t) =





N(t), if t < T,

N(T ) +
W1 −W2

λ+ µ
, if t = T.

Then(M,N) ∈ A and

XM,N (t) =





XM,N (t), if t < T,

XM,N (T ) −W1 +W2, if t = T,

Y M,N (t) = YM,N (t), t ∈ [0, T ].

ThereforeW2 = WXM,N ,Y M,N

(T ) ∈ Wx,y
0 .

The proof above is very intuitive. If a higher terminal wealth is achievable by an admissible strategy, then so is

a lower one, by simply “wasting money”, i.e., buying and selling the same amount of the stock atT , thanks to the

presence of the transaction costs. This isnot necessarily true when there is no transaction cost.

Lemma 3.2. For any(x, y) ∈ R
2, we have (1) the setWx,y

0 is convex; (2) If(xi, yi) ∈ R
2,Wi ∈ Wxi,yi

0 , i = 1, 2,

thenW1+W2 ∈ Wx1+x2,y1+y2

0 ; (3) if x1 6 x2 andy1 6 y2, thenWx1,y1

0 ⊆ Wx2,y2

0 ; (4) Wx−(1+λ)ρ,y+ρ
0 ⊆ Wx,y

0

andWx+(1−µ)ρ,y−ρ
0 ⊆ Wx,y

0 for anyρ > 0; (5) Wρx,ρy
0 = ρWx,y

0 for anyρ > 0; (6) if x+(1−µ)y+−(1+λ)y− >

0, then0 ∈ Wx,y
0 .

Proof. (1) For anyW1, W2 ∈ Wx,y
0 , assume thatWi = WXi,Yi(T ), where(Xi, Yi) = (Xx,Mi,Ni , Y y,Mi,Ni),

(Mi, Ni) ∈ A, i = 1, 2. For anyk ∈ (0, 1), let M = kM1 + (1 − k)M2, N = kN1 + (1 − k)N2. Then

(M,N) ∈ A, and

Xx,M,N = kX1 + (1 − k)X2,

Y y,M,N = kY1 + (1 − k)Y2.

Thus

WX,Y (T ) = X(T ) + (1 − µ)Y (T )+ − (1 + λ)Y (T )− = X(T ) + (1 − µ)Y (T ) − (µ+ λ)Y (T )−

> kX1(T ) + (1 − k)X2(T ) + (1 − µ)(kY1(T ) + (1 − k)Y2(T ))

− (µ+ λ)(kY1(T )− + (1 − k)Y2(T )−)

= k(X1(T ) + (1 − µ)Y1(T )+ − (1 + λ)Y1(T )−)

+ (1 − k)(X2(T ) + (1 − µ)Y2(T )+ − (1 + λ)Y2(T )−)

= kW1 + (1 − k)W2.

SinceWX,Y (T ) ∈ Wx,y
0 , kW1 + (1− k)W2 ∈ L2

FT
, it follows from Lemma 3.1 thatkW1 + (1− k)W2 ∈ Wx,y

0 .

(2) This can be proved by the same argument as above.
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(3) If x1 6 x2 and y1 6 y2, then for any(M,N) ∈ A, we haveXx1,M,N 6 Xx2,M,N , Y y1,M,N 6

Y y2,M,N . SoWXx1,M,N ,Y y1,M,N

(T ) 6 WXx2,M,N ,Y y2,M,N

(T ) ∈ Wx2,y2

0 . Therefore by Lemma 3.1, we have

WXx1,M,N ,Y y1,M,N

(T ) ∈ Wx2,y2

0 . This showsWx1,y1

0 ⊆ Wx2,y2

0 .

(4) For anyρ > 0, (M,N) ∈ A, we define

M(s) = M(s) + ρ, ∀s ∈ [0, T ].

Then(Xx−(1+λ)ρ,M,N , Y y+ρ,M,N ) = (Xx,M,N , Y y,M,N ). SoWXx−(1+λ)ρ,M,N ,Y y+ρ,M,N

= WXx,M,N ,Y y,M,N ∈
Wx,y

0 . HenceWx−(1+λ)ρ,y+ρ
0 ⊆ Wx,y

0 . Similarly, we can prove thatWx+(1−µ)ρ,y−ρ
0 ⊆ Wx,y

0 .

(5) Noting thatWXρx,ρM,ρN ,Y ρy,ρM,ρN

= ρWXx,M,N ,Y y,M,N ∀ρ > 0, we have immediatelyWρx,ρy
0 = ρWx,y

0 .

(6) If y > 0 andx+ (1−µ)y > 0, then obviously0 ∈ Wx+(1−µ)y,0
0 by Lemma 3.1. Noting (4) proved above,

we conclude that0 ∈ Wx,y
0 . Similarly we can prove the case ofy < 0 andx+ (1 + λ)y > 0.

Denote

ẑ
def
== sup

{
E[W ]

∣∣W ∈ Wx,y
0

}
. (3.1)

In view of Lemma 3.1, Problem 2.2 is feasible when

z ∈ D def
==
(
erTx+ (1 − µ)erT y+ − (1 + λ)erT y−, ẑ

)
. (3.2)

It is clear that Problem 2.2 is not feasible whenz > ẑ. So, it remains to investigate whether Problem 2.2 admits a

feasible solution whenz = ẑ.

It is well known that in the absence of transaction costs (i.e. λ = µ = 0), we havêz = +∞ and thus Problem

2.2 is always feasible for anyz > erTx + (1 − µ)erT y+ − (1 + λ)erT y− [see Lim and Zhou (2002)]. In other

words, no matter howsmall the investor’s initial wealth is, the investor can always arrive at anarbitrarily large

expected return in asplit second,by taking a huge leverage on the stock. The following theoremindicates that

things become very different when the transaction costs getinvolved.

Theorem 3.3. AssumeT 6 T ∗ def
== 1

α−r
ln
(

1+λ
1−µ

)
. Then

ẑ =





erTx+ (1 − µ)eαT y, if y > 0,

erTx+ (1 + λ)erT y, if y 6 0.

Moreover, ify > 0 andz = ẑ, then Problem 2.1 admits a unique feasible (thus optimal) solution and the optimal

strategy is(M,N) ≡ (0, 0). If y 6 0, thenD = ∅.
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Proof. For any(M,N) ∈ A, due to (2.1), (2.2) and Itô’s formula, we have

X(T ) + (1 − µ)Y (T ) = erTx+ (1 − µ)eαT y +

∫ T

0

er(T−t) (dX(t) − rX(t) dt)

+

∫ T

0

(1 − µ)eα(T−t) (dY (t) − αY (t) dt)

= erTx+ (1 − µ)eαT y +

∫ T

0

(
(1 − µ)eα(T−t) − (1 + λ)er(T−t)

)
dM c(t)

+

∫ T

0

(1 − µ)
(
er(T−t) − eα(T−t)

)
dNc(t) +

∫ T

0

(1 − µ)eα(T−t)σY (t) dB(t)

+
∑

06t6T

(
(1 − µ)eα(T−t) − (1 + λ)er(T−t)

)
(M(t) −M(t−))

+
∑

06t6T

(1 − µ)
(
er(T−t) − eα(T−t)

)
(N(t) −N(t−))

6 erTx+ (1 − µ)eαT y +

∫ T

0

(1 − µ)eα(T−t)σY (t) dB(t),

where we have notedT 6
1

α−r
ln
(

1+λ
1−µ

)
. So

E[X(T ) + (1 − µ)Y (T )] 6 erTx+ (1 − µ)eαT y.

It follows

E
[
WX,Y

]
= E[X(T ) + (1 − µ)Y (T )+ − (1 + λ)Y (T )−] 6 E[X(T ) + (1 − µ)Y (T )] 6 erTx+ (1 − µ)eαT y.

Wheny > 0, we haveE[WX,Y ] = erTx + (1 − µ)eαT y if and only if (M,N) ≡ (0, 0). Thus, ify > 0, then

ẑ = erTx+ (1 − µ)eαT y, and(0, 0) is the unique feasible strategy whenz = ẑ.

Now we turn to the case ofy < 0. Defineτ = inf{t ∈ [0, T ) : Y (t) > 0} ∧ T . Thenτ is a stopping time [cf.

Theorem 2.33, Klebaner (2004)]. On the set{Y (τ) > 0}, by the same argument as above, we have

WX,Y
T 6 er(T−τ)X(τ) + (1 − µ)eα(T−τ)Y (τ) 6 er(T−τ)X(τ) + (1 + λ)er(T−τ)Y (τ).

On the set{Y (τ) < 0}, we haveτ = T ,

WX,Y
T = X(T ) + (1 + λ)Y (T ) = er(T−τ)X(τ) + (1 + λ)er(T−τ)Y (τ).

On the other hand, noting thatY (t) 6 0, t ∈ [0, τ ), we have

er(T−τ)X(τ) + (1 + λ)er(T−τ)Y (τ)

= erTx+ (1 + λ)erT y −
∫ τ

0

(λ+ µ)er(T−t) dNc(t) +

∫ τ

0

(α− r)er(T−t)Y (t) dt

+

∫ τ

0

er(T−t)(1 − µ)σY (t) dB(t) −
∑

06t6τ

(λ+ µ)er(T−t)(N(t) −N(t−))

6 erTx+ (1 + λ)erT y +

∫ τ

0

er(T−t)(1 − µ)σY (t) dB(t).

It follows

E[er(T−τ)X(τ) + (1 + λ)er(T−τ)Y (τ)] 6 erTx+ (1 + λ)erT y.
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Therefore,

E[WX,Y
T ] 6 E[er(T−τ)X(τ) + (1 + λ)er(T−τ)Y (τ)] 6 erTx+ (1 + λ)erT y.

This indicates thatE[WX,Y
T ] = erTx + (1 + λ)erT y if and only if the investor puts all of his wealth in the bond

at time 0. Thuŝz = erTx+ (1 + λ)erT y if y < 0.

This result demonstrates the importance of the length of theinvestment planning horizon,T , by examining the

situation whenT is not long enough. In this “short horizon” case, if the investor starts with a short position in

stock, then the only sensible strategy is the all-bond one, since anyother strategy will just be worse off inboth

mean and variance. On the other hand, if one starts with a longstock position, then the highest expected terminal

net wealth (without considering the variance) is achieved by the “stay-put” strategy, one that does not switch at

all between bond and stock from the very beginning. Therefore, any efficient strategy is between the two extreme

strategies, those of “all-bond” and “stay-put”, accordingto an individual investor’s risk preference.

More significantly, Theorem 3.3 specifies explicitly this critical length of horizon,T ∗ = 1
α−r

ln
(

1+λ
1−µ

)
. It is

intriguing thatT ∗ depends only on the excess return,α−r, and the transaction feesλ, µ, noton the individual target

z or the stock volatilityσ. Later we will show that, indeed,̂z = +∞ whenT > T ∗ in Corollary 6.3. ThereforeT ∗

is such a critical value in time that divides between “globalfeasibility” and “limited feasibility” of the underlying

MV portfolio selection problem. It signifies the opportunity that a longer time horizon would provide in achieving

a higher potential gain. In this sense, the length of the planning horizon should be really included in the set of

the investment opportunities, as opposed to the hitherto widely accepted notion that the investment opportunity set

consists of only the probabilistic characteristics of the returns. Moreover, it follows from the expression ofT ∗ that

the less transaction cost and/or the higher excess return ofthe stock the shorter time it requires to attain the global

feasibility. These, of course, all make perfect sense economically.

In the remaining part of this paper, we only consider the casewhenD 6= ∅ andz ∈ D.

4 Unconstrained Problem and Double-Obstacle Problem

4.1 Lagrangian Relaxation and HJB equation

By virtue of Lemma 3.2, Problem 2.2 is a convex constrained optimization problem. We shall utilize the well-

known Lagrange multiplier method to remove the constraint.

Let us introduce the following unconstrained problem.

Problem 4.1(Unconstrained Problem).

Minimize E[W 2] − 2ℓ(E[W ] − z)

subject to W ∈ Wx,y
0 ,

or equivalently,

Problem 4.2.

Minimize E[(W − ℓ)2]

subject to W ∈ Wx,y
0 .
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Define the value function of Problem 2.2 as follows:

V1(x, y; z)
def
== inf

W∈W
x,y
0

E[W ]=z

E[W 2], z ∈ D.

The following result, showing the connection between Problem 2.2 and Problem 4.2, can be proved by a standard

convex analysis argument.

Proposition 4.1. Problem 2.2 and Problem 4.2 have the following relations.

(1) If W ∗
z solves Problem 2.2 with parameterz ∈ D, then there exitsℓ ∈ R such thatW ∗

z also solves Problem

4.2 with parameterℓ.

(2) Conversely, ifWℓ solves Problem 4.2 with parameterℓ ∈ R, then it must also solve Problem 2.2 with

parameterz = E[Wℓ].

It is easy to see thatWx,y
0 − ℓ = Wx−ℓe−rT ,y

0 . As a consequence, we consider the following problem instead

of Problem 4.2:

Problem 4.3.

Minimize E[W 2]

subject to W ∈ Wx−ℓe−rT ,y
0

To solve the above problem, we use dynamic programming. In doing so we need to parameterize the initial

time. Consider the dynamics (2.1)–(2.2) where the initial time 0 is revised to somes ∈ [0, T ), and defineWx,y
s

as the counterpart ofWx,y
0 where the initial time iss and initial bond–stock position is(x, y). We then define the

value function of Problem 4.3 as

V (t, x, y)
def
== inf

W∈Wx,y
t

E[W 2], (t, x, y) ∈ [0, T ) × R
2. (4.1)

The following proposition establishes a link between Problem 4.3 and Problem 2.2.

Proposition 4.2. If z ∈ D, then

sup
ℓ∈R

(V (0, x− ℓe−rT , y) − (ℓ− z)2) = V1(x, y; z) − z2.

Proof. Note that

sup
ℓ∈R

(V (0, x− ℓe−rT , y) − (ℓ− z)2) = sup
ℓ∈R

inf
W∈Wx−ℓe−rT ,y

0

E[W 2 − (ℓ− z)2]

= sup
ℓ∈R

inf
W∈Wx,y

0

E[(W − ℓ)2 − (ℓ− z)2] 6 sup
ℓ∈R

inf
W∈W

x,y
0

E[W ]=z

E[(W − ℓ)2 − (ℓ− z)2]

= sup
ℓ∈R

inf
W∈W

x,y
0

E[W ]=z

(E[W 2] − z2) = inf
W∈W

x,y
0

E[W ]=z

(E[W 2] − z2) = V1(x, y; z) − z2.

Therefore

sup
ℓ∈R

(V (0, x− ℓe−rT , y) − (ℓ− z)2) 6 V1(x, y; z) − z2.
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SinceV1 is convex andz is an interior point ofD, by convex analysis, there existsℓ∗ ∈ R such that

V1(x, y; z) − 2ℓ∗z 6 V1(x, y; z̃) − 2ℓ∗z̃, ∀ z̃ ∈ D.

For anyW ∈ Wx,y
0 , by the definition ofV1, we have

E[(W − ℓ∗)2 − (ℓ∗ − z)2] = E[W 2] − 2ℓ∗(E[W ] − z) − z2
> V1(x, y;E[W ]) − 2ℓ∗(E[W ] − z) − z2

> V1(x, y; z) − z2.

It follows

sup
ℓ∈R

(V (0, x− ℓe−rT , y) − (ℓ− z)2) = sup
ℓ∈R

inf
W∈Wx,y

0

E[(W − ℓ)2 − (ℓ− z)2]

> inf
W∈Wx,y

0

E[(W − ℓ∗)2 − (ℓ∗ − z)2] > V1(x, y; z) − z2,

which yields the desired result.

Therefore, we need only to study the value functionV (t, x, y), which we set out to do now.

Lemma 4.3. The value functionV defined in (4.1) has the following properties.

(1) For anyt ∈ [0, T ), V (t, ·, ·) is convex and continuous inR2.

(2) For anyt ∈ [0, T ), V (t, x, y) is nonincreasing inx andy.

(3) For anyρ > 0, t ∈ [0, T ), we haveV (t, x + (1 − µ)ρ, y − ρ) > V (t, x, y), V (t, x − (1 + λ)ρ, y + ρ) >

V (t, x, y).

(4) For anyρ > 0, t ∈ [0, T ), we haveV (t, ρx, ρy) = ρ2V (t, x, y).

(5) If x+ (1 − µ)y+ − (1 + λ)y− > 0, thenV (t, x, y) = 0.

Proof. All the results can be easily proved in term of the definition of V and Lemma 3.2.

Due to part (5) of the above lemma, we only need to consider Problem 4.3 in theinsolvency region

S
def
==
{
(x, y) ∈ R

2
∣∣ x+ (1 − µ)y+ − (1 + λ)y− < 0

}
.

It is well known that the value functionV is a viscosity solution to the following Hamilton-Jacobi-Bellman (HJB)

equation or variational inequality (VI) with terminal condition:




min
{
ϕt + L0ϕ, (1 − µ)ϕx − ϕy, ϕy − (1 + λ)ϕx

}
= 0, ∀ (t, x, y) ∈ [0, T ) × S ,

ϕ(T, x, y) = (x+ (1 − µ)y+ − (1 + λ)y−)2, ∀ (x, y) ∈ S ,

(4.2)

where

L0ϕ
def
==

1

2
σ2y2ϕyy + αyϕy + rxϕx.

The idea of the subsequent analysis is to construct a particular solution to the HJB equation, and then employ

the verification theorem to obtain an optimal strategy. The construction of the solution is built upon a series of
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transformations on equation (4.2) until we reach an equation related to the so-calleddouble-obstacleproblem in

physics which has been well studied in the partial differential equation literature.

We will show in Proposition 4.4 below that the constructed solution ϕ satisfiesϕy − (1 + λ)ϕx = 0 when

y < 0. Hence, we only need to focus ony > 0. A substantial technical difficulty arises with the HJB equation

(4.2) in that the spatial variable(x, y) is two dimensional. However, the homogeneity of Lemma 4.3-(4) motivates

us to make the transformation

ϕ(t, x, y) = y2V (t,
x

y
), for y > 0,

so as to reduce the dimension by one. Accordingly, (4.2) is turned to




min
{
V t + L1V , (x+ 1 − µ)V x − 2V ,−(x+ 1 + λ)V x + 2V

}
= 0, ∀ (t, x) ∈ [0, T ) × X ,

V (T, x) = (x+ 1 − µ)2, ∀ x ∈ X ,

whereX
def
==(−∞,−(1 − µ)), and

L1V =
1

2
σ2x2V xx −

(
α− r + σ2

)
xV x +

(
2α+ σ2

)
V .

Further, let

w(t, x)
def
==

1

2
lnV (t, x), (t, x) ∈ [0, T ) × X .

It is not hard to show thatw (t, x) is governed by





min
{
wt + L2w,

1
wx

− (x+ 1 − µ), (x+ 1 + λ) − 1
wx

}
= 0, ∀ (t, x) ∈ [0, T ) × X ,

w(t, x) = ln(−x− (1 − µ)), ∀ x ∈ X ,

(4.3)

where

L2w
def
==

1

2
σ2x2(wxx + 2w2

x) − (α− r + σ2)xwx + α+
1

2
σ2.

4.2 A Related Double-Obstacle Problem

Equation (4.3) is a variational inequality with gradient constraints, which is hard to study. As in Dai and Yi (2009),

we will relate it to a double obstacle problem that is tractable. We refer interested readers to Friedman (1988) for

obstacle problems.

Let

v(t, x)
def
==

1

wx(t, x)
, (t, x) ∈ [0, T ) × X . (4.4)

Notice that

∂

∂x
L2w = − 1

v2

[
1

2
σ2x2vxx − (α− r)xvx +

(
α− r + σ2

)
v + σ2

(
2x2vx − x2v2

x

v
− 2x

)]
.

This inspiresus to consider the following double-obstacle problem:




max {min {−vt − Lv, v − (x+ 1 − µ)} , v − (x+ 1 + λ)} = 0, ∀ (t, x) ∈ [0, T ) × X

v(T, x) = x+ 1 − µ, ∀ x ∈ X ,
(4.5)
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where

Lv def
==

1

2
σ2x2vxx − (α− r)xvx + (α− r + σ2)v + σ2

(
2x2vx − x2v2

x

v
− 2x

)
. (4.6)

It should be emphasized that at this stage we have yet to know if equation (4.5) is mathematically equivalent

to equation (4.3) via the transformation (4.4). However, the following propositions show that (4.5) is solvable, and

the solution to (4.3) can be constructed through the solutions of (4.5).

Proposition 4.4. Equation (4.5) has a solutionv ∈ W 1,2
p ([0, T ) × (−N,− (1 − µ))), for anyN > − (1 − µ) ,

p ∈ (1,∞). Moreover,

vt 6 0, (4.7)

0 6 vx 6 1, (4.8)

and there exist two decreasing functionsx∗s(·) ∈ C∞[0, T ) andx∗b(·) ∈ C∞[0, T0) such that

{(t, x) ∈ [0, T ) × X : v(t, x) = x+ 1 − µ} = {(t, x) ∈ [0, T ) × X : x > x∗s(t)} (4.9)

and

{(t, x) ∈ [0, T ) × X : v(t, x) = x+ 1 + λ} = {(t, x) ∈ [0, T0) × X : x 6 x∗b(t)} (4.10)

where

T0 = max

{
T − 1

α− r
ln

(
1 + λ

1 − µ

)
, 0

}
. (4.11)

Further, we have

lim
t↑T

x∗s(t) = (1 − µ)xM , lim
T↑∞

x∗s(0) = x∗s,∞, lim
t↑T0

x∗b(t) = −∞, lim
T↑∞

x∗b(0) = x∗b,∞, (4.12)

wherexM = −α−r+σ2

α−r
, andx∗s,∞ andx∗b,∞ are defined in (A.1) and (A.2).

Proposition 4.5. Define

w(t, x)
def
== A(t) + ln(−x∗s(t) − (1 − µ)) +

∫ x

x∗
s(t)

1

v(t, y)
dy, (4.13)

where

A(t)
def
==

∫ T

t

rx∗2s (τ) + (α+ r)(1 − µ)x∗s(τ) + (α+ 1
2σ

2)(1 − µ)2

(x∗s(τ) + 1 − µ)2
dτ . (4.14)

Thenw ∈ C1,2 ([0, T ) × X ) is a solution to equation (4.3). Moreover, for any(t, x, y) ∈ [0, T ) × S , we define

ϕ(t, x, y)
def
==





y2e
2w(t,

x
y

)
, if y > 0,

e2B(t)(x+ (1 + λ)y)2, if y 6 0

, (4.15)

wherew (t, x) is given in (4.13) and

B(t)
def
==

∫ T

t

rx∗2b (τ) + (α+ r)(1 + λ)x∗b(τ) + (α+ 1
2σ

2)(1 + λ)2

(x∗b(τ) + 1 + λ)2
dτ .

Thenϕ ∈ C1,2,2([0, T ) × S \ {y = 0}) is a solution to the HJB equation (4.2).
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Due to their considerable technicality, the proofs of the preceding two propositions are placed in Appendix A.

Most of the above results are similar to those obtained by Daiand Yi (2009) where they considered the expected

utility portfolio selection with transaction costs. Nonetheless, there is one breakthrough made by the present paper:

bothx∗s(·) andx∗b(·) are proven to beC∞, whereas Dai and Yi (2009) only obtained the smoothness ofx∗s(·). In

fact, Dai and Yi (2009) essentially considered a double obstacle problem forwx. In contrast, the present paper takes

the double obstacle problem for1/wx into consideration. This seemly innocent modification in fact simplifies the

proof greatly. More importantly, it allows us to provide a unified framework to obtain the smoothness ofx∗s(·) and

x∗b(·). Later we will see that the smoothness ofx∗s(·) andx∗b(·) plays a critical role in the proof of the existence of

an optimal strategy.

Note that (4.8) is important in the study of the double obstacle problem (4.5). In essence, the result is based on

parts (1) and (2) of Lemma 4.3.

In the subsequent section, we plan to show thatϕ(t, x, y) is nothing but the value function through the verifi-

cation theorem and a Skorokhod problem. At the same time, an optimal strategy will be constructed.

5 Skorokhod Problem and Optimal Strategy

Due to (4.9)–(4.10) and Proposition 4.5, we define

SR = {(t, x, y) ∈ [0, T ) × S | y > 0, x > x∗s(t)y} ,

BR = {(t, x, y) ∈ [0, T ) × S | y > 0, x 6 x∗b(t)y, or y 6 0} , (5.1)

NT = {(t, x, y) ∈ [0, T ) × S | y > 0, x∗b(t)y < x < x∗s(t)y} ,

which stand for the sell region, buy region and no trade region, respectively. Here we setx∗b(t) = −∞ when

t ∈ [T0, T ] in view of the fact thatlim
t↑T0

x∗b(t) = −∞; henceBR = ∅ whent ∈ [T0, T ]. Notice that these regions

do not depend on the targetz.

5.1 Skorokhod Problem and Verification Theorem

In order to find the optimal solution to the MV problem, we needto study the so-called Skorokhod problem.

Problem 5.1(Skorokhod Problem). Given(0, X(0), Y (0)) ∈ NT , find an admissible strategy(M,N) such that

the corresponding bond–stock value process(X,Y ) is continuous in[0, T ], and(t,X(t), Y (t)) ∈ NT , for any

t ∈ [0, T ].

In other words, a solution to the Skorokhod problem is an investment strategy with which the trading only takes

place on the boundary of the no trade region. It turns out the solution can be constructed via solving the following

more specific problem.

Problem 5.2. Given(0, X(0), Y (0)) ∈ NT , find a process of bounded total variationk and a continuous process
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(X,Y ) such that for anyt ∈ [0, T ],

(t,X(t), Y (t)) ∈ NT ,

dX(t) = rX(t) dt+ γ1(X(t), Y (t)) d|k|(t),

dY (t) = αY (t) dt+ σY (t) dB(t) + γ2(X(t), Y (t)) d|k|(t),

|k|(t) =

∫ t

0

1{(s,X(s),Y (s))∈∂NT } d|k|(s),

where|k|(t) stands for the total variation ofk on [0, t],

(γ1(x, y), γ2(x, y))
def
==





1√
(1+λ)2+1

(−(1 + λ), 1), if (t, x, y) ∈ ∂1NT ,

1√
(1−µ)2+1

(1 − µ,−1), if (t, x, y) ∈ ∂2NT ,

and

∂1NT def
== {(t, x, y) ∈ [0, T ) × S | y > 0, x = x∗b(t)y} .

∂2NT def
== {(t, x, y) ∈ [0, T ) × S | y > 0, x = x∗s(t)y} .

Letting a triplet(k,X, Y ) solves Problem 5.2, define

M(t)
def
== 1√

(1+λ)2+1

∫ t

0

1{(s,X(s),Y (s))∈∂1NT } d|k|(s), (5.2)

N(t)
def
== 1√

(1−µ)2+1

∫ t

0

1{(s,Y (s),Y (s))∈∂2NT } d|k|(s). (5.3)

Then(M,N) is a solution to the Skorokhod problem. Moreover, since(M,N,X, Y ) satisfies equations (2.1) and

(2.2), we can prove that the corresponding terminal net wealthWX,Y (T ) is the optimal solution to Problem 4.3.

To prove that we need the verification theorem.

Note that one can extend naturally the definition of the Skorokhod problem to the time horizon[s, T ], for any

s ∈ [0, T ).

Theorem 5.1(Verification Theorem). Letϕ be defined in (4.15) andV be the value function defined in (4.1). If

the Skorokhod problem admits a solution in[s, T ], wheres ∈ [0, T ), then

V (t, x, y) = ϕ(t, x, y), ∀ (t, x, y) ∈ [s, T ] × R
2.

Proof. The proof is rather standard in the singular control literature. We only give a sketch and refer interested

readers to Karatzas and Shreve (1998). Similar to Karatzas and Shreve (1998), we can show that the function

ϕ 6 V in NT . Moreover, ifτ is a stopping time valued in[s, T ], wheres ∈ [0, T ), and(X,Y ) is a solution to

Problem 5.1 in[s, τ ], then

ϕ(s,X(s), Y (s)) = E[ϕ(τ ,X(τ), Y (τ))].

Particularly, ifτ = T , thenϕ = V in NT ∩ [s, T ] × R
2, and

V (s,X(s), Y (s)) = E

[(
WX,Y (T )

)2]
. (5.4)
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The verification theorem in theNT follows. By Lemma 4.3, we know thatV (t, ·, ·) is convex inR
2. So we can

define itssubdifferentialas

∂V (t, x, y)
def
==
{
(δx, δy)

∣∣V (t, x̄, ȳ) > V (t, x, y) + δx · (x̄− x) +δy · (ȳ − y), ∀(x̄, ȳ) ∈ R
2
}
.

Then, we are able to utilize the convex analysis as in Shreve and Soner (1994) to obtain the verification theorem in

BR andSR.

5.2 Solution to Skorokhod Problem

Note that, in the Skorokhod problem, Problem5.1, the reflection boundary depends on timet. This is very different

from the standard Skorokhod problem in the literature; see,e.g., Lions and Sznitman (1984). To remove the

dependence of the reflection boundary on time, we introduce anew state variableZ(t) and instead consider an

equivalent problem.

Problem 5.3. Given(0, X(0), Y (0)) ∈ NT , find a process of bounded total variationk and a continuous process

(Z,X, Y ) such that, for anyt ∈ [0, T ],

(Z(t), X(t), Y (t)) ∈ NT ,

dX(t) = rX(t) dt+ γ1(X(t), Y (t)) d|k|(t),

dY (t) = αY (t) dt+ σY (t) dB(t) + γ2(X(t), Y (t)) d|k|(t),

dZ(t) = dt+ γ3(Z(t), X(t), Y (t)) d|k|(t),

|k|(t) =

∫ t

0

1{(Z(s),X(s),Y (s))∈∂NT } d|k|(s),

whereZ(0) = 0, γ3 ≡ 0.

ClearlyZ(t) ≡ t becauseγ3(z, x, y) ≡ 0. Therefore if(k, Z,X, Y ) solves Problem 5.3, then(k,X, Y ) solves

Problem 5.2. It is worthwhile pointing out that the reflection boundary of Problem 5.3 becomes time independent.

Now let us consider Problem 5.3.

Theorem 5.2. There exists a unique solution to Problem 5.3 in[0, T ].

Proof. Both Lions and Sznitman (1984) and Dupus and Ishii (1993) have established existence and uniqueness for

the Skorokhod problem on a domain with sufficiently smooth boundary. Since theC∞ smoothness ofx∗s(·) and

x∗b(·) is in place, the proof is similar to that of Lemma 9.3 of Shreveand Soner (1994). It is worthwhile pointing

out that Shreve and Soner (1994) did not concern the smoothness ofx∗s andx∗b because they took into consideration

a stationary problem which leads to time-independent policies (free boundaries).

Thanks to Theorem 5.1 and Theorem 5.2, we have

Corollary 5.3. V (t, x, y) = ϕ(t, x, y), ∀ (t, x, y) ∈ [0, T ] × R
2.

16



6 Main Results

Theorem 6.1. For any initial position(x0, y0) ∈ S , define

(X(0), Y (0))
def
==





(
(x0+(1−µ)y0)x

∗

s(0)
x∗

s(0)+1−µ
, x0+(1−µ)y0

x∗
s(0)+1−µ

)
, if (0, x0, y0) ∈ SR,

(x0, y0), if (0, x0, y0) ∈ NT ,
(

(x0+(1+λ)y0)x
∗

b (0)
x∗

b
(0)+1+λ

, x0+(1+λ)y0

x∗
b
(0)+1+λ

)
, if (0, x0, y0) ∈ BR.

Let (k, Z,X, Y ) be the solution to Problem 5.3 as stipulated in Theorem 5.2. Then(X,Y ) is the unique solution

to the Skorokhod problem, Problem 5.1, and

V (0, x0, y0) = E

[(
WX,Y (T )

)2]
.

Moreover, the optimal strategy(M,N) is defined by (5.2) and (5.3).

Proof. Noting that(0, X(0), Y (0)) ∈ NT , by (5.4),

V (0, X(0), Y (0)) = E

[(
WX,Y (T )

)2]
.

SinceV = ϕ, it is not hard to check that

V (0, x0, y0) = V (0, X(0), Y (0)).

The proof is complete.

As a final task before reaching the main result, we prove the existence of the Lagrange multiplier.

Proposition 6.2. For any(x, y, z) ∈ R
2 ×D, there exists a uniqueℓ∗ ∈ R such that

V (0, x− ℓ∗e−rT , y) − (ℓ∗ − z)2 = sup
ℓ∈R

(V (0, x− ℓe−rT , y) − (ℓ− z)2).

Moreover,ℓ∗ is determined by equation

e−rTVx(0, x− ℓ∗e−rT , y) + 2ℓ∗ = 2z. (6.1)

The proof is placed in Appendix B.

Corollary 6.3. If T > 1
α−r

ln
(

1+λ
1−µ

)
, then

ẑ = +∞, D = (erTx+ (1 − µ)erT y+ − (1 + λ)erT y−,+∞).

Proof. Supposêz < +∞. Then by the definition of̂z, for anyW ∈ Wx,y
0 , we haveE[W ] 6 ẑ. So for anyz > ẑ,

ℓ > 0,

V (0, x− ℓe−rT , y) − (ℓ− z)2 = inf
W∈Wx−ℓe−rT ,y

0

E[W 2 − (ℓ− z)2] = inf
W∈Wx,y

0

E[(W − ℓ)2 − (ℓ− z)2]

= inf
W∈Wx,y

0

(E[W 2] + 2ℓ(z − E[W ]) − z2)

> 2ℓ(z − ẑ) − z2.
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Consequently,

sup
ℓ∈R

(V (0, x− ℓe−rT , y) − (ℓ− z)2) = +∞.

However, the proof of Proposition 6.2 (Appendix B) shows that the above supremum is finite under the condition

T > 1
α−r

ln
(

1+λ
1−µ

)
; see (B.1). The proof is complete.

Now we arrive at the complete solution to the MV problem, Problem 2.1.

Theorem 6.4. Problem 2.1 admits an optimal solution if and only ifz ∈ D̃, where

D̃ def
==





(erTx+ (1 − µ)erT y+ − (1 + λ)y−,+∞), if T > 1
α−r

ln
(

1+λ
1−µ

)
,

(erTx+ (1 − µ)erT y, erTx+ (1 − µ)eαT y], if T 6
1

α−r
ln
(

1+λ
1−µ

)
, y > 0,

∅, if T 6
1

α−r
ln
(

1+λ
1−µ

)
, y 6 0.

Moreover, ifz is on the boundary of̃D, i.e.,T 6
1

α−r
ln
(

1+λ
1−µ

)
, y > 0, andz = erTx + (1 − µ)eαT y, then the

optimal strategy is(M,N) ≡ (0, 0); otherwise, the value function and the optimal solution aregiven by Theorem

6.1, in which the initial position(x0, y0) = (x− ℓ∗e−rT , y) whereℓ∗ is determined by equation (6.1).

Proof. If z 6∈ D̃, then there is no feasible solution by Theorem 3.3; so Problem 2.1 admits no optimal solution. If

z = erTx + (1 − µ)eαT y while T 6
1

α−r
ln
(

1+λ
1−µ

)
andy > 0, then Theorem 3.3 again shows that the optimal

strategy is(M,N) ≡ (0, 0).

In all the other cases, it follows from Proposition 6.2 that there exists a unique Lagrange multiplierℓ∗ such that

V (0, x− ℓ∗e−rT , y) − (ℓ∗ − z)2 = sup
ℓ∈R

(V (0, x− ℓe−rT , y) − (ℓ− z)2).

Appealing to Proposition 4.2, we have

V (0, x− ℓ∗e−rT , y) − (ℓ∗ − z)2 = V1(x, y; z) − z2.

Theorem 6.1 then dictates that there exists an admissible strategy(M∗, N∗) ∈ A such that

V (0, x− ℓ∗e−rT , y) = E

[(
WXx−ℓ∗e−rT ,M∗,N∗

,Y y,M∗,N∗

(T )

)2
]
.

Noting that for any(M,N) ∈ A, we have

Xx−ℓ∗e−rT ,M,N (T ) = Xx,M,N (T ) − ℓ∗,

Y y,M,N (T ) = Y y,M,N (T ),

WXx−ℓ∗e−rT ,M,N ,Y y,M,N

(T ) = WXx,M,N ,Y y,M,N

(T ) − ℓ∗;

so

V (0, x− ℓ∗e−rT , y) = E

[(
WXx,M∗,N∗

,Y y,M∗,N∗

(T ) − ℓ∗
)2
]
.
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By the definition ofV , for any(M,N) ∈ A,

V (0, x− ℓ∗e−rT , y) 6 E

[(
WXx−ℓ∗e−rT ,M,N ,Y y,M,N

(T )

)2
]
.

= E

[(
WXx,M,N ,Y y,M,N

(T ) − ℓ∗
)2
]
.

ThereforeW ∗ is optimal to Problem 4.2 with parameterℓ∗, whereW ∗ is defined by

W ∗ = WXx,M∗,N∗

,Y y,M∗,N∗

(T ).

Owing to Proposition 4.1,W ∗ is optimal to Problem 2.2 with parameterE[W ∗]. By the uniqueness ofℓ∗, we

haveE[W ∗] = z. ThusW ∗ is the optimal solution to both Problems 2.2 and 2.1, and(M∗, N∗) is the optimal

strategy.

The preceding theorem fully describes the behavior of an optimal MV investor under transaction costs. If

the planning horizon is not long enough (the precise critical length depends only on the stock excess return and

the transaction fees), then what could be achieved at the terminal time (in terms of the expected wealth) is rather

limited. Otherwise, any terminal target is achievable by aninvestment strategy, while an optimal (efficient) strategy

is to minimize the corresponding risk (represented by the variance). The optimal strategy is characterized by three

regions (those of sell, buy, and no trade) defined by (5.1). The implementation of the strategy is very simple: a

transaction takes place only when the “adjusted” bond–stock process,(X − ℓ∗e−rT , Y ), reaches the boundary of

the no-trade zone so as for the process to stay within the zone(if initially the process is outside of the no-trade

zone then a transaction is carried out as in Theorem 6.1 to move it instantaneously into the no-trade zone).

The optimal strategy presented here is markedly different from its no-transaction counterpart [see, e.g., Zhou

and Li (2000)]. With transaction costs, an investor triesnot to trade unless absolutely necessary, so as to keep the

“adjusted” bond–stock ratio,x−ℓ∗e−rT

y
, between the two barriers,x∗b(t) andx∗s(t), at any given timet. When there

is no transactions cost, however, the two barriers coincide; so the optimal strategy is to keep the above ratio exactly

at the barrier3. This, in turn, requires the optimal strategy to tradeall the time. Clearly, the strategy presented here

is more consistent with the actual investors’ behaviors.

Let us examine more closely the trade zone consisting of the sell and buy regions, defined in (5.1). By and

large, when the adjusted bond–stock ratio,x−ℓ∗e−rT

y
, starts to be greater than a critical barrier (namelyx∗s(t),

which is time-varying), then one needs to reduce the stock holdings. When the ratio starts to be smaller than

anotherbarrier (x∗b(t), again time-varying), then one must accumulate the stock. It is interesting to see thaty 6 0

always triggers buying; in other words shorting the stock isnever favored, and any short position must be covered

immediately. The essential reason behind this is the standing assumption thatα > r; so there is no good reason to

short the stock.

Another not-so-obvious yet extremely intriguing behaviorof the optimal strategy is that when the time to

maturity is short enough (precisely, when the remaining time is less thanT ∗ = 1
α−r

ln
(

1+λ
1−µ

)
), then one should

not buy stock any longer (unless to cover a possible short position). This is seen from the fact thatlim
t↑T0

x∗b(t) = −∞
stated in Proposition 4.4 along with the definition of the buyregion. Moreover, since both the two barriers are

3In an EUM model–the Merton problem for example–the optimal solution is to keep the bond–stock ratio exactly at a certain value. In the

MV model the ratio must be “adjusted” in order to account for the constraint of meeting the terminal target.
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Figure 1: A Sample Path Corresponding to Optimal Strategy

decreasing in time, the buy region gets smaller and the sell region gets bigger as time passes along. This suggests

that the investor would be less likely to buy the stock and more likely to sell the stock when the maturity date is

getting closer. These phenomena, again, are in line with what prevail in practice.

We end this section by a numerical example. Consider a marketwith the following parameters:

(α, r, σ, λ, µ, T ) = (0.15, 0.05, 0.2, 0.02, 0.02, 2).

In this case,T > 1
α−r

ln
(

1+λ
1−µ

)
. In terms of a penalty method developed by Dai and Zhong (2009), we

numerically solve equation (4.5) and then construct the twofree boundaries by Proposition 4.4. Consider an

investor having the initial position(x, y) = (−1, 1) with an expected returnz = 1.1 at timeT . Based on (6.1)

we can calculate thatℓ∗ = 4.5069; so the adjusted initial position is(x− ℓ∗e−rT , y) = (−5.078, 1). The optimal

strategy is the following. At time 0, applying Theorem 6.1, the investor carries out a transaction so as to move his

adjusted position to the boundary ofNT . This is realized by buying 4.3395 units (in terms of the dollar amount)

of the stock, with the new adjusted position to be(−9.5043, 5.3395). After the initial time, the investor trades only

on the boundaries of theNT region just to keep his adjusted position within theNT region.

Next consider another investor with an initial position(x, y) = (1, 0) and expected returnz = 1.2. In

this caseℓ∗ = 2.3690 and(x − ℓ∗e−rT , y) = (−1.1436, 0). So initially the investor buys 1.5047 worth of the

stock moving the adjusted position to (-2.6784,1.5047) which is on the boundary ofNT . Afterwards, the trading

strategy is simply to keep the adjusted position withinNT . The two boundaries are depicted in the Figure 1,

where the horizontal axis is timet and the vertical one is the ratio betweenx− ℓ∗e−r(T−t) andy. A sample path

corresponding to the optimal strategy is also illustrated.

Finally we compare the MV efficiency with and without transaction costs, by plotting the respective efficient

frontiers. We use the same model parameters as above and takethe initial position(x, y) = (1, 0). Figure 2 depicts

the efficient frontiers with different transaction costs.4 It is worth pointing out that the frontiers in the presence of

transaction costs are still straight lines due to the availability of a risk-free asset. The figure shows clearly that the

4The no-transaction cost frontier follows from the analytical solutions in Zhou and Li (2000).
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Figure 2: Efficient Frontiers with Different Transaction Costs
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Figure 3: Prices of Risk in Time

MV efficiency declines as the transaction costs increase. Indeed, one could easily derive numerically the rate of

the efficiency decline with respect to the transaction costs.

Now that the frontiers are straight lines, we plot in Figure 3the slopes of the lines (known as the prices of risk)

against different times (the expiration date T=2 is fixed). When transaction costs are incurred, we have shown that

there is a threshold time value after which one never buys stock and hence the corresponding price of risk is 0. The

threshold valuesT − 1
α−r

log((1 + λ)/(1 − µ)) = 1.6 or 1.8 for λ = µ = 0.02 or 0.01 respectively. These are

verified by Figure 3.

7 Concluding Remarks

This paper investigates a continuous-time Markowitz’s mean–variance portfolio selection model with proportional

transaction costs. In the terminology of stochastic control theory, this is a singular control problem. We use the

Lagrangian multiplier and partial differential equation to approach the problem. The problem has been completely
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solved in the following sense. First, the feasibility of themodel has been fully characterized by certain relationship

among the parameters. Second, the value function is given via a PDE, which is analytically proven to be uniquely

solvable and numerically tractable, whereas the Lagrange multiplier is determined by an algebraic equation. Third,

the optimal strategy is expressed in terms of the free boundaries of the PDE. Economically, the results in the paper

have revealed three critical differences arising from the presence of transaction costs. First, the expected return on

the portfolio may not be achievable if the time to maturity isnot long enough, while without transaction costs, any

expected return can be achieved in an arbitrarily short time. Second, instead of trading all the time so as to keep a

constant adjusted ratio between the stock and bond, there exist time-dependent upper and lower boundaries so that

transaction is only carried out when the ratio is on the boundaries. Third, there is a critical time which depends

only on the stock excess return and the transaction fees, such that beyond that time it is optimal not to buy stock

at all. Finally, although shorting is allowed in our model, it is never favored by an optimal strategy. Our results

are closer to real investment practice where people tend notto invest more in risky assets towards the end of the

investment horizon.

Methodologically this paper employs the PDE approach of Daiand Yi (2009) developed for EUM (CRRA

utility). In both MV (this paper) and CRRA [Liu and Loewenstein (2002) and Dai and Yi (2009)] cases it is shown

that if the investor is holding the stock then he should stop buying more shares if the time left is too short. This is an

interesting and important feature of the finite horizon problem with transaction costs. The intuition behind this is

that the investor should not purchase any additional sharesif the remaining investment period is not long enough to

offset at least the transaction costs. However, there are significant differences between the MV and EUM models.5

First of all, the issue of feasibility is unique to the MV model, which itself is interesting both mathematically

and economically. Second, the present paper has shown that whenever the investor is shorting the stock the MV

problem (with transaction costs) has no feasible solution if the remaining time is short enough, or otherwise one

should immediately buy shares. There are no corresponding results in the EUM setting.6 Last but not least, the

smoothness of the switching boundaries is proved for the first time in this paper, which is instrumental in deriving

rigorously the optimal trading strategies.
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A Proofs of Propositions 4.4 and 4.5

Proposition 4.5 is straightforward once Proposition 4.4 isproved. So we prove Proposition 4.4 only. Note that

equation (4.5) could have a singularity ifv = 0. To remove the possible singularity, let us begin with the stationary

counterpart of the problem. As in Theorem 6.1 of Dai and Yi (2009), we are able to show that the semi-explicit

stationary solution is available through a Riccati equation




Lv∞ = 0, if x ∈ (x∗b,∞, x
∗
s,∞),

v∞(x∗b,∞) = x∗b,∞ + 1 + λ, v′∞(x∗b,∞) = 1,

v∞(x∗s,∞) = x∗s,∞ + 1 − µ, v′∞(x∗s,∞) = 1,
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with

x∗s,∞
def
==− a

a+ k∗
(1 − µ), (A.1)

x∗b,∞
def
==− a

a+ k∗

k∗−1

(1 + λ), (A.2)

whereL is defined in (4.6),

a
def
==−2(α− r + σ2)

σ2
∈ (−∞,−2),

k∗ ∈ (1, 2) is the solution to

F (k) =
1 + λ

1 − µ
,

F (k)
def
==





a+ k
k−1

a+ k

(
(c1 + k−1

k
a)(c2 + 1

k
a)

(c2 + k−1
k
a)(c1 + 1

k
a)

) 1
2(c2−c1)

, if ∆k < 0,

a+ k
k−1

a+ k
exp

(
1

2

(
1

1
k
a+ 1−a

4

− 1
k−1

k
a+ 1−a

4

))
, if ∆k = 0,

a+ k
k−1

a+ k
exp

(
1√
2∆k

(
arctan

k(a− 1) − 4a

2k
√

2∆k

− arctan
4a− k(3a+ 1)

2k
√

2∆k

))
, if ∆k > 0,

c1, c2 are the two roots of2c2 + (a− 1)c+ k−1
k2 a

2 = 0, and

∆k
def
==

k − 1

k2
a2 − 1

8
(a− 1)2.

Let v(t, x) be a solution to equation (4.5) restricted to the region[0, T ) ×
(
−∞, x∗s,∞

)
with a boundary

conditionv(t, x∗s,∞) = x∗s,∞ + 1 − µ. Apparently,v∞ is a super-solution to equation (4.5) in the region, i.e.,

v(t, x) ≤ v∞(x) for all x < −(1−µ), t ∈ [0, T ). It is easy to show thatv∞(x) is increasing inx. We then deduce

v(t, x) ≤ v∞(x∗s,∞) = x∗s,∞ + 1 − µ
def
==−C0 < 0 for x < x∗s,∞. (A.3)

In what follows, we will confine equation (4.5) to the restricted region[0, T )×
(
−∞, x∗s,∞

)
in which, due to (A.3),

the equation has no singularity. It is worthwhile pointing out thatv(t, x) can be trivially extended to the original

region by lettingv(t, x) = x+ 1 − µ for x ≥ x∗s,∞.

In terms of a penalized approximation (see, for example, Friedman (1988)), it is not hard to show thatv(t, x) ∈
W 1,2

p

(
[0, T ) × (−N, x∗s,∞)

)
for any−N < x∗s,∞, p > 1. By the maximum principle, (4.7) and (4.8) follow. Then

we have
∂

∂x
[v − (x+ 1 − µ)] =

∂

∂x
[v − (x+ 1 + λ)] = vx − 1 6 0,

which implies the existence ofxs(·) (or xb(·)) as a single-value function. The monotonicity ofxs(·) andxb(·) is

due to
∂

∂t
[v − (x+ 1 − µ)] =

∂

∂t
[v − (x+ 1 + λ)] = vt 6 0.

The proof of (4.12) is the same as that of Theorem 4.5 and 4.7 ofDai and Yi (2009).

It remains to show the smoothness ofx∗b(·) andx∗s(·). To begin with, let us make a transformation and introduce

two lemmas.
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Let z = log (−x), u(t, z) = v(t, x). Then




max {min {−ut − L1u, u− (−ez + 1 − µ)} , u− (−ez + 1 + λ)} = 0,

u(T, z) = −ez + 1 − µ, (t, z) ∈ [0, T ) × Z ,

u
(
t, log

(
−x∗s,∞

))
= x∗s,∞ + 1 − µ,

whereZ = (log
(
−x∗s,∞

)
,+∞), and

L1u =
σ2

2
uzz −

(
α− r +

σ2

2

)
uz +

(
α− r + σ2

)
u − σ2

[
u2

z

u
+ 2ez uz

u
− 2ez

]
.

Lemma A.1. For any(t, z) ∈ [0, T ) × Z , we have (1)u 6 −C0; (2) uz = xvx > x = −ez, i.e.,uz + ez > 0;

(3) u− uz > 0. Moreover, there is a constantC1 > 0 such thatu− uz > C1.

Proof. Part (1) and (2) are immediate from (A.3) and (4.8). Let us prove Part (3). Denotew = uz. So,

∂

∂z
(−ut − L1u) = −wt − L2w + 2ezσ2

(uz

u
− 1
)

where

L2w =
σ2

2
wzz −

(
α− r +

σ2

2

)
wz +

(
α− r + σ2

)
w − σ2

(
2 (uz + ez)

u
wz −

uz (uz + 2ez)

u2
w

)
.

We define

SR= {(t, z) ∈ [0, T ) × Z | u = −ez + 1 − µ} ,

BR = {(t, z) ∈ [0, T ) × Z | u = −ez + 1 + λ} ,

NT = {(t, z) ∈ [0, T ) × Z | −ez + 1 − µ < u < −ez + 1 + λ} .

Notice that we can rewrite

−ut − L1u = −ut − L2u+ 2ezσ2
(uz

u
− 1
)
.

DenoteH = u− uz. Then

−Ht − L2H = 0 in NT

ClearlyH = 1 − µ in SR and att = T , andH = 1 + λ in BR. Hence, applying the maximum principle yields

H ≥ 0. Moreover, it is not hard to verify that the coefficients inL2H are bounded. We then infer that there is a

constantC1 > 0, such thatH > C1.

Lemma A.2. There is a constantC2 > 0, such thatut > −C2.

Proof. Let zs(t) = log(−x∗s(t)) be corresponding the selling boundary. Forz > zs(t)

ut|t=T = −L1 (−ez + 1 − µ) = − (α− r) (1 − µ) − (1 − µ)
2

−ez + 1 − µ

> − (α− r) (1 − µ).

Applying the maximum principle gives the desired result.
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We are now to prove that bothzs(·) andzb(·) areC∞, wherezs(t) = log(−x∗s(t)) andzb(t) = log(−x∗b(t)).
Thanks to the bootstrap technique, we only need to show that they are Lipschitz-continuous. Hence, it suffices to

prove the cone property, namely, for any(t, z0) ∈ [0, T ) × Z , there exists a constantC > 0 such that

(T − t)ut + C
∂

∂z

(
u− (−ez + 1 − µ)

)∣∣∣∣
(t,z0)

> 0,

(T − t)ut + C
∂

∂z

(
u− (−ez + 1 + λ)

)∣∣∣∣
(t,z0)

> 0,

which is equivalent to

(T − t)ut + C (uz + ez)|(t,z0) > 0. (A.4)

Now let us prove (A.4). We can only focus on the NT region. Notethat

∂

∂t

(
− ut − L1u

)
=

(
− ∂

∂t
− L2

)
ut.

It follows (
− ∂

∂t
− L2

)
[(T − t)ut] = ut in NT.

On the other hand, it is not hard to check
(
− ∂

∂t
− L2

)
(uz + ez) = σ2ez u− uz

u2
(u+ uz + 2ez)

> σ2ez u− uz

u2
(u+ uz − 2uz)

= σ2ez (u− uz)
2

u2
>
C2

1σ
2ez

u2
, in NT

whereu− uz > C1 is used in the last inequality. Thus,
(
− ∂

∂t
− L2

)
[(T − t)ut + C (uz + ez)]

> ut + C
C2

1σ
2ez

u2
> −C2 + C

C2
1σ

2ez

u2
, in NT.

Since NT is unbounded, we can follow Soner and Shreve (1991) to introduce an auxiliary functionψ(t, z; z0) =

ea(T−t) (z − z0)
2 with a constanta > 0. We can choosea big enough so that

(
− ∂

∂t
− L2

)
ψ (t, z; z0) > C3 (z − z0)

2 − C4,

whereC3 andC4 are positive constants independent of(t, z). It follows
(
− ∂

∂t
− L2

)
[(T − t)ut + C (uz + ez) + ψ (t, z; z0)]

> −C2 + C
C2

1σ
2ez

u2
+ C3 (z − z0)

2 − C4.

Then we can chooser > 0 such that

C3r
2 − C2 − C4 > 0

and chooseC > 0 big enough such that

C
C2

1σ
2ez

u2
− C2 − C4 > 0 for |z − z0| 6 r.
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It then follows (
− ∂

∂t
− L2

)
[(T − t)ut + C (uz + ez) + ψ (t, z; z0)] > 0, in NT.

Applying the maximum principle and penalty approximation,we conclude

(T − t)ut + C (uz + ez) + ψ (t, z; z0) > 0, (t, z) ∈ [0, T ) × Z .

Lettingz = z0, we get the desired result.

B Proof of Proposition 6.2

Proof. From

V (0, x− ℓe−rT , y) − (ℓ− z)2 = inf
W∈Wx−ℓe−rT ,y

0

E[W 2 − (ℓ− z)2] = inf
W∈Wx,y

0

E[(W − ℓ)2 − (ℓ− z)2]

= inf
W∈Wx,y

0

(E[W 2] − 2ℓ(E[W ] − z)),

it follows thatV (0, x− ℓe−rT , y) − (ℓ− z)2 is concave inℓ. So its maximum attains at pointℓ∗ which satisfies

∂

∂ℓ

(
V (0, x− ℓe−rT , y) − (ℓ− z)2

)∣∣∣∣
ℓ=ℓ∗

= 0,

i.e.,

e−rTVx(0, x− ℓ∗e−rT , y) + 2ℓ∗ = 2z.

Define

f(ℓ)
def
== e−rTVx(0, x− ℓe−rT , y) + 2ℓ.

Then by the convexity ofV (0, x− ℓe−rT , y)− (ℓ− z)2 in ℓ, we have thatf is increasing. SinceVx 6 0, we have

f(z) 6 2z. By the monotonicity off , the existence ofℓ∗ depends on lim
ℓ→+∞

f(ℓ).

• We first consider the case whenT0 > 0. In this casex∗b(0) ∈ (−∞, 0). If y 6 0, then

(0, x− ℓe−rT , y) ∈ BR, ∀ ℓ > z.

If y > 0, then

(0, x− ℓe−rT , y) ∈ BR, ∀ ℓ > erT (x− x∗b(0)y).

Therefore,

lim
ℓ→+∞

f(ℓ) = lim
ℓ→+∞

(
e−rTVx

(
0, x− ℓe−rT , y

)
+ 2ℓ

)

= lim
ℓ→+∞

(
2e−rT e2B(0)

(
x− ℓe−rT + (1 + λ)y

)
+ 2ℓ

)

= lim
ℓ→+∞

2
(
1 − e−2rT+2B(0)

)
ℓ+ 2e−rT (x+ (1 + λ)y)

= +∞,
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where we have used the fact thatB(0) < rT whenT0 > 0. Therefore, for any

z ∈ (erTx+ (1 − µ)erT y+ − (1 + λ)erT y−,+∞)

there existsℓ∗ such that

e−rTVx(0, x− ℓ∗e−rT , y) + 2ℓ∗ = 2z,

V
(
0, x− ℓ∗e−rT , y

)
− (ℓ∗ − z)2 = sup

ℓ∈R

(V (0, x− ℓe−rT , y) − (ℓ− z)2). (B.1)

Now we prove the uniqueness. ForT0 > 0, we have

A(0) < rT, B(0) < rT.

If (0, x− ℓe−rT , y) ∈ SR, then

f ′(ℓ) = −e−2rTVxx(0, x− ℓe−rT , y) + 2 = −2e−2rT+2A(0) + 2 > 0.

Similarly, if (0, x− ℓe−rT , y) ∈ BR, then

f ′(ℓ) = −e−2rTVxx(0, x− ℓe−rT , y) + 2 = −2e−2rT+2B(0) + 2 > 0.

By the maximum principle, we have

f ′(ℓ) > 0, for (0, x− ℓe−rT , y) ∈ NT .

This implies the uniqueness ofℓ∗.

• Now, we move to the case whenT0 = 0. According to Theorem 3.3, we have

D =





(erTx+ (1 − µ)erT y, erTx+ (1 − µ)eαT y), if y > 0,

∅, if y 6 0.

We only need to consider the case ofy > 0. Note that in this case,

(0, x− ℓe−rT , y) ∈ NT , ∀ ℓ > erT (x− x∗s(0)y).

By the homogeneity property, we have

Vx(t, ρx, ρy) = ρVx(t, x, y), ∀ (t, x, y, ρ) ∈ [0, T ) × R
2 × R+.

So we can make the following transformation inNT ,

z = −y
x
∈
(
0, −1

x∗
s(0)

)
, v̄(t, z) = − 1

x
Vx(t, x, y).

Then 



v̄t + 1
2σ

2z2v̄zz + (α− r)zv̄z + 2rv̄ = 0, (t, z) ∈ [0, T ) ×
(
0, −1

x∗
s(0)

)
.

v̄(T, z) = 2(−1 + (1 − µ)z).

Therefore

v̄(t, 0) = −2e2r(T−t).
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Let ṽ(t, z) = v̄z(t, z), which satisfies





ṽt + 1
2σ

2z2ṽzz + (α− r + σ2)zṽz + (α+ r)ṽ = 0, (t, z) ∈ [0, T ) ×
(
0, −1

x∗
s(0)

)
,

ṽ(T, z) = 2(1 − µ).

Therefore

ṽ(t, 0) = 2(1 − µ)e(α+r)(T−t).

It follows

Vx(0, x, y) = −xv̄
(
0,− y

x

)
= −x

(
v̄(0, 0) − y

x
v̄z(0, 0) +O

(
y2

x2

))

= 2xe2rT + 2y(1 − µ)e(α+r)T +O
(

y2

|x|

)
.

So

lim
ℓ→+∞

f(ℓ) = lim
ℓ→+∞

(
e−rTVx(0, x− ℓe−rT , y) + 2ℓ

)

= lim
ℓ→+∞

(
e−rT

(
2(x− ℓe−rT )e2rT + 2y(1 − µ)e(α+r)T

)
+O

(
y2

|x− ℓe−rT |

)
+ 2ℓ

)

= 2(erTx+ (1 − µ)eαT y).

The monotonicity off ensures the existence ofℓ∗. The proof for the uniqueness is similar as above.

The proof is complete.
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