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with Regime Switching: From Discrete-time Models
to Their Continuous-time Limits
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Abstract— We study a discrete-time version of Markowitz’s
mean-variance portfolio selection problem where the market
parameters depend on the market mode (regime) that jumps
among a finite number of states. The random regime switching
is delineated by a finite-state Markov chain, based on which
a discrete-time Markov modulated portfolio selection model is
presented. Such models either arise from multiperiod portfolio
selections or result from numerical solution of continuous-time
problems. The natural connections between discrete-time models
and their continuous-time counterpart are revealed. Since the
Markov chain frequently has a large state space, to reduce the
complexity, an aggregated process with smaller state space is
introduced and the underlying portfolio selection is formulated
as a two-time-scale problem. We prove that the process of
interest yields a switching diffusion limit using weak convergence
methods. Next, based on the optimal control of the limit process
obtained from our recent work, we devise portfolio selection
strategies for the original problem and demonstrate their asymp-
totic optimality.

Index Terms— Markowitz’s mean-variance portfolio selection,
discrete-time model, Markov chain, switching diffusion, linear-
quadratic problem, singular perturbation.

I. INTRODUCTION

ARKOWITZ’S Nobel-prize winning mean-variance

portfolio selection model (for a single period) [16],
[17] provides a foundation of modern finance theory; it has
inspired numerous extensions and applications. The Markowitz
model aims to maximize the terminal wealth, in the mean time
to minimize the risk using the variance as a criterion, which
enables investors to seek highest return upon specifying their
acceptable risk level.

There have been continuing efforts in extending portfolio
selection from the static single period model to dynamic multi-
period or continuous-time models. However, the research
works on dynamic portfolio selections have been dominated
by those of maximizing expected utility functions of the
terminal wealth, which is in spirit different from the original
Markowitz’s model. For example, the multi-period utility
models were investigated in Mossin [19], Samuelson [21],
Hakansson [10], Elton and Gruber [7], Francis [8], Grauer and
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Hakansson [9], and Pliska [20], among many others. As for the
continuous-time case, the famous Merton paper [18] studied
a utility maximization problem with market factors modelled
as a diffusion process (rather than as a Markov chain). Along
another line, the mean-variance hedging problem was investi-
gated by Duffie and Richardson [6] and Schweizer [22], where
an optimal dynamic strategy was sought to hedge contingent
claims in an imperfect market. Optimal hedging policies [6],
[22] were obtained primarily based on the so-called projection
theorem.

Very recently, using the stochastic linear-quadratic (LQ)
theory developed in [4], [28], Zhou and Li [31] introduced a
stochastic LQ control framework to study the continuous-time
version of the Markowitz’s problem. Within this framework,
they derived closed-form efficient policies (in the Markowitz
sense) along with an explicit expression of the efficient fron-
tier.

In the aforementioned references, for continuous-time for-
mulations of mean-variance problems, stochastic differential
equations and geometric Brownian motion models were used.
Although such models have been used in a wide variety
of situations, they have certain limitations since all the key
parameters, including the interest rate and the stock appre-
ciation/volatility rates, are assumed to be insensitive to the
(very likely) drastic changes in the market. Typically, the
underlying market may have many “modes” or “regimes” that
switch among themselves from time to time. The market mode
could reflect the state of the underlying economy, the general
mood of investors in the market, and so on. For example,
the market can be roughly divided as “bullish” and “bearish”,
while the market parameters can be quite different in the
two modes. One could certainly introduce more intermediate
states between the two extremes. A system, commonly re-
ferred to as the regime switching model, can be formulated
as a stochastic differential equation whose coefficients are
modulated by a continuous-time Markov chain. Such a model
has been employed in the literature to discuss options; see
[1], [3], [5]. Moreover, an investment-consumption model
with regime switching was studied in [29]; an optimal stock
selling rule for a Markov-modulated Black-Scholes model
was derived in [30]; a stochastic approximation approach
for the liquidation problem could be found in [25]. In [32],
we treated the continuous-time version of Markowitz’s mean-
variance portfolio selection with regime switching and derived
the efficient portfolio and efficient frontier explicitly.

Motivated by the recent developments of mean-variance
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portfolio selection and Markov-modulated geometric Brow-
nian motion formulation, we develop a class of discrete-
time mean-variance portfolio selection models and reveal
their relationship with the continuous-time counterparts in this
paper. The discrete-time case is as important as the continuous-
time one. First, frequently, one needs to deal with multi-
period, discrete-time Markowitz’s portfolio selection problems
directly; see Li and Ng [13] for a recent account on the topic,
in which efficient strategies were derived together with the
efficient frontier. In addition, to simulate a continuous-time
model, one often has to use a discretization technique leading
to a discrete-time problem formulation. In this paper, however,
one of the main features of the problem to be tackled is that
all the market coefficients are modulated by a discrete-time
Markov chain that has a finite state space.

Owing to the presence of long-term and short-term in-
vestors, the movements of a capital market can be divided
into primary movement and secondary movement naturally
leading to two-time scales. Besides, with various economic
factors such as trends of the market, interest rates, and business
cycles being taken into consideration, the state space of the
Markov chain, representing the totality of the possible market
modes, is often large. If we simply treated each possible mode
as an individual one distinct from all others, the size of the
problem would be huge. A straightforward implementation
of numerical schemes may deem to be infeasible due to the
curse of dimensionality. It is thus crucial to find a viable
alternative. To reduce the complexity, we observe that the
transition rates among different states could be quite different.
In fact, there is certain hierarchy (in terms of the magnitude
of the transition rates) involved. Therefore, it is possible to
lump many states at a similar hierarchical level together to
form a big “state.” With this aggregated Markov chain the size
of the state space is substantially reduced. Now, to highlight
the different rates of changes, we introduce a small parameter
e > 0 into the transition matrix, resulting in a singular
perturbation formulation. Based on the recent progress on
two-time-scale Markov chains (see [23], [26]), we establish
the natural connection between the discrete-time problem and
its continuous-time limit. Under simple conditions, we show
that suitably interpolated processes converge weakly to their
limits leading to a continuous-time mean-variance portfolio
selection problem with regime switching. The limit mean-
variance portfolio selection problem has an optimal solution
[32] that can be obtained in a very simple way under ap-
propriate conditions. Using that solution, we design policies
that are asymptotically optimal. Our findings indicate that in
lieu of examining the more complex original problem, we
could use the much simplified limit problem as a guide to
obtain portfolio selection policies that are nearly as good as
the optimal one from a practical concern. The advantage is
that the complexity is much reduced.

We remark that although the specific mean-variance port-
folio selection is treated in this paper, the formulation and
techniques can be generally employed as well in the so-called
hybrid control problems that are modulated by a Markov chain
for many other applications.

The rest of the work is arranged as follows. Section 2

begins with the formulation of the discrete-time mean-variance
portfolio selection problem. Section 3 proceeds with some pre-
liminary results concerning two-time-scale Markov chains and
introduces an auxiliary process. Section 4 is devoted to weak
convergence analysis, in which we establish the natural con-
nection between the discrete-time and continuous-time models
aiming at reducing the complexity of the underlying systems.
Section 5 constructs policies that are based on optimal control
of the limit problem and derives asymptotic optimal strategy
via the constructed controls. Section 6 extends the results
by allowing the Markov chain to be nonhomogeneous and/or
including transient states. Section 7 concludes paper with
additional remarks. To make the paper more accessible, a
couple of long and technical proofs are placed in an appendix.

Il. FORMULATION

Suppose that T' is a fixed positive real number and that
€ > 0 is a small parameter. Working with discrete time k, we
consider 0 < k < |T'/e], where |v] denotes the integer part
of a real number v. For ease of presentation, in what follows,
we suppress the floor function notation |-| whenever there is
no confusion. All the random variables/processes in this paper
are defined on a given complete probability space (Q2, F, P).

Consider a market model as follows. Let M =
{1,2,---,m} denote the collection of different market modes.
Let of, for 0 < k < T'/e, be a discrete-time Markov chain,
which is parameterized by ¢, with the state space M. Suppose
that there are d + 1 assets in the underlying market. One
of which is the bond and the rest of them are the stock
holdings. Use S;° to denote the price of the bond, and S,
1 =1,...,d, to denote the prices of the stocks at time k, where
respectively. (Note that here k£ does not represent the calendar
time; it is the iteration time at which the systems dynamics are
updated. The calendar time is k.) Corresponding to a market
mode £ € M, let r(-,£) be the interest rate, and b*(-,£) and
a%(-, £) the appreciation rates and volatility rates of the stocks,
respectively, where =(-,-), b*(-,-), 0¥(-,-) : Rx M — R, for
1,7=1,...,d, are given functions. For each (¢,£) € R x M,
denote

d

At 0) = [b’(t,@) _ %Z(a”(t,ﬁ)f] w=1,....d ()

=1

Then under the so-called multiplicative model, the asset prices
Sy satisfy the following system of equations:
Spty = Sp° +er(ek,05)Sy°,  S5° =589 >0,
d
Spry =Sy exp (sc’(sk, ag) + \/EZ o (ek, ai)fi),
=1
Sy =58>0, 1=1,...,d,

)
where {£&}, ¢+ = 1,...,d, are sequences of independent and
identically distributed random variables. Note that the multi-
plicative model adopted above is analogous to the geometric
Brownian motion model in continuous time, which ensures the
non-negativity of the stock prices.
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Remark 2.1: Another frequently used model for discrete-
time stock prices is the following:

Sity =S¥ +er(ek,a5)S;°,  S5° =5° >0,
d
Spiy = Syt +eb'(ek,07) Syt + VE Y 0¥ (ek, af)ELSH,
=1

Sy'=8">0, +=1,...,d

@)
This model does not necessarily produce non-negative stock
prices. However, as demonstrated in [15, p. 311] the two
models are essentially the same in terms of approximating
the stock price process.

Suppose that at time %, an investor with an initial en-
dowment xz§ = zo holds N*(ek) shares of the sth asset,
1 =0,...,d, during the time interval [k, k + 1). Thus his or
her total wealth at time & is 5 = Y ;o N*(ek)Sy" for 0 <
k < T/e. Now for a self-financed portfolio (i.e., no infusion
or withdrawal of funds during the indicated time interval), the
difference in total wealth between two consecutive times is
purely due to the change in the prices of the stocks (see, e.g.,
Karatzas and Shreve [11, p.6, Eq. (2.2)]). Therefore, we have

d
T —2f = Y N'(ek)(Spty — S) and (4)
1=0
d
=D up, up' = N'(ek)S fori=0,....d.  (5)
1=0

Denote by F, the o-algebra generated by {agf, ,&, : 0 <
k1 < k} where §k = (&,-- ,§k) A portfolio u¢ = {uj, =
(uk ol up®), k= 0,1,---,T/e} is admissible if us
is Fr- measurable for each 0 < k < T'/e. Note that we do not
mclude uy,", the amount of money allocated to the bond, in
defining the portfollo. This is because by (4), we have

xy,, = xj +er(ek, ai)NO(ek)SZ’O
d

+Y N'(ek)(Sgiy — Si)

=1
d
= 2}, +er(ek, a}) (2, — Zui”)
4 1=1
+ DN ek) (S, — SiY.
=1

Therefore,

d
—er(ek,a},) Z uy’

ziyy = [l +er(ek,a})]zy,

=1
d
+> N'(ek)(Spty — Sp).-
=1
Hence the wealth process z° = {zf, k¥ = 0,1,---,T/e}

is completely determined by the allocation of wealth among
the stocks (excluding the bond). We call (x¢,«®) an admissi-
ble wealth-portfolio pair, and denote the class of admissible
wealth-portfolio pairs by .A°.

The objective of the discrete-time mean-variance portfolio
selection problem is to find an admissible portfolio (z°,u¢) €

A¢, for an initial wealth z§ = 2, and an initial market mode
ag = o, such that the terminal wealth is Ex7,, = z for
a given z € R, and the risk in terms of the variance of the
terminal wealth, Efz7., — z]?, is minimized. That is,

Minimize J*(zo, &, u?) = E[z7,, — 2]?
subject to: #§ = w0, ag =lo, Ex%,. =z
and (zf,u®) € A°.

(6)

I1l. PRELIMINARY RESULTS

Our effort in what follows is to obtain a limit problem of (6)
as € — 0. The idea comes from aggregation of the Markovian
states to reduce the complexity of the underlying system via
a hierarchical approach. To proceed, we make the following
assumptions. The first one is on the transition matrix of the
Markov chain, the second one concerns about the interest rate
of the bond, and the stock appreciation and volatility rates,
and the last one is a condition on the exogenous noise {¢},}.

(Al) The transition matrix of the discrete-time Markov chain
af, is given by
P* =P +eqQ,

P = diag(P,..., (8)

such that P? for 4 = 1,...,1 are transition matrices,
and Q is a generator (i.e., ¢** > 0 for £ # ¢, and
EeleM ¢*®* = 0 for each £ € M). Moreover, P?,
i=1,...,1 are irreducible and aperiodic.
For each é eM,u,y=1,...,d, r(-,0), b*(-,£), d¥(-,£)
are real-valued continuous functions defined on [0, T].
Foreach.=1,...,d, {£ } is a sequence of independent
and identically distributed (i.i.d.) random variables that
are independent of o, and that have mean 0 and variance
1. Moreover, for + # 3, & and &; are independent.
Remark 3.1: The rationale for (Al) is that among the
transition rates of the Markovian states, some of them vary
rapidly and others change slowly. Decomposing the state space
in accordance with these transition rates, we can write the state
space as

)
P

(A2)

(A3)

M =M UM UM, ©)

where M; = {Gau,---,Cim,}. Since in a finite-state Markov
chain, there is at least one recurrent state (not all states can be
transient), and there is no null-recurrent state, the irreducibility
implies that there are [ ergodic classes of states. Each of the
transition matrix P? is responsible for the rapid transitions,
whereas the generator () governs the slow transitions from one
ergodic class to another. The transition matrix P given in (7)
with P specified in (8) has the so-called nearly completely
decomposable structure. It arises from many discrete-time
control and optimization problems, or from discretization of a
continuous-time problem; see [24] and the references therein.
On the other hand, Condition (A3) indicates that the sequences
{¢&,} are the so-called white noise. Under this condition,
the Donsker’s invariance principle [2, p.137] implies that
\/_EZ 0 1§k converges weakly to a Brownian motion as
e — 0. For definition, discussion, and basic results on weak
convergence, we refer the reader to [2], [12]. In fact, correlated
noise may also be dealt with. What is essential is a functional
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central limit theorem as mentioned above holds for the scaled
sequence. Sufficient conditions guaranteeing the convergence,
for example, for ¢-mixing processes are available. However,
assumption (A3) allows us to simplify much of the discussion
in what follows.

Due to the various considerations, the state space M is
large. That is, m is a large number. In solving the portfolio
selection problem, we aggregate the states in each of the
recurrent class M; into one state, resulting in an aggregated
process having only [ states. If [ < m, the possible number
of configurations is substantially smaller for the aggregated
process. In practice, we typically merge all the similar states
into one “big” state. For example, we can put all the states
together where the market is generally up (respectively, down)
to form a “bullish” (respectively, “bearish”) mode of the
market. Our effort in what follows is to show that suitably
interpolated processes of the prices converge to limit processes
that are switching diffusions, and to establish the connection
between the discrete-time and continuous-time portfolio selec-
tion problems. Using the optimal strategy of the limit problem,
which was obtained explicitly in [32], enables us to construct
an asymptotically optimal strategy for the original problem

(6).

A. Singularly Perturbed Markov Chains

To carry out the analysis, define an aggregated discrete-
time process @y, by aj, = i if of € M;, i =1,2,---,lL
Next define the interpolated processes of the stock/bond price
processes, the aggregated process, and admissible wealth-
portfolio pairs as: For ¢ € [ek,ek + €),

Sg’l(t) :SZ,Za Z:O,.--,d, as(t) :62

u(t) = uy, z°(t) = xf,. (10)

That is, they are all piecewise constant on the interval of length
e. We will obtain the weak convergence of the interpolated
processes. Before proceeding further, we present some pre-
liminary results.

Lemma 3.2: Assume condition (Al). Then the following
assertions hold:

(i) Denote by »¢ the stationary distribution corresponding to
the transition matrix P¢ for each i = 1,...,l. Then p§ =
(P(ag, = C11),-- -, P(a5, = Gm,)) € RYX™ satisfies

p; = O(t)diag(v', ..., ") + O(e + \F),

for some 0 < X\ < 1, where 6(¢t) = (61(¢),...,0:(t)) €
RYX! (with ¢ = ek) satisfies

(11)

dt
Q = diag(v', .. .,I/l)Qi, 1= diag(Lyyy,---5 Lpy,)-

(12)

Here 1, denotes an ¢-dimensional column vector with all
entries being 1.

(if) For k < T/e, the k-step transition probability matrix
(P#)k satisfies

(P =3(t) + O (e + A¥), (13)

where &(t) = 10(¢)diag(v', ..., v') with O(t) satisfy-
ing

do(t)

dt

As ¢ — 0, @°(-) converges weakly to @(+), a continuous-
time Markov chain with state space M = {1,...,I} and
generator Q given by (12). Moreover, for the occupation
measures defined by

=0(t)Q, 6(0)=1. (14)

(iii)

k
Oi’ij =¢ Z [I{aklz it T V;I{aiEMi}]’
k1=0
withi=1,...,0,j=1,...,m;, and 0 < k < T/e, the
following mean square estimates hold
sup E|o§syz-j|2 = O(e).
0<k<T/e
Proof. The proofs of (i) and (ii) are in [24], and that of (iii)
can be found in [27]. O

(15)

B. An Auxiliary Process

The model (2) is a multiplicative one. For the subsequent
analysis, it is more convenient to work with an auxiliary
additive model. To do so we retain the definition of S;*°, and

define auxiliary processes Y, for s =1,...,d as: Y5"" =0,
and
d
Y =Y +ec(ek,af) + \/EZ o' (ek,a})&l,
1=1
(16)

where ¢'(-, -) is given by (1). In terms of the processes {Y,""},
the price for the sth stock can be written as

S5 = Stexp(Yy!), S5t =S > 0. (17)

Similar to the interpolation S<:*(-), define the interpolated
processes

Yot) =Y, " for t€lke,ke+e), 1=1,...,d. (18)

It is easily seen that S€*(¢) = S§ exp(Y=*(t)). That is, S=*(-)
is related to the interpolation of Y,* through the exponential
function.

To obtain the convergence of S¢-*(-), we utilize the auxiliary
process Y=*(-). We first show that {Y=*(-)} converges weakly
to certain limit process, in which the appreciation and volatility
rates are averaged out with respect to the stationary measures
of the corresponding Markov chains. Then by using a well-
known continuous mapping theorem [2, Theorem 5.2, p.31],
we obtain the desired result.

1V. WEAK CONVERGENCE

This section is devoted to the weak convergence of interpo-
lated processes S=0(-) and Y& (-). We first verify the tightness
of the underlying sequences. Then we characterize the limit
by showing that they are solutions of certain martingale prob-
lems with appropriate generators. In fact, we work with the
processes (S9(-),a*(+)) and (Y=*(:),a°(+)) fora = 1,...,d,
respectively.
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A. Tightness of {S=°(-),@°(-)} and {Y=*(-),a°(:)}

Theorem 4.1: Under (A1)—~(A3), {S%°(:),a°(-)} and
{Ye*(-),a°(-)} for+» = 1,...,d are tight on D[0,T], where
D[0,T] is the space of functions that are right continuous,
have left limits, endowed with the Skorohod topology.

Proof. The proof is in the appendix. O

since {S°0(-), @ ()} and {Y**(),&*(")} ¢ = 1,...,d)
are tight, Prohorov’s theorem ([2, p.37]) allows us to extract
weakly convergent subsequences. Select such convergent sub-
sequences (still indexed by e for notational simplicity) with
limits (S°(-), @(-)) and (Y*(-), @(-)), respectively. By virtue of
the Skorohod representation ([12, p.29]), we may assume with-
out loss of generality that (S=°(-),a@°(-)) and (Y**(-),a°(-))
converge to (S°(-),@(-)) and (Y*(-),a(-)), respectively, with
probability one (w.p.1), and that they converge uniformly on
any compact time interval.

B. Weak Convergence

We proceed to characterize the limit processes. Denote the
d x d matrix (c"(¢,4)) by X(t,4). Define

l) = Z V;:T(t, Cij);
i=1
Ez(t, ’L) = Z V;bl (t7 Cij)) (19)
Jj=1

m;
El(ta 7’) = Z V;Cl(t, Cij))
i=1

where uJ’ﬁ denotes the jth component of the stationary distri-
bution ¢ corresponding to Pi. Let X(t,a) = (¥(t,a)) be
such that

NG
Nts

S(t,0)T (t,4) = S(t, 6y)S

1

~.
I

(20)
where for a vector or a matrix B, B’ denotes its trans-
pose. Concentrating on the processes (S%°(-),a°(-)) and
(Yer(-),@%(-)), we wish to show that the limit processes are
solutions of

dS°(t)
dt

d
dY*(t) = @t ab)dt + > a9 (ta(t)dw (), PV

=7(t, a(t))S°(t), S°(0) = S§,

Y 0)=0, 1=1,....d

respectively, where w*(-) for » = 1,...,d are independent,
scalar, standard Brownian motions. Equivalently, it suffices to
show that for each ¢ = 0,...,d, (S*(-),@(-)) is a solution of
the martingale problem with the operator (8/8t) + £* and

LOf(t,y,i) = fy(t,y,i)T(t, i)y,

C1.0) = oty 02 () + P8 s,
+§f(t;y7 ')(l)a 1< < d;

)T (,4)]"

(22)

(tacij)a { EHZ {17"'7l}7

where for each ¢, f(-,-,4) is a suitable real-valued function
defined on R x R, @ = (g*) is given by (12), and

m; d
[_( t i ]“ = ZV Z t C@J s
j=t 5=l (23)
f(ty,-) Zq” F(t.y,9) — F(t,y,1)).

J#i

Theorem 4.2: Assume (A1)-(A3). Then (S°(-),a(-)) and
Y*(-),a(:)) for «+ = 1,...,d, the weak limits of
(S50(-),a*(-)) and (Y=*(-),a°(-)) are the unique solutions
of the martingale problems with the operators (9/8t) + L£* for
1=0,...,d, where £* is defined in (22).

Proof. It is in the appendix. O

Corollary 4.3: Under the conditions of Theorem 4.2,
(S=*(-),a°(-)) converges weakly to (S*(-),a@(-)) which are
solutions of

ds°(t)

pran T(t,a(t))S°(t), $°(0) = 3,
d
ds'(t) = b (t,a(t))S"(t)dt + »_ 5 (t, a(t))S" (t)dw’ (¢),
SO =S i=1,...d

(24)
respectively, where w*(-) for » = 1,...,d are independent,

scalar, standard Brownian motions.

Proof. Since S°*(t) = Siexp(Y='(t)), and exp(y) is a
continuous function, by the well-known continuous mapping
theorem [2, Theorem 5.1, p.31], S¢*(-) converges to S*(-)
such that S*(¢t) = Sgexp(Y*(t)), where Y*(-) is the limit
of Y&*(-). Applying Itd6’s formula to (21) and noticing the
relations (1) and (19), we obtain the desired result. O
Now we define the (continuous-time) limit problem of
mean-variance portfolio selection. Denote by F; the o-algebra
generated by {a(s),w(s) : 0 < s < t}, where w(s) =
(w(s),...,wi(s))". A control u(-) = (ul(-),---,ud(")) is
admissible for the limit problem if u(-) is F;-adapted and

da(t) = {r(t,a(t))z(t)

d

+ LB am) - rean ey
d d

+ 30 7 a1 (1)

has a unique solution z(-) corresponding to u(-). Here z(t)
is the total wealth of the investor and u(t) the allocation of
wealth to the stocks, both at time ¢. Thus with «°(t) being the
amount of fund in the bond, we must have

d

d
z(t) = D N'(H)S'(t) = Y _u'(t),
1=0

1=0

(26)

where N*(t) is the number of shares of the sth stock held by
the investor at time ¢. The (x(-),u(+)) is termed an admissible
wealth—portfolio pair (for the limit problem). Denote the class
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of admissible wealth—portfolio pairs by .A. The limit mean—
variance portfolio selection problem is formulated as

Minimize J(zo,i0,u(")) = E[z(T) — 2]?
subject to: z(0) = zg, a@(0) =49, Ez(T)=2
and (z(-),u() € 4

where i is such that £, € M,, (recall that £, is the initial
condition of the Markov chain «g in the original discrete-time
problem (6)).

For any (x¢,uf) € A°, there are the corresponding interpo-
lated processes (x°(-),u°(-)) determined by (10). From now
on we will not distinguish between (z¢, %) and (x°(-), u°(+)),
and will occasionally write (z°(-),u°(-)) € A°. As a con-
sequence of Corollary 4.3, the following result holds, which
indicates that associated with the discrete-time problem (6)
there is a limit continuous-time problem (27).

Corollary 4.4: Under the conditions of Theorem 4.2, any
(z°(-),us(-)) € A° converges weakly to (z(-),u(-)) that
belongs to .A. Moreover, as € — 0,

Ez*(T) —» Ex(T), and E[z°(T)

(27)

— 2> = E[2(T) — 2)°.
(28)

1),...,8%4())". Corol-

Proof. Set S°(-) = (S°°(-),S"
@®(-)) converges weakly to
a(-

lary 4.3 implies that ( E(),

(S(), () = (S°(t), ..., S4(t),a(-)) that satisfies
ds(t) =
T(t, a(t)) 0 &
(07 @ 500 ....F ) SO

0 0

+ (0 S(t,a(t))diag(dw (¢), . . .

(29)

Recall that u®(t) = uj, for ¢t € [ek,ek +¢€). That is, u®(t) =

(NL(#)SS1(t),..., N%(t)S=?(t)). The weak convergence of

(S50(-),...,8%4()) yields that u(-) converges weakly to

u(-) where u(t) = (N*(t)St(t),..., N4t)S4(¢t)). It follows

then from (5) and (26) that z°(-) converges weakly to z(-),

which satisfies (25). This also implies (z(-),u(:)) € A.

Finally, the interpolation of «7, the weak convergence of

x°(+) to z(-), the Skorohod representation, and the dominated
convergence theorem lead to (28). O

V. NEARLY EFFICIENT PORTFOLIO

We have established that associated with the original mean-
variance control problem, there is a limit problem. In this
section, we demonstrate that we can construct a nearly optimal
portfolio for (6) based on the optimal portfolio for (27).

A. Efficient Portfolio of the Limit Problem

Recall that (27) is feasible (for fixed z¢ and o) if there is at
least one portfolio satisfying all the constraints. It is finite if it
is feasible and the infimum of .J is finite. An optimal portfolio
for a given z, if it exists, is called an efficient portfolio, and
the corresponding (Var z(T"), z) is called an efficient point.
The set of all the efficient points as z varies is termed the
efficient frontier. In terms of the control theory terminology, an

efficient portfolio is an optimal control policy (corresponding
to a particular z).

In [32], a necessary and sufficient condition for the fea-
sibility of the limit problem (27) is derived. In addition,
it is proved that if it is feasible, then indeed the efficient
portfolio corresponding to z exists, which can be expressed in
a feedback form, namely, a function of the time ¢, the wealth
level z and the market mode 7. With the initial data given
by 2(0) = zo and @(0) = ig, the efficient portfolio (optimal
control) is given by

u*(t,z,4) = —[B(t,i)2(t,
where fori =1,2,...,1,

_ - P(07ZO)H(O7ZO)$0
B P(O i0)H(0,i0)2 +6 —1’

6=3"3" /Pw)pw()q”[ff(m) H{t,

)17 B(t,0) [z + (A* — 2)H(t,1)],

(30)

A* —

I

i)]dt > 0,

B(t1) f(bl(t,i) = 0 0) e Daltd) = (1),
P(t,i) = [p(t,9) = 2r(t,0)] P(t,4) = Y _aii P(t
P(T,i) = =

_H(tai)]a H(T,Z) =1

(31)
Moreover, the optimal value of Var z(T"), among all the
wealth processes z(-) satisfying Ex(T) = z, is
P(0,io)H(0,i0)% + 6
* T —
Var 2(T) = 10— P(0, i) H{0, ig)?
P(0,i0) H (0, io) 2
T PO 67

P(0,i0)02
P(0,i0)H(0,i0)? + 6
(0,i0)H (0, 40) &)

which gives the closed-form efficient frontier. In what follows,
using an efficient portfolio of the limit problem, we construct
a nearly efficient portfolio (i.e., a near-optimal control) for the
original problem.

B. Nearly Efficient Portfolio

With the optimal control of the limit problem, w*(¢,z, 1),

given by (30), we construct
1

= Zu* (t,2,8) [{aem;}-

i=1
That is, u(t,z,a) = u*(t,z,4) ifa € M;, fori=1,2,--- 1.
Let z§ be the wealth trajectory of the original problem (6)
under the feedback control %(ek, z, o). Recall that = (t) is the
continuous-time interpolation of x7, and denote the continuous-
time interpolation of u(ek, x5, a3) by @°(t). We shall show
that the use of such a control leads to near optimality of (6).
Write

u(t,z, a) (33)

v¥(z0,00) = inf  J*(zo,fo,u’), and
(z&,uc)€As
’U(.Z'o,i(]) = inf J(.Z'o,io,u(-)).

(z()u(-))eA
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Theorem 5.1: Suppose that the conditions of Theorem 4.2
are satisfied. Then

lim |J* (20, bo, u*(+)) — v* (20, £o)| = 0. (34)

Proof. In view of the construction of @(-) in (33), the
weak convergence argument as in the proof of Theo-
rem 4.2 yields that u®(-) converges weakly to «*(-), and
(z°(-),u"(-),a(-)) converges weakly to (z(-),u*(-),a(-)).
Then JE(.’L'(],K(],ﬂE(')) e J(xo,io,u*(-)) 'Z)(Z‘(),i()) as
e — 0. Therefore,

Je(x05£0a65(')) = U(aniO) + Al(g)a

where A;(e) — 0 as ¢ — 0. Select an admissible control
u(-) € A° such that

JE (20, Lo, U (-)) < v¥(xg, o) + €.

Define z

u(t,z,a) = Zas(tawai)-[{aeM,-}a
i=1

set zj as in (5) but with of replaced by aj, and let
z°(-) and w°(-) be the piecewise constant interpolations of
7}, and u(ek, Ty, @5,), respectively. Then J=(zg, 4y, u’(+)) =
E[z®(T)—z]?. Similar to the argument leading to the equation
after (49) in [14], using the mean squares estimate (15) on the
occupation measure, the wealth equation (5), the definition
of =7, and the Gronwall’s inequality, we can show that
E|z¢(t) —z°(t)|> = 0 as e — 0 for ¢ € [0,7]. This implies
that

JE('T07EOJEE(')) S JE('Z.(J)EO:’I/;E(')) + AQ(E)

< (w0, bo) Het+ Do), D)

where Ays(e) — 0 as € — 0. The tightness of
(z¢(+),u°(-),a°(-)) implies that we can extract a convergent
subsequence, still denoted by (z°(-),u®(-),@°(-)) for simplic-
ity, such that J¢(zo, £o,u®(-)) — J(xo,%0,a(-)). It follows
that

’U(."L'o,i(]) S J(.Z'o,io,ﬂ(')) = JE(aro,éo,ﬂE(-)) +A3(E), (36)
0 as € — 0. Combining (35) and (36),

JE(J,'(),KO,ﬂE(-))

v(xo, Qo) + A1(e)

(o, 40, u()) + A1(e)

E(Qfo,ﬁo,ﬁa(')) + Al(é‘) + A3 (E)

v (20, 40) + € + A1 (e) + Aa(e) + Ag(E)(.37)
Subtracting v¢ (zg, £o) from (37) and taking the limitas e — 0,
we arrive at (34). O

where As(e

-

V¢ (.TL'O, gg

V1. EXTENSIONS

We have demonstrated the natural connections of the
discrete-time model and its continuous-time counterpart for
the Markowitz’s mean-variance portfolio selection problems
under the premise that the modulating Markov chain is time
homogeneous. In this section, we extend the results to time in-
homogeneous Markov chains, which entail the time-dependent

transition matrices. To proceed, we first recall the definition
of weak irreducibility.

Definition 6.1: Suppose that «y is a discrete-time Markov
chain with a finite state space M = {1,...,m} and (time-
dependent) transition probability matrices P;. The Markov
chain (or the transition matrix) is said to be weakly irreducible
if for each k, the system of equations

veBr = v, vply =1 (38)
has a unique solution vy = (Vg 1,...,Vkm) € RX™ and
v,; > 0 for each ¢ = 1,...,m. The unique nonnegative

solution is termed a quasi-stationary distribution.

Remark 6.2: The definition above is an extension of the
usual notion of irreducibility. It allows the transition matrices
and the quasi-stationary measures to be time dependent. In
addition, some of the components v, ; could be 0.

Using Definition 6.1, we modify the argument used in the
previous sections, and extend the results to include time-
dependent transition probabilities. Since the proofs of the
assertions are similar to the previous case, we will only present
the conditions needed and the final results. The verbatim
proofs will be omitted. In lieu of (Al), we use:

(A1") Suppose that of, is a Markov chain with state space M
and time-dependent transition matrices

P; = P(ek) + eQ(ek) (39)

such that P(ek) has the form of the decomposition as
in (8) with each P? replaced by Pi(ek). For each i =
1,...,1,0 < k < T/e, Pi(ek) is weakly irreducible and
aperiodic. As functions of ¢ € [0,T’], P(-) is continuously
differentiable with Lipschitz continuous derivative, and
Q(+) is Lipschitz continuous.

Theorem 6.3: Under the conditions of Theorem 4.2 with
(A1) replaced by (A1’), the conclusions of Theorem 4.2 and
Corollary 4.4 continue to hold with »* and @ replaced by v%(t)
and Q(t), respectively.

Since in a finite-state Markov chain, in addition to recurrent
states, transient states may also be included. Our next result
concerns about the inclusion of transient states in addition to
the [ classes of weakly irreducible classes. In this case we
need to replace (A1’) by (A1”).

(A1) Suppose that the Markov chain a,ihhas a finite state space

M and transition matrix (39) wit
Pl(ck)
P?(ek)
P(ek) =
Pl(ek)

Pl (ck) P*?(ck) P*l(ek) P* (51?40)

For each 0 < k < T/e, and each i = 1,...,1,
the transition probability matrices P?(ck) are weakly
irreducible and aperiodic. For each 0 < k < T'/e, P*(ek)
is a matrix having all of its eigenvalues inside the unit
circle. As functions of ¢ € [0,T], P(-) is continuously
differentiable with Lipschitz continuous derivative, and
Q(+) is Lipschitz continuous. In addition, with ¢ denoting
ek, there exists an m, x m, nonsingular matrix B(t) and
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constant matrices P* and P*? satisfying P*(t) — I =
B(t)(P* —I), and P*i(t) = B(t)P*i fori=1,...,1.
Now the state space of the Markov chain can be written as:
M = MUMaU- - -UMUM,, where M; = {CGa,---, Cim: }
fori=1,...,1, and M, = {C1,---,Cem, }- Define

a;(ek) = —(P*(ek) — I)7' P (ck)L,y,,, fori=1,...,1.

Then it is easily seen that a;(¢k) = a; is independent of k.
Denote the jth component of a; by a; ;. Partition the matrix

Q(t) as
_(Q1() Q¥
Q(t) - (Qzl(t) Q22(t))
where Q1(t) € R(m—ms)x(m=m.) (12(4) g R(m—m.)xm.
Q% (t) € Rm=x(m=m) ‘and Q?2(t) € R™ *™~ and define

Q.(t) = diag(v' (t),..., ' ))NQ" ) L+Q"*(t) (a1, ..., @).

(41)
In carrying out the aggregation, we only lump all the states in
each weakly irreducible class into a single state. This leads to
the definition of the aggregated process. Let U be a random
variable uniformly distributed in [0, 1] and let

Uj = Iocv<ar ;3 + 200 j<U<arj+az,53 T
ey 4o taroy j<U<1}-

7 if ai (S Mi,
U;, ifaf = (.
same idea but more complex and detailed estimates, we can
derive the following results.

Theorem 6.4: Under the conditions of Theorem 4.2 with
(Al) replaced by (Al”), the conclusions of Theorem 4.2 and
Corollary 4.4 continue to hold with v* and @ replaced by the
time-varying »*(t) and @, (t) given by (41), respectively.

Then define aj, = Using essentially the

VI1lI. CONCLUDING REMARKS

This paper has been devoted to a class of dynamic
Markowitz’s mean-variance portfolio selection problems. Tak-
ing into consideration of market trend and other factors, a
discrete-time model that is modulated by a Markov chain was
introduced. Aiming at complexity reduction, we use nearly
completely decomposable transition matrices and weak con-
vergence methods to derive the limit mean-variance portfolio
selection problem. Based on the limit, we can design optimal
(efficient) portfolios and derive efficient frontier [32] (see also
the framework of LQ control with indefinite control weights
[4]). Then using the efficient portfolios of the limit problem,
we constructed portfolios for the original discrete-time model
and show that such portfolios are nearly efficient.

In Section 6, we assumed the smoothness of the transition
functions in (A1’) and (A1”). Such a condition can be relaxed
if we work with convergence of the probability vector pj, and
the transition probability matrices under the weak topology
of L,[0,T]. The associated weak convergence and the limit
systems can still be obtained. As far as the limit mean-variance
problem is concerned, for the cases discussed in Section 6,
due to the time-dependent generator (the non-homogeneity),
the corresponding limit problem is more difficult to handle.

However, we can still obtain near optimality if we use a “4-
optimal” portfolio policy for the limit problem. Based on such
a é-optimal policy, we can construct portfolios that are nearly
optimal for the original problem. The statement of (34) is
changed to lim sup,_,q |J¢(z, £o,u° (")) — v°(z, £y)| < 6.
This paper has been devoted to a discrete-time model. In
fact, one may use the weak convergence method to treat a
continuous-time mean-variance portfolio problem:

€,0
B (02 0)57°(0) d
45°4(1) = S (b ()dt + Y 00,0 (D) dw (D),
=1

1=1,...,d,

where a7 (-) is a continuous-time singularly perturbed Markov
chain generated by Q°(t) = Q(t)/e + Q(t). The use of
the singularly perturbed Markov chain again comes from the
motivation of reduction of complexity. As shown in [24, §2.2,
p.840], such a continuous-time Markov chain has an associated
discrete-time chain whose transition matrix has the form (7).
Thus the problem treated in this paper can be thought of as a
discretization of the continuous-time problem given above.

It should be noted that in our model the wealth of an
agent is allowed to become and remain negative. Prohibition
of bankruptcy renders the problem one with state constraint,
which remains an interesting yet challenging open problem.

Finally, we remark that although the formulation and mo-
tivation in this paper stem from mean-variance portfolio se-
lection problems, the techniques used and the methods of so-
lutions are not restricted to financial engineering applications.
They can also be employed in other hybrid control problems
modulated by a singularly perturbed Markov chain.

APPENDIX

Proof Theorem 4.1. By virtue of Lemma 3.2-(iii), {@°(-)}
is tight. In view of the well-know Cramer-Wold device [2, p.
49], to prove the tightness of {Y=*(.),a°(-)}, it suffices to
establish the tightness of {Y**(-)}.

Use Ef to denote the conditional expectation with respect
to Fi, the o-algebra generated by {af, ,&;, = ki < t/e, 1=
0,...,d}. Forany n > 0,t>0and 0 < s <1, and for each
1=1,...,d,

E[Y®'(t +5) = Y= (1))
(t+s)/e—1
Z c'(ek,ay,)
k=t/e
(t+s)/e—1 4
fKE[VE Y Y ov(ek ad)g]

k=t/e J=1
(t+s)/e—1 (t+s)/e—1

< KE; |e

< Ke’E¢ Z Z ek, af)c (eky, af, )
k=t/e ki=t/e
(t+s)/e—1 / d 2
+KeB; ) <Za”(sk,a;)§,g> :
k=t/e J=1

(42)
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In the above and hereafter, K represents a generic positive real
number; its values may be different for different appearances.
Note that ¢t/e, (t + s)/e are understood to be the integer parts
in the summation limits of (42). In the above, we have also
used the independence of {&;} with {af}, and Ef[£;6;,] =0
for k1 # k and ¢/e < k1,k < (t + s)/e. The boundedness of
c*(+) then implies that

(t+s)/e—1 (t+s)/e—1

B Y Y. ekai)d(eki,ai,)
k=t/e  ki=t/e
2
< Kée? (H—_S _ E) < Ks?.
€ €

Similarly, the boundedness of &*(-) implies that

(t+s)/e—1 / d 2
eEf > (Za”(ek,ai){i) < Ks.

k=t/e =1
Consequently,

lim lim sup E[Y®*(t + s) — Y= (t)]? = 0.

=0 ¢0
The desired result then follows from the tightness criterion
[12, Theorem 3, p.47]. Likewise, it can be verified that
lim, o limsup,_,o, E[S°(t + s) — S=0(¢)]> = 0. Thus
{S=0()} is also tight. O

Proof Theorem 4.2. We focus on the stock price processes
(Yer(),a%(-)) for« = 1,...,d. To proceed, let us fix + €
{1,...,d}. The uniqueness of the solution of the martingale
problem can be verified as in [23, Lemma 7.18]. To charac-
terize the limit, it suffices to show that for each i € M and
f(,-,i) € Cy (where Cy'? is the collection of functions that
have compact support and that are continuously differentiable
with respect to the first variable, and twice continuously
differentiable with respect to the second variable),

[,y (t),a(t)) — £(0,Y*(0),a(0))

t
—/ (82 + L’) f(r,Y*(7),a(r))dr is a martingale.
-
’ (43)
To obtain (43), it suffices to show that for any positive
integer x, bounded and continuous function A, (-) with j; <
k, and any t,s,t;, > 0 satisfying ¢;, <t <t+s<T,

B T ha ('), 3()) (£t + 5, Y0 + ), 3( +9))
Ji=1 5

t+s
-feveae) - [ (G o)

f(r, Y (r),@(r)dr ) = 0.
(44)
To verify (44), we begin with the pre-limit processes (the
processes indexed by ¢). Define

l
fty,0) =D f(t,y,1)[jaem,y foreach o€ M. (45)

=1

Then f(-,-,a) € Cg*. The weak convergence of
(Y=*(-),a°(-)) to (Y*(-),a(-)), the Skorohod representation,

the continuity of f(-), and the dominated convergence theorem
then yield that as e — 0,

E H hj, (Y*'(t5,),a(t;,))

S+ 8, Y+ 5), @0 (E + 5) — f(5Y(E), a7 (1))
= E ] b (V'(t),a(t))

Jj1=1
(fE+s Y+ ), alt +5)) - f(B, Y (1), a(t))).
(46)
Pick out {n.}, a sequence of positive integers such that
ne—>ooase—0anden, =95, - 0ase — 0. Then

fE+s, Yt +s),a°(t+5s)) — f(&, Y (t),a" (1))

t+s a
= [ ey, e @
t 87_
t+s _ _
+ Z [f(lds’ le;; al€n5+n5) - f(l(sf?’ Y};’:, alans )]

16.=t
t+s

+ Y U6 Y 0 yn,) — FUS Y 0 )]
15.=t
+o(1),

(47)
where o(1) — 0 in probability as e — 0 uniformly in ¢ €
[0, T]. Note that we have used f(¢,Y;", 05) = f(¢, Y, ", @5)
in the above.

By virtue of the weak convergence, the Skorohod rep-
resentation, and the continuity and the boundedness of
(0/07)f(-,-,a),as € = 0,

E H hjy (YE’Z(t.h)J aa(tjl )

Jji=1

t+s
(f N (Y (7). (7)) dr)

— F H hjl (Yl(tj1)aa(tj1))

j1=1

t+s b
([ ey,

(48)

As for the terms on the next to the last line of (47),

define I(a) = (I{a:Cij}’]' < i < L1 <5 < my),
f(tﬂ y) 1)1]'m1

F(t,y) = ( : ) . Since Y, is Fj,-measurable

9,0 L
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for iln. <k <In. +n., and P¢ = P + €@ given by (7),

t+s

Eif Z [f(ldsa Yn 5aln +ne ) 7(1555 Yli’:a alsne)]
l6.=t
t+s Ilnc+n.—1

_Etz Z Epnlf

1o.=t k=In.
—f(l(s,;-, Yli;:a Oéi)]

t+s Ine+ne—1

=E Y Y Iep)(P

6=t k=ln.
t+s Inc+ne —1

=eB; ), > 1
16.=t k=In.
t+s Ing+ne—1

=eE; > > Qf(s.

=t k=In.

0, Y5 ajyr)

_nFes vy @9

DQF (6., Y
Y )(0h)-

In (49), we have used the orthogonality (P — I)F(t,z) = 0.
Furthermore,

t+s lne+ne—1

DD BRI

F16e, Y75 ) (af)

16.=t k= lns
t+s
z ZZQf l5s:yﬁzl= (CZ])
16.=t i=1 j=1
1 Ing+ne—1
n_E Z I{ai=Cij}
k=ln¢
t+s l
= 3 Y QT )
16.=t i=1 j=1
1 Ing+n.—1 )
n_ Z V;I{aiEMz’}
€ k=in,
t+s
+ Z ZZQf (10¢,Y3,%, ) (Gig )0e
o=t i=1 j=1
1 Ine+n.—1 .
e Z [I{ai=<ﬁ} —Vilig=i}]-

k=In.

Lemma 3.2 implies that the last line above goes to 0 in
probability uniformly in ¢ € [0, 7. In view of (12), as ¢ — 0,

t+s Ing+ne—1 _
E| Y 6.— Y [QF(6.,Y, ) (af)
15.=t e k=In.

—Qf (6., Y5!, ) (@5)]| = 0

uniformly in ¢. Putting the above estimates together, as e — 0,

E ] hj (Yo' (t50), 2 (t5,))
J1=1
t+s Inc+ne—1

26— > QFUS, Y, )(eR))

15.=t Me k=ln.

%Eﬂmwwmwm
5t

([ Qf(nY'(r),)@(r))dr).

t

(50)

10
Using a truncated Taylor expansion and denoting I, =
(8/0y)f and f,, = (8%/9y*)f, we have
t+s _
D [FU8 Vil s Onan.) = FUS YT 0, )]
16.=t
t+s _
= 1,005V O ) Yt . — Vit
lJE_t
t+s
+ Z fyy (16. Ylsnz>0‘lnz+ns)[}7;:+ns YliZ]Z
15 =t
t+s
+ Z [fyy l6€7 Yi’z’-i_, alsn5+n5)
15 =t
_fyy (l65; Yf l’ aln5+n5)][ ln5+n5 Yﬁl’:]z(a 1)
where Y% is on the line segment joining Ytand Vit
Substltutmg (16) in (51), we can write
t+s _
D P00, Y 0 Vi, o, — Y3
16.=t
t+s Ine+n.—1
- Z Fy(00e; Y7, O, 1n,) Z ec'(ek, o)
10.=t k=In.
t+s _
+ Z fy (l(ss’ le;’:’ C“lsnz—i-ns)
16.=t
Inc+n.—1
> Y ek oile
k=In, =1
(52)

To proceed, we first replace af, ,, in the argument of
fy(-) above by af, . Letting 16. — 7 as e — 0, and using

Lemma 3.2-(iii), for all In. <k <lIn.+n. —1, ek = T,
t+s
E H h]l Ygl ]1 .71 Z f l(SE,Yn ’ lns)
Ji=1 16.=t
1 Inc+ne—1
-55n—5 Z c'(ek,af)
k=lng
K t+s
_EHhh Y= (t5,), % (t),) Zf 6’}/;2:’0‘7715)
Ji=1 6=t

55 Inc+n.—1 I m;

e z z z c*(ek, Cij)V;:I{aieMi}

k=Iln. i=1 j=1
K t+s
—|—E H hjl (YE’ (tjl Z fy l(ssyy;i,,laalne)
ji=1 6=t

Ing4+ne—1 | m;
1
S —

e DD ek, Giy)

k=ln. =1 j=1

'[I{af:cﬁ} - V’-I{afeM-}]

- E H h’Jl .71 ( J1))
t'zi}s !
fy(r, Y (7),a(r))e (r,a(r))dr

' (53)

By virtue of the independence of {{} }, inserting Ef and then
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Ey, and using E&, = 0, we have Combining the estimates obtained thus far and using (51)
in conjunction with (47), we arrive at
t+s
E T nj, (Yo' (t,), @ (¢, T8,V af, - el —e
T_I n (t3) [wzztfy( e @ine) B T by (V50 (),0 0)
Ine+ne—1 : Ji=1
3 @,W(g,ﬂai)&] _ 4 (J(t+ 8, Y4t +9),3° (4 9) = F(LY(0),3°(1)
k=ine - FE H h’j1 (Yz(tj1)7a(tj1))
Likewise, detailed estimates reveal that jlt:js
0 . 0N —
: [ 1+ 215670 )
lim E hi, (YU (ty,), a (t; —
0 jgl ]1( ( 11) (J1)) +Qf(T, Yt(’r),-)(a(T))]dT .
axy T (5 Ys , 5 Yz—: , Ys,z 2 (58)
[Z Fy (00, Y3 s 0 )Y, = Y, ] Equation (58) together with (46) then yields the desired
loe=t assertion.
=1lim E [] hju (Yo' (t5,),2°(t3,)) The same method works for the proof of (S=:0(-),a°(-)) to
=0 5 (S°(-),@(-)). The proof is even simpler since no diffusion is
ts - 1 involved. O
Z 0c fyy 10, Yy )ns Acknowledgement. We thank the reviewers and the editors for
16.=t 9
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k= lnE i=1 j=1 the paper.
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